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Abstract-Universal lossless coding in the presence of finitely many 
abrupt changes in the statistics of the source, at unknown points, is 
investigated. The minimum description length (MDL) principle is de- 
rived for this setting. In particular, it is shown that for any uniquely 
decipherable code, for almost every combination of statistical parameter 
vectors governing each segment, and for almost every vector of transition 
instants, the minimum achievable redundancy is composed from 
0.5 log n / n  bits for each unknown segmental parameter and log n / n  
bits for each transition, where n is the length of the input string. This 
redundancy is shown to be attainable by a strongly sequential universal 
encoder, i.e., an encoder that does not utilize the knowledge of a 
prescribed value of n. 
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I. INTRODUCTION 

Universal lossless coding schemes are normally developed for 
classes of stationary or asymptotically stationary sources, ranging 
from parametric classes such as memoryless, Markov, and 
finite-state sources (see, e.g., [1]-[ 101) to nonparametric classes, 
like the class of all stationary and ergodic sources over a given 
alphabet (see, e.g., [11]-[131). In a nonstationary regime, a com- 
mon approach is to estimate the current statistical parameters at 
every moment and to perform dynamic or adaptive Huffman 
coding (see, e.g., [14]-[ 171). 

In this correspondence, we adopt a simple parametric model 
for a class of nonstationary sources, and we are concerned with 
second-order optimality of universal coding schemes with re- 
spect to this class. Specifically, we assume an information source 
whose unknown statistical parameter vector is subject to jumps, 
i.e., abrupt changes, at a priori unknown time instants. In other 
words, the parameter vector of the source is piecewise constant 
in time. The main result here is an extension of Rissanen's 
minimum description length (MDL) principle to this model. 

As an example, consider a ( k  + 1)-ary sequence xl;..,x, 
drawn from a memoryless source whose vector of letter probabil- 
ities is held fixed at 8 = O1 until time instant t = m (1 I m I n),  
but then jumps to 0 2 ,  where it again remains constant until 
t = n, that is, a single transition in 0. This source can be 
characterized by the triplet + = ( O , ,  0 2 ,  a )  where a = m / n  is 
the normalized transition point. Alternatively, one can think of 
a as a continuous-valued parameter taking values between 0 and 
1, and m = [ n a ] .  We first show that under a suitable regularity 
condition, for every uniquely decipherable coding scheme [ 181 
operating on length n input strings, the expected codeword 
length is essentially never less than 

L 

k + . log [(l - a)??] + log n,  (1) 
L 

except for a set of points whose volume vanishes as n grows. 
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Here, H ( O , )  and H(8,)  are the per-letter entropies associated 
with the two segments. The first two terms form the least 
achievable compression ratio, even when + is completely known. 
The next two terms represent the extra redundancy that stem 
from universality in 0, and in O r ,  respectively (see, e.g., [7]). 
Note that, if a E (0, l), i.e., m grows linearly with n, then log 
( a n )  and log [(l - a ) n ]  are both asymptotically equivalent to 
log n since log a and log (1 - a )  become negligible compared 
to log n. Thus, these two terms can be essentially merged to 
k . l o g n .  The last log n term expresses the penalty for not 
knowing m or, equivalently a.  A point to observe here is that 
while each unknown segmental parameter O1 and O2 contributes 
essentially 0.5 log n bits per component (as is well known from 
the MDL principle), the unknown transition point a contributes 
log n bits without the factor 0.5. The intuitive reason for this 
phenomenon is that the likelihood function P+(x,;.., x,) is 
much more sensitive to perturbations (errors) in a than in the 
segmental parameters, and hence the former should be encoded 
in full resolution. 

As an evidence of the special sensitivity of P+ to the transition 
instant, it will be shown that a can be estimated with an error 
that decays essentially as fast as n - ' ,  while the segmental 
parameters can normally be estimated at the rate of In 
fact, this will be a key step in proving the above result (see 
Lemma 3 below). 

