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Abstract-The generalized likelihood ratio test (GLRT), which is com- 
monly used in composite hypothesis testing problems, is investigated. 
Conditions for asymptotic optimality of the GLRT in the Neyman- 
Pearson sense are studied and discussed. First, a general necessary and 
sufficient condition is established, and then based on this, a sufficient 
condition, which is easier to verify, is derived. A counterexample, where 
the GLRT is not optimal, is provided as well. A conjecture is stated 
concerning the optimality of the GLRT for the class of finite-state 
sources. 

Index Terms-Hypothesis testing, generalized-likelihood ratio test, 
maximum-likelihood test, error exponent, Neyman-Pearson criterion, 
large deviations. 

I. INTRODUCTION 

Consider the following prototype classification problem. Let 
x” = (x,;.., x,) be a sequence of observations which take values 
in a finite set X with cardinality X. It is assumed that x” has 
been drawn from a probabilistic source P which is either P,, or 
PI, i.e., Pi, and PI are probability measures on the space f 1  = X :  
of all infinite sequences and we identify the marginal of P,, 
under the coordinate map w --f x “ .  The classification problem is 
that of deciding, upon observing x ” ,  whether the true underlying 
source is Po or P I .  Throughout the sequel, Pz(x”),  i = 0, I ,  will 
denote the probability of a string x “  under P,. Similarly, P z ( F )  
will denote the probability of an event F under either source. A 
decision rule is a subset A, of the sample space X ”  such that if 
x” E A,,, then x“ is classified as being drawn from P = PI,  
otherwise it is classified as P = Pi). The probability of error of 
the first kind (false alarm), associated with 11,, is defined as 
P,JAn),  i.e., the probability of deciding P = PI while Pi, is the 
true source. Similarly, the probability of error of the second kind 
(misdetection) is defined as Pl(X,!), where A,, is the set comple- 
mentary to A,,. 

For known sources Pi, and PI, the classical Neyman-Pcarson 
approach [ l ]  suggests the following optimality criterion: Among 
all decision rules 11, yielding 

for a given A > 0, find the one which minimizes P J X , , ) .  It is 
well known that the solution to this problem is given by the 
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likelihood ratio test (LRT), i.e., 

where logarithms throughout the correspondence will be taken 
to the base 2 and the threshold function T, , (A) ,  defined such that 
Pil(2i:;RT-) = 2-“”,  depends, in general, also on n, A, Po, and PI. 

Suppose next that P,, is still known but PI is unknown except 
that it is a member of some subclass P of the stationary and 
ergodic sources, namely, a simplc hypothesis P = Pi, is tested 
against a composite alternative P E P. Clearly, in this case, the 
LRT (1.2) is no longer applicable. It is common to use, in this 
situation, thc generalized-likelihood ratio test (GLRT) [2, p. I ,  
pp. 86-96], given by 

In [3]-[6], the GLRT with 7 J h )  = A was investigated in several 
concrete composite hypotheses testing problems, where P was 
the subclass of all Markov sources up to a given order (including 
zcro order, i.e., memoryless sources). I n  [7], more generally, a 
parametric class P from an exponential family was assumed. In 
fact, all these studies have shown that the GLRT is asymptoti- 
cally optimal under a modified version of  the Ncyman-Pearson 
criterion, defined as follows. 

M :  Among all sequences of decision rules (An}n2 I that do 
not depend on the unknown PI and at the same time 
satisfy 

1 

,) + 3L f 1  
lim sup - log PI,( A, , )  < - A  (1.4) 

select a sequence that maximizes the second kind error 
exponent, - Iim sup,, ~. , n ’ log P,(A,,) ,  uniformly for all 
PI E P. 

