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Universal Coding with Minimum Probability 
of Codeword Length Overflow 

Neri Merhav 

Abstract --Lossless block-to-variable length source coding is 
studied for finite-state, finite-alphabet sources. We aim to mini- 
mize the probability that the normalized length of the codeword 
will exceed a given threshold B, subject to the Kraft inequality. 
It is shown that the Lempel-Ziv (LZ) algorithm asymptotically 
attains the optimal performance in the sense just defined, 
independently of the source and the value of B. For the subclass 
of unifilar Markov sources, faster convergence to the asymptotic 
optimum performance can be accomplished by using the mini- 
mum description length (MDL) universal code for this subclass. 
It is demonstrated that these universal codes are also nearly 
optimal in the sense of minimizing buffer overflow probability, 
and asymptotically optimal in a competitive sense. 

Index T e m  -Universal noiseless coding, Lempel-Ziv algo- 
rithm, length overflow, buffer overflow, finite-state sources, large 
deviations, competitive optimality. 

I. INTRODUCTION 
OSSLESS block-to-variable length source coding L schemes are usually examined under the criterion of 

minimizing either the expected length E(L) of a code- 
word [ll, 121 or the cost function A - '  log E(2") [21, [3], 
where L denotes the codeword length, h > 0 is a given 
constant, and log(.)p log,(-) throughout the sequel. It is 
well known that the Shannon entropy and the RCnyi 
entropy, respectively, are achievable lower bounds to these 
cost functions. 

We introduce a different criterion for the performance 
of a lossless code. Given a constant B > 0, we seek a 
uniqyely decipherable block code, or a class of block 
codes, which asymptotically minimize the probability that 
L > Bn, where n is the input block size. This criterion 
might be useful in applications of fixed rate coding 
schemes, where a block of length n is first encoded to a 
binary string of variable length L, which if L > Bn, is 
truncated to Bn bits, resulting in a constant rate of B bits 
per input letter. We would like to minimize the probabil- 
ity that L > Bn, i.e., the probability that information is 
lost. 

For the class of finite-state, finite alphabet sources, it is 
shown that the Lempel-Ziv (LZ) algorithm [4] is asymp- 
totically optimal in the above sense, independently of the 
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source and the value of B. In other words, even if the 
source statistics are known, the best code, in that sense, is 
the LZ code, which does not use the knowledge of the 
source. The technique used to prove this result is similar 
to that of [5]. However, all the pertinent results from [5] 
are rederived here for the sake of completeness. 

Next, it is demonstrated that for unifilar finite-state 
sources [6, p. 1871, that is, sources for which the underly- 
ing state sequence is uniquely determined by the observa- 
tions (e.g., Markov sources), the probability of length 
overflow associated with the LZ algorithm tends to zero 
exponentially fast as the size n of the block tends to 
infinity. If, in addition, the source is known a priori to be 
unifilar, then the convergence of n-' logPr(n-'L > B) to 
the asymptotic optimal exponent can be accelerated if 
one uses the minimum description length (MDL) univer- 
sal code [7], [81 for the subclass of unifilar sources. 

Two additional aspects of these universal codes are also 
discussed. First, it is shown that when buffer is used in 
variable length coding of fixed rate memoryless sources, 
the LZ algorithm, as well as the MDL universal code, 
nearly maximize the exponential decay rate of the buffer 
overflow probability. This is done by showing that these 
codes asymptotically attain the RCnyi entropy (as well as 
the Shannon entropy) for every memoryless source. Sec- 
ond, it is shown that these universal codes are asymptoti- 
cally optimal in a competitive sense [9], i.e., most of the 
time they provide a codeword shorter than that of any 
given competing code, within a vanishingly small redun- 
dancy term. 

In Section I1 we formulate the problem and state the 
main theorem. The case of unifilar sources is considered 
in Section 111. In Section IV these results, along with 
additional aspects, are discussed. Finally, in Section V a 
proof of the main result is provided. 