It is easy to show that this lower bound on the expected 
codeword length is achievable. For instance, consider the follow- 
ing coding scheme. For each possible division of x,,"., x,, i.e., 
for each possible value of m, encode xl;.., x, and x,+ x, 
separately, each by a universal code for memoryless sources (see, 
e.g., [l]), and find which value of m yields the shortest codeword. 
Then, to encode the optimal m, use logn bits as m can take 
only n possible values. While the above-described scheme re- 
quires a prescan in order to find the best value of m, we will 
demonstrate a sequential encoder that attains (1) even without 
needing to prescribe n in advance, i.e., a strongly sequential 
scheme. Moreover, the redundancy term of (1) is attained in a 
pointwise manner for every n-tuple, and not merely on the 
average. It is interesting that the proposed scheme does not 
involve an explicit estimation of m. 

These results extend to parametric classes of sources that are 
more general than the class of memoryless sources (within each 
segment) and to any fixed number q of segments. The extension 
of (1) will consist of the appropriate convex combination of 
segmental entropies, plus 0.5 log n bits for each one of the k 
components of the segmental parameter and for each one of the 
q segments, plus logn bits for every one of the q - 1 transi- 
tions. 

From the lower bound and its achievability, it is apparent that 
this extension of (1) is the MDL for sources with piecewise fixed 
parameters, and as such, may serve as a guideline for data 
segmentation in certain applications, such as speech signal anal- 
ysis (see, e.g., [19]-[21]), curve segmentation and edge detection 
in image processing (see, e.g., [22]-[26]), DNA segmentation in 
molecular analysis (see, e.g., [27], [28]), and others. The MDL 
criterion can be applied for simultaneously deciding how many 
different segments q there are (if a priori unknown), and deter- 
mining the segment endpoints. 

The outline of this correspondence is as follows. In Section 11, 
we provide some notation and definitions. In Section 111, we 
state and prove the lower bound on the expected codeword 
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length for sources with piecewise constant parameters. Finally, 
in Section IV, we show a few ways of achieving this bound and 
discuss their properties. 

11. NOTATION AND DEFINITIONS 

Let {ps}  be a parametric family of stationary probability mass 
functions (PMFs) of vectors whose components take on values 
in a finite set d with Id1 = A  letters. It is assumed that 0 is a 
k-dimensional parameter vector taking on values in a compact 
set 0 c R k .  Let x , ; . . ,  x , ,  x ,  E&' be a sequence drawn from a 
PMF whose parameter 8 takes on a particular value el from 
t = 1 to t = m,; then 0 = O 2  from t = m ,  + 1 until t = m2,  and 
so on. Finally, from t = mq-l  to t = n, 0 is held at Oq. The 
vectors ( x 1 ; . . ,  xm,1, { x m , + ] ; . . ,  x m 2 } , . . . , { x m q - , +  x , }  will be 
referred to as segments, and correspondingly, el ,  0 2 ; . . ,  Oq will 
be called the segmental parameters. The extended vector 
(e,,..,, Bq) will be denoted by 8. It will be assumed that the 
different segments are statistically independent. 

The regime of the asymptotics will be such that all segments 
grow linearly with n, that is, Iim,+= mi/n = a, E (0,l)  and 
a,+ > ai, for all i, as segments with an asymptotically vanishing 
relative length have a small effect. An asymptotically equivalent 
formulation is one for which, given al;.., a 9 - l ,  the transition 
instants are given by mi = lain], i = l;..,q - 1. The parame- 
ters a,;.., aq- I will be referred to as the asymptotic normalized 
transition instants or simply the transition parameters, and the 
vector ( al;.', aq - ,) will be denoted by a. For convenience, we 
shall sometimes use a,, ~5 0 and a9 1. The PMF of x l ; . . , x ,  
is now completely defined by the combined parameter vector 
$ (e, a), i.e., 