In other words, the GLRT (1.31, which is independent of PI, 
performs in [3]-[7] asymptotically as wcll as the optimal LRT 
(1.2), which in turn depends upon PI. However, in [8], where the 
class P of alternatives was extended to the set of all finite-state 
(FS) sources with no more than S states. i t  was not the GLRT 
that was proved asymptotically optimal, but a generalized ver- 
sion of i~ test proposed by Hoeffding (see [Y]  and Lemma 1 
below), where practical implementation turned out to be simpli- 
fied by the use of the Lempel-Ziv (LZ) algorithm [lo]. However, 
i t  is not clear from the results of [8] whether the GLRT is still 
optimal in this casc. 

In light of  these results, thc goal of this correspondence is to 
study relations between the GLRT and the optimal test under 
the criterion M previously defined. In particular, we are inter- 
ested in establishing conditions on the class P under which the 
GLRT is asymptotically optimal in that sense. We first derive a 
necessary and sufficient condition for asymptotic optimality of 
the GLRT. Since this condition is, in general, difficult to check, 
we further derive a sufficient condition, which is easier to verify, 
and demonstrate that it holds in many interesting special cases, 
including [3]-[7] as well as other cases. On the other hand, we 
provide a counterexample to demonstrate that the GLRT is not 
always asymptotically optimal. The question whether the GLRT 
is asymptotically optimal in thc case that P is the set of all FS 
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sources [8], remains open, although we conjecture that the 
answer is positive, cf., the remark at the end of Section IV. 

As a final remark, we point out that although merely finite- 
alphabet processes are considered here, the results are readily 
extended to more general alphabets if one replaces combinato- 
rial bounds by related large deviations bounds and modifies the 
optimality criterion appropriately. The interested reader is re- 
ferred to [ I l l  for a precise description of this extension. Also, by 
using this approach, one may also use the empirical process 
(provided that P is a set with sufficiently "nice" ergodic proper- 
ties) and thus, bypass the Markov approximation approach that 
is used here (see (2.1) and (2.2)). 

11. PRELIMINARIES 

We shall assume that every source in P can be approximated, 
to an arbitrary degree of accuracy, by a Markov source of a 
sufficiently high-order 1. Specifically, for every source P t P and 
an infinite string x = ( x l ,  x 2 ,  ... ) define 

P / ( X )  = sup hog P ( x , , l x " ~ - ' )  - log P(x,lxfi::)l, 
n > l  

I = 1,2;.., (2.1) 

where xi denotes the segment (xt,x,+,;..,x,) for j > i, 
P(x,Ix"-l) is the conditional probability of x,,  given the entire 
past, and P ( x , l x f i I : )  is the conditional probability of x , ,  given 
the I preceding letters. It will be assumed that for every E > 0 
there exists a sufficiently large I such that p , (x )  5 E almost 
surely. This is equivalent to the condition that for every string 
x" with nonzero probability, 

n I1 

2.-*" ~ P ( ~ , I X ; I ; )  5 P(x") I 2"" ~ P ( x , ~ x : I ; ) .  (2.2) 
I =  I I =  I 

Since E is assumed independent of x " ,  (2.2) tells us we can 
approximate P by an Ith-order Markov process at the expense 
of degrading the exponential of rate of the second kind error 
probability, namely - lim sup,l ~ log Pl(K,,), by n o  more than 
E. Therefore, we shall throughout consider sources in P as 
stationary, ergodic, Ith-order Markov sources, keeping in mind 
that the discussion next will focus, in the general case, on 
€-optimal rather than optimal error exponents. 

Remark: Rather than using lth-order Markov sources for 
approximating sources in P one may use, more generally, unifi- 
lar FS sources having sufficiently many states (see Appendix) 
with a straightforward extension of (2.11, (2.2), and the forthcom- 
ing derivation. This is advantageous if one wishes to approxi- 
mate general FS sources [8] as demonstrated in the Appendix. 
Note, however, that although the GLRT is asymptotically opti- 
mal, as mentioned earlier, when P is the class of all Ith order 
Markov measures or the class of all unifilar FS sources with X' 
states, it is not necessarily so when P is the subset of sources, in 
this class, which approximate (in the sense of (2.2)) all general 
FS sources with a given number of states. 