11. PROBLEM FORMULATION AND MAIN RESULT 
Let x = xl, x 2 ; .  ., x i , . .  ., x n ,  be a sequence of observ- 

able random variables taking values in a finite set X with 
cardinality 1x1 = X. Similarly, let s = sI,s2,.-*,si;* ' , s n ,  
be another sequence of random variables, called states, 
which take values in another finite set S of size IS1 = S. A 
probabilistic source P is called finite-state (with S states) 
if 

n 

p (  x,s) = n p ( X i , s i l S i - l ) ,  (1) 
i = l  
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where p ( x i , s i l s i - , )  is the joint probability of a letter x i  
and a state si given the previous state si- P(x, s) is the 
joint probability of x and s, and so E S is a fixed initial 
state. Often the state sequence s is unobservable. The 
class of finite-state sources with no more than S states 
will be denoted by Ps. 

A length function of a binary lossless code is a mapping 
L,  from the set X" of all possible observation sequences 
x to the set N of positive integers, which satisfies the 
Kraft inequality, 

2 - , n ( x ) s  1. (2) 
X E X "  

Given a finite-state source P and a constant B > 0, the 
problem is that of finding a length function of a uniquely 
decipherable code L,( * that minimizes the probability of 
length overflow, defined as 

Pr{n-'L,(x) > B }  = ~ ( x ) ,  (3)  

where P(x) = C,,,,P(x,s) and P(x,s)  is as in (1). It is 
assumed that 

x:  n - ' L , ( x ) >  B 

H < B < log x, (4) 
where H is the Shannon entropy, which for a stationary 
source is given by 

H 4 - lim n-' P ( x ) l o g P ( x ) .  ( 5 )  
,EX" n-+m 

The assumption B > H is necessary for the existence of a 
sequence of length functions {Ln(.)}n21 such that the 
probability of overflow, (3), will vanish as n -+W. On the 
other hand, the maximum value of B for which the 
problem is interesting is log X ,  beyond which (3) can be 
made zero in a trivial manner. 

Let U,,(x) be the length function of the Lempel-Ziv 
[4] code, that is, U,,(x) is the number of bits associated 
with the Lxmpel-Ziv codeword of a sequence x. The 
following theorem establishes the asymptotic optimality of 
the Lempel-Ziv algorithm in the sense of minimum prob- 
ability of length overflow (3). 

Theorem I :  For any length function L,(.), every B E 
( H ,  log X), every finite-state source P ,  and all large n, 

Pr(n-'U,,(x) > B + ~ ( n ) )  

- < (1+ n22-n/*)Pr(n-'Ln(~) > B } ,  (6) 
where ~ ( n )  = O(l/*) is a positive sequence depend- 
ing on X and S. 

The proof appears in Section V. 

Theorem 1 states that the Lempel-Ziv algorithm at- 
tains the best tail behavior of the distribution of codeword 
lengths, i.e., the best large deviations performance. In [41 
Ziv and Lempel have shown their algorithm to yield the 
shortest length, uniformly for every sufficiently long se- 
quence x, among all information lossless finite-state en- 
coders. Here the result is dual to [4] in the sense that the 
source is limited to be finite-state, but any competing 

lossless encoder is allowed, not necessarily a finite-state 
encoder. 

111. UNIFILAR SOURCES 
The convergence of ~ ( n )  in (6) can be accelerated if P 

is known to belong to the subclass Pu c Ps of unifilar 
sources. For these sources the state s,, at time instant i7 
obeys the recursion 

s, = f ( X , , S , - I ) ,  ( 7) 

where f :  X x S -+ S is a known deterministic mapping. 
Clearly, in this case, given so, which is fixed, one can 
reconstruct the state sequence s recursively upon observ- 
ing x. If, in addition, f is a 1-1 map from X to S given 
its second argument, then s uniquely determines x as 
well, by the inverse map. An important special case of this 
model is a kth order Markov source where s, = 

We now demonstrate that by using the MDL universal 
code for the subclass Pu, the term ~ ( n )  can be reduced to 

( X I ,  x,- 1 , .  . . , X , - k  + 1). 

