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Lower and Upper Bounds on the Minimum 
Mean-Square Error in Composite Source 

Signal Estimation 
Yariv Ephraim, Senior Member, IEEE, and Neri Merhav, Member, IEEE 

Abstract-Performance analysis of a minimum mean-square 
error (mmse) estimator for the output signal from a composite 
source model (CSM), which has been degraded by statistically 
independent additive noise, is performed for a wide class of 
discrete as well as  continuous time models. The noise in the 
discrete time case is assumed to be generated by another CSM. 
For the continuous time case only Gaussian white noise, or a 
single state CSM noise, is considered. In both cases, the mmse is 
decomposed into the mmse of the estimator which is informed of 
the exact states of the signal and noise, and an  additional error 
term. This term is tightly upper and lower bounded. The bounds 
for the discrete time signals are developed using distribution 
tilting and Shannon’s lower bound on the probability of a 
random variable to exceed a given threshold. The analysis for 
the continuous time signals is performed using Duncan’s theo- 
rem. The bounds in this case are developed by applying the data 
processing theorem to sampled versions of the state process and 
its estimate, and by using Fano’s inequality. The bounds in both 
cases are explicitly calculated for CSM’s with Gaussian sub- 
sources. For causal estimation, these bounds approach zero 
harmonically as  the duration of the observed signals approaches 
infinity. 

Index Terms-Composite sources, minimum mean-square 
error estimation, distribution tilting, Duncan’s theorem. 

I. INTRODUCTION 
INIMUM mean-square error (mmse) estimation M performed using discrete time composite source 

models (CSM’s) [ l ]  for the signal and for an additive 
statistically independent noise is of primary interest in 
speech enhancement applications [7] for the following 
reasons. 

1) CSM’s have proven useful for speech signals [2] and 
for frequently encountered noise sources [7]. Fur- 
thermore, the mmse estimator is optimal for a large 
class of difference distortion measures, not only the 
mean-squared error (mse) measure, provided that 
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2) 

3) 

A 

the posterior probability density function (pdf) of the 
clean signal given the noisy signal is symmetric about 
its mean [3, pp. 60-631. This class includes all convex 
U difference distortion measures. Hence, CSM based 
mmse estimators are potentially good estimators for 
speech signals, since the pdf of these signals, and 
often also the pdf of the noise process, are not 
available, and the most perceptually meaningful dis- 
tortion measure is unknown. 
The mmse estimator of the signal is the optimal 
preprocessor in mmse waveform vector quantization 
(VQ) [4]-[5]. Furthermore, the mmse estimator of 
the sample spectrum of the signal is the optimal 
preprocessor in autoregressive (AR) model VQ in 
the Itakura-Saito sense [5]. 
The causal mmse estimator of the signal is the 
optimal preprocessor in minimum probability of er- 
ror classification of any finite energy continuous 
time signal contaminated by white Gaussian noise 
[61. 
discrete time CSM is a finite set of statistically 

independent subsources that are controlled by a switch 
[l]. The position of the switch at each time instant is 
randomly selected according to some probability law. 
Throughout this paper, each subsource is assumed a sta- 
tistically independent identically distributed (i.i.d.) vector 
source, and the switch is assumed to be governed by a 
first-order Markov chain. The model obtained in this way 
is referred to as a hidden Markov model (HMM) in the 
speech literature [2]. Each position of the switch defines a 
state of the source. A pair of states of the signal and noise 
defines a composite state of the noisy signal. 

The CSM based mmse estimator comprises a weighted 
sum of conditional mean estimators for the composite 
states of the noisy signal [7]. For causal mmse estimation 
of a vector of the clean signal, the weights are the poste- 
rior probabilities of the composite states given all past 
and present vectors of the noisy signal. The causality of 
the estimator in this case is with respect to vectors of the 
signals rather than the samples within each vector. These 
samples, except for the last one, are not estimated in a 
causal manner. The mmse estimator was originally devel- 
oped by Magill [8], and subsequently in [9]-ElO], for a 
particular case CSM and white Gaussian noise. This model 
assumes that the switch remains fixed at a randomly 
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selected initial position. Hence, in essence, the model 
used in [8]-[lo] is a mixture model [ l l ] .  The CSM used 
here is more general since it allows state transitions each 
time a new output vector is generated. 

The purpose of this paper is to theoretically analyze the 
performance of the CSM based mmse signal estimator 
which has proven useful in speech enhancement applica- 
tions [7]. A second-order analysis is performed. Since the 
estimator is unbiased in the sense that the expected value 
of the error signal is zero, only the mmse is studied. The 
analysis is performed for a wide class of CSM’s whose 
initial state probabilities and state transition probabilities 
are strictly positive. The subsources are assumed to satisfy 
only mild technical regularity conditions. It is shown that 
the mmse can be decomposed into two error components. 
The first is the mmse of the estimator that is informed of 
the exact composite state of the noisy signal at each time 
instant. The second error component represents the sum 
of cross error terms corresponding to pairs of composite 
states. This component is evaluated using the “sandwich” 
approach. Specifically, tight upper and lower bounds are 
developed for each cross error term. The bounds are first 
shown to be dependent on the probability of classification 
error in a two class hypothesis testing problem. Then, the 
probability of misclassification is upper and lower bounded 
using distribution tilting [3], [29], and Shannon’s lower 
bound on the probability of a random variable to exceed a 
given threshold [181. These bounds resemble the Chernoff 
bound [29]. The bounds are explicitly evaluated for the 
most commonly used CSM’s, i.e., those whose subsources 
are asymptotically weakly stationary (AWS) [141, [ 151 
Gaussian processes. Examples of such sources are Gauss- 
ian AR processes. For this case, the bounds are shown to 
converge exponentially to zero as the vector dimension of 
the output signal approaches infinity. Hence, the asymp- 
totic mmse is the mmse of the informed estimator. 

An intuitive suboptimal detection-estimation scheme is 
also analyzed. In this scheme, the composite state at each 
given time instant is first estimated from all past and 
present vectors of the noisy signal. Then, the conditional 
mean estimator associated with the estimated state is 
applied to the noisy signal. It is shown that the mse 
associated with this scheme can be decomposed similarly 
to the mmse, and that the cross error terms can be upper 
and lower bounded by bounds similar to those developed 
for the mmse estimator. Hence, for CSM’s with AWS 
Gaussian subsources, the detection-estimation scheme is 
asymptotically optimal in the mmse sense. 