Let s, = x::,' denote the state at time instant I .  For simplicity, 
we shall assume that the initial state si =XI'-/ is fixed. Define 
the empirical joint probability of a letter U E X  and a state 
v E X' as 

1 "  

n i - 1  
&(U, v )  = - 6 ( x , , u ,  s,, v), (2.3) 

where 6(xt, U ,  s,, v )  is the indicator function for x, = u jointly 
with si = v. The empirical distribution Qz is defined as the 
matrix ( 4 3 4  v ) ] , , ~  x, x ~ .  The type T," of x" is the set of all 
strings y" E X "  with Q; = (3:. The empirical conditional prob- 

ability of a letter u given a state v is defined as 

(2.4) 

II t x 

with the convention that if the denominator (and hence, also the 
numerator) is zero, then q:(u lv)  is set to zero as well. Next, 
define the empirical conditional entropy associated with x n  as 

H(Q: ' )  = - q:I(u, v) logq l (u Iv ) ,  (2.5) 
u c x  "EX '  

and the divergence between Q: and the source P as 

where P(u1v) is the conditional probability of x, = u given that 
s ,  = v. 

The following lemma, which is a straightforward extension of 
a result due to Hoeffding [9], proposes an asymptotically optimal 
sequence of decision rules under the criterion M defined in 
Section I. This lemma will serve as a basic tool for examining the 
GLRT. 

Lemma I :  The sequence of decision rules {A*,}" ~ I ,  where 

satisfies the constraint 

1 
lim sup - log Po( A:?) I - A ,  (2.8) 

n + x  n 
and at the same time maximizes, among all sequences of deci- 
sion rules satisfying ( 1.4), the second kind error exponent - lim 
supn- ~ n - '  log P J X , , )  for all P,  E P .  

Proot T o  prove (2.8), first observe that the membership of a 
string x" in A:, depends only on its empirical distribution (type). 
Hence, 

Pl,(A*,) = c PIdT). (2.9) 
T;c 27, 

From 14, Lemma 11 wc find that 

(2.10) 

where E,, = O ( n - '  log n )  independently of x". Furthermore, the 
total number of distinct types 7'' in X "  never exceeds ( n  + 1)x2' 
[12, p. 4341, where X is the cardinality of the source alphabet X .  
Combining this fact with (2.9) and (2.10), we have for every 
E > 0, 

P,,(.Ax) 5 ( n  + 1 l X  ' Tax, P ~ , ( T ~ )  
7,  I,, 

(2.11) 

where the equality follows from the definition of A*,. This 
completes the proof of (2.8). 

As for the second part of the lemma, since Pi is assumed an 
lth order Markov source, the empirical distribution Q l  serves as 
sufficient statistics for optimal decision under the criterion M 
(see also [3]-[7]). Let be an arbitrary sequence of 

I I T  
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decision rules satisfying (1.41, where membership in A, depends 
only on the empirical distribution. Then, from (1.4), for every 
E > 0, all large n and any y ”  E A,,, 

2 PO(A,) 2 PO(T,n) 
2 - ( A  + e,, )n 

2 exp,(-n[D(Q:IIP,,) + E , , ] } ,  (2.12) 

where we have used again (2.10). This means that y“ is also in 
A*,, i.e., A, c A:, hence P,(R*,) I f l (K , , )  for every Pi E P ,  

0 completing the proof of Lemma 1. 

Remarks: 

1) An important property of the test (2.7) is that it is indepen- 
dent of the class P .  Moreover, it is easily replaccd by a test 
based on the LZ algorithm (see, e.g., [3]-[6], [SI). 