O(l0g n / n ) .  Let, 

1 "  
q , ( x , s ) = ;  C~(X,=X,S,-~=S),XEX,SES, (8) 

1 = 1  

where 6 ( x ,  = x ,  s,-' = s) is the indicator function for 
x ,  = x jointly with s,- = s. Also, let q,(s) = Cx E x q x ( x ,  s) 
and 

We denote by Q, the empirical distribution Q, A { q x ( x ,  s), 
x E X ,  s E S), and define the empirical entropy as 

H(Q,) = - C C ~ x ( x , s ) 1 0 ~ ~ , ( ~ l s ) 7  (10) 

and the Kullback-Leibler divergence between the empiri- 
cal distribution Q, and the source P is defined as 

S € S X € X  

where p ( x l s )  = Pr{xi = xIsiPl = s). Note that in the unifi- 
lar case considered here, 

P ( x )  = e x ~ ~ { - n [ ~ ( Q , ) + ~ ( Q , l l ~ ) ] } .  (12) 

It is not difficult to show that, for the subclass of unifilar 
finite-state sources, it is possible to attain an exponen- 
tially vanishing probability of codeword length overflow, 
that is, 

lim n-'logPr{n-'L,(x) > B}<O. (13) 

To do this, the first step is to show, by a technique similar 
to that in Section V, that for an arbitrary length function 
L,(x) there exists another length function L$x),  depend- 
ing on x only through the empirical distribution Q, = 

n - m  
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{q , (x ,  $1, x E X, s E SI, such that less case ( S  = 1) is 
D = maxA( B - H A ) ,  (21) n-'logPr n-'L',(x) > B + 0 - A > O  

where HA is the Rknyi entropy [2] given by log n 
( Io: I} 

h + l  

i 
sn-'logPr{n-'L,(x)> B } + 0 (  y). (14) 

Therefore, without loss in asymptotic performance, the 
optimal length function can be assumed to depend on x 
only through Q,. Let T, be the type of x, namely, 

log p (  X)l'(l+A), (22) H A L  ~ 

X € X  

{ p ( x ) I x  ~ being the letter probabilities. Clearly, to attain 
the optimal overflow exponent D, L,(x) should be as 

T,= { X ' E  X " :  Q,, = Q,}. (15) 
Bounds on the probability of T, are given in the following 
Lemma. 

Lemma 1: For every P E  Pu, where f is a 1-1 map- 
ping given its second argument, and for every x E X " ,  

1 
/nlogPr{T,)+o(a,llP)l~c(n), ( 16) 

where ~ ( n )  = O(n-' log n )  is independent of x. 

Proof: The proof is a straightforward extension of 
[lo, Lemma 11 where this argument was proved for the 
specific case of a k th order Markov source. 

From (121, (16), and the fact that all sequences in T, 
are equally likely, it follows that 

(17) 
Following (14), let all members of T, have the same 
codeword length L,(x). Clearly, for a uniquely decipher- 
able code, this length must be at least as large as the base 
2 logarithm of the cardinality of T,, namely, 

L,( X) 2 log IT,I 2 nH( Q,) - ne(  n ) ,  (18) 
where we have used (17). Note, that (18) holds even if 
L,(.) does not satisfy the Kraft inequality (2). The only 
assumption is that L,(.) is a length function associated 
with a 1-1 mapping from X "  to a set of codewords. From 
(18), we have 

n-'logPr{n-'L,(x) 2 B }  

>n-'logPr(H(Q,) 2 B + c ( n ) }  

log c P' ITXI = n-1 
T, c(x:  H(Q,) t B + ~ ( n ) )  

2 n-' log max 
(Qx: NQ,) L E + 

. e x ~ 2 {  - n[D(Q,llp)+ e(.)]} 

= -  min D(Q,llp)- ~ ( n ) ,  (19) 

where again we have used (16) for a lower bound on 
Pr{T,}. Since D(.llP) and H ( * )  are continuous functions 
and since the set of rational empirical distributions { Q,} 
becomes dense in Pu as n -+CO, the right-most side of (19) 
tends to a constant D (see also [141) given by, 

(Qx:  H(Q,)  L B + ~ ( n ) )  

min D(QllP). (20) D B  
(Q:  H ( Q )  z B )  