Next, the mmse in causal estimation of the output 
signal from a continuous time CSM, which has been 
degraded by statistically independent additive Gaussian 
white noise, is analyzed. The continuous time CSM is 
defined analogously to the discrete time CSM. A Markov 
chain whose state transition may occur every T seconds is 
assumed. During each T second interval, a random output 
process whose statistics depend on the state is generated. 
The mmse analysis for the continuous time CSM’s is 
performed using Duncan’s theorem [ 131. This theorem 

relates the mmse in strictly causal estimation of the signal 
to the average mutual information between the clean and 
the noisy signals assuming Gaussian white noise. Similarly 
to the discrete-time case, the mmse can be decomposed 
into the mmse of the informed estimator, and an addi- 
tional error term for which upper and lower bounds are 
developed. The error term in this case equals the average 
mutual information between the state process and the 
noisy signal. For CSM’s with AWS Gaussian subsources, 
these upper and lower bounds are shown to converge 
harmonically to zero as the signal duration approaches 
infinity. The difference in convergence rate for discrete 
and continuous time mmse signal estimation, is attributed 
to the fact that in the continuous time case strictly causal 
estimation is performed while in the discrete time case 
noncausal estimation is essentially performed. 

This paper is organized as follows. In Section 11, we 
develop the upper and lower bounds on the mmse for 
discrete time CSM’s. In Section 111, we provide explicit 
expressions for those bounds for the case of CSM’s with 
AWS Gaussian subsources. In Section IV, we develop 
similar bounds for the detection-estimation scheme. In 
Section V, we focus on the bounds for the continuous 
time CSM’s. In Section VI, we demonstrate that the 
bonding technique used here is useful for mmse parame- 
ter estimation. Comments are given in Section VII. 

11. MMSE ANALYSIS FOR DISCRETE TIME CSM’s 
A. Preliminaries 

Let y, E R K  be a K-dimensional vector of the clean 
signal. Similarly, let vI E R K  be a K-dimensional vector 
of the noise process. Assume that the noise is additive and 
statistically independent of the signal. Let z,  = y, + v, be 
a K-dimensional vector of the noisy process. Let yh {y,, 
T = O ; - . , t ) ,  vh A {v,, T = O;. . , t} ,  and zh A (2,) T = 

Let p(yh) be the pdf of an M-state discrete time CSM 
for the clean signal. Let xi 4 {x,, T = O,..., t )  denote a 
sequence of signal states corresponding to yh. For each T, 
x, E {l,..., M). For CSM’s with i.i.d. vector subsources 
and a first-order Markov switch, the pdf p(yb) can be 
written as 

o;.., t}. 

P(Yh) = C P ( x M Y h l 4 )  
4l 

t 

= C Il ax,- , x p <  Y, 1x7) 7 (1) 
xb T = o  

where ax7- , x ~  denotes the transition probability from state 
x , - ~  at time 7 - 1 to state x ,  at time 7, u ~ ~ , ~ ,  mx0 
denotes the probability of the initial state xo, and b(y,lx,) 
denotes the pdf of the output vector y, from the sub- 
source x,. Such a model will be referred to as a first-order 
M-state discrete time CSM. For simplicity of notation and 
terminology, we assume that b(y,lx,) is the pdf of an 
absolutely continuous probability distribution (pd). The 
analysis performed here, however, will be applicable to 
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mixtures of discrete and continuous pd’s that satisfy some 
regularity conditions that will be specified shortly. 

Similarly, let p(vh)  be the pdf of a first-order k-state 
discrete time CSM for the noise process. This pdf is given 
bY 

where i; {iT, r = O;.., t} denotes a sequence of noise 
states, and b(vTl iT)  is the pdf of the output vector vT from 
the noise subsource i,. 

It is easy to show that p(zfi), the pdf of the model for 
the noisy signal, is a first-order discrete time CSM with a M X M composite states. A com osite state of the 
noisy signal at time t is defined as i, = (x,, it) .  This pdf 
is given by 

f 

where 

Note that we use generic notation for the state transi- 
tion probabilities, and the state dependent pdfs, for the 
CSM’s for the signal, the noise, and the noisy process. The 
distinction between the models is made here through the 
different notation used for the state sequences from these 
models. Thus, ax,-,.,, afc-,?,, and u ~ , _ , ~ ,  denote, respec- 
tively, transition probabilities between states of the model 
for the clean signal, the noise process, and the noisy 
process. Similarly, b(y,lx,), b(v,li,),  and b(z,IX,) denote, 
respectively, the pdf s of the output vectors at time t from 
the subsources of the models for the clean signal, the 
noise process, and the noisy signal. 

Similarly to (3)-(4), it can be shown that the pdf of y, 
given z;, T 2 t ,  is given by 

where p(X,Iz,T) denotes the posterior probability of the 
composite state of the noisy signal at time t given the 
observed signal z i ,  and b(y,lz,, 2,)  is the conditional pdf 
of y, given 2, and it. The conditional probability p(X,lz,T) 
in (5), and the pdf p(zfi) in (3), can be efficiently calcu- 
lated using the “forward-backward’’ formulas for HMM’s 
(see, e.g., [16, (25)-(27)]). Since we focus here on causal 
estimation only, we provide the forward recursion for 
calculating p(X,lz;) and p(z;) .  The extension of the dis- 
cussion to noncausal estimation can be found in [7]. We 

have that 

Hence, 

and 

B. MMSE Estimation 
The causal (in the vector sense) mmse estimator of y, 

given zfi can be obtained from (5). This estimator is given 
by 

k = E{ytlzh} 

= c p(,ftlZA)E{Y,l-% Zrl 
XI 

c P ( , f t I Z 6 ) 9 t , a ;  (10) 
i l  

A block diagram of this estimator is shown in Fig. 1. This 
estimator is unbiased in the sense that 

as can be shown by using the rule of iterated expectation 
[17, p. 1611. 

The mse associated with 9, can be calculated using the 
orthogonality principle [17, p. 1641 

E{(Yt - 9 t M )  = 0. ( 12) 

Using (121, the rule of iterated expectation, (5) ,  and (10) 
in that order, we can write the mmse as 

1 
K 

1 

K 

1 
K 

- 
E: - t‘E((Y, - 9t)(Yt - 9 0 # }  

= - trE{(Yt -P,>Y,#) 

= - tr E{E{y,y,#lzh) -9,9,#} 
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enhanced ~ P- + signal ' i  

E (  Y, IZI, * r  = ( M M )  1 

p(E, = (M.ni)l26) 

Fig. 1. Causal mmse estimator. 

