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Abstract

This is a set of lecture notes for a graduate course, which focuses on the rela-
tions between Information Theory and Statistical Physics. The course is aimed at EE
graduate students in the area of Communications and Information Theory, as well as
to graduate students in Physics who have basic background in Information Theory.
Strong emphasis is given to the analogy and parallelism between Information Theory
and Statistical Physics, as well as to the insights, the analysis tools and techniques that
can be borrowed from Statistical Physics and ‘imported’ to certain problem areas in
Information Theory. This is a research trend that has been very active in the last few
decades, and the hope is that by exposing the student to the meeting points between
these two disciplines, we will enhance his/her background and perspective to carry out
research in the field.
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1 Introduction

This work focuses on some of the relationships and the interplay between information theory

and statistical physics – a branch of physics that deals with many–particle systems using

probabilistic and statistical methods in the microscopic level.

The relationships between information theory and statistical thermodynamics are by no

means new, and many researchers have been exploiting them for many years. Perhaps the

first relation, or analogy, that crosses one’s mind is that in both fields there is a fundamen-

tal notion of entropy. Actually, in information theory, the term entropy was coined in the

footsteps of the thermodynamic entropy. The thermodynamic entropy was first introduced

by Clausius in 1850, and its probabilistic–statistical interpretation was established by Boltz-

mann in 1872. It is virtually impossible to miss the functional resemblance between the

two notions of entropy, and indeed it was recognized by Shannon and von Neumann. The

well–known anecdote on this tells that von Neumann advised Shannon to adopt this term

because it would provide him with “... a great edge in debates because nobody really knows

what entropy is anyway.”

But the relationships between the two fields go far beyond the fact that both share the

notion of entropy. In fact, these relationships have many aspects. We will not cover all of

them in this work, but just to taste the flavor of their scope, we will mention just a few.

The maximum entropy (ME) principle. This is perhaps the oldest concept that ties the two

fields and it has attracted a great deal of attention, not only of information theorists, but

also that of researchers in related fields like signal processing and image processing. The

ME principle evolves around a philosophy, or a belief, which, in a nutshell, is the following:

If in a certain problem, the observed data comes from an unknown probability distribution,

but we do have some knowledge (that stems, e.g., from measurements) of certain moments

of the underlying quantity/signal/random–variable, then assume that the unknown under-

lying probability distribution is the one with maximum entropy subject to (s.t.) moment

constraints corresponding to this knowledge. For example, if we know the first and the
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second moment, then the ME distribution is Gaussian with matching first and second or-

der moments. Indeed, the Gaussian model is perhaps the most common model for physical

processes in information theory as well as in signal– and image processing. But why max-

imum entropy? The answer to this philosophical question is rooted in the second law of

thermodynamics, which asserts that in an isolated system, the entropy cannot decrease, and

hence, when the system reaches thermal equilibrium, its entropy reaches its maximum. Of

course, when it comes to problems in information theory and other related fields, this princi-

ple becomes quite heuristic, and so, one may question its justification, but nevertheless, this

approach has had an enormous impact on research trends throughout the last fifty years,

after being proposed by Jaynes in the late fifties of the previous century [44],[45], and further

advocated by Shore and Johnson afterwards [109]. In the book by Cover and Thomas [13,

Chapter 12], there is a good exposition on this topic. We will not put much emphasis on the

ME principle in this work.

Landauer’s erasure principle. Another aspect of these relations has to do with a theory whose

underlying guiding principle is that information is a physical entity. Specifically, Landauer’s

erasure principle [62] (see also [6]), which is based on this physical theory of information,

asserts that every bit that one erases, increases the entropy of the universe by k ln 2, where

k is Boltzmann’s constant. The more comprehensive picture behind Landauer’s principle, is

that “any logically irreversible manipulation of information, such as the erasure of a bit or the

merging of two computation paths, must be accompanied by a corresponding entropy increase

in non-information bearing degrees of freedom of the information processing apparatus or

its environment.” (see [6]). This means that each lost information bit leads to the release

of an amount kT ln 2 of heat. By contrast, if no information is erased, computation may, in

principle, be achieved in a way which is thermodynamically a reversible process, and hence

requires no release of heat. This has had a considerable impact on the study of reversible

computing. Landauer’s principle is commonly accepted as a law of physics. However, there

has also been some considerable dispute among physicists on this. This topic is not going to

be included either in this work.
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Large deviations theory as a bridge between information theory and statistical physics. Both

information theory and statistical physics have an intimate relation to large deviations theory,

a branch of probability theory which focuses on the assessment of the exponential rates of

decay of probabilities of rare events, where one of the most elementary mathematical tools

is the Legendre transform, which stands at the basis of the Chernoff bound. This topic will

be covered quite thoroughly, mostly in Section 3.2.

Random matrix theory. How do the eigenvalues (or, more generally, the singular values) of

random matrices behave when these matrices have very large dimensions or if they result

from products of many randomly selected matrices? This is a very active area in probability

theory with many applications, both in statistical physics and information theory, especially

in modern theories of wireless communication (e.g., MIMO systems). This is again outside

the scope of this course, but the interested reader is referred to [117] for a comprehensive

introduction on the subject.

Spin glasses and coding theory. As was first observed by Sourlas [111] (see also [112]) and

further advocated by many others, it turns out that many problems in channel coding theory

(and also to some extent, source coding theory) can be mapped almost verbatim to parallel

problems in the field of physics of spin glasses – amorphic magnetic materials with a high

degree of disorder and very complicated physical behavior, which is customarily treated

using statistical–mechanical approaches. It has been many years that researchers have made

attempts to ‘import’ analysis techniques rooted in statistical physics of spin glasses and to

apply them to analogous coding problems, with various degrees of success. This is one of

main subjects of this course and we will study it extensively, at least from some aspects.

The above list of examples is by no means exhaustive. We could have gone much further

and add many more examples of these very fascinating meeting points between information

theory and statistical physics, but most of them will not be touched upon in this work.

Many modern analyzes concerning multiuser situations, such as MIMO channels, CDMA,

etc., and more recently, also in compressed sensing, are based on statistical–mechanical
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techniques. But even if we limit ourselves to single–user communication systems, yet another

very active problem area under this category is that of codes on graphs, iterative decoding,

belief propagation, and density evolution. The main reason for not including it in this work

is that it is already very well covered in recent textbooks, such as the one Mézard and

Montanari [80] as well as the one by Richardson and Urbanke [100]. Another comprehensive

exposition of graphical models, with a fairly strong statistical–mechanical flavor, was written

by Wainwright and Jordan [120].

As will be seen, the physics and the information–theoretic subjects are interlaced with

each other, rather than being given in two continuous, separate parts. This way, it is

hoped that the relations between information theory and statistical physics will be made

more apparent. We shall see that, not only these relations between information theory and

statistical physics are interesting academically on their own right, but moreover, they also

prove useful and beneficial in that they provide us with new insights and mathematical tools

to deal with information–theoretic problems. These mathematical tools sometimes prove a

lot more efficient than traditional tools used in information theory, and they may give either

simpler expressions for performance analysis, or improved bounds, or both.

Having said that, a certain digression is in order. The reader should not expect to

see too many real breakthroughs, which are allowed exclusively by statistical–mechanical

methods, but could not have been achieved otherwise. Perhaps one exception to this rule

is the replica method of statistical mechanics, which will be reviewed in this work, but not

in great depth, because of two reasons: first, it is not rigorous (and so, any comparison

to rigorous information–theoretic methods would not be fair), and secondly, because it is

already very well covered in existing textbooks, such as [80] and [87]. If one cares about

rigor, however, then there are no miracles. Everything, at the end of the day, boils down to

mathematics. The point then is which culture, or scientific community, has developed the

suitable mathematical techniques and what are the new insights that they provide; in many

cases, it is the community of statistical physicists.

There are several examples of such techniques and insights, which are emphasized rather
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strongly in this work. One example is the use of integrals in the complex plane and the

saddle–point method. Among other things, this should be considered as a good substitute

to the method of types, with the bonus of lending itself to extensions that include the

countable and the continuous alphabet case (rather than just the finite alphabet case).

Another example is the analysis technique of error exponents, which stems from the random

energy model (see Chapter 6 and onward), along with its insights about phase transitions.

Again, in retrospect, these analyzes are just mathematics and therefore could have been

carried out without relying on any knowledge in physics. But it is nevertheless the physical

point of view that provides the trigger for its use. Moreover, there are situations (see, e.g.,

Section 7.3), where results from statistical mechanics can be used almost verbatim in order

to obtain stronger coding theorems. The point is then that it is not the physics itself that

may be useful, it is the way in which physicists use mathematical tools.

One of the main take–home messages, that will hopefully remain with the reader after

reading this work, is that whatever the field of statistical mechanics has to offer to us, as

information theorists, goes much beyond the replica method. It is believed that this message

is timely, because the vast majority of papers at the interface between the two disciplines

are about applying the replica method to some information–theoretic problem.

The outline of the remaining part of this work is as follows: In Chapter 2, we give some

elementary background in statistical physics and we relate fundamental thermodynamic po-

tentials, like thermodynamical entropy and free energy with fundamental information mea-

sures, like the Shannon entropy and the Kullback–Leibler divergence. In Chapter 3, we

explore a few aspects of physical interpretations of some fundamental results in information

theory, like non–negativity of the Kullback–Leibler divergence, the data processing inequal-

ity, and the elementary coding theorems of information theory. In Chapter 4, we review some

analysis tools commonly used in statistical physics, like the Laplace integration method, the

saddle point method, and the replica method, all accompanied by examples. Chapter 5 is

devoted to a (mostly descriptive) exposition of systems with interacting particles and phase

transitions, both in physics and information theory. Chapter 6 focuses on one particular
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model of a disordered physical system with interacting particles – the random energy model,

which is highly relevant to the analysis of random code ensembles. Chapter 7 extends the

random energy model in several directions, all relevant to problems in information theory.

Finally, Chapter 8 contains a summary and an outlook on the interplay between information

theory and statistical mechanics.

As with every paper published in Foundations and Trends in Communications and Infor-

mation Theory, the reader is, of course, assumed to have some solid background in informa-

tion theory. Concerning the physics part, prior background in statistical mechanics does not

harm, but is not necessary. This work is intended to be self–contained as far as the physics

background goes.

In a closing note, it is emphasized again that the coverage of topics, in this work, is by no

means intended to be fully comprehensive, nor is it aimed at providing the complete plethora

of problem areas, methods and results. The choice of topics, the approach, the flavor, and

the style are nothing but the mirror image of the author’s personal bias, perspective, and

research interests in the field. Therefore, this work should actually be viewed mostly as a

monograph, and not quite as a review or a tutorial paper. This is also the reason that a

considerable part of the topics, covered in this work, are taken from articles in which the

author has been involved.
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2 Basic Background in Statistical Physics

In this chapter, we begin with some elementary background in statistical physics, and also

relate some of the thermodynamic potentials, like entropy and free energy, to information

measures, like the entropy and the Kullback–Leibler divergence.