An alternative expression [l l l ,  [121 for D in the memory- 

close as possible to nH(Q,), which is essentially the lower 
bound (18). In particular, consider a simple universal 
code which consists of log(n + 1) bits (neglecting roundoff 
terms) to encode each one of the S(X - 1) source param- 
eters { p ( x l s ) ]  estimated from x, followed by -logQ,(x) 
bits for Huffman coding of x with respect to the source 
estimate Q,. The resulting length function is 

L,*( X) = -log Q,( X )  + S( X - 1) log( n + 1) 

= nH(Q,) + S( X -  l)log(n + 1).  (23) 
This code is similar to the well known MDL univer- 
sal code (see e.g., [SI), which was shown to be asymptot- 
ically optimal in the sense of uniformly minimizing the ex- 
pected redundancy. A Bayesian approach [71, in which a 
Huffman code is designed with respect to a (uniform) 
mixture of all sources in the class, also yields a length 
function which is asymptotically equivalent to the MDL. 
Similarly to (191, by using (17) for an upper bound on the 
cardinality of T,, and the fact that the number of distinct 
types is smaller than ( r ~ + l ) ~ ' ,  one arrives at the upper 
bound 

n-'logPr{n-'L:(x) 2 B }  

=n-'log Pr{T,} 
T,: L : ( x ) >  Bn 

I n-' log c 
Q,: H(Q,) t B - E ' ( " )  

.ex~,{-n[D(Q,llP)- 4 n ) ] }  

- < n - 1  log( n + l)xs 

- < -  min D( Q,llp) 
(Q,: H(Q, )  t B - E ' ( " ) )  

1 
+.(a) + -XSlog(n n +1),  (24) 

where ~ ' ( n )  = n-'S(X - l)log(n + 1). Clearly, the right- 
hand side of (24) also tends to D as n -+m. This estab- 
lishes the asymptotic optimality of L:(x) in the sense 
of (3). 

IV. DISCUSSION 
Note that no matter whether the true source P E Pu is 

given or not, the optimal length function L,*(x) depends 
neither on P nor on B. In other words, knowledge of 
P or B cannot improve the asymptotic overflow expo- 
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nent D. Only a second-order improvement, associated 
with the rate of convergence to D ,  can be attained if it is 
known a priori that P belongs to a certain subset of 
Pu. For instance, if the source P is known to be mem- 
oryless, then the second term in (23) can be reduced to 
(X - l)log(n + 11, resulting in a slightly faster conver- 
gence to D. 

It should be pointed out that, rather than truncating 
variable length codewords L,(x) into a fixed length of Bn 
bits, one can consider a codebook for the set G, of the 
2B" most likely input n-tuples x, and use Bn bits to 
represent the codeword index. In this case, information is 
lost whenever x E G,'. It is shown in [13, Theorem 2.15, p. 
371) that the best achievable exponential rate of the 
probability of information loss, limn ~~ [ - n-l logPr{G,')], 
again equals D as defined in (20). (See also Marton [14, 
(4)] for the distortionless case.) This means that there is 
no loss in asymptotic optimality in that sense, when using 
the truncation approach. 

Since RCnyi's entropy is attained by the length function 

r 

where P(x) in turn depends on x only through Q,, the 
same consideration as in (14) can be used to show that 
LE(x), defined in (231, asymptotically minimizes (nA)-' 
log ~ ( 2 * ~ n ( ~ ) ) ,  uniformly for any unifilar finite state 
source, and any A > 0 (see Appendix B). Following [151 
(see also Appendix A), the chain of inequalities 

U, , (x)~-log max P ( x > + n s ( n )  
P E  Ps 

I -log max P(  x )  + ns( n )  
PEP" 

= nH( Q,) + n6( n )  