1 

K 
= - t rE(cov(y,I i , ,z , )}  

(13) 

. where # denotes vector transpose and S, is defined simi- 
larly to X I .  Define 

Hence, 

- 
Equation (17) shows that the mmse 6: can be decom- 

posed into two terms, tt2 and 7:. The first is the mmse of 
the estimator j,,,, which is informed of the exact compos- 
ite state of z,. Since is a "completely informed" 
mmse estimator, 5,' represents the minimum achievable 
mse among all estimators in general and informed estima- 
tors in particular. The second term 7: represents the sum 
of cross error terms which depend on pairs of composite 
states of the noisy signal. Since this term is difficult to 
evaluate even for CSM's with Gaussian subsources (see 
Section 1111, it will be bounded from above and below, and 

- - 

- 

- 

the asymptotic bounds obtained when K + m will be - 
studied. Thus, upper and lower bounds on the mmse 
- can be obtained by adding the upper and lower bounds on 
vf, respectively, - to the mmse of the completely informed 

In developing the bounds on 7; we shall make the 
estimator 5,'. - 

following assumptions: 

- 
Assumption 1) implies that E:< E ,  since under this 

condition an estimator that results in finite mmse can 
always be found, e.g., 8, = E{y,}. Assumption 2) implies 
that g ( i , ,  S,, 2,) defined in (15) is integrable with respect 
to b(z,ls,). Finally, Assumption 31, together with (4), imply 
that u ~ , - , ~ ,  2 U!,$: > 0 for all i,, and t .  Hence, from 
(6)-(8) we have that 

- 
In deriving the bounds on 7: we shall use the following 

notation: 

- 
We first show that both the upper and lower bounds on 7; 
depend only on Zi,(i,) and Zsl(X,), and then we develop 
upper and lower bounds on those integrals. Note that if 
g(X,, S,, z , )  in (22) is replaced by a unity, then Z,,(S,) is the 
probability of misclassification of the state S, as the state 
E,. Hence, the problem is essentially that of developing 
bounds for the error probability in classification systems. 

C. Upper and Lower bounds on 7: 

bound on 

- 

- 
The upper bound on 7: is obtained from an upper 

? ( K ) .  The latter is obtained from (161, (18) 
- , " I  
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+ a ~ ~ n / ~ ~ , b ( z , l X l ) f i ( X , ,  ~ t y z , )  dzt 

= [ ]TI( Sf) + ljI( i t  I] . (23) 
- 

The lower bound on 7: cannot be straightforwardly 
obtained from a lower bound on airj,(K), since the latter 
is difficult to derive when the number of composite states 
is greater than two. To derive the desired bound, we study 
the performance of a partially informed mmse estimator 
of y ,  that outperforms the completely uninformed mmse 
estimator j , .  The partially informed estimator chosen 
here is provided with the information that the composite 
state X, can take one of two possible values, say E and p. 
The pair (Cy, p) is randomly chosen according to some 
probability measure, defined on the space of all possible a x (a - 1) different pairs of composite states, which 
agrees with the marginal probability measures p(X,  = E )  
and p(X, = p). The mmse of the partially informed esti- 
mator is obviously obtained from the expected value of 
the squared error over all realizations of clean and noLsy 
signal vectors as well as all possible pairs of states (E, p >. 
We show that 

- -  1- 
€: 2 tf2 + -5,*,  (24) 2 

- 
where El2 is the mmse of the completely informed estima- 
tor (141, and 2 is the expected value of the sum of cross 
error terms _6,,?,( K )  obtained under the assumption that 
X I ,  SI E { E ,  p ] .  The expected value is taken with respect 
to the probability measure of the pairs of composite - 
states. Comparing (24) with (17) shows that q:2 l12. 
Hence, a lower bound on 7: can be obtained from a lower 
bound on 6,,?,(K) assuming only two composite states 
for 2, .  

Let jttlap be the mmse estimator of y ,  given z; and the 

- 

pair {E, p] of possible composite states for z,: 

1713 

which results from E((y ,  - jrinp)9$apIXt E ( E ,  P I ,  2 8  = 
0. Following a procedure similar to (131, using (271, (261, 
and (25) in that order, we obtain the following lower 
bound on E:: 

- 

where Ez,P is the expected value with respect to the 
probability measure defined over pairs of different com- 
posite states. ' 

The lower bound on &,(K), X t ,  SI E {E, P}, is ob- 
tained as follows. We assume, without loss of generality, 
that 2, # SI since g(X,, SI, z,) = 0, and hence 8i,S,(K) = 0, 
whenever X I  = SI. Furthermore, since the lower bound in 
(28) depends only on G p ( K )  and $,(K), and $ B ( K )  = 

$,(K), we can assume, without loss of generality, that 
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X I  = 5 and i, = p. Using fi = 2, we have from (19) for X, 
(and similarly for SI)  that 

D. Upper and Lower Bounds on II,(St) 
We now turn to develop upper and lower bounds for 

Z j , G r )  (or Z,,<Z,)>, which appear in the bounds (23) and 
(30). Define 

By Assumption 21, NZ,, S,) < W. Hence, q(ztlZ,, 5,) is a 
pdf on R K  since it is a nonnegative function which inte- 
grates to one. Expressing ZI,(i,) in terms of q(z,lX,,S,) 
gives 

and the problem becomes that of bounding from above 
and below the probability of the set Cl,, with respect to 
q(z,l i , ,  s,), i.e., 

This is done by using distribution tilting (see, e.g., [31, 
12911, and Shannon's lower bound (see, e.g., [18, Lemma 
51) on the probability of a random variable to exceed a 
given threshold. 

Let q(l(z,)lX,, SI> be the pdf of Z(z,) as can be obtained 
from (20) and (31). Define the tilted pdf of l ( z , )  as 

A > 0, (35) 

where 

is the logarithm of the moment generating function of 
l ( z , )  with respect to q or the semi-invariant moment 
generating function of l (z , )  [29, p. 1883. Since p(A)  is the 
logarithm of the expected value of some function of z,, it 
can be evaluated by 

By substituting (20) and (31)-(32) into (37), it can be 
shown (see Appendix) that p(A)  < for 0 I A I 1. For 
A G [O, 11, p(A)  may still be finite, depending on the 
specific pdfs b(z,lX,) and b(z,lS,) of the CSM's. This is 
demonstrated in the next section, where we discuss CSM's 
with Gaussian subsources. Nevertheless, the case where 
A E [O, 11 will be of particular interest, since convergence 
of the bounds can be proved for A within this interval. We 
also have the following useful relations: 

where Eq,C.) and var,,C.) are the expected value and vari- 
ance with respect to qh, respectively. 

The upper bound on J,{S,) is obtained from (21), (341, 
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and (35) as follows: 

= e ” ( A ) - A ’ P r { p ~ l ( z , )  I y } .  (43) 

By way of choosing p and y we can assume that 

y =  b(A) + S 

p = / i ( A ) - S ,  6 > 0 .  (44) 
Hence, by applying the Chebycheff inequality to (43) and 
using (33) and (38), we obtain 

The bound is useful if @(A) < a 2 .  Combining this condi- 
tion with (41) for p = b(A) - 6, we obtain that (45) is 

useful for any A that satisfies 

I;( A) > S > ( i;( A))”2. (46) 
From (40) and (45), we see that - the upper and lower 

bounds on Zil(ir), and hence, on $, depend on @(E,, if), 
and on the semi-invariant moment generating function 
p(A) and its first two derivatives. In the next section, we 
explicitly calculate those functions for CSM’s with AWS 
Gaussian subsources that have mostly been used in prac- 
tice [2]. For this important case, we show that there exists 
0 < A < 1 which satisfies (46), and that the upper and 
lower bounds on Z,,(i,) converge exponentially to zero at 
the same rate as the frame length K approaches infinity. 
This means that - the bounds (40) and (45) are tight, a@ 
that the mmse E: exponentially approaches the mmse tr2 
of the completely informed estimator. 