9 

P , (X l , . . . ,X , )  = r I P s , ( x m t ~ , + l , - . >  x m , )  (2) 
I =  1 

where mo 2 0 and m4 6 n. 
The Cartesian product of two generic sets Z! and Y" and the 

rth Cartesian power of 2! will be denoted Z X  Y" and U r ,  
respectively. 2!' is the complement of 2!. For a generic vector w ,  
( ( w ( (  will denote the Euclidean norm in the appropriate space. 
The space 0 9  X (0,l)q-I of the extended parameter vector I) 
will be denoted T, where it should be kept in mind that 
a ,  < a2 < ... < a9-, .  T6, for 6 > 0, will denote the subset of 
T with 110, - Oi+,1\  2 6 ,  for every i = l;..,q - 1, and - 
ai 2 6 for all i = O;.., q - 1. For i < j ,  the string { x ; ; . . ,  x j }  will 
be henceforth denoted by x i .  For a measurable event F ,  1{F)  
will denote the indicator function, and p e { F }  and P&F} will 
denote probabilities of F under the segmental PMF ps  and 
under P,(.), respectively. Similarly, E,{.) and E,{.} will denote 
expectations under the two PMF's. The per-letter lth-order 
entropy associated with ps  is defined as 

Finally, a length function L , ( x ; )  of a uniquely decipherable 
lossless code (see, e.g., [18]) is a map from dn to the positive 
integers that satisfies Kraft's inequality 

111. THE LOWER BOUND 

Throughout the paper, we shall assume the following regular- 
ity condition about the parametric family of segmental PMF's 
{ p s ,  e E 01. 

(A) There exists an estimator i = f ( x i )  such that for every 
positive integer r, there is a constant K ( r )  > 0 such that for 
every 0 E 0, and all large enough I ,  

Condition (A) requires a fairly good estimator for the segmen- 
tal parameter 0. To a certain extent, it is a stronger requirement 
than that of [7] where, in fact, only &-consistency was required, 
namely, a uniform 0(1/ &) decay rate of the estimation error. 
The reason for the more demanding condition here is that the 
identifiability of 0 plays a role here, not only in the universal 
coding within each segment as in [7], but also for distinguishing 
between different segments and reliably estimating the segment 
boundaries. Nevertheless, it is not difficult to see that this 
condition holds, at least in the case where Ips} is the class of 
memoryless sources, where the components of 8 are the letter 
probabilities. Here, the estimator given by the relative frequen- 
cies of the letters satisfies condition (A). This can be seen by 
recalling the well-known fact that for the Bernoulli process 
{ y , ) ~ = , ,  y ,  = 1{x, = a), a E&', the rth moment E&=, y ,  - 
&,Ju)Ir is given by a polynomial in 1 whose degree is r/2, where 
the coefficient of the leading term is uniformly bounded in the 
simplex 0. The same holds true for Markov sources, finite-state 
source, and other classes {p,} of practical interest. 

The following is an extension of [7, Theorem 1, part (a)]. 
Theorem 1: Assume that condition (A) holds, and let 

be a sequence of uniquely decipherable lossless {L,(x:)} ,  ~ 

codes. Then, for every E > 0 and all large n,  

E,L,(XY) 2 (m, - m,-l)ffm,-m,-$6,) 
9 

I =  1 

for all points I), except for points in a set A,(n) c T whose 
volume tends to zero as n --f m. 