2) Note that D(Q.!l(Po) in (2.7) can be rewrittcn as 

1 
D(QylP,,) = -H(Qf) - - log P, , (x”) ,  (2.13) 

I 1  

where -H(Q:) ,  in turn, can be also expressed as 

1 

n - H ( Q , r )  = -log Pl(x’*) + D ( Q ! J ] f , ) .  (2.14) 

Thus, if P is sufficiently rich so that 

inf D(Q,rllP,) = 0, Vx“  E X ” ,  (2.15) 
P , € P  

then it follows from (2.14) that - H ( Q : )  = 

supp, E log P , ( x ” ) ,  in which case the GLRT (1.3) with 
Tn(A) = A coincides with Hoeffding’s test (2.7) and hence, 
it is asymptotically optimal. Indeed, in all cases considered 
in [3]-[6], I was assumed fixed and P was the entire class 
of Ith-order Markov sources, therefore (2.15) holds triv- 
ially. It should be noted again that even if a general FS 
source can be approximated by a high-order Markov source, 
the latter might have many more states than that of the 
former, thus (2.15) may not hold. 

In the next section, we demonstrate that even in simpler 
situations the GLRT is not always asymptotically optimal. Be- 
fore we present such a counterexample, however, we need a 
preliminary step. 

It can be shown, using a technique similar to the proof of 
Lemma 1, that for a given PI E P, the second kind error 
exponent, associated with Hoeffding’s test (2.7), is given by 

1 
- lim - 

n - x  n 
PI(*,) = e(A)  inf 

C ) t A  

where A is the set of all Ith-order Markov measures Q, defined 
as 

A = ( Q :  D(QllP,,) 5 A}. (2.17) 

The function e(A) is called the error-exponent function [13, 
p. 123, Definition 4.6.11. Since B is a convex set and D(.IIP,) is a 
strictly convex furction, the infimum (2.16) is attaineg uniquely 
by a measure Q on the boundary of A,  i.e., D(QllP,) = A. 
Specifically, by standard Lagrange minimization (see also 113, ch. 
411, we find that Q is of the form 

Q(UlV) = K,P,S(Ulu)P;-~(U/v),  vu t X ,  v E X ‘ ,  
(2.18) 

where s E [O, 11 is chosen such that DCQllf,,) = A and K ,  = 

[EutX P , j Y u l v ) P ~ ~ ’ ( ~ l v ) ] - ~  is a normalization factor. It is easy 
to see that the same measure Q minimizes D(Q((P,,)  over the 

set 

B = ( Q :  D(QlIP,) I e(A)). (2.19) 

Consider now a sequence {T,”},,> , of types with QI + Q, for 
some Ith order Markov measure Q, in the interior of B, i.e., 
D(QOIIPl) < e(A), and suppose that for some sequence of deei- 
sion rules {A,,),l ,, satisfying (1.41, T; is classified into P = Po 
for infinitely many values of n. Then, 

1 1 

ll’% n n - t x  n 
- Iim sup - log Pl(;irr) I - Jim sup - log P,(T:) 

= D(Q,)lIP,) < e ( / \ ) ,  (2.20) 

which means, in view of (2.16), that this sequence of decision 
rules is not optimal. We have just proved the following lemma, 
which provides a necessary condition for optimality of any given 
sequence of decision rules. 

Lemma 2: Let {An}n2 , be an asymptotically optimal sequence 
of decision rules under thc criterion M ,  where Q: is sufficient 
statistics for h,,, and let {T:},12 , be a sequence of- types such 
that the corresponding sequence of empirical distributions 
{Q:},,?, has an accumulation point Q,, in the interior of B for 
some PI E P .  Then, for all large n,  7‘’” c A,. 

In other words, the lemma states that every string x n  whose 
empirical distribution falls in a “sphere” B with radius e(A), 
centered at PI, must be classified into P = PI for sufficiently 
large n.  As an example of an asymptotically optimal sequence of 
decision rules, other than Hocffding’s test, suppose that P,  is 
known (i.e., P = {PI} and consider the LRT (1.2) with the 
optimal threshold function. Since both Hoeffding’s test and the 
LRT are asymptotically optimal, in this case, then by comparing 
the performance of the two tests, it is easy to show that the 
threshold function Tz(A) of the optimal LRT tends to a limit 
T( A) given by 

T (  A )  = A - e(  A ) .  (2.21) 

This relation can be also obtained from a straightforward exten- 
sion of [13, p. 120, Theorem 4.5.21. 