111. CSM’s WITH AWS GAUSSIAN SUBSOURCES 
Consider an M-state discrete time CSM with zeroSmean 

AWS Gaussian subsources for the signal and an M-state 
CSM with zero-mean AWS Gaussian subsources for the 
noise. In this case, b ( y , ) x , )  and b ( y , J i , )  are zero-mean 
Gaussian pdf s with asymptotically Toeplitz covariance 
matrices S,, and Si,, respectively. A covariance matrix, 
say S,,, is asymptotically Toeplitz if there exists a se- 
quence of nested Toeplitz covariance matrices TK(Sx,( e)), 
where S,l(e) I U < CO denotes the asymptotic power 
spectral density of the subsource x,, and 0 is the angular 
frequency, such that SIt and TK(S,l(6)) are uniformly 
bounded in the strong norm, and S,, + T,(S,l(O)) as 
K - CO in the weak or Hilbert-Schmidt norm [141, [151. 
The fact that Sx, and Si, are asymptotically Toeplitz is 
denoted by 

S,, - T K ( S x , ( e ) ) ,  

si, - T K  ( S i 1  6 1). 
Assume that S,l(O) 2 m > 0 and S,l(O) 2 m > 0; so that 
inverses of SXr and Si, are also asymptotically Toeplitz 
[141, [151. 

Under these assumptions, b(z,  12,) is zero-mean Gauss- 
ian with covariance Q,, A S,, + Sic, and Q,, is asymptoti- 
cally Toeplitz with power spectral density Qa,(6)  = S,l(e) 
+ Si,< 0). Furthermore, 

Erp, = E{i t Izr ,  2t1 

~ x , ( ~ x ,  + S i , ) - l Z r  

H,,Zt, (47) 

where Hz, is the Wiener filter for the output processes 
from the signal state x, and the noise state 2,. H,, is 
asymptotically Toeplitz with power spectral density given 
by 

H,l(O) is often referred to as the frequency response of 
H,,. The conditional covariance of y ,  given XI and z ,  is 
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given by Note that 

cov(y,IX,, 21) = Hj,Si , ,  (49) IRA(?,, St)I1/' 
bA(z,IZ,)b'-A(z,lS,) = A 1 - A  

and it is independent of z,. This covariance is also asymp- 
totically Toeplitz with power spectral density H,I(B)SiI(8). 

- -  

IQ,,I'IQ,,I ' 
f 1  Note that cov(y,l?,, 2,) is the mmse in estimating y, from \ 

z ,  given .E,. 

obtained from (14) and (49), 
The mmse of the completely informed estimator is 

This constitutes the statistical average of the mmse ob- 
tained under explicit knowledge of the composite state of 
z,. Applying the Toeplitz distribution theorem [141-[151 to 
(49)-(50) results in the asymptotic mmse of the com- 
pletely informed estimator given by 

The upper bound on 7 can be obtained from (16), (231, 
and (40), and the lower bound from (28), (301, and (45). In 
both cases, we have to calculate the upper and lower 
bounds on Z,I(S,) given in (40) and (451, respectively. 
These bounds depend on @ ( X I ,  S, ), which is given in (321, 
on p(A)  given in (37), and on h(A) and ii(A).  These 
functions are now evaluated for the CSM's with AWS 
Gaussian subsources considered here. 

From (15) and (471, we have that 

where H;,, is asymptotically Toeplitz with power spectral 
density 

H;,,(o) = iH,,(q - H,~)I ' .  (53)  

Hence, from (32) and the fact that b(z,(S,) is zero-mean 
Gaussian with covariance Q,, we obtain 

1 
s,) = - K tr {H;,,Q,) . (54) 

Using the Toeplitz distribution theorem [ 14]-[15], we have 

@ x ( ~ t , ~ , )  lim @(X,,S,) 
K +  = 

By substituting (201, (31), and (52) in (371, we obtain 

p ( A )  = In / b A ( z , ( ? , ) b ' ~ A ( ~ , ( S , ) ~ ~ H ~ ~ , ~ ,  dz, 
RK 

(57)  

( 5 8 )  

where 

R ; ~ ( z , , s , )  A AQ;' + ( 1  - A)Q$ 

provided that -IRA(?,, S,)l > 0. Hence, if RA(?,, Sf> is posi- 
tive definite, then bA(z,lX,)b'-A(z,lS,) is proportional to a 
zero-mean Gaussian pdf with covariance RA(?,, Sf). The 
values of A that satisfy this condition are obtained as 
follows. Let a(Q,,) be an eigenvalue of Qa, and assume 
that ami,(Q,,) I a(Q,,> I a,,,@,,>. From [19, p. 2851, 
umi,(Qa,) and amax(Qa1) are, respectively, the minimum 
and maximum values of the Rayleigh quotient of the 
symmetric matrix Q?,. Define 

It is easy to show that RA(?,, Sf) is positive definite if 
A > -A(?,, S,) provided that a;,',(Q,,) > U,~,!,<Q,,) or A 
< -A(?,, Sf) assuming that a;,',(Q,,> < aiiA(Q,,>. 
Ifa;',(Q,,) = aiiA(Q,), then RA(Xt, S,) is positive definite 
for all A > 0. The matrix RA(?,, S,) is asymptotically 
Toeplitz with power spectral density given by 

RL'(8)  4 AQ<'(S) + (1 - A ) & ' ( O ) .  (59) 

On substituting (54) and (57) into (56), we obtain 

Applying the Toeplitz distribution theorem to (60) and 
using Jensen's inequality yield 

- ln(K@(?,,S,)}.  (56) < 0, for all 0 < A < 1. 
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In evaluating k(A) it will be convenient to define the 
"distance" 

- l n I R A ( i f , i , ) Q ~ ' l  - 11. (62) 

The asymptotic value of this distance is obtained from 
applying the Toeplitz distribution theorem to (62). This 
results in the so called Itakura-Saito distortion measure 
[20]-[21], [28, pp. 196-1991: 

d I s ( ~ , , ~ , , )  9 lim ~ ( R ~ ( - T , , ~ ~ ) , Q , , )  
K - r  

Furthermore, we shall use the identity 

E( z~~z,z~Bz,) = tr ( AR) tr { BR) 