It has been explained in the Introduction that each transition 
parameter ai contributes essentially log n rather than 0.5 log n 
bits to the redundancy since P,(.) is more sensitive to a than to 
8, and hence more encoding accuracy is required. The intuitive 
explanation for this difference in sensitivity is fairly simple. First, 
observe that for a typical sequence x 1 ; . ~ , x , ,  the segmental 
likelihood function log ps(.), and hence also log P,(.) ,  is in the 
vicinity of its maximum, and therefore, perturbations in 8 affect 
the likelihood function only via the second-order derivatives 
because the first-order derivatives are normally close to zero. In 
contrast, it is not difficult to see that the (one-sided) first-order 
derivatives of log P+ with respect to (w.r.t.1 a are not necessarily 
negligible near the maxima of the likelihood function, and 
therefore small perturbations in a have a first-order rather than 
a second-order effect on the likelihood function. This raises the 
sensitivity to the transition parameters from nP1I2  to n-  I. 
Indeed, as we show at the beginning of the proof of the above 
theorem, the transition parameters can be estimated with an 
error that decays almost as fast as n-' ,  unlike the convergence 
rate of the segmental parameters, which is essentially n - I I 2  in 
most cases. 

The remaining part of this section is devoted to the proof of 
the theorem. 

Proof of Theorem 1: We first prove the joint existence of 
estimators for 8 and a with the convergence rates just de- 
scribed. This will be done in several steps, where in the first step 
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(Lemma l), it is proved that under condition (A), it is possible to 
classify vectors according to whether they were drawn from the 
same segment, such that the error probability is sufficiently 
small. In the second stage (Lemma 2), it is shown that by 
chopping the data into small phrases and classifying these phrases 
into segments (using the above classification rule), an estimate 
of a with the above-mentioned convergence rate is obtained. In 
the last phase (Lemma 31, it is demonstrated that once (Y has 
been estimated this way, one can extract an appropriate estimate 
for 8 from the estimated segments. Having proved Lemma 3, 
the proof of the Theorem is similar to that of [7]. 

Lemma 1: If condition (A) holds, then there exists a sequence 
{sL,],2 of subsets of @' x d '  with the following two properties. 

a) For every joint PMF ps(x ,  y), whose marginals are p , ( x )  
and p,(y), x, y E@', 

2 K ( r )  C pe(x ,y )  I 
( X , y ) E n ;  

b) If Ox, Oy E 0, then 110, - Oyll 2 41-1/4 implies that for 
every positive integer r and all large 1, 

Proot Let iX = f(x), iy = f(y), where f(.) is as in condition 
<$, and consider the decision rul? given by 0, = {(x, y): 118, - 
OJ I As for part a!, if 110, - OJ > 2l-'I4, then by the 
triangle inequality, either IlO, - 011 > /-'I4 or [IOy - 811 > /-'I4. 
Thus, by the union bound, 

C P,(x,Y) s p g { I I i X  - ell > 1-i/41 
( x . y ) E n f  

+PU{lli) - 011 > 1 - 1 / 4 }  = 2p,{IIix - ell > 1 - 1 / 4 ) .  (7) 

Now, by Markov's inequality and condition (A), the rightmost 
side of (7)  is upper bounded by 21r14 . K(r)/Zr/'  = 2K(r) /ZrI4,  
completing the proof of part a). Rega;dingpart b), since ll0, - Oyll 
is assumed larger than 41-'14, but 110, - Oyll 5 2Z-i/4 whenever 
(x, y )  E fly, then by the triangle inequality, 

A A  

11i.j~ - O,II + i i i y  - O,II z IIO, - OJ - lie, - eyii 
41-1/4 - 21-1/4 = 21-1/4 

which implies that either l1ix - O,ll 2 /- 'I4 or IIiy - Oyll 2 
Thus, part b) now follows similarly to part a) and completes the 
proof of Lemma 1. 

Lemma 2: Fix E E (0,l)  and set 6, = 4n-'l4. Under condi- 
tion (A), there exists an estimator & such that for every c > 0, 
every sufficiently large n, and every 9 E Tn LL Tan, 

where r, depends solely on E .  