111. A COUNTEREXAMPLE 

Let P,, be a binary memoryless (Bernoulli) source with letter 
probabilities P,,(“O”) = f l , (“ l”)  = 0.5. Let P be the class of all 
Bernoulli sources P , where the parameter O P,(“O”) is either 
larger than 0.7 or smaller than 0.2. The idea behind this choice 
of an asymmetric P ,  is that the “distances” of its two parts, (19: 
H I 0.2) and { 0 :  H 2 0.7}, from 6, = 0.5, which corresponds to  
P,,, arc different and hence a fixed threshold function T,(A) 
cannot fit both parts of P. Throughout this section, we shall 
denote a Bernoulli source with parameter 0, 0 I 0 I 1, by P’. 
Since all sources involved are memoryless, the relative frequen- 
cies of letters q:(u) 4 n-’Ey= , S ( x , ,  U), U =“0~~,‘(1)’ ,  are suf- 
ficient statistics in this case. 

We now show that for A = D(P”.4\(lP”.s) = D(P0~611fn.s) there 
is no threshold value T,,( A) for which the GLRT is asymptotically 
optimal. Define 

A,  = D( P0.‘((P0.’), (3.la) 

A, = D(  p y p o . 2  ). (3.lb) 

Assume first, that T,(A) I A - A, and consider the type of 
strings x “  for which q=(“O”) = 0.6. For the GLRT to satisfy the 
constraint (1.41, this type must be classified into Po. Since 

n I I  
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supp, P l ( x n )  = P"'(x") ,  as can be easily shown, wc have that 

1 1 
- log sup P , ( x " )  ~ - log PI,( x") 
n P , t P  n 

which means that the GLRT classifies x" into P = PI and 
hence contradicts the previous requirement that x" should be 
classified to P,,. 

Assume next, that TJA) > A - A , .  and consider a string x" 
for which q:("O") = 0.35. Since D(P".3511P,I) > A and 
lies "between" P ,  = Po' E PI and Pi, = then D ( P  o.3ill 
Pi'.2) < e(A), and hence by Lemma 2, x" must be classified into 
P = PI. Since D(P".3s/lP".2) < D(P".3511P"-7), this implies that 
supr, P , ( x " )  = P".*(x").  Finally, since 

D(p[].3511po.') - D(p[l..J"I/p"Z) < A - A , ,  

as can one easily verify, we find that 

1 1 
- log sup P,( x " )  ~ - log Po( x " )  
n P , F P  n 

= D( P(l.3s11p[l.s ) - D(P".354(1P0-2) < A - A ,  < T, , (A) ,  
( 3  3 )  

which implies that the GLRT classifies x" into PI, in contrast to 
the previous requirement that x" should be classified into PI. 

Since we have contradicted both possibilities T , ( A )  I A - A ,  
and TJA) > A - A , ,  we havc proved the nonexistence of a 
threshold value for which the GLRT is asymptotically optimal 
under the criterion M .  

IV. CONDITIONS FOK ASYMPTOTIC OPTIMALITY OF THE 

GLRT 

We begin by deriving a necessary and sufficient condition for 
the asymptotic optimality of the GLRT in the situation dc- 
scribed in Section 11. For the sake of simplicity and in view of 
the Remark 2 in Section 11, we confine attention to the case 
T,(A) = A. 