+ tr ( ( A R ) ( W # }  

+ t r{(AR)(BR)l ,  (64) 

where A and B are two K X K matrices, and the ex- 
pected value is taken with respect to a zero-mean Gauss- 
ian pdf with covariance R. Taking the first derivative of 
(37) we obtain (see Appendix) 

k( A) = - - [ d( RA(%, i f ) ,  QT,) - d( RA(%, i f ) ,  e,)] K 
2 

The asymptotic value of k (A) /K  is given by 

E.( A) can be evaluated using the following identity, 

E ( ( ~ : A ~ , ) ( ~ , # B z , ) Z )  = tr { ~ ~ ) [ t r  { B R ) ] ~  

which can be derived using [22, p. 971: 

distribution theorem, we obtain (see Appendix) 

We now show that there exists A such that (46) is 
satisfied provided that K is sufficiently large. From (66) 
and (591, it is easy to show that A(A) is continuous on 
[0, 11 and that 

1 
Clba(A)~,=, = - - d i s ( Q S , , Q z , )  2 < 0, 

1 
& ( A ) I ~ = ~  = d1~(QX, ,  Qi,) > 0. (69) 

Hence, there must exist A* E (0, l )  and AA > 0 such that 
A(A*) = 0 and &(A* + AA) 2 6' > 0, where S' is inde- 
pendent of K. Note from (66) that RA, yields equal 
Itakura-Saito distances with respect to Q,, and QS,. Com- 
bining this result with (68) we obtain, for A = A* + AA, 

&(A) 2 S' > ( i;a( A)) ' I2 .  ( 70) 
Hence, for sufficiently large K there exists A such that 
(46) is satisfied with S = KS'. For these K ,  A, and 6, the 
bounds (40) and (45) can be approximated by 

Z ~ , < F ~ )  I @,(it, i f ) e K p = ( A ) ,  

~,,<j,) 2 Q m ( ~  f 7  j f ) e K p = ( A ) e - A K ( i L = ( A ) + S ' )  f (71) 

If A is chosen such that A(A) + 6' 2 0, then the upper 
and lower bounds are essentially the same. Furthermore, 
since p J A )  < 0 for A E (0, l), both bounds approach zero 
exponentially. This means that the lower and upper bounds 
developed here are tight and that the asymptotic mmse 
converges exponentially with rate -p.JA) to the asymp- 
totic mmse of the completely informed estimator given in 
(51). 

IV. MSE IN DETECTION-ESTIMATION 
In this section, we study the performance of a subopti- 

mal intuitive estimator which first detects the composite 
state of the noisy signal and then applies the conditional 
mean estimator associated with this state to the given 
noisy signal. Using the notation of Section 11, this estima- 
tor is given by 

9, = E{y,E.T, 2,) = 9f1j:, (72) 

i T  = argmaxp(i , lzh).  (73) 

where 

X I  

+ 2 tr { AR) tr (( B R ) ~ }  A block diagram of this estimator is shown in Fig. 2. We 
show that the mse associated with this estimator com- 

+ 8 tr (AR(  BR)2}  prises the sum of the mmse tf2 of the completely informed 

+ 4 tr {BR)  tr { A R  BR), (67) estimator, and the expected value of cross error terms 
that can be bounded similarly to Z j , G f )  in Section 11. For 

where A and B are K X K symmetric matrices, and the CSM with AWS Gaussian subsources, this means that the 
expected value is taken with respect to a zero-mean mse of the detection-estimation scheme exponentially 
Gaussian pdf with covariance matrix R. Taking the sec- converges to the mmse of the completely informed esti- 
ond derivative of (37) using (67), and applying the Toeplitz mator as K + m. Hence, for these sources, the 

- 
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I 

enhanced 
signal 

* P W ,  I26 ) 
I, 

I m I 

detection-estimation scheme is asymptotically optimal in 
the mmse sense. Convergence of the mse of the detection- 
estimation scheme to the mmse of the completely in- 
formed estimator is not surprising, since if p(X,lzh) ap- 
proaches one for some i, and zero for all other states as 
K -+ CO, then the estimator (72)-(73) and the mmse esti- 
mator are essentially the same. This indeed was shown in 
[8] to be the case for CSM's with Gaussian ergodic sub- 
sources. It is less obvious, however, that the exponential 
rate of convergence of the mse's associated with the 
detection-estimation scheme and the mmse estimator 
should be the same. 

The mse associated with the estimator (721-473) is 
calculated using the orthogonality principle 

# 
-j,,,,)(jtl,, -Yt1,:) I%, zf,} = 0. (74) 

Hence, by adding and subtracting j r l i ,  to y, - Y r l a y ,  we 
obtain, using (741, 

1 

(75) 

where s," is the mmse of the completely informed estima- 
tor given in (14), and is defined by 

- 
1,2 A E { g ( x & , z ; ) } ,  (76) 

with 

- 
We now develop upper and lower bounds on lf2. Let 

Define 

From (18) and (19), we have that 

l ( z , )  - p I L ( Z h )  s l ( z , )  + p ,  ( 80) 

for 

a i i n  
p = -in ---= > 0. 

MM 
Hence, 

@,r( P )  c %r(O> c @it( - P > .  (82) 

Let {yrS,(O)} be a partition of the space of noisy signals 
( 2 3 .  By definition, zf, E Yr,,(O) if and only if p(S,lzk) 2 
p ( E , l t ~ )  for all Et  # Sf. Hence, from (76)-(77), we obtain 

- 
lt2 = /P(xt,z;)g(xt,~r,z6) dz:, 

PI 

- 
The upper and lower bounds on Jj2 are obtained by 
applying (82) to (83) as follows: 

Similarly, 

The integrals in (84) and (85) are analogous to the inte- 
gral ZJ,(.Tt) defined in (221, where the latter is taken over 
Os,( - p )  and Os,( p),  respectively. Hence, upper and lower 
bounds similar to those developed in Section 11-B can be 
applied to (84) and (851, respectively. In this case, the 
lower bound on Zs,(X,) is identical to that given in (43), 
and the upper bound is given by the product of (39) and 

In summary, if ,:("se) denotes the mmse of the 
estimator (lo), and ?(des) denotes the mse of the detec- 
tion-estimation scheme, we have shown that 

exp (hp) .  - 

1 
= K - r m  lim [ - In (:(des) - z)] (86) 

for CSM's with AWS Gaussian subsources. 
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V. MMSE ANALYSIS FOR CONTINUOUS TIME CSM's 
In this section, we analyze the mmse in causal estima- 

tion of the output signal from a continuous time CSM 
which has been contaminated by statistically independent 
additive Gaussian white noise. A continuous time CSM is 
defined analogously to the discrete time CSM. It is a 
random process whose statistics at each time instant de- 
pend on the state of the driving Markov chain. The 
analysis is performed using Duncan's theorem [13] that 
relates the mmse in causal estimation to the average 
mutual information between the clean and noisy signals 
assuming additive Gaussian white noise. Similarly to the 
discrete case, we show that the mmse can be decomposed 
into the mmse of the completely informed estimator, and 
an additional error term for which upper and lower bounds 
are developed. 