Pro05 We prove Lemma 2 by selecting a particular estima- 
tor &. Given E ,  parse the sequence x ;  into phrases of 
length ne  (assuming, without loss of generality, that these num- 
bers are integers). Let x, EM,', i = l;..,nl-' denote the ith 
phrase. Since 4 E T,,, and 6, > n-'I4, it is clear that for all 
large n, the entire phrase x,  belongs to the first segment, and 
similarly, the last phrase x,I-. is in the last segment. For 
i = 2;.. n ' - E  - 1, we shall first classify {x,] in accordance to 
their segments. To this end, we use a decision rule a,,, that 
satisfies Lemma 1 with I = n'; for example, the decision rule 

that is described in the proof of the above lemma. Every phrase 
x, is marked by b, = 0 (i.e., no transition) unles? either (x,- x , )  
E fl$, or (x,, x,+ E a:., or (x,- x,+ E ai., in which case 
x, is marked by b, = 1 (i.e., a transition occurs). The reason for 
checking all combinations is associated with the fact that a 
transition might take place at an arbitrary point within a phrase, 
and hence this phrase does not belong entirely to any particular 
segment. 

Consider now the resulting binary sequence of transition 
marks {b,]. If one or  several consecutive phrases are marked by 
b, = 1, this will be interpreted as a single transition. The j t h  
component of a will be estimated as &, = A,/n, where $2, 

corresponds to the midpoint of the string formed by the j th 
group of successive phrases, all marked by b, = 1. If the number 
of such groups is larger than q - 1, then the excess is ignored. If 
it is smaller, the missing components of & are all set to an 
arbitrary value, say, 1. 

We now show that the above estimator satisfies the assertion 
of the lemma. First observe that if all phrases are classified 
correctly, i.e., b, = 0 for all internal phrases x, that belong to 
the same segment as their two neighboring phrases x,- '  and 
x,+,, and at the same time, there is at least one and no more 
than three successive occurrences of b, = 1 for phrases sur- 
rounding a true transition, then A, cannot deviate from the true 
m, by more than 1.5n', which corresponds to a maximum esti- 
mation error of 1.5n-('-') in a,. (The constant 1.5 is obviously 
unimportant as it can be absorbed in E . )  Thus, it suffices to show 
that the probability of the event F of correct classification in the 
above-defined sense is eventually larger than 1 - K ( r E ) / n .  Sup- 
pose that the real transitions occur in phrases x I 1 ,  x,,;.., x,? ,, 
and for convenience, also define z u  A 0. Now, since 1/0,+1 - O,ll 
> - 8, = 4 n - ~ / 4 ,  i = 1, ... , q - 1 when 4 E ?,, then by applying 
Lemma 1 with 1 = n' and the union bound, 

provided that n is sufficiently large. Now, by selecting r = re = 

[8/~1,  the assertion of Lemma 2 is proved. 
Lemma 3: Assume that condition (A) holds, an$ fix c > 0 and 

E E (0,l). Then, there exists an estimator IC, = (8 ,  &) such that 
for every + E W,, and all large n, 

G 
< ) I I O  - e11 2 c U n'-'Il& - all 2 c } - < ; (10) p${x;:  n(1.5(l- A 

for some constant G thal depends only on E ,  c, arid q. 
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Proof Again, the proof is constructive. For estimating a, 
we use any estimator that satisfies Lemma 2, say, the estimator 
described in the proof of that lemma. The estimator for each 
segmental parameter O,, i = l;.., 4 will be given by the function 
f ( . )  as defined in (A), where the argument is a substring of the 
estimated segment starting at R i - ,  and ending at R,. Specifi- 
cally, let (', = (R,-, + h , ) / 2  benthe midpoint of the ith esti- 
m a t e d  s e g m e n t .  T h e n ,  8, will b e  de f ined  a s  
~ ( X , . , ~ ~ . ~ , I - ~ / ~ , . . . ,  x ,  , + 0 , 5 n ~ - L , ' ) .  At first glance, this way of esti- 
mating 0 might seem somewhat obscure. However, it is good 
enough to satisfy Lemma 3, and it appears easier to analyze than 
an estimator that uses the entire estimated segment from &i - l  

to hi, as the latter operates on a random number of observa- 
tions. 