I LE( X) + n s ( n ) ,  (26) 
which holds for any x E X" with S ( n )  -+ 0 uniformly for 
every x, implies that the LZ algorithm is asymptotically 
optimal as well, in that sense. It has been shown in [151 
that 6 ( n )  = O(log1og n /log n), thus, the rate of conver- 
gence to RCnyi's entropy, in the LZ case, might be slower 
than the O(n-'logn) rate of the MDL universal code. 
These facts might have application to universal coding 
with minimum buffer overflow probability. Specifically, 
suppose that n is fixed and we use a buffer of size K to 
convert the variable rate coding to a fixed rate of R bits 
per input symbol, in the following manner. For each input 
block XEX" ,  a codeword of length L,(x) is stored se- 
quentially in, the buffer and at the same time, a previously 
stored block of size Rn is removed from the buffer and 
transmitted. For the memoryless case, it has been shown 
[16], [17] that if E{L,(x))  < Rn, then the probability of 
buffer overflow Pbo can be made exponentially small as 
K + m ,  and the maximum buffer overflow exponent 
l imK+m(- K-' log P b o )  is attained by the length function 
(25), with A = A, being the unique positive solution of the 

equation HA = R ,  where HA is the RCnyi entropy given in 
(22). This solution A,, also equals the maximum attainable 
overflow exponent. Clearly, this length function depends 
on P ( . )  and R .  However, it is easy to show (see Appendix 
B) that, if, one instead uses the universal code L:(x) 
(with S = l), which depends neither on P ( - )  nor on R ,  
the overflow exponent degrades but only by a quantity 
which vanishes as fast as n-' log n. 

Another aspect of the MDL and the LZ algorithm is 
asymptotic competitive optimality. Cover [9] has shown 
that for a known memoryless source, the Huffman code 
Lf(x) is within one bit optimal in a competitive sense, 
namely, for any competing code L,(x), 

Pr { L f (  x)  > L,( x) + 1) s Pr { L f (  x )  < L,( x)  + 1).  (27) 
This means that, within a normalized redundancy term of 
the order of l / n ,  the Huffman code provides most of the 
time a codeword shorter than that of any other competing 
code. We now show that this result extends to universal 
coding, again, by using L,*(x)  (or the MDL universal 
code), at the expense of increasing the redundancy term 
to O(n-' log n). Specifically, we claim that for any unifi- 
lar finite-state source and any competing code L,(*), 

Pr{L,*(x) > L,(x) + n e ( n ) }  

I Pr (L: ( x )  < L,( x)  + ne( n ) } ,  (28) 
where e ( n )  = n-'[L,*(x)-lnH(Q,)ll = O W '  log n). To 
show that (28) holds, we use a technique similar to [91. 
First observe that, 

Pr{L:(x) > L,(x)+ n e ( n ) }  
-Pr{L:( x) < L,(x) + ne( n ) )  

= E{sgn [ L:( x)  - L,( x)  - ne( n ) ] } .  (29) 
Hence, it is sufficient to prove that the expectation on the 
right-hand side of (29) is nonpositive. To see this, we use 
the inequality sgn(k) 2 exp,(k)- 1, (k-integer), and ob- 
tain 

E{sgn[L:(x)- Ln(x)-ne(n)])  

- < E { ~ w ,  [L:(x)- Ln(X)-ne(n)]]- l  

= c P (  x) exp, [ L:(x) - L,(x) - n e ( n ) ]  - 1. (30) 

Finally, since P(x) I exp,[ - nH(Q,)l for every P E P" 
by (12), we get 

X 

E{sgn[L,*(x)- Ln(x)- ne<n>]} 

5 exp2 [ - nH(Q,)] 
X 

'exp, [ L E (  x )  - L,( x )  - ne( n ) ]  - 1 

I C  exp,[-nH(Q,)]ex~z{[~H(Q~>l-~n(x)}-l 

(31) 

X 

- < exp, [ - L,( x)] - 1 I 0, 
X 

where the last step follows from the assumption that 
L,(.) satisfies the Kraft inequality. Note that this result 
extends easily to any parametric class of sources, under 
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fairly mild regularity conditions, where L,*(x)  should be 
interpreted as a Huffman code with respect to the maxi- 
mum likelihood estimator of the source, followed by 
O(log n) bits to encode a quantized version of the param- 
eter estimate. Again, inequality (26) implies that for the 
class of finite state sources, L : ( x )  can be replaced by 
U,,(x) at the expense of increasing the normalized re- 
dundancy to O(1oglog n /log n) bits per source letter. 