Theorem 1: Let P U {PIJ be a subset of the class of station- 
ary, ergodic Ith-order Markov sources. Then, the GLRT with a 
threshold function T,(A) = A is asymptotically optimal under 
criterion M ,  if and only if for all P , E P, 

inf .  D(QllP,) 2 e(A), (4.1) 
PE 

where 

C = (Q: D(QlIP,,) - inf D(QIlP,) < A I D(QllPil)} . (4.2) 
PI t P 

The interpretation of the theorem is as follows. The right-hand 
side of (4.1) is the second kind error exponent associated with 
Hoeffding's test (2.7), which is always optimal by Lemma 1, and 
we want the second kind error exponent of the GLRT to bc as 
large. Thc right-hand side of (4.1) corresponds to the exponen- 
tial rate of the probability of the sct A:, - namely, the 
set of all sequences which are classified to PI, by the GLRT but 

not by Hoeffding's test. If this exponential rate is larger than 
Hoeffding's exponent, then the contribution of this difference 
set is exponentially negligible and the two tests provide the same 
performance. Note that if the simple sufficient condition (2.15) is 
satisfied, as in thc case where P contains all Markov sources of 
order I or less, then (4.1) holds trivially because C becomes an 
empty sct. 

Proof of Theorem I :  We first show that the GLRT with 
7JA) = A satisfies (1.4). To  this end, it is sufficient to  show that 

,i L as we already know from Lemma 1 that A*, satis- 
tics (1.4). This, in turn, follows from the following consideration: 

\GI.RT 

1 1 

n 
- log sup PI( x " )  - - log PI'( x " )  

I', c P 

= - H ( Q : ' )  - inf D(Q=llP,) - 
I ' ,  t P 

1 

n 
I -H(QI') - - log P , l ( x ' l )  

where the inequality follows from the fact that a divergence is 
nonnegative. Thus, (4.3) tells us that if x" is such that the 
Icft-most side exceeds A, namely, x" E AtLRT, then the right- 
most sidc exceeds A as well, i.e., x n  E A:. TGs completes the 
proof that A:LRT c A:! or, equivalently, p, 2 A:LKT. 

In view of this fact, in order to examine P , ( ~ ~ L R T ) ,  we can 
decompose this probability as 

Pl(xt 'R')  = + P,(xtLRT n A*,). (4.4) 

The first tcrm on the right-hand side is the second kind error 
probability associated with Hoeffding's test, which decays expo- 
nentially with rate e(A), as mentioned earlier. Similarly, the 
second term on the right-hand side of (4.4) decays with an 
exponential rate given by the left-hand side of (4.11, as all 
sequences in x:' n AT, havc their empirical distributions in 
C. Therefore, we observe that the GLRT is asymptotically opti- 
mal, if and only if the exponential rate of the second term of 
(4.4) is at least as large as that of the first term, which is exactly 

0 

The necessary and sufficient condition of Theorem 1 is diffi- 
cult to check in general. We, therefore, derive a sufficient 
condition (Theorem 2) for the asymptotic optimality of the 
GLRT, which is easier to verify. 

Theorem 2: Let P U { f , , }  be a subset of the class of station- 
ary, ergodic Ith-order Markov sources, and let Q = arg 
mina, D(QllP,,), where B is defined as in (2.19). If Q E P for 
all P,  E P, then the GLRT with the threshold function T,(A) = A 
is asymptotically optimal under criterion M .  

Since Q is given by an "exponential combination" of Po and 
PI (see (2.18)), the significance of Theorem 2 is that if P U {Po] 
is closed with respect to such exponential combinations, then the 
GLRT is asymptotically optimal. It is easy to see that this 
closure property holds if P is an exponential family of measures 
as is the case in each of the earlier studies [3]-[7]. This holds 
true even if onc uscs statistics of order higher than that of the 
sufficient statistics (e.g., when P is a subclass of the first-order 

condition (4.1). This completes the proof of Theorem 1. 
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Markov processes but Q; cofresponds to I > 1). In this case, 
(2.15) is not satisfied, yet Q E P and hence, the GLRT is 
asymptotically optimal. This condition holds also for many other 
subclasses P of the Ith-order Markov sources, e.g., the subclass 
defined by dependence only upon even lags of the process, i.e., 