2.1 What is Statistical Physics?

Statistical physics is a branch in physics which deals with systems with a huge number of

particles (or any other elementary units). For example, Avogadro’s number, which is about

6 × 1023, is the number of molecules in 22.4 liters of ideal gas at standard temperature and

pressure. Evidently, when it comes to systems with such an enormously large number of

particles, there is no hope to keep track of the physical state (e.g., position and momentum)

of each and every individual particle by means of the classical methods in physics, that is,

by solving a gigantic system of differential equations pertaining to Newton’s laws for all

particles. Moreover, even if these differential equations could have been solved somehow (at

least approximately), the information that they would give us would be virtually useless.

What we normally really want to know about our physical system boils down to a fairly

short list of macroscopic parameters, such as energy, heat, pressure, temperature, volume,

magnetization, and the like. In other words, while we continue to believe in the good old laws

of physics that we have known for some time, even the classical ones, we no longer use them

in the ordinary way that we are familiar with from elementary physics courses. Instead, we

think of the state of the system, at any given moment, as a realization of a certain probabilistic

ensemble. This is to say that we approach the problem from a probabilistic (or a statistical)

point of view. The beauty of statistical physics is that it derives the macroscopic theory of

thermodynamics (i.e., the relationships between thermodynamical potentials, temperature,

pressure, etc.) as ensemble averages that stem from this probabilistic microscopic theory, in

the limit of an infinite number of particles, that is, the thermodynamic limit. As we shall see

throughout this work, this thermodynamic limit is parallel to the asymptotic regimes that
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we are used to in information theory, most notably, the one pertaining to a certain ‘block

length’ that goes to infinity.

2.2 Basic Postulates and the Microcanonical Ensemble

For the sake of concreteness, let us consider the example where our many–particle system is

a gas, namely, a system with a very large number N of mobile particles, which are free to

move in a given volume. The microscopic state (or microstate, for short) of the system, at

each time instant t, consists, in this example, of the position vector ~ri(t) and the momentum

vector ~pi(t) of each and every particle, 1 ≤ i ≤ N . Since each one of these is a vector

of three components, the microstate is then given by a (6N)–dimensional vector ~x(t) =

{(~ri(t), ~pi(t)) : i = 1, 2, . . . , N}, whose trajectory along the time axis, in the phase space,

IR6N , is called the phase trajectory.

Let us assume that the system is closed, i.e., isolated from its environment, in the sense

that no energy flows inside or out. Imagine that the phase space IR6N is partitioned into very

small hypercubes (or cells) ∆~p × ∆~r. One of the basic postulates of statistical mechanics

is the following: In the very long range, the relative amount of time which ~x(t) spends

at each such cell converges to a certain number between 0 and 1, which can be given the

meaning of the probability of this cell. Thus, there is an underlying assumption of equivalence

between temporal averages and ensemble averages, namely, this is the postulate of ergodicity.

Considerable efforts were dedicated to the proof of the ergodic hypothesis at least in some

cases (see e.g., [88], [110] and many references therein). As reasonable and natural as it may

seem, the ergodic hypothesis should not be taken for granted. It does not hold for every

system but only if no other conservation law holds. For example, the ideal gas in a box

(to be discussed soon), is non–ergodic, as every particle retains its momentum (assuming

perfectly elastic collisions with the walls).

What are then the probabilities of the above–mentioned phase–space cells? We would like

to derive these probabilities from first principles, based on as few as possible basic postulates.

Our second postulate is that for an isolated system (i.e., whose energy is fixed) all microscopic
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states {~x(t)} are equiprobable. The rationale behind this postulate is twofold:

• In the absence of additional information, there is no apparent reason that certain

regions in phase space would have preference relative to any others.

• This postulate is in harmony with a basic result in kinetic theory of gases – the Liouville

theorem, which we will not touch upon in this work, but in a nutshell, it asserts that

the phase trajectories must lie along hyper-surfaces of constant probability density.1

Before we proceed, let us slightly broaden the scope of our discussion. In a more gen-

eral context, associated with our N–particle physical system, is a certain instantaneous

microstate, generically denoted by x = (x1, x2, . . . , xN), where each xi, 1 ≤ i ≤ N , may

itself be a vector of several physical quantities associated particle number i, e.g., its posi-

tion, momentum, angular momentum, magnetic moment, spin, and so on, depending on the

type and the nature of the physical system. For each possible value of x, there is a certain

Hamiltonian (i.e., energy function) that assigns to x a certain energy E(x).2 Now, let us

denote by Ω(E) the density–of–states function, i.e., the volume of the shell {x : E(x) = E},
or, more precisely, Ω(E)dE = Vol{x : E ≤ E(x) ≤ E + dE}, which will be denoted also as

Vol{x : E(x) ≈ E}, where the dependence on dE will normally be ignored since Ω(E) is

typically exponential in N and dE will have virtually no effect on its exponential order as

long as it is small. Then, our above postulate concerning the ensemble of an isolated system,

which is called the microcanonincal ensemble, is that the probability density P (x) is given

by

P (x) =

{ 1
Ω(E)

E(x) ≈ E

0 elsewhere
(1)

In the discrete case, things are simpler, of course: Here, Ω(E) is the number of microstates

with E(x) = E (exactly) and P (x) is the uniform probability mass function over this set of

1This is a result of the energy conservation law along with the fact that probability mass behaves like
an incompressible fluid in the sense that whatever mass that flows into a certain region from some direction
must be equal to the outgoing flow from some other direction. This is reflected in the so called continuity
equation.

2For example, in the case of an ideal gas, E(x) =
∑N

i=1 ‖~pi‖2/(2m), where m is the mass of each molecule,
namely, it accounts for the contribution of the kinetic energies only. In more complicated situations, there
might be additional contributions of potential energy, which depend on the positions.
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states. In this case, Ω(E) is analogous to the size of a type class in information theory [16],

and P (x) is the uniform distribution over this type class.

Back to the continuous case, note that Ω(E) is, in general, not dimensionless: In the

above example of a gas, it has the physical units of [length × momentum]3N , but we must

eliminate these physical units because very soon we are going to apply non–linear functions

on Ω(E), like the logarithmic function. To this end, we normalize this volume by the volume

of an elementary reference volume. In the gas example, this reference volume is taken to be

h3N , where h is Planck’s constant (h ≈ 6.62 × 10−34 Joules·sec). Informally, the intuition

comes from the fact that h is our best available “resolution” in the plane spanned by each

component of ~ri and the corresponding component of ~pi, owing to the uncertainty principle

in quantum mechanics, which tells that the product of the standard deviations ∆pa ·∆ra of

each component a (a = x, y, z) is lower bounded by ~/2, where ~ = h/(2π). More formally,

this reference volume is obtained in a natural manner from quantum statistical mechanics:

by changing the integration variable ~p to ~k by using ~p = ~~k, where ~k is the wave vector.

This is a well–known relationship pertaining to particle–wave duality. Now, having redefined

Ω(E) in units of this reference volume, which makes it then a dimensionless quantity, the

entropy is defined as

S(E) = k ln Ω(E), (2)

where k is Boltzmann’s constant (k ≈ 1.38 × 10−23 Joule/degree). We will soon see what is

the relationship between S(E) and the information–theoretic entropy, on the one hand, and

what is the relationship between S(E) and the classical thermodynamical entropy, due to

Clausius. As it will turn out, all three are equivalent to one another.

To get some feeling of this, it should be noted that normally, Ω(E) behaves as an ex-

ponential function of N (at least asymptotically), and so, S(E) is roughly linear in N . For

example, if E(x) =
∑N

i=1
‖~pi‖2

2m
, then Ω(E) is the volume of a shell or surface of a (3N)–

dimensional sphere with radius
√

2mE, which is proportional to (2mE)3N/2V N , where V is

the volume, but we should divide this by N ! to account for the fact that the particles are
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indistinguishable and we do not count permutations as distinct physical states in this case.3

More precisely, one obtains:

S(E) = k ln

[

(

4πmE

3N

)3N/2

· V N

N !h3N

]

+
3

2
Nk

≈ Nk ln

[

(

4πmE

3N

)3/2

· V

Nh3

]

+
5

2
Nk. (3)

Assuming that E and V are both proportional to N , it is readily seen that S(E) is also

proportional to N . A physical quantity that has a linear dependence on the size of the

system N , is called an extensive quantity. Energy, volume and entropy are then extensive

quantities. Other quantities, which are not extensive, i.e., independent of the system size,

like temperature and pressure, are called intensive.

It is interesting to point out that from the function S(E), or actually, the function

S(E, V,N), one can obtain the entire information about the relevant macroscopic physical

quantities of the system, e.g., temperature, pressure, and so on. Specifically, the temperature

T of the system is defined according to:

1

T
=

[

∂S(E)

∂E

]

V

(4)

where [·]V means that the derivative is taken in constant volume. One may wonder, at this

point, what is the justification for defining temperature this way. We will get back to this

point a bit later, but for now, let us see that this is indeed true at least for the ideal gas, as

by taking the derivative of (3) w.r.t. E, we get

∂S(E)

∂E
=

3Nk

2E
, (5)

but in the case of the ideal gas, one can readily derive (based on the equation of state,

PV = NkT ) a simple expression of the energy E, which depends only on T (see, for example,

[103, Sect. 20–4, pp. 353–355]):

E =
3

2
· PV =

3NkT

2
, (6)

3Since the particles are mobile and since they have no colors and no identity certificates, there is no
distinction between a state where particle no. 15 has position ~r and momentum ~p while particle no. 437 has
position ~r′ and momentum ~p′ and a state where these two particles are swapped.
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which when plugged back into (5), gives immediately 1/T .4

Intuitively, in most situations, we expect that S(E) would be an increasing function of E

(although this is not strictly always the case), which means T ≥ 0. But T is also expected to

be increasing with E (or equivalently, E is increasing with T , as otherwise, the heat capacity

dE/dT < 0). Thus, 1/T should decrease with E, which means that the increase of S in E

slows down as E grows. In other words, we expect S(E) to be a concave function of E. In

the above example, indeed, S(E) is logarithmic in E and E = 3NkT/2, as we have seen.