V. PROOF OF THEOREM 1 
Assume that 1 divides n and parse x into n / l  vectors 

of length I :  

x=x;,x;,"',xfr/l, xf €XI. (32) 
Let s' denote the sequence of initial states of the result- 
ing phrases {xf), 

Fix s1 and let K(xls' )  denote the set of n-vectors x' 
obtained from x by permuting phrases xf and XI of x, 
for which sf = si' and Clearly, for every 
x' E K(xls')we have from (1) that P ( x ,  S I >  = P(x' ,  sf), and 
hence K(xls')  can be thought of as a conditional type. 

Given an arbitrary length function L,(*) satisfying the 
Kraft inequality, we first find a modified length function 
L',(.(s'), depending on a given s', which satisfies Kraft's 
inequality as well, and which has an additional property 
of mapping "large portions" of each conditional type 
K(xls ' )  onto the same length. This property will be useful 
later in the derivation of the desired lower bound on the 
length overflow probability. We first define some nota- 
tion. 

max, L,(x) .  Next, 
let I 4 { 1,2,. . . ,I Bn], L,,,}, where 1 Bn] is the largest in- 
teger not exceeding Bn (floor function), and define a 
partition R ={R1),.,, of X" by R j = ( x :  L , ( x ) =  j} for 
j=l; . . , IBn] and CILmx=(x: L , ( x ) >  Bn). Let { p J n r 1  be 
a positive sequence with the following properties: 

s' = s:, , Sf, * * , SA/, . (33) 

Let LJ.1  be as above and L,, 

P n  2 1, ( 34a) 
( 34b) lim p, = 0, 

n + m  

1 
lim - log p,, = 0. ( 34c) 

n - m  n 
The exact form of { p J n  will be chosen later. Define 

n ~ ( x l s ' )  1 = max n ~ ( x l s 1 )  1 ) .  
i E  I 

(35) 
As the number of classes {a j )  never exceeds (Bn + l), 
clearly, 

It follows from (34a) and (36) that the set 

(37) 

is nonempty. In particular, j *  E Ks/. Henceforth the sub- 

script xs' will be omitted whenever clear from the context 
and we define V ,  = V - { j*}. 

Next, define a modification R'={Rj)j,I of R as fol- 
lows. If x E Rj with j E V then also x E a;.. Otherwise, 
if X E R ~  with j E  V' then X E  Cl;.. Finally, define the 
modified length function as follows. L',(xls')= j for all 
x E R;, j # j * .  For x E a;,, L',(xls') = j *  +[log(Bn + 1)1, 
where [a1 is the least integer not less than a (ceiling 
function). Thus, sequences in nj, for any j E V,, are 
unaffected by the modification and all other sequences 
will have modified codewords of length j *  + Ilog(Bn + 111 
bits. 

Comment: Note, that even for a fixed SI, not all se- 
quences in R! have modified codewords of the same 

on SI, but also on the conditional type K(xls'), and 
therefore, within a given R;, for some of the types, j 
might coincide with j * ,  in which case, Ll,(xls')= j +  
[log(Bn + 111, and for other types, L',(xls') = j .  However, 
all sequences from the same type within given ClJ and SI, 
are assigned to modified codewords of the same length. 

We now show that L',(- 1s') satisfies Kraft's inequality 
for every S I  E S"/'+'. Since the original length function 
I,,(.) satisfies Kraft's inequality by assumption and since 
for every s', the set of all conditional types {K(xls'))  form 
a partition of X", we obtain 

2-Ln(x)= 

length L',(x(s ! 1. The reason is that j *  depends not only 

2-LAx') 1 2  c 
X E X "  ( K ( x l s ' ) )  E X" x' E K(xls ' )  

c c 2-J] 
i E V ,  X' E R, n ~ ( ~ 1 s ' )  

+ 2-11 

+ 2-11 

j E V ,  X ' E  K(xls ' ) f -  R, 

2-(i'+Ibg(B" + 1)l) 

i E V ,  X ' E  K(xls ' )n R, 

(38) = 2-LXxls'). 
XEX"  