P(x,Ix'- I )  = P ( x , l x , . ~ , . x , ~ , , ' . ' , x , ~ / ) ,  (4.5) 

where I is assumed even. Again, this class does not satisfy the 
simple sufficient condition (2.15) because there exist empirical 
Ith-order Markov measures Q; that are far apart from any 
Markov measure in the subclass defined by (4.51, e.g., measures 
Q: for which xi depends strongly on odd lags x i -  ,, x , + ~ ,  etc. 
For binary memoryless sources, Theorem 2 means convexity of 
P U {Po}, which is clearly not the case in the counterexample of 
Section 111. Finally, we point out that since Theorem 2 provides 
merely a sufficient condition, it is easy to find an example where 
this condition does not hold and yet the GLRT is asymptotically 
optimal. A simple example is when P includes only one measurc 
PI, in which case the GLRT coincides with the LRT and hence 
optimal, however, the condition is clearly not satisfied. 

Proof of Theorem 2: Since by assumption Q E P ,  then, 

where 

Thus, to prove that (4.1) holds, and hence the GLRT is asymp- 
totically optimal, it is sufficient to show that 

(4.9) 

qonversely, assume that (4.9) is false, namely, the measure 
Q E D that minimizes D(Ql(P, )  on the left-hand side of (4.10) is 
an interior point of B. Then, it follows from [14, Theorem 2.21 
that 

D(QIIP0) - D(QIlQ) 2 D(QllP,,) = A ,  (4.10) 

which contradicts the assumption that Q E D and hence, com- 
0 pletes the proof of Theorem 2. 

Remarks: 

M. Gutman has shown us that a condition somewhat 
different than that of Theorem 2 is actually both necessary 
and sufficient. Specifically, referring to the notations of 
Theorem 2, the GLRT is asymptotically optimal, if and 
only if 

VP, E P, inf D(QIIP ' )  = 0. 
P ' t P  

Although it has been assumed in this correspondence that 
Po is completely known, the results can be easily general- 
ized to the case where Po is unknown except that it is in a 
subset Q of the Ith-order Markov sources. In this case, 
(1.4) is required to hold for all Po E Q ,  or, equivalently, 

1 
limsup - log sup P,,(h,)  < - A .  (4.11) 

Similarly, Po(x")  in the GLRT (1.3) will be replaced by 

n + r  n P, ,  Q 

1601 

sup,,,, P, , (x") .  In all cases studied in [3]-[8], Q was a 
subset of P. 

3) We conjecture that for the case where P is the class of all 
finite-state sources with a given number of states (see 
Appendix and [8]), the condition of Theorem 2, and hence 
also the asymptotic optimality of the GLRT, holds true. 
Although we have not been able to prove it analytically, a 
computer search over the space P of two-state binary 
sources, with I = 7 and Po being a binary memoryless 
symmetric source (similar to that of Section 1111, failed to 
provide a counterexample for which Q, as defined in (2.181, 
falls outside P .  

APPENDIX 
APPROXIMATION OF FS SOURCES BY UNIFILAR FS SOURCES 

An FS source P ,  (also called a hidden Markov source [15],) is 
characterized by an observcd output process ( x l ,  x 2 ,  ... ), x, E X ,  
and a corresponding unobserved (hidden) finite-alphabet state 
process (s i ,  s 2 ,  ... 1, s, E S ,  which are jointly Markov, i.e., 

I7 

P (  X ' ! .  S'I + I ) = n p (  x, 1 s ,  * I I S I  ) 1 (A.  1 )  
I =  1 

where we shall assume that the initial state sI = (T is k e d .  If, in 
addition, 

S , + I  = g ( x , , s , )  ('4.2) 

with probability 1, for some mapping g: X X S 4 S ,  then (A.l)  
is referred to as an unifilar FS source. In this case, the state 
process can be reconstructed recursively from the observation 
process using (A.2). A n  important special case of a unifilar FS 
source is an Ith-order Markov Source where s, = x::;. 