How can we convince ourselves, in mathematical terms, that under “conceivable condi-

tions”, S(E) is a concave function? We know that the Shannon entropy is also a concave

functional of the probability distribution. Is this related? The answer may be given by a

simple superadditivity argument: As both E and S are extensive quantities, let us define

E = Nǫ and

s(ǫ) = lim
N→∞

S(Nǫ)

N
, (7)

i.e., the per–particle entropy as a function of the per–particle energy, where we assume that

the limit exists (see, e.g., [108]). Consider the case where the Hamiltonian is additive, i.e.,

E(x) =

N
∑

i=1

E(xi) (8)

just like in the above example where E(x) =
∑N

i=1
‖~pi‖2

2m
. Then, the inequality

Ω(N1ǫ1 +N2ǫ2) ≥ Ω(N1ǫ1) · Ω(N2ǫ2), (9)

expresses the simple fact that if our system is partitioned into two parts, one with N1

particles, and the other with N2 = N − N1 particles, then every combination of individual

microstates with energies N1ǫ1 and N2ǫ2 corresponds to a combined microstate with a total

energy of N1ǫ1 + N2ǫ2 (but there are more ways to split this total energy between the two

4In fact, the above–mentioned simple derivation leads to the relation PV = 2
3E. Now, two points of view

are possible: The first is to accept the equation of state, PV = NkT , as an empirical experimental fact,
and then deduce the relation E = 3

2NkT from NkT = PV = 2E/3. The second point of view is to define
temperature as T = 2E/(3Nk) = 2ǫ/(3k) (i.e., as a measure of the average kinetic energy ǫ of each particle)
and then deduce the equation of state from PV = 2E/3.
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parts). Thus,

k ln Ω(N1ǫ1 +N2ǫ2)

N1 +N2
≥ k ln Ω(N1ǫ1)

N1 +N2
+
k ln Ω(N2ǫ2)

N1 +N2

=
N1

N1 +N2

· k ln Ω(N1ǫ1)

N1

+

N2

N1 +N2
· k ln Ω(N2ǫ2)

N2
. (10)

and so, by taking N1 and N2 to ∞, with N1/(N1 +N2) → λ ∈ (0, 1), we get:

s(λǫ1 + (1 − λ)ǫ2) ≥ λs(ǫ1) + (1 − λ)s(ǫ2), (11)

which establishes the concavity of s(·) at least in the case of an additive Hamiltonian, which

means that the entropy of mixing two systems of particles is greater than the total entropy

before they are mixed (the second law). A similar proof can be generalized to the case

where E(x) includes also a limited degree of interactions (short range interactions), e.g.,

E(x) =
∑N

i=1 E(xi, xi+1), but this requires somewhat more caution. In general, however,

concavity may no longer hold when there are long range interactions, e.g., where some terms

of E(x) depend on a linear subset of particles. Simple examples can be found in [116].

Example – Schottky defects. In a certain crystal, the atoms are located in a lattice, and at

any positive temperature there may be defects, where some of the atoms are dislocated (see

Fig. 1). Assuming that defects are sparse enough, such that around each dislocated atom all

neighbors are in place, the activation energy, ǫ0, required for dislocation is fixed. Denoting

the total number of atoms by N and the number of defected ones by n, the total energy is

then E = nǫ0, and so,

Ω(E) =

(

N
n

)

=
N !

n!(N − n)!
, (12)

or, equivalently,

S(E) = k ln Ω(E) = k ln

[

N !

n!(N − n)!

]

≈ k[N lnN − n lnn− (N − n) ln(N − n)] (13)
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where in the last passage we have used the Sterling approximation. Thus,5

1

T
=
∂S

∂E
=

dS

dn
· dn

dE
=

1

ǫ0
· k ln

N − n

n
, (14)

which gives the number of defects as

n =
N

exp(ǫ0/kT ) + 1
. (15)

At T = 0, there are no defects, but their number increases gradually with T , approximately

Figure 1: Schottky defects in a crystal lattice.

according to exp(−ǫ0/kT ). Note that from a slightly more information–theoretic point of

view,

S(E) = k ln

(

N
n

)

≈ kNh2

( n

N

)

= kNh2

(

E

Nǫ0

)

= kNh2

(

ǫ

ǫ0

)

, (16)

where

h2(x)
∆
= −x ln x− (1 − x) ln(1 − x).

5Here and in the sequel, the reader might wonder about the meaning of taking derivatives of, and with
respect to, integer valued variables, like the number of dislocated particles, n. To this end, imagine an
approximation where n is interpolated to be a continuous valued variable.
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Thus, the thermodynamical entropy is intimately related to the Shannon entropy. We will

see shortly that this is no coincidence. Note also that s(ǫ) = kh2(ǫ/ǫ0) is indeed concave in

this example. �

What happens if we have two independent systems with total energy E, which lie in

equilibrium with each other? What is the temperature T and how does the energy split

between them? The two systems exchange energy between one another in the form of heat

(as no work is done). The number of combined microstates where system no. 1 has energy

E1 and system no. 2 has energy E2 = E − E1 is Ω1(E1) · Ω2(E − E1). If the combined

system is isolated, then the probability of such a combined microstate is proportional to

Ω1(E1) · Ω2(E − E1). Keeping in mind that normally, Ω1 and Ω2 are exponential in N ,

then for large N , this product is dominated by the value of E1 for which it is maximum, or

equivalently, the sum of logarithms, S1(E1)+S2(E−E1), is maximum, i.e., it is a maximum

entropy situation, which is the second law of thermodynamics. This maximum is

normally achieved at the value of E1 for which the derivative vanishes, i.e.,

S ′
1(E1) − S ′

2(E −E1) = 0 (17)

or

S ′
1(E1) − S ′

2(E2) = 0 (18)

which means
1

T1

≡ S ′
1(E1) = S ′

2(E2) ≡
1

T2

. (19)

Thus, in equilibrium, which is the maximum entropy situation, the energy splits in a way

that temperatures are the same.

At this point, we are ready to justify why S ′(E) is equal to 1/T in general, as was

promised earlier. Although it is natural to expect that equality between S ′
1(E1) and S ′

2(E2),

in thermal equilibrium, is related equality between T1 and T2, this does not automatically

mean that the derivative of each entropy is given by one over its temperature. On the face of

it, for the purpose of this implication, this derivative could have been equal any one–to–one

function of temperature f(T ). To see why f(T ) = 1/T indeed, imagine that we have a
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system with an entropy function S0(E) and that we let it interact thermally with an ideal

gas whose entropy function, which we shall denote now by Sg(E), is given as in eq. (3). Now,

at equilibrium S ′
0(E0) = S ′

g(Eg), but as we have seen already, S ′
g(Eg) = 1/Tg, where Tg is

the temperature of the ideal gas. But in thermal equilibrium the temperatures equalize, i.e.,

Tg = T0, where T0 is the temperature of the system of interest. It then follows eventually

that S ′
0(E0) = 1/T0, which now means that in equilibrium, the derivative of entropy of the

system of interest is equal to the reciprocal of its temperature in general, and not only for

the ideal gas! At this point, the fact that our system has interacted and equilibrated with

an ideal gas is not important anymore and it does not limit the generality this statement. In

simple words, our system does not ‘care’ what kind system it has interacted with, whether

ideal gas or any other. This follows from a fundamental principle in thermodynamics, called

the zero–th law, which states that thermal equilibrium has a transitive property: If system

A is in equilibrium with system B and system B is in equilibrium with system C, then A is

in equilibrium with C.

So we have seen that ∂S/∂E = 1/T , or equivalently, dS = dE/T . But in the absence of

any mechanical work applied to the system (fixed volume), dE = dQ, where Q is the heat

intake. Thus, dS = dQ/T . But this is exactly the definition of the classical thermodynamical

entropy due to Clausius. Thus, at least for the case where no mechanical work is involved, we

have demonstrated the equivalence of the two notions of entropy, the statistical notion due

to Boltzmann S = k ln Ω, and the thermodynamical entropy due to Clausius, S =
∫

dQ/T .

The more general proof, that allows mechanical work, has to take into account also partial

derivative of S w.r.t. volume, which is related to pressure. We will not delve into this any

further, but the line of thought is very similar.

2.3 The Canonical Ensemble

So far we have assumed that our system is isolated, and therefore has a strictly fixed energy

E. Let us now relax this assumption and assume that our system is free to exchange energy

with its large environment (heat bath) and that the total energy of the heat bath E0 is by
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far larger than the typical energy of the system. The combined system, composed of our

original system plus the heat bath, is now an isolated system at temperature T .

Similarly as before, since the combined system is isolated, it is governed by the micro-

canonical ensemble. The only difference is that now we assume that one of the systems (the

heat bath) is very large compared to the other (our test system). This means that if our

small system is in microstate x (for whatever definition of the microstate vector) with energy

E(x), then the heat bath must have energy E0 − E(x) to complement the total energy to

E0. The number of ways that the heat bath may have energy E0 − E(x) is ΩB(E0 − E(x)),

where ΩB(·) is the density–of–states function pertaining to the heat bath. In other words,

the number of microstates of the combined system for which the small subsystem is in mi-

crostate x is ΩB(E0 − E(x)). Since the combined system is governed by the microcanonical

ensemble, the probability of this is proportional to ΩB(E0 − E(x)). More precisely:

P (x) =
ΩB(E0 − E(x))

∑

x′ ΩB(E0 − E(x′))
. (20)

Let us focus on the numerator for now, and normalize the result at the end. Then,

P (x) ∝ ΩB(E0 − E(x))

= exp{SB(E0 − E(x))/k}

≈ exp

{

SB(E0)

k
− 1

k

∂SB(E)

∂E

∣

∣

∣

∣

E=E0

· E(x)

}

= exp

{

SB(E0)

k
− 1

kT
· E(x)

}

∝ exp{−E(x)/(kT )}. (21)

It is customary to work with the so called inverse temperature:

β =
1

kT
(22)

and so,

P (x) ∝ e−βE(x). (23)
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Thus, all that remains to do is to normalize, and we then obtain the Boltzmann–Gibbs (B–G)

distribution, or the canonical ensemble, which describes the underlying probability law in

equilibrium:

P (x) =
exp{−βE(x)}

Z(β)
(24)

where Z(β) is the normalization factor:

Z(β) =
∑

x

exp{−βE(x)} (25)

in the discrete case, or

Z(β) =

∫

dx exp{−βE(x)} (26)

in the continuous case.

This is one of the most fundamental results in statistical mechanics, which was obtained

solely from the energy conservation law and the postulate that in an isolated system the

distribution is uniform. The function Z(β) is called the partition function, and as we shall

see, its meaning is by far deeper than just being a normalization constant. Interestingly, a

great deal of the macroscopic physical quantities, like the internal energy, the free energy, the

entropy, the heat capacity, the pressure, etc., can be obtained from the partition function.

This is in analogy to the fact that in the microcanonical ensemble, S(E) (or, more generally,

S(E, V,N)) was pivotal to the derivation of all macroscopic physical quantities of interest.

The B–G distribution tells us then that the system “prefers” to visit its low energy states

more than the high energy states, and what counts is only energy differences, not absolute

energies: If we add to all states a fixed amount of energy E0, this will result in an extra

factor of e−βE0 both in the numerator and in the denominator of the B–G distribution,

which will, of course, cancel out. Another obvious observation is that when the Hamiltonian

is additive, that is, E(x) =
∑N

i=1 E(xi), the various particles are statistically independent:

Additive Hamiltonians correspond to non–interacting particles. In other words, the {xi}’s
behave as if they were drawn from a memoryless source. By the law of large numbers

1
N

∑N
i=1 E(xi) will tend (almost surely) to ǫ = E{E(Xi)}. Nonetheless, this is different from
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the microcanonical ensemble where 1
N

∑N
i=1 E(xi) was held strictly at the value of ǫ. The

parallelism to well known concepts in information theory is quite clear: The microcanonical

ensemble is parallel to the uniform distribution over a type class and the canonical ensemble

is parallel to a memoryless system (source or channel).