Let Pr{L,(x) > Bn, SI) denote the joint probability under 
P (1) of the event { L , ( x ) >  Bn) and the occurrence of a 
state sequence s'. For every fixed s', we now lower bound 
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Pr{L,(x) > Bn, s') by means of the auxiliary length func- 
tion ~;(xls'). Let 

U = ( j :  j > B n }  (39) 
U'= { j :  j >  Bn + [log( Bn + 1)1} (40) 

By plugging (44) into (42) and using the fact that Rj n 
K(xls')  = RI n K(x1s') for every j E V,, we can further 
lower bound Pr{L,(x) > Bn, s'} as follows. 

Pr{Ln(x) > ~n,s') 

2 [ [ i + p , ( 8 n + i ) 1 - ~ ~ ~ ( x s ' ) n ~ j . ~  
IK(xls')) 

- P ( X , S ' ) ~ , (  j*+[Iog(Bn+1)1) 

Now, by construction of a', for any nonempty " j ,  we 
have IK(xls') n R;l 2 (Bn + l)-'pnlK(xls')l. Since 
L$.Is') is a uniquely decipherable code for any fixed s' 
and since all n-tuples in K(xld)n Rj have modified 
codewords of the same length, then, similarly to (181, this 
length must be at least as large as the base 2 logarithm of 
the cardinality of this set. Thus, 

L;(XIS') > l o g I ~ ( x l d ) n ~ ; I  

2 log I K (  XIS')  I +log * (46) 
Pn 

It is shown in [5 ,  Lemma 13, [15] (see also Appendix A) 
that one can choose a sequence I,, +CO such that 

log I K (  XIS'.) 12 ULZ( x) - ns( n), (47) 
where 6(n)  = 0(1/*) uniformly for any x. By substi- 
tuting (47) into (46) with 1 = Z,, we get 

B n + l  
L;( XI&)  2 ULz( x) - ns( n) -log ( -) . (48) 

Pn 
From (45) and (48) we obtain the lower bound 

Pr { L,( x) > ~ n ,  s ' n }  

2 [ 1 + p , ( ~ n + l ) ] - ' ~ r { ~ ' , ( x 1 s ' . )  > ~ n  

2 [1+ p,(Bn + l ) ]  

+ [log( Bn + 1)1 ,S'"} 

.Pr U,,(x)>Bn+[log(Bn+l)l  i 
By choosing pn = min{l,(Bn + 1)-1n22-n/*}, which 
satisfies (34), the term n-l log[(Bn + l)/pn) on the right- 
most side of (49) becomes O(l/\llogn), which is the 
same order as 6(n) .  Finally, by summing the left-most and 
the right-most sides of (49), over all possible state se- 
quences &, we complete the proof of Theorem 1. 
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APPENDIX A 

Proof of (47) and (26): We first prove (47) and then, 
based on this proof, we derive (26). Let K(xls' )  be 
defined as in the first paragraph of Section V. Define the 
following empirical distributions. 
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tor function for xf = U, sf-, = s and sf = s'. Let code with a length function 

qf(u)  = c qfs ' (U ,S ,S ' )  ( A 4  (A.12) 
S , S * E S  

(A.3) 
Furthermore, this coding algorithm can be implemented 
by an encoder with X' states. Hence, by [4, Theorem 11, 

c( x) + x2' 
3 (A.13) 4 x  21 

4fS' (U,S ,S' ) /4f ' (S ,S ' ) ,  q $ ( s , s ' )  > o  
qfr( s, s') = 0 

L,( x) 2 (c( x) + x2') log 

where c(x) is the maximum number of distinct strings 
(phrases) in x [4]. On the other hand, by [4, Theorem 21, 

ULz( x) I (c(  x) + 1) log [2X( c( x) + l ) ]  . (A.14) 

(A*4) 
i 0,  

s:lS'( UIS, s') = 

H ( d , ' )  = - c c sf,'( U , s, s') log Sf,'( U 7 s, s') 
S , S ' E S U E X '  Hence, by (A.ll)-(A.14), 