Let m and r& denote the vectors (m,;.., m q - l )  and 
(A,;.., Rq- respectively. Let S(m)  denote the set all ( q  - 1)- 
dimensional vectors k = (hI;.., fi,- !) with integer-valued 
components such that 11th - mil < cn'. Similarly, denote by S(0) 
the Euclidean sphere of radius c / ? ~ . ~ ( ' - ' )  centered at 0. Fi- 
nally, to stress the dependency of 0 on r&, it will be denoted 
0 = g(x;, r&), whereas g(x;, k) is understood similarly to 
g ( x 7 ,  r&) but with c, defined as the midpoint of the string with 
the detetministic endpoints ki- and m,. Now, the probability of 
the event of (10) is upper bounded as follows. First, by the union 
bound, 

P,{g(.x;, &I E S'(0) U & E S ' ( m ) }  

K ( r )  q0.5rn0.5r(l - c )  

I ~ 4 1 2 ' 4  . q . c r  110.5(1 - t / 2 b  (15) 

which, for r 2 [4(q + 1 /~ )1 ,  decays faster than l /n .  By combin- 
ing ( l l ) ,  (12), and (159, and by taking r at least as large as max 
{re, [4(4 + l /~) ]} ,  we complete the proof of Lemma 3. 

The remaining part of the proof of Theorem 1 is almost a 
straightforward extension of the proof of [7, Theorem 1, part 
(a)], but it will be presented here for the sake of completeness. 
Let + E qn and denote 

E,,(+) = {& = (6,  &): 116 - 0))  5 ~ 1 1 - ' . ~ ( ~ - ' ) ,  

1115 - I CIC('-')}. (16) 

Let 4 be an estimator of + that satisfies Lemma 3. Define the 
set of "typical" sequences 

X,,($> A by: 4 E E,,($)},  (17) 

and denote P,{X,<$)) by P,,(+). Lemma 3 guarantees that if 
+ E T, and E > 0, then P,(+)  > 1 - E for all large n. Let L,(.) 
be a length function that satisfies Kraft's inequality (4), and 
denote 

- < P , { g ( x Y ,  r&) E SC(O>l + PJr& E S C ( m > )  (11) 

where the second term is less than K(r,)/n by Lemma 2. As for 
e,,(+) k 2-Ln(x?). 

x ;  EX,( $1 
the first term, 

P,(g(X;, 8 )  E sC(e)) I P,{g(x;, a 
E ~ ~ ( 0 )  n r& E S ( m > }  + P&r& E S c ( m ) )  (12) 

where, again, the second term does not exceed K ( r E ) / n .  The 
first term on the right-hand side of (12) can be upper bounded as 
follows: 

(18) 

Now, by Jensen's inequality and the nonnegativity of the 
Kullback-Leibler informational divergence, 

(19) 

= P J g ( x y , i i )  E ~ ' ( 0 )  n r& = k) 

5 P,{g(x ; ,k)  E SC(0)}.  (13) 

Since the estimator il of each segmental parameter Or operates 
on a string, whose length n'-'/' is very small compared to the 
segment length (which, in turn, is never shorter than n8, > 
n l - s / 4  , provided that + E T,,), then for all large n, for k E 

S(m),  it is guaranteed that each estimator 0, is computed from a 
vector that is entirely within the appropriate segment. Further- 
more, since pH is assumed stationary, it then follows that 
P J g ( x ; ,  i i) E S'(0)) is independent of rit [as long as k E S(m)]. 
In particular, it is equal to P,{g(x; ,  m )  E SC(0)}. Thus, the right 
side of the inequality in (13) is given by 

m E S ( m )  

m E S ( m )  

P,(g(x;, k) E SC(0>) 
m E F(m) 

= IS(m)l. P , { g ( x ; ,  m) E SC(0)} .  (14) 