The two ensembles are asymptotically equivalent as far as expectations go. They continue

to be such even in cases of interactions, as long as these are short range. It is instructive

to point out that the B–G distribution could have been obtained also in a different manner,

owing to the maximum–entropy principle that we mentioned in the Introduction. Specifically,

consider the following optimization problem:

max H(X)

s.t. 〈E(X)〉 = E (27)

where here and throughout the sequel, the operator 〈·〉 designates expectation. This notation,

which is customary in the physics literature, will be used interchangeably with the notation

E{·}, which is more common in other scientific communities. By formalizing the equivalent

Lagrange problem, where β now plays the role of a Lagrange multiplier:

max

{

H(X) + β

[

E −
∑

x

P (x)E(x)

]}

, (28)

or equivalently,

min

{

∑

x

P (x)E(x) − H(X)

β

}

(29)

one readily verifies that the solution to this problem is the B-G distribution where the

choice of β controls the average energy E. In many physical systems, the Hamiltonian is

a quadratic (or “harmonic”) function, e.g., 1
2
mv2, 1

2
kx2, 1

2
CV 2, 1

2
LI2, 1

2
Iω2, etc., in which

case the resulting B–G distribution turns out to be Gaussian. This is at least part of the

explanation why the Gaussian distribution is so frequently encountered in Nature. Indeed,

the Gaussian density is well known (see, e.g., [13, p. 411, Example 12.2.1]) to maximize the

differential entropy subject to a second order moment constraint, which is equivalent to our

average energy constraint.
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2.4 Properties of the Partition Function and the Free Energy

Let us now examine more closely the partition function and make a few observations about

its basic properties. For simplicity, we shall assume that x is discrete. First, let’s look at

the limits: Obviously, Z(0) is equal to the size of the entire set of microstates, which is also
∑

E Ω(E), This is the high temperature limit, where all microstates are equiprobable. At

the other extreme, we have:

lim
β→∞

lnZ(β)

β
= −min

x
E(x)

∆
= −EGS (30)

which describes the situation where the system is frozen to the absolute zero. Only states

with minimum energy – the ground–state energy, prevail.

Another important property of Z(β), or more precisely, of lnZ(β), is that it is a cumulant

generating function: By taking derivatives of lnZ(β), we can obtain cumulants of E(X). For

the first cumulant, we have

E{E(X)} ≡ 〈E(X)〉 =

∑

x E(x)e−βE(x)

∑

x e
−βE(x)

= −d lnZ(β)

dβ
. (31)

Similarly, it is easy to show that

Var{E(X)} = 〈E2(X)〉 − 〈E(X)〉2 =
d2 lnZ(β)

dβ2
. (32)

This in turn implies that
d2 lnZ(β)

dβ2
≥ 0, (33)

which means that lnZ(β) must always be a convex function. Note also that

d2 lnZ(β)

dβ2
= −d〈E(X)〉

dβ

= −d〈E(X)〉
dT

· dT

dβ

= kT 2C(T ) (34)

where C(T ) = d〈E(X)〉/dT is the heat capacity (at constant volume). Thus, the convexity

of lnZ(β) is intimately related to the physical fact that the heat capacity of the system is

positive.
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Next, we look at the function Z(β) slightly differently. Instead of summing the terms

{e−βE(x)} over all states individually, we sum them by energy levels, in a collective manner,

similarly as in the method of types [16]. This amounts to:

Z(β) =
∑

x

e−βE(x)

=
∑

E

Ω(E)e−βE

≈
∑

ǫ

eNs(ǫ)/k · e−βNǫ

=
∑

ǫ

exp{−Nβ[ǫ− Ts(ǫ)]}

·
= max

ǫ
exp{−Nβ[ǫ− Ts(ǫ)]}

= exp{−Nβmin
ǫ

[ǫ− Ts(ǫ)]}
∆
= exp{−Nβ[ǫ∗ − Ts(ǫ∗)]}
∆
= e−βF , (35)

where here and throughout the sequel, the notation
·
= means asymptotic equivalence in the

exponential scale. More precisely, aN
·
= bN for two positive sequences {aN} and {bN}, means

that limN→∞
1
N

ln(aN/bN ) = 0.

The quantity f
∆
= ǫ − Ts(ǫ) is the (per–particle) free energy. Similarly, the entire free

energy, F , is defined as

F = E − TS = − lnZ(β)

β
. (36)

The physical meaning of the free energy, or more precisely, the difference between two free

energies F1 and F2, is the minimum amount of work that it takes to transfer the system

from equilibrium state 1 to another equilibrium state 2 in an isothermal (fixed temperature)

process. This minimum is achieved when the process is reversible, i.e., so slow that the

system is always almost in equilibrium. Equivalently, −∆F is the maximum amount energy

in the system, that is free and useful for performing work (i.e., not dissipated as heat) in

fixed temperature. Again, this maximum is attained by a reversible process.

To demonstrate this point, let us consider the case where E(x) includes a term of a
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potential energy that is given by the (scalar) product of a certain external force and the

conjugate physical variable at which this force is exerted (e.g., pressure times volume, grav-

itational force times height, moment times angle, magnetic field times magnetic moment,

electric field times charge, etc.), i.e.,

E(x) = E0(x) − λ · L(x) (37)

where λ is the force and L(x) is the conjugate physical variable, which depends on (some

coordinates of) the microstate. The partition function then depends on both β and λ and

hence will be denoted Z(β, λ). It is easy to see (similarly as before) that lnZ(β, λ) is convex

in λ for fixed β. Also,

〈L(X)〉 = kT · ∂ lnZ(β, λ)

∂λ
. (38)

The free energy is given by6

F = E − TS

= −kT lnZ + λ 〈L(X)〉

= kT

(

λ · ∂ lnZ

∂λ
− lnZ

)

. (39)

Now, let F1 and F2 be the equilibrium free energies pertaining to two values of λ, denoted

λ1 and λ2. Then,

F2 − F1 =

∫ λ2

λ1

dλ · ∂F
∂λ

= kT ·
∫ λ2

λ1

dλ · λ · ∂
2 lnZ

∂λ2

=

∫ λ2

λ1

dλ · λ · ∂ 〈L(X)〉
∂λ

6At this point, there is a distinction between the Helmholtz free energy and the Gibbs free energy. The
former is defined as F = E−TS in general, as mentioned earlier. The latter is defined as G = E−TS−λL =
−kT lnZ, where L is shorthand notation for 〈L(X)〉. The physical significance of the Gibbs free energy is
similar to that of the Helmholtz free energy, except that it refers to the total work of all other external forces
in the system (if there are any), except the work contributed by the force λ. The passage to the Gibbs
ensemble, which replaces a fixed value of L(x) (say, constant volume of a gas) by the control of the conjugate
external force λ, (say, pressure in the example of a gas) can be carried out by another Legendre transform
(see, e.g., [60, Sect. 1.14]).
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=

∫ 〈L(X)〉λ2

〈L(X)〉λ1

λ · d 〈L(X)〉 (40)

The product λ · d 〈L(X)〉 designates an infinitesimal amount of (average) work performed

by the force λ on a small change in the average of the conjugate variable 〈L(X)〉, where

the expectation is taken w.r.t. the actual value of λ. Thus, the last integral expresses the

total work along a slow process of changing the force λ in small steps and letting the system

adapt and equilibrate after this small change every time. On the other hand, it is easy to

show (using the convexity of lnZ in λ), that if λ varies in large steps, the resulting amount

of work will always be larger.

Returning to the definition of f , we see that the value ǫ∗ of ǫ that minimizes f , dominates

the partition function and hence captures most of the probability. As N grows without

bound, the energy probability distribution becomes sharper and sharper around Nǫ∗. Thus,

we see that equilibrium in the canonical ensemble amounts to minimum free energy. This

extends the second law of thermodynamics from the microcanonical ensemble of isolated

systems, whose equilibrium obeys the maximum entropy principle. The maximum entropy

principle is replaced, more generally, by the minimum free energy principle. Note that the

Lagrange minimization problem that we formalized before, i.e.,

min

{

∑

x

P (x)E(x) − H(X)

β

}

, (41)

is nothing but minimization of the free energy, provided that we identify H with the physical

entropy S (to be done soon) and the Lagrange multiplier 1/β with kT . Thus, the B–G

distribution minimizes the free energy for a given temperature.

We have not yet seen this explicitly, but there were already hints (and terminology

suggests) that the thermodynamical entropy S(E) is intimately related to the Shannon

entropy H(X). We will also see it shortly in a more formal manner. But what is the

information–theoretic analogue of the (Helmholtz) free energy?

Here is a preliminary guess based on a very rough consideration: The last chain of equali-

ties in eq. (35) reminds us what happens when we use the method of types and sum over prob-
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abilities type–by–type in information–theoretic problems: The exponentials exp{−βE(x)}
are analogous (up to a normalization factor) to probabilities, which in the memoryless case,

are given by P (x) = exp{−N [Ĥ +D(P̂‖P )]}, where Ĥ is the empirical entropy pertaining

to x and P̂ is the empirical distribution. Each such probability is weighted by the size of the

type class, which as is known from the method of types, is exponentially eNĤ , and whose

physical analogue is Ω(E) = eNs(ǫ)/k. The product gives exp{−ND(P̂‖P )} in information

theory and exp{−Nβf} in statistical physics. This suggests that perhaps the free energy

has some analogy with the divergence. We will see shortly a more rigorous argument that

relates the Helmholtz free energy and the divergence. The Gibbs free energy can also be

related to an informational divergence.

More formally, let us define

φ(β) = lim
N→∞

lnZ(β)

N
(42)

and, in order to avoid dragging the constant k, let us define

Σ(ǫ) = lim
N→∞

ln Ω(Nǫ)

N
=
s(ǫ)

k
. (43)

Then, the chain of equalities (35), written slightly differently, gives

φ(β) = lim
N→∞

lnZ(β)

N

= lim
N→∞

1

N
ln

{

∑

ǫ

eN [Σ(ǫ)−βǫ]

}

= max
ǫ

[Σ(ǫ) − βǫ].