(A.5) 1 . ,  
log I K (  XIS')  I 

H (  Sf') = - qf/( s, s') log qf/( s, s') (A-6) 

c + 1  log x 4 1 + 2  - - 
1 c( x) + x' 

n I 2 - ULZ( x) - 

1 

(A.15) 

where in the last inequality we have used the fact that 
X 2 2 and 12 1. By [4, (611, c(x> I n log X/[(1- €,)log n] 
for some E, + 0. Thus, for n and 1 sufficiently large, there 

= A I  ,ULz(X) -~O(n i l ) r  
2H(qf)-2logS. (A.9) 

Let n(u, s, s') = I-'nqf,r(u, s, s') and n(s, s') = xu E X 
n(u, s, s'). By the definition of K(xls ' ) ,  we have 

n ( s , s ' ) !  
IK(xls')l= n ( ~ ~ 1 0 )  exist constants C, ,  C , ,  and C ,  such that 

I logn n 
c, C,l C,K' 

8 , (n , l )  I - + - + - 
S , S ' E S  n n(u,s,s')! 

. (A.16) 

By choosing 1 = I, = [\/lOgn], the right-hand side of (A.16) 
becomes O(l/=), completing the proof of (47). 

Finally, to prove (261, we return to (A.15) and observe 
that, for any s', 

UEX'  

By using the inequality n log n - n log e I log n! I n log n, 
we obtain 

1 
- log I K (  XIS') I 

1 2 P( x', s') = I K (  XIS') IP( X, s'), (A.17) 
x' E H x l s ' )  

and hence, 

S' 

1 
2 , [ n( s, s') log n( s, s') - n( s, s') log e P ( x )  = C P ( x , s ' )  

S , S ' E S  

1 - n(u,s, s') *logn(u, s, s') 
U E x' 

1 1 
1 

= i ~ (  qf,s') - - log e 

2 - [ ~ ( q f )  - 2 log s - log e]  
1 
1 
1 
- 1 [ H(qf) - c] 

I ~ l K ( x I s ' ) l - l  
s' 

- ~ ~ n ~ ' + ' e x p , { - ~ L z ( x ) + n ~ o ( n , ~ ) }  

em,( - uLZ(x) + n8,( n , I ) ) .  
Hence, by choosing again I ,  = I=], we get 

(A.18) 

(A. l l )  
ULZ( x) I -log P( x) + n8'( n )  , (A.19) 

It is known [8] that there exists a uniquely decipherable where 6'(n) = 8,(n, I,) = O(l/=). Tighter bounds 
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where 6‘(n) = U(1oglog n /log n) can be found in [15]. 
Since (A.19) holds for any finite-state source P ,  the 
right-hand side can be minimized with respect to P ,  
resulting in 

ULz( x) I - logmax P( x) + n6’( n).  (A.20) 
P E Ps 

This completes the proof of the first inequality in (26). 
The remaining inequalities in (26) are straightforward. 0 

APPENDIX B 
UNIVERSAL CODING WITH MINIMUM PROBABILITY 

OF BUFFER OVERFLOW 
Let 6, n-’X log(n + 1). We first upper bound 

(nh)-’ log E(2“:‘”)). 

1 
nh 
- log E( 2ALE‘”’) 

= max, 
X E X  

On the other hand, RCnyi’s entropy can be lower bounded 
as follows: 

h + l  
HA = - log P ( X ) ’ / l + A  

n h  X E X ”  

h + l  1 / 1 +  A =-log IT,IP(X) 
n h  T , C X ”  

563 

It now follows by (B.l) and (B.2) that 

- 1 0 g E ( 2 ~ ~ ~ ‘ ~ ’ ) < H ~ + 2  1 
nh 

Thus, if L:(x)  is used instead of the optimal code, then 
the buffer overflow exponent is lower bounded by the 
solution to the equation HA = R - 2(1+ h-’ )6 , ,  while the 
optimal exponent is given by A,, the solution to HA = R. 
Since the solution A,( R )  is a continuous differentiable 
function of R in the range H < R < log X, the resulting 
degradation in overflow exponent is also U(6,)  = 
U(n-’ log n). 
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