The continuous time CSM is defined as follows. Let 
{ U ! ,  i = 0,1, ... ) be a first-order M-state time-homoge- 
neous Markov chain with initial state probabilities {rp) 
and state transition probabilities {aap) ,  where a ,  p = 

l;.., M. Assume that state transitions may occur every T 
seconds. In this case, a is interpreted as a time function 
that denotes the transition probability from state a at 
some time instant, say T ,  to state p at T + T.  The Markov 
process associated with sal, [26, p. 2361, denoted here by 
xf, 

? 0. 

{ x , , O  I T I t ) ,  is defined by 

Pr{x,, = v,,...,xTN = vN) 
- 
- Pr{U,,,,T] = Vl,"',UL,,/T] = V N )  

(87) - - 
7Tv1au,u2 * . *  a u N - I u N  

for every finite set 0 I T~ < ... < T~ I t ,  where vl E 

{l;..,M} for i = l;.., N ,  and l y ]  denotes the largest 
integer which does not exceed y. Since the first state 
transition may occur only at time T = T ,  aUS is a continu- 
ous function at T = 0, and the process x, is continuous in 
probability [26, p. 2391. Now, during each T second inter- 
val, a random process whose statistics depend on the state 
is generated. Let the output process be denoted by yf, 4 
{y,,O I T 5 t )  where now y ,  is a real scalar ( y ,  E R'). As 
with the discrete case, we assume that the T second 
output signals generated from a given sequence of states 
are statistically independent, and that aUp 2 amin > 0. 
Furthermore, we assume that the process yf, is continuous 
in probability, and yh has finite energy, i.e., 

The noisy signal z ;  A {z,, 0 I T I t )  is obtained from 

dz, = y ,  dT + dw,, (89) 
where w, is a standard Brownian motion. We assume that 
wf, A {w,, 0 5 T 5 t )  is statistically independent of yh 
{y,,O I T 5 t )  and of xf, {x,, 0 I T I t}. Since these 
processes are continuous in probability, there exists a 
version of each process defined on the same sample space, 
which is separable relative to the closed Bore1 sets, mea- 

~ 

1719 

surable, and which equals the original process with proba- 
bility one 126, Theorem 2.6, p. 611. Hence, in the subse- 
quent discussion, where mutual information and condi- 
tional mean are used, the original processes can be substi- 
tuted by their separable measurable versions. To simplify 
the notation, however, we shall not make explicit distinc- 
tion between the processes and their measurable separa- 
ble versions. 

Let x 26. Let Z ( y ;  z >  be the 
average mutual information between the two processes y 
and z. Let Z(y ; zlx) be the conditional average mutual 
information between y and z given x .  Let Z((x, y )  ; z )  be 
the average mutual information between (x, y )  and z. Let 
Pxyz be the distribution of (x, y ,  z ) ,  and let P, X PXy be a 
product measure of the marginal distributions. Assume 
that Pxyz << P, x Pxy,  that is, Pxyz is absolutely continu- 
ous with respect to P, X Pxy. From [12, corollary 5.5.31 
this condition guarantees the existence of I ( ( x ,  y )  ; z ) ,  
and hence of Z(x ; z ) ,  Z(y ; z ) ,  Z(y ; zlx), and Z(x ; z ly ) ,  
for random variables x ,  y ,  t with standard alphabets. The 
average mutual information Z(y ; z )  is defined by [12, 
(5.5.4)], [131: 

x;, y &yf , ,  and z 

The conditional average mutual information Z(y ; z l x )  is 
defined by [12, (5.5.91: 

where Pyx,,, is the distribution on x, y ,  z which agrees 
with Pxyz on the conditional distributions of y given x 
and z given x and with the marginal distribution of x, but 
which is such that y + x .+ z forms a Markov chain [17, 
p. 1711. From Kolmogorov's formula [12, corollary 5.5.31, 
1301 we have that 

I ( ( x ,  y )  ; z )  = I ( y  ; 21x1 + I ( x  ; z )  
= Z ( X ; Z ~ Y )  + Z ( Y ; Z ) .  (92) 

Furthermore, since x .+ y .+ z forms a Markov chain 
under Pxyr, we have from [12, Lemma 5.5.21 that Z(x ; z l y )  
= 0. Hence, Z((x, y >  ; z )  = Z(y ; z ) ,  and 

I (  y ;  ; zf,) = I (  yf, ; zf,Ixf,) + I (  xf, ; 2 ; ) .  (93) 

From Duncan's theorem, we have 

(94) 

where 

.fT E{yTlz,') (95) 
is the causal mmse estimator of y,  given 2,'. Hence, 

- 1 2 
E: 4 - / 'E{ (y , -Y , )* )d . r=  t Z ( y f , ; z 6 )  (96) 

t o  
is the mmse obtained in estimating y ,  by 9,. Similarly, 
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since the conditions of Duncan's theorem are satisfied 
when the state sequence x i  is given, we have that 

is the causal mmse informed estimator of y ,  given xi .  
Hence, 

is the mmse obtained in estimating y ,  using the informed 
estimator (98). Substituting (96) and (99) into (93) gives 

2 - -  €,z = s , 2  + TI(.: ; 2;). 

This equation shows that similarly to the discrete case, the 
mmse equals the mmse of the informed estimator and an 
additional error term. The error term for the continuous 
time signals is given by the average mutual information 
between the state process and the noisy signal. Note that 
this result is not specific to our continuous time CSM's, 
and it can be applied to any signals x,  y ,  z continuous in 
probability, which form a Markov chain x + y + z and 
satisfy (88)-(89). In our model, however, (100) has an 
interesting interpretation since xh is a state process. Note 
that for the trivial case of a deterministic switch Z(x; ; 2 ; )  

= 0. Hence, E:=  5,' as expected. 
The relationship in (100) can be specialized for the 

particular continuous time CSM's considered in this sec- 
tion as follows. Let T = m T  + T' for some integer m. 
Using the assumption that signals generated from a given 
sequence of states are statistically independent and the 
assumption that the signal is degraded by white Gaussian 
noise, we have that 

- _  

Furthermore, applying the rule of iterated expectation 
[17, p. 1611 to (95) results in the desired estimator given by 

Following a derivation similar to (13) it can be shown that 

- 
where 7: is defined similarly to (16), 

(104) 

Hence, from (96), (99)-(100), and (103) we obtain 
- 2 

t 9: = - I ( x f ,  ; 2;). (105) 
- 

The error term in (loo), or equivalently 7: in (1041, will 
be evaluated by developing upper and lower bounds on 
I (xk  ; zl , ) / t .  We assume, without loss of generality, that 
t = nT for some integer n, and study the asymptotic 
behavior of the bounds as T + m. Since only causal 
estimation is considered, the significance of letting T go 
to infinity is that asymptotic estimation of y t  is performed 
from z ? ~ .  Note that the situation here is analog to 
estimating the last sample in the K-dimensional vector y ,  
from zI, in the discrete case. In that case, however, the 
entire vector y ,  was simultaneously estimated, and hence 
the first K - 1 samples of each vector were estimated in a 
noncausal manner. The estimation problems for the dis- 
crete and the continuous time models were formulated 
differently, since normally vector estimation is performed 
in practice using discrete time models (see, e.g., [71), and 
the analysis for the continuous time models uses Duncan's 
theorem which can only be applied to causal estimation. 