Thus, φ(β) is (a certain variant of) the Legendre transform7 of Σ(ǫ). As Σ(ǫ) is (normally)

a concave function, then it can readily be shown that the inverse transform is:

Σ(ǫ) = min
β

[βǫ+ φ(β)]. (44)

7More precisely, the 1D Legendre transform of a real function f(x) is defined as g(y) = supx[xy − f(x)].
If f is convex, it can readily be shown that: (i) The inverse transform has the very same form, i.e., f(x) =
supy[xy − g(y)], and (ii) The derivatives f ′(x) and g′(y) are inverses of each other.
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The achiever, ǫ∗(β), of φ(β) in the forward transform is obtained by equating the derivative

to zero, i.e., it is the solution to the equation

β = Σ′(ǫ), (45)

where Σ′(ǫ) is the derivative of Σ(ǫ). In other words, ǫ∗(β) the inverse function of Σ′(·).
By the same token, the achiever, β∗(ǫ), of Σ(ǫ) in the backward transform is obtained by

equating the other derivative to zero, i.e., it is the solution to the equation

ǫ = −φ′(β) (46)

or in other words, the inverse function of −φ′(·).
This establishes a relationship between the typical per–particle energy ǫ and the inverse

temperature β that gives rise to ǫ (cf. the Lagrange interpretation above, where we said that

β controls the average energy). Now, observe that whenever β and ǫ are related as explained

above, we have:

Σ(ǫ) = βǫ+ φ(β) = φ(β) − β · φ′(β). (47)

On the other hand, if we look at the Shannon entropy pertaining to the B–G distribution,

we get:

H̄(X) = lim
N→∞

1

N
E

{

ln
Z(β)

e−βE(X )

}

= lim
N→∞

[

lnZ(β)

N
+
βE{E(X)}

N

]

= φ(β) − β · φ′(β).

which is exactly the same expression as in (47), and so, Σ(ǫ) and H̄ are identical whenever

β and ǫ are related accordingly. The former, as we recall, we defined as the normalized log-

arithm of the number of microstates with per–particle energy ǫ. Thus, we have learned that

the number of such microstates with energy E is exponentially eNH̄ , a result that is well

known from the method of types [16], where combinatorial arguments for finite–alphabet

sequences are used. Here we obtained the same result from substantially different consid-

erations, which are applicable in situations far more general than those of finite alphabets
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(continuous alphabets included). Another look at this relation is the following:

1 ≥
∑

x: E(x)≈Nǫ
P (x) =

∑

x: E(x)≈Nǫ

exp{−β∑i E(xi)}
ZN(β)

·
=

∑

x: E(x)≈Nǫ
exp{−βNǫ−Nφ(β)}

= Ω(Nǫ) · exp{−N [βǫ+ φ(β)]} (48)

which means that

Ω(Nǫ) ≤ exp{N [βǫ+ φ(β)]} (49)

for all β, and so,

Ω(Nǫ) ≤ exp{N min
β

[βǫ+ φ(β)]} = eNΣ(ǫ) = eNH̄ . (50)

A compatible lower bound is obtained by observing that the minimizing β gives rise to

〈E(X1)〉 = ǫ, which makes the event {x : E(x) ≈ Nǫ} a high–probability event, by the

weak law of large numbers. A good reference for further study, and from a more general

perspective, is the article by Hall [38]. See also [30].

Note also that eq. (47), which we will rewrite, with a slight abuse of notation as

φ(β) − βφ′(β) = Σ(β) (51)

can be viewed as a first order differential equation in φ(β), whose solution is easily found to

be

φ(β) = −βǫGS + β ·
∫ ∞

β

dβ̂Σ(β̂)

β̂2
, (52)

where ǫGS = limN→∞EGS/N . Equivalently,

Z(β)
·
= exp

{

−βEGS +Nβ ·
∫ ∞

β

dβ̂Σ(β̂)

β̂2

}

, (53)

namely, the partition function at a certain temperature can be expressed as a functional

of the entropy pertaining to all temperatures lower than that temperature. Changing the

integration variable from β to T , this readily gives the relation

F = EGS −
∫ T

0

S(T ′)dT ′. (54)
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Since F = E − ST , we have

E = EGS + ST −
∫ T

0

S(T ′)dT ′ = EGS +

∫ S

0

T (S ′)dS ′, (55)

where the second term amounts to the heat Q that accumulates in the system, as the

temperature is raised from 0 to T . This is a special case of the first law of thermodynamics.

The more general form takes into account also possible work performed on (or by) the system.

Having established the identity between the Shannon–theoretic entropy and the thermo-

dynamical entropy, we now move on, as promised, to the free energy and seek its information–

theoretic counterpart. More precisely, we will look at the difference between the free energies

of two different probability distributions, one of which is the B–G distribution. Consider first,

the following chain of equalities concerning the B–G distribution:

P (x) =
exp{−βE(x)}

Z(β)

= exp{− lnZ(β) − βE(x)}

= exp{β[F (β) − E(x)]}. (56)

Consider next another probability distribution Q, different in general from P , and hence

corresponding to non–equilibrium. Let us now look at the divergence:

D(Q‖P ) =
∑

x

Q(x) ln
Q(x)

P (x)

= −HQ −
∑

x

Q(x) lnP (x)

= −HQ − β
∑

x

Q(x)[FP − E(x)]

= −HQ − βFP + β〈E〉Q
= β(FQ − FP )

or equivalently,

FQ = FP + kT ·D(Q‖P ). (57)

Thus, the free energy difference is indeed related to the the divergence. For a given tem-

perature, the free energy away from equilibrium is always larger than the free energy at
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equilibrium. Since the system “wants” to minimize the free energy, it eventually converges

to the B–G distribution. More details on these relations can be found in [2] and [94].

There is room for criticism, however, about the last derivation: the thermodynamical

entropy of the system is known to be given by the Shannon (or, more precisely, the Gibbs)

entropy expression only in equilibrium, whereas for non–equilibrium, it is not clear whether

it continues to be valid. In fact, there is dispute among physicists on how to define the

entropy in non–equilibrium situations, and there are many variations on the theme (see, for

example, [7],[14],[40]). Nonetheless, we will accept this derivation of the relation between

the divergence and the free energy difference for our purposes.

Another interesting relation between the divergence and physical quantities is that the

divergence is proportional to the dissipated work (=average work minus free–energy differ-

ence) between two equilibrium states at the same temperature but corresponding to two

different values of some external control parameter (see, e.g., [56]). We will elaborate on this

in Subsection 3.3.

Let us now summarize the main properties of the partition function that we have seen

thus far:

1. Z(β) is a continuous function. Z(0) = |X n| and limβ→∞
lnZ(β)
β

= −EGS.

2. Generating cumulants: 〈E(X)〉 = −d lnZ/dβ, Var{E(X)} = d2 lnZ/dβ2, which im-

plies convexity of lnZ, and hence also of φ(β).

3. φ and Σ are a Legendre–transform pair. Σ is concave.

4. Σ(ǫ) coincides with the Shannon entropy of the B-G distribution.

5. FQ = FP + kT ·D(Q‖P ).

Comment: Consider Z(β) for an imaginary temperature β = jω, where j =
√
−1, and define

z(E) as the inverse Fourier transform of Z(jω). It can readily be seen that z(E) = Ω(E)

is the density of states, i.e., for E1 < E2, the number of states with energy between E1
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and E2 is given by
∫ E2

E1
z(E)dE. Thus, Z(·) can be related to energy enumeration in two

different ways: one is by the Legendre transform of lnZ(β) for real β, and the other is by

the inverse Fourier transform of Z(β) for imaginary β. It should be kept in mind, however,

that while the latter relation holds for every system size N , the former is true only in the

thermodynamic limit, as mentioned. This double connection between Z(β) and Ω(E) is no

coincidence, as we shall see later in Chapter 4. The reader might wonder about the usefulness

and the meaning of complex temperature. It turns out to be a very useful tool in examining

the analyticity of the partition function (as a complex function of the complex temperature)

in the vicinity of the real axis, which is related to phase transitions. This is the basis for the

Yang–Lee theory [63],[125].

Example – A two level system. Similarly to the earlier example of Schottky defects, which

was previously given in the context of the microcanonical ensemble, consider now a system

of N independent particles, each having two possible states: state 0 of zero energy and state

1, whose energy is ǫ0, i.e., E(x) = ǫ0x, x ∈ {0, 1}. The xi’s are independent, each having a

marginal:

P (x) =
e−βǫ0x

1 + e−βǫ0
x ∈ {0, 1}. (58)

In this case,

φ(β) = ln(1 + e−βǫ0) (59)

and

Σ(ǫ) = min
β≥0

[βǫ+ ln(1 + e−βǫ0)]. (60)

To find β∗(ǫ), we take the derivative and equate to zero:

ǫ− ǫ0e
−βǫ0

1 + e−βǫ0
= 0 (61)

which gives

β∗(ǫ) =
ln(ǫ/ǫ0 − 1)

ǫ0
. (62)

On substituting this back into the above expression of Σ(ǫ), we get:

Σ(ǫ) =
ǫ

ǫ0
ln

(

ǫ

ǫ0
− 1

)

+ ln

[

1 + exp

{

− ln

(

ǫ

ǫ0
− 1

)}]

, (63)
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which after a short algebraic manipulation, becomes

Σ(ǫ) = h2

(

ǫ

ǫ0

)

, (64)

just like in the Schottky example. In the other direction:

φ(β) = max
ǫ

[

h2

(

ǫ

ǫ0

)

− βǫ

]

, (65)

whose achiever ǫ∗(β) solves the zero–derivative equation:

1

ǫ0
ln

[

1 − ǫ/ǫ0
ǫ/ǫ0

]

= β (66)

or equivalently,

ǫ∗(β) =
ǫ0

1 + e−βǫ0
, (67)

which is exactly the inverse function of β∗(ǫ) above, and which when plugged back into the

expression of φ(β), indeed gives

φ(β) = ln(1 + e−βǫ0). � (68)

Comment: A very similar model (and hence with similar results) pertains to non–interacting

spins (magnetic moments), where the only difference is that x ∈ {−1,+1} rather than

x ∈ {0, 1}. Here, the meaning of the parameter ǫ0 becomes that of a magnetic field, which is

more customarily denoted by B (or H), and which is either parallel or anti-parallel to that

of the spin, and so the potential energy (in the appropriate physical units), ~B · ~x, is either

Bx or −Bx. Thus,

P (x) =
eβBx

2 cosh(βB)
; Z(β) = 2 cosh(βB). (69)

The net magnetization per–spin is defined as

m
∆
=

〈

1

N

N
∑

i=1

Xi

〉

= 〈X1〉 =
∂φ

∂(βB)
=

∂

∂(βB)
ln[2 cosh(βB)] = tanh(βB). (70)

This is the paramagnetic characteristic of the magnetization as a function of the magnetic

field: As B → ±∞, the magnetization m → ±1 accordingly. When the magnetic field is

removed (B = 0), the magnetization vanishes too. We will get back to this model and its

extensions in Chapter 5. �
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2.5 The Energy Equipartition Theorem

It turns out that in the case of a quadratic Hamiltonian, E(x) = 1
2
αx2 (e.g., 1

2
mv2, 1

2
kx2,

1
2
Iω2, etc.), which means that x is Gaussian with variance kT/α, the average per–particle

energy, is always given by
〈

1

2
αX2

i

〉

=
1

2
α · kT

α
=
kT

2
, (71)

independently of α. If we have N such additive quadratic terms, then of course, we end up

with NkT/2. In the case of the ideal gas, we have three such terms (one for each dimension)

per particle, thus a total of 3N terms, and so, E = 3NkT/2, which is exactly the expression

we obtained also from the microcanonical ensemble in eq. (6). In fact, we observe that in the

canonical ensemble, whenever we have an Hamiltonian of the form α
2
x2
i plus some arbitrary

terms that do not depend on xi, then xi is Gaussian (with variance kT/α) and independent

of the other variables, i.e., p(xi) ∝ e−αx
2
i /(2kT ). Hence it contributes an amount of kT/2 to

the total average energy, again, independently of α. It is more precise to refer to this xi as a

degree of freedom rather than a particle. This is because in the three–dimensional world, the

kinetic energy, for example, is given by p2
x/(2m) + p2

y/(2m) + p2
z/(2m), that is, each particle

contributes three additive quadratic terms rather than one (just like three independent one–

dimensional particles) and so, it contributes 3kT/2. This principle is called the the energy

equipartition theorem. In Subsection 3.2, we will see that it is quite intimately related to

rate–distortion theory for quadratic distortion measures.