We show that a general FS source (A.1) with strictly positive 
transition probabilities ( p ( u ,  vlw)},, x, ", ~t can be approxi- 
mated by a unifilar FS source with a particular choice of g and 
sufficiently many states. Suppose that p ( u ,  v lw)  2 6 > 0 for all 
U E X ,  v ,  w E S ,  and hence, 

6'p(U, V l C J )  < , D ( U ,  U l W )  5 6 - ' p ( U ,  V l ( T ) .  

Assume further that I divides n and parse x" into n/I nonover- 
lapping blocks of length I .  Then, 
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n / / -  1 

J = o  

[16] N. Merhav and Y. Ephraim, “A Bayesian classification approach 
with application to speech recognition,” IEEE Trans. Signal Pro- 
cessing, vol. 39, pp. 2157-2166, Oct. 1991. 

- - 2-nl - I  l o g ( l / S )  n P(x$:i). (‘4.3) 

In a similar manner we obtain 
n / / -  1 

p(,n) I 2nl-I l o g ( l / s )  n qx:::;), (A.4) 
j =  0 

which together with (A.3) means that (A.l) can be approximated 
by a block memoryless source of 1-tuples (see also [16, Appendix]) 
defined by 

n / / -  1 n / / - l  / 

P ( x n )  = n P ( x j : : { )  = n n P ( x , ~ + , l x ~ \ ~ ; - l ) .  ( A S )  

Under the measure P ,  x, depends at most on the 1 preceding 
letters xf:: and the induced conditional probability P ( x , l x ; I  / 1, 
in turn, depends on the position of i with respect to the block 
endpoints, i.e., on i mod 1. Hence, (AS) can be described as a 
unifilar FS source with no more than 1 . X ‘  states ( X  is the 
alphabet size), where the state variable 5, consists of the I 
preceding letters and a modulo-1 time counter c,, i.e., 5; = 

( x ; I / , c [ ) .  Thus, from (A.3) and (A.4) we find that if 1 > 
E - ’  log(1/6), then with probability 1, 

2 - ” z ~ P ( x l 1 5 i )  5 P ( x ” )  I 2 “ “ ~ P ( x I l i , ) ,  (A.6) 

which is similar to (2.2) with the generalization that $1; is 
replaced by 5;. 

j =  0 j = 0  i = I  

n n 

r = l  I =  1 

Recursively Indexed Quantization of 
Memoryless Sources 

Khalid Sayood, Member, IEEE, and Sangsin Na, Member, IEEE 

Abstract-A recursively indexed scalar quantizer that performs as well 
as high-dimensional vector quantizers for several important sources, 
without the attendant complexity is presented. 

Index Terms-Quantization, source coding. 

I. INTRODUCTION 

Consider the source coding scenario of Fig. 1. A k-dimen- 
sional N-point (or output vector) quantizer Q is a mapping of 
the k-dimensional Euclidean space Rk to a set of k-dimensional 
quantization vectors {yo, yl; . . ,  y +  The quantization rule, 
denoted by Q, is 

where {S,: j = 0, l;.., N - 1) is a partition of Rk,  and {S,} are 
called the quantization regions. A fixed-to-fixed length binary 
encoder is a mapping from the set (0, l,..., N - l}  of the indices 
of the quantization vectors to a set of binary sequences of length 

Q(x) = Y , ,  if x E S,, 
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(l/k)[log, N 1 where N is the size of the reproduction alphabet 
and k is the dimension of the input vectors. The distortion is in 
some sense a measure of the average closeness of the reproduc- 
tion sequence to the source sequence. In this correspondence, 
we will measure the distortion by ( l /k)E{IIX - Q(X)l12}, where 
the expectation E is taken with respect to the k-dimensional 
source distribution p ( x )  and where 1 1  . II denotes the L2 norm. 
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