The lower bound on I(.; ; z ; ) / t  is developed by analyz- 
ing the system whose block diagram is shown in Fig. 3. In 
this system, U ,  is a discrete process obtained from sam- 
pling x, at T second intervals starting from T = 0. Simi- 
larly, z ,  is a discrete time vector process obtained from 
sampling z ,  at A A T/K second intervals, where K is a 
given integer. Hence, z ,  is a K-dimensional vector ( 2 ,  E 
R K ) .  Finally, L, in Fig. 3 denotes an estimate of the state 
U ,  as obtained from the sampled noisy signal. From the 
data processing theorem [12, p. 1291 we have that 

I ( x ; ;  2;) 2 z ( U ; ;  Zi), (106) 

where U ;  A ( U ( ] , . . . ,  U , _  ,}, and z(; {z,,;.., z , - ~ } .  Hence, 
a lower bound on I (x6;  zl,) can be obtained from a lower 
bound on I ( u ; ;  z i ) .  Since [ E ,  lemma 5.5.61 

z ( U ; ;  zo") = H ( U { )  - H(U;;lz;f), (107) 

and H ( u ; )  is finite, a lower bound on Z(u:; 2:) can be 
obtained from an upper bound on H(u;Izg). This bound 
is provided by Fano's inequality [12, corollary 4.2.11: 

H ( u ~ I z , " ) / ~  5 PJ'"(T)log(M - 1) 

+ h2( T ) )  E,( k ) ,  (108) 
where 

1 n - 1  

P,'")(T) A - Pr{b, # u 1 ) ,  
n ; = o  

and h,(.) denotes the binary entropy function. Combining 
(106)-(108) we obtain the desired lower bound for 
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NOISY zi A/D z n  MAP u n  - 
CHANNEL ( T K )  DECODER 

A/D U n  - 

I(xb; 26): 

Z(x6; 26) 2 H ( u ; f )  - n€ , (T ) .  

Z(x6; 26) = H(X[)) - H(x:lz:) 5 H(xk) = H ( u ; ; ) ,  

(109) 
The upper bound on Z(xb; 26) results from 

(110) 

since H(x6lz;) 2 0 and x, can be obtained from U , .  

For the stationary first-order Markov chain considered 
here, we have, from the chain rule for entropy [12, corol- 
lary 2.5.11 and from [12, lemma 2.5.21, that 

f f ( u , ? )  = H(u, , )  + ( n  - 1)H(~lIUO) 
5 H ( u , )  + ( n  - l ) H ( u , )  = n H ( u , ) .  ( l l l a )  

Similarly, 

H ( u ; ; )  = H ( U 1 )  + t n  - 1)H(u , lu , )  

2 H(u,lu,)  + ( n  - l)H(u,Iu,) = nH(u, lu , ) .  
( l l l b )  

Hence, using t = nT we obtain, from (109)-(111), 

H ( u , l u o ) / T  - E , ( T ) / T  I I(x;; z ; ) / t  2 H ( u , ) / T .  

These bounds approach zero harmonically as T + x and 
n is fixed, provided that €,(TI + 0 as T + CO. This is now 
shown for CSM's with Gaussian subsources. Specifically, 
we develop an upper bound on E, (T)  and show that it 
converges to zero exponentially. 

The upper bound on €,(TI can be obtained from an 
upper bound on PJ'"'(T). Consider the single letter proba- 
bility of misclassification error Pr {L ik  # u k } ,  k = l;.., n,  
when uk is estimated from zk  using the maximum a 
posteriori (MAP) decoder. From [27] we have that 

(112) 

1 
Pr{Lik z Uk} 5 - ep11(05), (113) 

1 < ]  

where 

& j (  A) A In ~ ~ ~ ~ A ~ ~ ~ ~ ~ ) ~ ' - A ( ~ ~ ~ j )  dzk, 

for i, j = l;.., M .  Hence, for CSM's with AWS Gaussian 
subsources, we have from Section 111 that this bound 
approaches zero exponentially as K + for a fixed A, or, 
the bound approaches zero exponentially as T + a. From 

the definitions of PJ'")(T) and h,(P,'")(T)) it follows that 
the upper bound on E,(T)  approaches zero exponentially 
as T -+ X I .  

We have seen that for CSM's with AWS Gaussian - 

subsources, the bounds on the error term q:= 
2Z(xb ; z ; ) / t  i? (1001, converge to zero harmonically as 
T -+ E. Hence, similarly to discrete time case, the asymp- 
totic mmse in the continuous time case is the mmse of the 
completely informed estimator. The convergence rate of 
the bounds for the discrete and continuous time models, 
however, appear - different. In Section I11 exponential con- 
vergence of q: was proven for the discrete case, while 
here the convergence rate was shown to be harmonic. 
This difference can be explained as follows. 

Consider first causal estimation of the discrete time 
signal under conditions similar to those used for estima- 
tion of the continuous time signal. Specifically, consider 
the mmse estimation of the last sample of the vector y t ,  

from the vectors of noisy signal 26. This estimator is 
obtained from the miniinization of 

t 114) 

over j f ,K ,  and is given by j r , K  = E{yt,Klzh}. In this case, it 
is easy to show, using an analysis similar to that given in 
Sections 11-111, that the mmse (114) can be decomposed 
into the mmse of the informed estimator and an addi- 
tional error term; the error term is given by 

the bounds on this term depend only on z ,  but not on 
z6- and these bounds approach zero :xponentially. As- 
sume that the exponential bounds are proportional to 
exp ( -BK)  (see (71)). Note that since causal estimation of 
the last sample of y f  is not different from causal estima- 
tion of any other sample of y , ,  then estimation of say the 
Ith sample of y, ,  results in exponential bounds which are 
proportional to exp(-BI). If the Ith sample of the vector 
y,  is estimated in a noncausal manner from zh, however, 
then it can be shown that the bounds on the error term in 
this case are proportional to exp ( - BK ). 

Consider now the time average mmse (131, or equiva- 
lently, 

(115) 

This time average mmse for discrete signals is analogous 
to the time average mmse (96) used for the continuous 
time signals. For causal estimation of y,,[, the time aver- 
age bounds are proportional to 

which has a harmonic convergence rate. In the case of 
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noncausal estimation of y,,,, we similarly obtain that the 
time average bounds are proportional to 

i K  

which has an exponential convergence rate. 
The foregoing discussion shows that the bounds on the 

time average error terms of the mmse in causal estima- 
tion of discrete as well as continuous time signals, (117) 
and (105), respectively, have similar harmonic conver- 
gence rate. The convergence rate of the bounds on the 
time average error term of the mmse in noncausal estima- 
tion of discrete time signals was shown to be exponential. 
For the discrete case, we were also able to calculate the 
bounds on the individual error terms obtained in causal as 
well as noncausal mmse estimation of each sample of the 
vector at time t ,  and we showed that in both cases the 
convergence rate of these bounds is exponential. For the 
continuous case, we do not have parallel results on the 
convergence of the individual error terms due to nature of 
the analysis performed here. 