Below is a direct derivation of the equipartition theorem:
〈

1

2
aX2

〉

=

∫∞
−∞ dx(αx2/2)e−βαx

2/2

∫∞
−∞ dxe−βαx2/2)

= − ∂

∂β
ln

[
∫ ∞

−∞
dxe−βαx

2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
d(
√

βx)e−α(
√
βx)2/2

]

= − ∂

∂β
ln

[

1√
β

∫ ∞

−∞
due−αu

2/2

]

=
1

2

d ln β

dβ
=

1

2β
=
kT

2
.
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Note that although we could have used closed–form expressions for both the numerator and

the denominator of the first line, we have deliberately taken a somewhat different route in

the second line, where we have presented it as the derivative of the denominator of the first

line. Also, rather than calculating the Gaussian integral explicitly, we only figured out how it

scales with β, because this is the only thing that matters after taking the derivative relative

to β. The reason for using this trick of bypassing the need to calculate integrals, is that it

can easily be extended in two directions at least:

1. Let x ∈ IRN and let E(x) = 1
2
xTAx, where A is a N × N positive definite matrix.

This corresponds to a physical system with a quadratic Hamiltonian, which includes also

interactions between pairs (e.g., Harmonic oscillators or springs, which are coupled because

they are tied to one another). It turns out that here, regardless of A, we get:

〈E(X)〉 =

〈

1

2
XTAX

〉

= N · kT
2
. (72)

2. Back to the case of a scalar x, but suppose now a more general power–law Hamiltonian,

E(x) = α|x|θ. In this case, we get

〈E(X)〉 =
〈

α|X|θ
〉

=
kT

θ
. (73)

Moreover, if limx→±∞ xe−βE(x) = 0 for all β > 0, and we denote E ′(x)
∆
= dE(x)/dx, then

〈X · E ′(X)〉 = kT. (74)

It is easy to see that the earlier power–law result is obtained as a special case of this, as

E ′(x) = αθ|x|θ−1sgn(x) in this case.

Example – Ideal gas with gravitation [13, p. 424, Exercise 12.18]: Let

E(x) =
p2
x + p2

y + p2
z

2m
+mgz. (75)

The average kinetic energy of each particle is 3kT/2, as said before. The contribution of the

average potential energy is kT (one degree of freedom with θ = 1). Thus, the total is 5kT/2,

where 60% come from kinetic energy and 40% come from potential energy, universally, that

is, independent of T , m, and g. �
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2.6 The Grand–Canonical Ensemble

A brief summary of what we have done thus far, is the following: we started with the

microcanonical ensemble, which was very restrictive in the sense that the energy was held

strictly fixed to the value of E, the number of particles was held strictly fixed to the value

of N , and at least in the example of a gas, the volume was also held strictly fixed to a

certain value V . In the passage from the microcanonical ensemble to the canonical one, we

slightly relaxed the first of these parameters, E: Rather than insisting on a fixed value of

E, we allowed energy to be exchanged back and forth with the environment, and thereby

to slightly fluctuate (for large N) around a certain average value, which was controlled by

temperature, or equivalently, by the choice of β. This was done while keeping in mind that

the total energy of both system and heat bath must be kept fixed, by the law of energy

conservation, which allowed us to look at the combined system as an isolated one, thus

obeying the microcanonical ensemble. We then had a one–to–one correspondence between

the extensive quantity E and the intensive variable β, that adjusted its average value. But

the other extensive variables, like N and V were still kept strictly fixed.

It turns out, that we can continue in this spirit, and ‘relax’ also either one of the other

variables N or V (but not both at the same time), allowing it to fluctuate around a typical

average value, and controlling it by a corresponding intensive variable. Like E, both N and

V are also subjected to conservation laws when the combined system is considered. Each

one of these relaxations, leads to a new ensemble in addition to the microcanonical and the

canonical ensembles that we have already seen. In the case where it is the variable N that

is allowed to be flexible, this ensemble is called the grand–canonical ensemble. In the case

where it is the variable V , this a certain instance of the Gibbs ensemble, that was mentioned

earlier in a footnote. There are, of course, additional ensembles based on this principle,

depending on the kind of the physical system. We will describe here, in some level of detail,

only the grand–canonical ensemble.

The fundamental idea is essentially the very same as the one we used to derive the
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canonical ensemble: Let us get back to our (relatively small) subsystem, which is in contact

with a heat bath, and this time, let us allow this subsystem to exchange with the heat bath,

not only energy, but also matter, i.e., particles. The heat bath consists of a huge reservoir

of energy and particles. The total energy is E0 and the total number of particles is N0.

Suppose that we can calculate the density of states of the heat bath as function of both its

energy E ′ and amount of particles N ′, call it ΩB(E ′, N ′). A microstate is now a combination

(x, N), where N is the (variable) number of particles in our subsystem and x is as before

for a given N . From the same considerations as before, whenever our subsystem is in state

(x, N), the heat bath can be in any one of ΩB(E0 − E(x), N0 − N) microstates of its own.

Thus, owing to the microcanonical ensemble,

P (x, N) ∝ ΩB(E0 − E(x), N0 −N)

= exp{SB(E0 − E(x), N0 −N)/k}

≈ exp

{

SB(E0, N0)

k
− 1

k

∂SB
∂E

· E(x) − 1

k

∂SB
∂N

·N
}

∝ exp

{

−E(x)

kT
+
µN

kT

}

(76)

where we have now defined the chemical potential µ (of the heat bath) as:

µ
∆
= −T · ∂SB(E ′, N ′)

∂N ′

∣

∣

∣

∣

E′=E0,N ′=N0

. (77)

Thus, we now have the grand–canonical distribution:

P (x, N) =
eβ[µN−E(x)]

Ξ(β, µ)
, (78)

where the denominator is called the grand partition function:

Ξ(β, µ)
∆
=

∞
∑

N=0

eβµN
∑

x

e−βE(x) ∆
=

∞
∑

N=0

eβµNZN(β). (79)

It is sometimes convenient to change variables and to define z = eβµ (which is called the

fugacity) and then, define

Ξ̃(β, z) =
∞
∑

N=0

zNZN(β). (80)
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This notation emphasizes the fact that for a given β, Ξ̃(z) is actually the z–transform of the

sequence ZN . A natural way to think about P (x, N) is as P (N) · P (x|N), where P (N) is

proportional to zNZN(β) and P (x|N) corresponds to the canonical ensemble as before.

Using the grand partition function, it is now easy to obtain moments of the random

variable N . For example, the first moment is:

〈N〉 =

∑

N Nz
NZN(β)

∑

N z
NZN(β)

= z · ∂ ln Ξ̃(β, z)

∂z
. (81)

Thus, we have replaced the fixed number of particles N by a random number of particles,

which concentrates around an average controlled by the parameter µ, or equivalently, z.

The dominant value of N is the one that maximizes the product zNZN(β), or equivalently,

ln Ξ̃ ∼ maxN [βµN + lnZN(β)]. Thus, ln Ξ̃ is related to lnZN by another kind of a Legendre

transform.

When two systems, with total energy E0 and a total number of particles N0, are brought

into contact, allowing both energy and matter exchange, then the dominant combined states

are those for which Ω1(E1, N1) ·Ω2(E0 −E1, N0 −N1), or equivalently, S1(E1, N1) +S2(E0 −
E1, N0−N1), is maximum. By equating to zero the partial derivatives w.r.t. both E1 and N1,

we find that in equilibrium both the temperatures T1 and T2 are the same and the chemical

potentials µ1 and µ2 are the same.

Finally, it should be pointed out that beyond the obvious physical significance of the

grand–canonical ensemble, sometimes it proves useful to work with it from the reason of

pure mathematical convenience. This is shown in the following example.

Example – Quantum Statistics. Consider an ensemble of indistinguishable particles, each

one of which may be in a certain quantum state labeled by 1, 2, . . . , r, . . .. Associated with

quantum state number r, there is an energy ǫr. Thus, if there are Nr particles in each state

r, the total energy is
∑

rNrǫr, and so, the canonical partition function is:

ZN(β) =
∑

N :
P

r Nr=N

exp{−β
∑

r

Nrǫr}, (82)
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where N denotes the set of occupation numbers (N1, N2, . . .). The constraint
∑

rNr = N ,

which accounts for the fact that the total number of particles must be N , causes considerable

difficulties in the calculation. However, if we pass to the grand–canonical ensemble, things

become extremely easy:

Ξ̃(β, z) =
∑

N≥0

zN
∑

N :
P

r Nr=N

exp{−β
∑

r

Nrǫr}

=
∑

N1≥0

∑

N2≥0

. . . z
P

r Nr exp{−β
∑

r

Nrǫr}

=
∑

N1≥0

∑

N2≥0

. . .
∏

r≥1

zNr exp{−βNrǫr}

=
∏

r≥1

∑

Nr≥0

[ze−βǫr ]Nr (83)

In the case where Nr is unlimited (Bose–Einstein particles, or Bosons), each factor indexed

by r is clearly a geometric series, resulting in

Ξ̃(β, z) =
∏

r

[1/(1 − ze−βǫr)]. (84)

In the case where no quantum state can be populated by more than one particle, owing to

Pauli’s exclusion principle (Fermi–Dirac particles, or Fermions), each factor in the product

contains two terms only, pertaining to Nr = 0, 1, and the result is

Ξ̃(β, z) =
∏

r

(1 + ze−βǫr). (85)

In both cases, this is fairly simple. Having computed Ξ̃(β, z), we can in principle, return to

ZN(β) by applying the inverse z–transform. We will get back to this point in Chapter 4.
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3 Physical Interpretations of Information Measures

In this chapter, we make use of the elementary background that was established in previous

chapter, and we draw certain analogies between statistical physics and information theory,

most notably, with Shannon theory. These analogies set the stage for physical interpretations

of information measures and their properties, as well as fundamental coding theorems. As

we shall see, these physical interpretations often prove useful in gaining new insights and

perspectives, which may be beneficial for deriving new analysis tools.

In the first section, we begin from a simple correspondence between the maximum en-

tropy principle and optimum assignment of probabilities of messages with given durations,

or equivalently, optimum duration assignment for given message probabilities. In the second

section, we use large deviations theory (most notably, the Legendre transform) to bridge be-

tween information theory and statistical mechanics. This will provide statistical–mechanical

interpretations of the rate–distortion function and channel capacity. In this context, the

statistical–mechanical perspective will be shown to yield a parametric representation of the

rate–distortion function (and channel capacity) as an integral of the minimum mean square

error (MMSE) of the distortion given the source symbol, which can be used for deriving

bounds. In the third and the fourth sections, we discuss relationships between the second

law of thermodynamics and the data processing theorem of information theory, from two

completely different aspects. Finally, in the last section, we provide a relationship between

the Fisher information and a generalized notion of temperature.