Now, since IS(m)l 5 (cne)4,  we have by the union boFnd, 
Markov's inequality, assumption (A), and the fact that O1 is 

Let N, denote the maximum number of disjoint neighborhoods 
E,(+) with centers at B,(n), and let C, denote the set of 
centers. Because of the triangle inequality, it is easy to see that 
by doubling the radius of each neighborhood E,,($) [i.e., by 
replacing c by 2c in (1611, we obtain a cover of B,(n). Therefore, 
the volume V, of B,(n) is bounded by 

where D is a constant depending only on k and 4. From (19) 
and (20), we conclude that for every + E B,(n) and all large n ,  

. log n ( l - 6 X 0 . 5 k q + q - l )  (22) 
By Lemma 3, for all large n, the expression in the brackets is 
less than 1 - ~ / 2 ,  provided that I) E Tn. This implies that 

Q,( +) > -(I - c / z X 1 -  cM0.5kq+q- 1) (23) 

Since the sets E,,( +) are disjoint by construction, then by Kraft's 
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inequality, m in the sense of minimizing L,(x;") + L, , -m(x i+ l ) .  The code 

which tends to zero as n + CO. Next, observe that for every @ in 
W, but outside B,(n), we have by (20) 

(1 - 
1 

el2( z k q  + q - 1 logn 1 

will be constructed from log n bits specifying m*, followed by 
minm(Lm(xy)  + L n - m ( x i + l ) )  bits for encoding the data them- 
selves. This scheme obviously attains the lower bound for a 
single transition. However, an inherent limitation of this method 
is that it cannot be implemented in a sequential manner because 
one must first see the entire vector x; before deciding on its 
optimal partition. 

In certain situations of practical interest, the need of such a 
two-pass procedure can be avoided by forming a universal prob- 
ability measure, which is a mixture of all PMF's in the class, and 
constructing a code that is optimal w.r.t. this measure (see, e.g., 
[29], [30]). Consider, for example, the class { p e }  of memoryless 
sources where 8 denotes the vector of k = A  - 1 freely chosen 
letter probabilities (which has immediate extensions to Markov 
sources and finite-state sources). For a given string xf ,  r I I, let 
n,(a) ,  a ~ d ,  t = r ; . . , l  denote the count of occurrences of 
x, = a, along j = r ; . . ,  t .  Let 

nf- , (x , )  + 1/2 
t - r + A / 2  

@(Xf I x;- 1) = (29) 

where nH,(@) is the unnormalized nth-order entropy associated 
with $ given by the first summation on the right-hand side of 
(6). The second term on the rightmost side of the last expression 

where n,_ ,(a) 0 and 
1 

@<xL> = n @ ( x ,  I x;-1>. (30) 
is upper bounded as follows: f = r  

1 Finally, let 

1 ,  
P*(x;)log- 

P,(xf) 

= [1 - P,($)I. c 
X ;  X:(  C) ph;> = - F(X;)F(x;+J (31) 

where x:+ is interpreted as the "empty" string whose probabil- 
itv under b(.) is defined as 1. Now, consider the Shannon code 

n j = 1  p*<x;> 1 - Pn(@)  . log 
q = x ; ( + )  1 - Pn(@) p*<x;> 

1 (see, e.g., [IS]) w.r.t. p(.) ,  whose codeword length for each 
n-tuple is upper bounded as follows: + [ 1  - P,(@)llog 

1 - P n ( 9 )  

- < [ l  - 

- < G log A + o(1) (27) 

where the last step follows from Lemma 3. Thus, the last term 
on the rightmost side of (26) is absorbed in its leftmost side, and 
the assertion of Theorem 1 is proved (with E replaced by 2 E) for 

= [ - log@(xy) ]  + [-log@(x:-,)] + logn + 1. (32) 

It is well known (see, e,g., [3]) that for any string 

-log@(x;") 5 m 8 ( x y )  + i k l o g m  + O(1) (33)  
$ E T,, n B:(n) and all large n. The volume of the complemen- 
tary set A , ( ~ )  P q; U 
the volumes of and B,(n), which both vanish with n. This 

clearly does not exceed the sum of (and a similar relation for x;+ 1>, where A(x?) is the empirical 
entropy associated with x?, defined as 

completes the proof of Theorem 1. 