VI. AN EXAMPLE: MMSE PARAMETER ESTIMATION 
The bounds developed in Section I1 can be useful in 

mmse parameter estimation problems as is demonstrated 
in this section. Let 8 be a random vector of N parame- 
ters of some random process. Let p ( y l 8 )  be the pdf of a 
K - dimensional vector y of that process given 8. Let 
p ( 8 )  be the aprion' pdf of 8. Let {U,, j = l;..,M} be a 
partition of the parameter space of 8, and let {e,, j = 
l , - . . ,M} be a grid in that parameter space such that 
8, E a,, j = 1,--- ,  M .  The mmse estimator of 8 from y is 
given by 

ê  = / e p ( e l y )  de 

M 

= C p ( j l y ) E { 8 l j , y } ,  (119) 
J =  1 

where p ( j l y )  denotes the posterior probability of 8 E w, 
given y ,  and E{ 8 I j ,  y }  is the conditional mean of 8 given 
that 8 E w, and y. The mmse associated with this estima- 
tor can be evaluated using a similar analysis to that 
presented in Section 11. The mmse will be composed of 
the mmse of the informed estimator, and a cross error 
term which can be bounded from above and below. 

An interesting particular case, considered in [231-[251, 
results when 8 can only take a finite number of values, 
i.e., 

M 

P(8) = c P ( 8 , ) W  - e,>, (120) 
] =1  

where S(.) denotes the Kronecker delta function. In this 
case, 

E { e l j , y }  = e,, (121) 

and the problem becomes a detection rather than an 

estimation problem. Hence, we expect the mmse to ap- 
proach zero as K + w. The mmse estimator of 8 is given 
by 

M 

ê  = e,p(e,lY), (122) 
j =  1 

where p(8,ly) is the a posteriori probability of I9 = 8, 
given y .  The mmse associated with this estimator can be 
calculated similarly to (13). We have that 

- 1  
N 

€ 2  4 i  -E{llI9 - 

- 
Hence, e 2  can be upper and lower bounded by applying 
the bounds of Section I1 to E(p(O,ly)p(8,ly)} using amln 
= min,(p(O,)} > 0, X, = i, it = j ,  zh = y ,  b(y,lx,)  = 

p(y l i ) ,  and g(.Z,, S,, z , )  = 1. If, for example, p ( y l j )  is 
Gaussian, then from the results of Section I11 we know 
that the upper and lower bounds on e 2  approach zero 
exponentially. 

The major difference between our approach and the 
approach used in [23]-[251 is that here E(p(8,ly)p(8,ly)} 
is bounded while in [23]-[251 only E{p(O,ly)} was bounded 
using the fact that p(8,ly) I L'urthermore, the problem 
of finding a lower bound on e 2  was not considered in 

VII. COMMENTS 
We studied the performance of the mmse estimator of 

the output signal from a CSM given a noisy version of that 
signal. The analysis was performed for discrete as well as 
continuous time CSM's. In both cases the noise was 
assumed additive and statistically independent of the sig- 
nal. In the discrete case, the noise was assumed to be 
another CSM, while in the continuous case only Gaussian 
white noise was considered. 

In the discrete case, estimation of vectors of the clean 
signal from past and present vectors of the noisy signal 
was studied. This problem was motivated by the way CSM 
based mmse estimation is used in practice. In this case, 
vectors of the signal were estimated in a causal manners, 
but the samples within each vector (except for the last 
one) were estimated in a noncausal manner. The criterion 
used for this vector estimation problem was naturally 
chosen to be the time average mmse over all samples of 
the vector. Causal and noncausal mmse estimation of the 
individual samples of the clean signal was also considered 
and compared with the vector estimation. In the continu- 
ous case, the analysis was more restricted, as only causal 
estimation using the time average mmse over the time 
duration of the signal was considered. The restriction on 
the noise statistics and the analysis conditions in the 

[23]-[25]. 
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continuous case resulted from using Duncan's theorem 
which can only be applied under these conditions. 

For both discrete and continuous time CSM's, it was 
shown that the mmse is composed of the mmse of the 
completely informed estimator, and an additional error 
component for which upper and lower bounds were devel- 
oped. The convergence rate of these bounds depends on 
the causality of the estimators as well as on whether the 
mmse or the time average mmse is considered. For dis- 
crete time CSM's with AWS Gaussian subsources, it was 
shown that the bounds corresponding to the mmse of 
each sample converge exponentially to zero in causal as 
well as noncausal estimation. The bounds that correspond 
to the time average mmse converge to zero harmonically 
in causal estimation, and exponentially in noncausal esti- 
mation. For the continuous time case, it was shown that 
the bounds which correspond to the time average mmse in 
causal estimation converges to zero harmonically. 
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APPENDIX 
Lemma: The semi-invariant moment generating function p( A) 

defined in (36) is finite for 0 I A I 1 provided that Assumption 
2) holds. 

Proo~? By substituting (20) and (31)-(32) into (37), we ob- 
tain 

I -ln@(Z, ,S,)  + I n  b(z,lZ,)g(f-,,i,,z,)dz, 
( L K  

= - ln@(Z, , i , )  + ln(@(Z,,S,) + @(it,?,)) 

< m, ('4.1) 

since @(z,, it) < m for all {f,, it} as follows from Assumption 2). 
Deriuation of b(A) and ji(A): Let 

fA(Z,If,, S , )  = bA(z,lZ,)b'-A(z,lj,) 

= CA(Zr,S,)N(O,RA(x,,Sr)), (A.2) 

where A is such that RA(?,, S,) is positive definite, N(0, RA(Z,, S , ) )  
denotes a zero-mean Gaussian pdf with covariance RA(?,, S , )  
given in (58), and CA(Z,,S,) is independent of z,  and can be 
obtained from (57). From (56), we have that 

we obtain from (A.3) the following expression for the first 
derivative of p( A) with respect to A: 

The second derivative of p( A) with respect to A is obtained from 
(AS) by using (A.4), the normality of b(z,lZ,) and of b(z,lS,), the 
fact that fA(zr lZr ,  S , )  is proportional to a Gaussian pdf, and (64). 
This results in 

l 2  

l 2  

-( b ( W 2  + E ( K ) ,  (A.7) 

where € (K) /K2  -+ 0 as K + 00. Applying the Toeplitz distribu- 
tion theorem to j i ( A ) / K 2  and using (66) we arrive at (68). 
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