3.1 Statistical Physics of Optimum Message Distributions

To warm up, we begin with a very simple paradigm, studied by Reiss [96] and Reiss and

Huang [98]. The analogy and the parallelism to the basic concepts of statistical mechanics,

that were introduced in the previous chapter, will be quite evident from the choice of the

notation, which is deliberately chosen to correspond to that of analogous physical quantities.

Consider a continuous–time communication system that includes a noiseless channel,
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with capacity

C = lim
E→∞

logM(E)

E
, (86)

where M(E) is the number of distinct messages that can be transmitted over a time interval

of E seconds. The channel is fed by the output of an encoder, which in turn is fed by an

information source. Over a duration of E seconds, L source symbols are conveyed, so that

the average transmission time per symbol is σ = E/L seconds per symbol. In the absence

of any constraints on the structure of the encoded messages, M(E) = rL = rE/σ, where r is

the channel input–output alphabet size. Thus, C = (log r)/σ bits per second.

Consider now the thermodynamic limit of L → ∞. Suppose that the L symbols of

duration E form N words, where by ‘word’, we mean a certain variable–length string of

channel symbols. The average transmission time per word is then ǫ = E/N . Suppose further

that the channel code defines a certain set of word transmission times: Word number i takes

ǫi seconds to transmit. What is the optimum allocation of word probabilities {Pi} that would

support full utilization of the channel capacity? Equivalently, given the probabilities {Pi},
what are the optimum transmission times {ǫi}? For simplicity, we will assume that {ǫi} are

all distinct. Suppose that each word appears Ni times in the entire message. Denoting N =

(N1, N2, . . .), Pi = Ni/N , and P = (P1, P2, . . .), the total number of messages pertaining to

a given N is

Ω(N) =
N !

∏

iNi!
·
= exp{N ·H(P )} (87)

where H(P ) is the Shannon entropy pertaining to the probability distribution P . Now,

M(E) =
∑

N :
P

i Niǫi=E

Ω(N). (88)

This sum is dominated by the maximum term, namely, the maximum–entropy assignment

of relative frequencies

Pi =
e−βǫi

Z(β)
(89)

where β > 0 is a Lagrange multiplier chosen such that
∑

i Piǫi = ǫ, which gives

ǫi = − ln[PiZ(β)]

β
. (90)
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For β = 1, this is similar to the classical result that the optimum message length assignment

in variable–length lossless data compression is according to the negative logarithm of the

probability. For other values of β, this corresponds to the tilting required for optimum

variable–length coding in the large deviations regime, when the minimization of the buffer

overflow probability is required, see, e.g., [42],[46],[66],[124] and references therein.

Suppose now that {ǫi} are kept fixed and consider a small perturbation in Pi, denoted

dPi. Then

dǫ =
∑

i

ǫidPi

= − 1

β

∑

i

(dPi) lnPi

=
1

kβ
d

(

−k
∑

i

Pi lnPi

)

∆
= Tds, (91)

where we have defined T = 1/(kβ) and s = −k∑i Pi lnPi. The free energy per particle is

given by

f = ǫ− Ts = −kT lnZ, (92)

which is related to the redundancy of the code, as both the free energy and the redundancy

are characterized by the Kullback–Leibler divergence.

In [96], there is also an extension of this setting to the case where N is not fixed, with

correspondence to the grand—canonical ensemble. However, we will not include it here.

3.2 Large Deviations and Physics of Coding Theorems

Deeper perspectives are offered via the large–deviations point of view. As said in the Intro-

duction, large deviations theory, the branch of probability theory that deals with exponential

decay rates of probabilities of rare events, has strong relations to information theory, which

can easily be seen from the viewpoint of the method of types and Sanov’s theorem. On the

other hand, large deviations theory has also a strong connection to statistical mechanics,
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as we are going to see shortly. Therefore, one of the links between information theory and

statistical mechanics goes via rate functions of large deviations theory, or more concretely,

Legendre transforms. This topic is based on [67].

Let us begin with a very simple question: We have a set of i.i.d. random variables

X1, X2, . . . and a certain real function E(x). How fast does the probability of the event
∑N

i=1 E(Xi) ≤ NE0 decay as N grows without bound, assuming that E0 < 〈E(X)〉? One

way to handle this problem, at least in the finite alphabet case, is the method of types.

Another method is the Chernoff bound: Denoting the indicator function of an event by I(·),
we have

Pr

{

N
∑

i=1

E(Xi) ≤ NE0

}

= EI
{

N
∑

i=1

E(Xi) ≤ NE0

}

≤ E exp

{

β

[

NE0 −
N
∑

i=1

E(Xi)

]}

= eβNE0E exp

{

−β
N
∑

i=1

E(Xi)

}

= eβNE0E

{

N
∏

i=1

exp{−βE(Xi)}
}

= eβNE0 [E exp{−βE(X1)}]N

= exp {N [βE0 + ln E exp{−βE(X1)}]}

As this bound applies for every β ≥ 0, the tightest bound of this family is obtained by

minimizing the r.h.s. over β, which yields the exponential rate function:

Σ(E0) = min
β≥0

[βE0 + φ(β)], (93)

where

φ(β) = lnZ(β) (94)

and

Z(β) = Ee−βE(X) =
∑

x

p(x)e−βE(x). (95)
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This is, obviously, very similar to the relation between the entropy function and the partition

function, which we have seen in the previous chapter. Note that Z(β) here differs from the

partition function that we have encountered thus far only slightly: the Boltzmann exponen-

tials are weighed by {p(x)} which are independent of β. But this is not a crucial difference:

one can imagine a physical system where each microstate x is actually a representative of

a bunch of more refined microstates {x′}, whose number is proportional to p(x) and which

all have the same energy as x, that is, E(x′) = E(x). In the domain of the more refined

system, Z(β) is (up to a constant) a non–weighted sum of exponentials, as it should be.

More precisely, if p(x) is (or can be approximated by) a rational number M(x)/M , where

M is independent of x, then imagine that each x gives rise to M(x) microstates {x′} with

the same energy as x, so that

Z(β) =
1

M

∑

x

M(x)e−βE(x) =
1

M

∑

x′

e−βE(x′), (96)

and we are back to an ordinary, non–weighted partition function, up to the constant 1/M ,

which is absolutely immaterial.

We observe that the exponential rate function is given by the Legendre transform of the

log–moment generating function. The Chernoff parameter β to be optimized plays the role

of the equilibrium temperature pertaining to energy E0.

Consider next what happens when p(x) is itself a B–G distribution with Hamiltonian

E(x) at a certain inverse temperature β1, that is

p(x) =
e−β1E(x)

ζ(β1)
(97)

with

ζ(β1)
∆
=
∑

x

e−β1E(x). (98)

In this case, we have

Z(β) =
∑

x

p(x)e−βE(x) =

∑

x e
−(β1+β)E(x)

ζ(β1)
=
ζ(β1 + β)

ζ(β1)
. (99)
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Thus,

Σ(E0) = min
β≥0

[βE0 + ln ζ(β1 + β)] − ln ζ(β1)

= min
β≥0

[(β + β1)E0 + ln ζ(β1 + β)] − ln ζ(β1) − β1E0

= min
β≥β1

[βE0 + ln ζ(β)] − ln ζ(β1) − β1E0

= min
β≥β1

[βE0 + ln ζ(β)] − [ln ζ(β1) + β1E1] + β1(E1 − E0)

where E1 is the energy corresponding to β1, i.e., E1 is such that

σ(E1)
∆
= min

β≥0
[βE1 + ln ζ(β)] (100)

is achieved by β = β1. Thus, the second bracketed term of the right–most side of the last

chain is exactly σ(E1), as defined. If we now assume that E0 < E1, which is reasonable,

because E1 is the average of E(X) under β1, and we are assuming that we are dealing with

a rare event where E0 < 〈E(X)〉. In this case, the achiever β0 of σ(E0) must be larger than

β1 anyway, and so, the first bracketed term on the right–most side of the last chain agrees

with σ(E0). We have obtained then that the exponential decay rate (the rate function) is

given by

I = −Σ(E0) = σ(E1) − σ(E0) − β1(E1 −E0). (101)

Note that I ≥ 0, due to the fact that σ(·) is concave. It has a simple graphical interpretation

as the height difference, as seen at the point E = E0, between the tangent to the curve σ(E)

at E = E1 and the function σ(E) itself (see Fig. 2).

Another point of view is the following:

I = β1

[(

E0 −
σ(E0)

β1

)

−
(

E1 −
σ(E1)

β1

)]

= β1(F0 − F1)

= D(Pβ0‖Pβ1)

= min{D(Q‖Pβ1) : EQE(X) ≤ E0} (102)

where the last line (which is easy to obtain) is exactly what we would have obtained using

the method of types. This means that the dominant instance of the large deviations event
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Figure 2: Graphical interpretation of the large deviations rate function I.

under discussion pertains to thermal equilibrium (minimum free energy) complying with the

constraint(s) dictated by this event. This will also be the motive of the forthcoming results.

Let us now see how this discussion relates to very fundamental information measures, like

the rate–distortion function and channel capacity. To this end, let us first slightly extend

the above Chernoff bound. Assume that in addition to the random variables X1, . . . , XN ,

there is also a deterministic sequence of the same length, y1, . . . , yN , where each yi takes

on values in a finite alphabet Y . Suppose also that the asymptotic regime is such that

as N grows without bound, the relative frequencies { 1
N

∑N
i=1 1{yi = y}}y∈Y converge to

certain probabilities {q(y)}y∈Y . Furthermore, the Xi’s are still independent, but they are no

longer necessarily identically distributed: each one of them is governed by p(xi|yi), that is,

p(x|y) =
∏N

i=1 p(xi|yi). Now, the question is how does the exponential rate function behave

if we look at the event
N
∑

i=1

E(Xi, yi) ≤ NE0 (103)

where E(x, y) is a given ‘Hamiltonian’. The natural questions that now arise are: what is

the motivation for this question and where do we encounter such a problem?

The answer is that there are many examples (see [67]), but here are two very classical

ones, where rate functions of large deviations events are directly related to very important

information measures. In both examples, the distributions p(·|y) are actually the same for
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all y ∈ Y (namely, {Xi} are again i.i.d.).

Rate–distortion coding. Consider the good old problem of lossy compression with a randomly

selected code. Let y = (y1, . . . , yN) be a given source sequence, typical to Q = {q(y), y ∈ Y}
(non–typical sequences are not important). Now, let us randomly select eNR codebook

vectors {X(i)} according to p(x) =
∏N

i=1 p(xi). Here is how the direct part of the source

coding theorem essentially works: We first ask ourselves what is the probability that a single

randomly selected codeword X = (X1, . . . , XN) would happen to fall at distance less than

or equal to ND from y, i.e., what is the exponential rate of the probability of the event
∑N

i=1 d(Xi, yi) ≤ ND? The answer is that it is exponentially about e−NR(D), and this the

reason why we need slightly more than the reciprocal of this number, namely, e+NR(D) times

to repeat this ‘experiment’ in order to see at least one ‘success’, which means being able to

encode y within distortion D. So this is clearly an instance of the above problem, where

E = d and E0 = D.