IV. ACHIEVABILIW 

For the sake of simplicity, we shall hereafter confine attention 
to the case of a single transition, namely, q = 2. The extension 
to a general value of q will be straightforward. 

The conceptually simplest approach to achieving the lower 
bound, as given by Theorem 1, relies on the existence of a 
universal prefix code for the class of segmental PMF's Ips} that 
is optimal in the sense of [7], namely, a universal code with a 
length function L,(xf), such that 

Since Es,8(x;") 5 H(O,) ,  as can easily be seen, and similarly, 
E o Z H ( ~ t + l )  5 H(B2),  the bound is attained. To implement this 
code sequentially, one may calculate the conditional measures 
P ( x r  I xi-'), t = l;.., n, and use an arithmetic code w.r.t. 
(-log j j ( x t  I xi-')):= all de- 
pend on the prescribed value of the block length n, then the 
code is only weakly sequential in the sense that n has to be 
known in advance. 

However, since ( p ( x (  I XI-')},"= 

To relax the necessity of knowing n a priori, one may use a 
slowly decaying nonuniform weighting on j rather than the 
uniform weighting l / n  in (31). For instance, let v(j) = l/j'+', 
C, = Cy= l r ( j ) ,  and C, = Cy= ]v(j). Then, (31) can be modified 

E , L , ( x : )  I IH,(O) + (+ + E)k log 1 (28) 

for every 8 E 0, E > 0, and 1 sufficiently large. Once equipped 
with such a code, we can find for each x; the best value m* of 

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on January 15, 2009 at 09:31 from IEEE Xplore.  Restrictions apply.



1967 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993 

as follows: 

~ ( x : )  = c;’ d j ) $ ( x i ) $ ( x y + l )  
n- 1 

I =  I 

+ ( 1 - -  c;;l)$(x;l. (35)  

This can be interpreted as a mixture of PMF’s with a prior on m 
given by C g ’ d m ) .  Thus, with probability (1 - C n - l / C x ) ,  m 
might be at least as large as n, which means that no transition 
occurs in the first n symbols. It is easy to see that now the 
conditional probabilities associated with p ,  as defined in (351, do 
not depend on n, and hence the block length need not be 
prescribed in advance. Again, one can show in a manner similar 
to (32) that an arithmetic code w.r.t. (35) attains the lower 
bound, where the redundancy term log n, associated with the 
transition, is replaced by (1 + €)log m, which is essentially as 
large as (1 + €)log n. This extra redundancy can be eliminated 
by letting E = E, vanish with j sufficiently slowly such that 
{r;( j)), ~, remains summable, e.g., E, = O(1og log j/log j } .  Alter- 
natively, one may use the universal prior on the integers as a 
weighting sequence (see, e.g., [30]). 

Finally, it should be pointed out that the latter coding scheme 
is not only strongly sequential in the sense that n need not be 
specified in advance, but it also attains the minimum description 
length in a pointwise manner, i.e., the redundancy term coin- 
cides with the lower bound for any n-tuple and not merely on 
the average, while the leading term of the code length is given 
by the empirical entropy. 
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Limits of Conditional Expectations 

Eimear Goggin 

Abstract-If (XN, U N )  on a probability space ! O N , F N , P N )  converge 
in distribution to ( X , Y )  on (O,9,  P ) ,  it is not necessarily true that the 
conditional expectations E P ” { F ( X N ) ( Y N }  converge in distribution to 
E p { F ( X ) I Y ) ,  even for bounded, continuous functions F .  The limits of 
the conditional expectations can be determined if it is possible to make 
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