Channel coding. In complete duality, consider the classical channel coding problem, for

a discrete memoryless channel (DMC), using a randomly selected code. Again, we have

a code of size eNR, where each codeword is chosen independently according to p(x) =
∏N

i=1 p(xi). Let y the channel output vector, which is (with very high probability), typical

to Q = {q(y), y ∈ Y}, where q(y) =
∑

x p(x)W (y|x), W being the single–letter transition

probability matrix of the DMC. Consider a (capacity–achieving) threshold decoder which

selects the unique codeword that obeys

N
∑

i=1

[− lnW (yi|Xi)] ≤ N [H(Y |X) + ǫ] ǫ > 0 (104)

and declares an error whenever no such codeword exists or when there is more than one such

codeword. Now, in the classical proof of the direct part of the channel coding problem, we

first ask ourselves: what is the probability that an independently selected codeword (and

hence not the one transmitted) X will pass this threshold? The answer turns out to be

exponentially e−NC , and hence we can randomly select up to slightly less than the reciprocal
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of this number, namely, e+NC codewords, before we start to see incorrect codewords that pass

the threshold. Again, this is clearly an instance of our problem with E(x, y) = − lnW (y|x)
and E0 = H(Y |X) + ǫ.

Equipped with these two motivating examples, let us get back to the generic problem

we formalized. Once this has been done, we shall return to the examples. There are (at

least) two different ways to address the problem using Chernoff bounds, and they lead to

two seemingly different expressions, but since the Chernoff bounding technique gives the

correct exponential behavior, these two expressions must agree. This identity between the

two expressions will have a physical interpretation, as we shall see.

The first approach is a direct extension of the previous derivation:

Pr

{

N
∑

i=1

E(Xi, yi) ≤ nE0

}

= EI
{

N
∑

i=1

E(Xi, yi) ≤ nE0

}

≤ E exp

{

β

[

NE0 −
N
∑

i=1

E(Xi, yi)

]}

= eNβE0

∏

y∈Y
Ey exp

{

−β
∑

i:yi=y

E(Xi, y)

}

= eβNE0

∏

y∈Y
[Ey exp{−βE(X, y)}]N(y)

= exp

{

N

[

βE0 +
∑

y∈Y
q(y) ln

∑

x∈X
p(x|y) exp{−βE(x, y)}

]}

where Ey{·} denotes expectation w.r.t. p(·|y) and N(y) is the number of occurrences of

yi = y in (y1, . . . , yn). The resulting rate function is given by

Σ(E0) = min
β≥0

[

βE0 +
∑

y∈Y
q(y) lnZy(β)

]

(105)

where

Zy(β)
∆
=
∑

x∈X
p(x|y) exp{−βE(x, y)}. (106)
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In the rate–distortion example, this tells us that

R(D) = −min
β≥0

[

βD +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)e−βd(x,y)

)]

. (107)

This is a well–known parametric representation ofR(D), which can be obtained via a different

route (see [36, p. 90, Corollary 4.2.3]), where the minimizing β is known to have the graphical

interpretation of the negative local slope (i.e., the derivative) of the curve of R(D). In the

case of channel capacity, we obtain in a similar manner:

C = −min
β≥0

[

βH(Y |X) +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)e−β[− lnW (y|x)]

)]

= −min
β≥0

[

βH(Y |X) +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)W β(y|x)

)]

.

Here, it is easy to see that the minimizing β is always β∗ = 1.

The other route is to handle each y ∈ Y separately: First, observe that

N
∑

i=1

E(Xi, yi) =
∑

y∈Y

∑

i: yi=y

E(Xi, y), (108)

where now, in each partial sum over {i : yi = y}, we have i.i.d. random variables. The event
∑N

i=1 E(Xi, yi) ≤ NE0 can then be thought of as the union of all intersections

⋂

y∈Y

{

∑

i: yi=y

E(Xi, y) ≤ N(y)Ey

}

(109)

where the union is over all “possible partial energy allocations” {Ey} which satisfy
∑

y q(y)Ey ≤
E0. Note that at least when {Xi} take values on a finite alphabet, each partial sum
∑

i: yi=y
E(Xi, y) can take only a polynomial number of values in N(y), and so, it is suf-

ficient to ‘sample’ the space of {Ey} by polynomially many vectors in order to cover all

possible instances of the event under discussion (see more details in the paper). Thus,

Pr

{

N
∑

i=1

E(Xi, yi) ≤ NE0

}
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= Pr
⋃

{Ey:
P

y q(y)Ey≤E0}

⋂

y∈Y

{

∑

i: yi=y

E(Xi, y) ≤ N(y)Ey

}

·
= max

{Ey:
P

y q(y)Ey≤E0}

∏

y∈Y
Pr

{

∑

i: yi=y

E(Xi, y) ≤ N(y)Ey

}

·
= max

{Ey:
P

y q(y)Ey≤E0}

∏

y∈Y
exp

{

N(y) min
βy≥0

[βyEy + lnZy(β)]

}

= exp

{

N · max
{Ey :

P

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey)

}

where we have defined

Σy(Ey)
∆
= min

βy≥0
[βyEy + lnZy(βy)] . (110)

We therefore arrived at an alternative expression of the rate function, which is

max
{Ey :

P

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey). (111)

Since the two expressions must agree, we obtain following identity:

Σ(E0) = max
{Ey:

P

y q(y)Ey≤E0}

∑

y∈Y
q(y)Σy(Ey). (112)

A few comments are now in order:

1. In [67], there is also a direct proof of this identity, without relying on Chernoff bound

considerations.

2. This identity accounts for a certain generalized concavity property of the entropy function.

Had all the Σy(·)’s been the same function, then this would have been the ordinary concavity

property. The interesting point here is that it continues to hold for different Σy(·)’s too.

3. The l.h.s. of this identity is defined by minimization over one parameter only – the inverse

temperature β. On the other hand, on the r.h.s. we have a separate inverse temperature
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for every y, because each Σy(·) is defined as a separate minimization problem with its own

βy. Stated differently, the l.h.s. is the minimum of a sum, whereas in the r.h.s., for given

{Ey}, we have the sum of minima. When do these two things agree? The answer is that

it happens if all minimizers {β∗
y} happen to be the same. But β∗

y depends on Ey. So what

happens is that the {Ey} (of the outer maximization problem) are such that the β∗
y would

all be the same, and would agree also with the β∗ of Σ(E0). To see why this is true, consider

the following chain of inequalities:

max
{Ey:

P

y q(y)Ey≤E0}

∑

y

q(y)Σy(Ey)

= max
{Ey :

P

y q(y)Ey≤E0}

∑

y

q(y) min
βy

[βyEy + lnZy(βy)]

≤ max
{Ey:

P

y q(y)Ey≤E0}

∑

y

q(y)[β∗Ey + lnZy(β
∗)]

≤ max
{Ey:

P

y q(y)Ey≤E0}
[β∗E0 +

∑

y

q(y) lnZy(β
∗)]

= β∗E0 +
∑

y

q(y) lnZy(β
∗)

= Σ(E0), (113)

where β∗ achieves Σ(E0), the last inequality is because
∑

y q(y)Ey ≤ E0, and the last equality

is because the bracketed expression no longer depends on {Ey}. Both inequalities become

equalities if {Ey} are allocated such that: (i)
∑

y q(y)Ey = E0 and (ii) β∗
y(Ey) = β∗ for all

y. Since the β’s have the meaning of inverse temperatures, what we have here is thermal

equilibrium: Consider a set of |Y| subsystems, each one of N(y) particles and Hamiltonian

E(x, y), indexed by y. If all these subsystems are thermally separated, each one with energy

Ey, then the total entropy per particle is
∑

y q(y)Σy(Ey). The above identity tells us then

what happens when all these systems are brought into thermal contact with one another:

The total energy per particle E0 is split among the different subsystems in a way that all

temperatures become the same – thermal equilibrium. It follows then that the dominant

instance of the large deviations event is the one where the contributions of each y, to the

partial sum of energies, would correspond to equilibrium. In the rate–distortion example,
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this characterizes how much distortion each source symbol contributes typically.

Let us now focus more closely on the rate–distortion function:

R(D) = −min
β≥0

[

βD +
∑

y∈Y
q(y) ln

(

∑

x∈X
p(x)e−βd(x,y)

)]

. (114)

As said, the Chernoff parameter β has the meaning of inverse temperature. The inverse

temperature β required to ‘tune’ the expected distortion (internal energy) to D, is the

solution to the equation

D = − ∂

∂β

∑

y

q(y) ln

[

∑

x

p(x)e−βd(x,y)
]

(115)

or equivalently,

D =
∑

y

q(y) ·
∑

x p(x)d(x, y)e
−βd(x,y)

∑

x p(x) · e−βd(x,y)
. (116)

The Legendre transform relation between the log–partition function and R(D) induces a one–

to–one mapping between D and β which is defined by the above equation. To emphasize

this dependency, we henceforth denote the value of D, corresponding to a given β, by Dβ.

This expected distortion is defined w.r.t. the probability distribution:

Pβ(x, y) = q(y) · Pβ(x|y) = q(y) · p(x)e−βd(x,y)
∑

x′ p(x
′)e−βd(x′,y)

. (117)

On substituting Dβ instead of D in the expression of R(D), we have

−R(Dβ) = βDβ +
∑

y

q(y) ln

[

∑

x

p(x)e−βd(x,y)

]

. (118)

Note that R(Dβ) can be represented in an integral form as follows:

R(Dβ) = −
∫ β

0

dβ̂ ·
(

Dβ̂ + β̂ ·
dDβ̂

dβ̂
−Dβ̂

)

= −
∫ Dβ

D0

β̂ · dDβ̂, (119)

where D0 =
∑

x,y p(x)q(y)d(x, y) is the value of D corresponding to β = 0, and for which

R(D) = 0, This is exactly analogous to the thermodynamic equation S =
∫

dQ/T (following
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from 1/T = dS/dQ), that builds up the entropy from the cumulative heat. Note that the last

equation, in its differential form, reads dR(Dβ) = −βdDβ, or β = −R′(Dβ), which means

that β is indeed the negative local slope of the rate–distortion curve R(D). Returning to

the integration variable β̂, we have:

R(Dβ) = −
∫ β

0

dβ̂ · β̂ ·
dDβ̂

dβ̂

=
∑

y

q(y)

∫ β

0

dβ̂ · β̂ · Varβ̂{d(X, y)|Y = y}

=

∫ β

0

dβ̂ · β̂ · mmseβ̂{d(X, Y )|Y }

where Varβ̂{d(X, y)|Y = y} is the conditional variance of d(X, y) given Y = y, whose

expectation is the minimum mean square error (MMSE) of d(X, Y ) based on Y , with (X, Y )

being distributed according to Pβ̂(x, y). In this representation, the expected conditional

variance, which is the minimum mean square error plays a role that is intimately related to

the heat capacity of the analogous physical system (cf. eq. (34). In a similar manner, the

distortion (which is analogous to the internal energy) is given by

Dβ = D0 −
∫ β

0

dβ̂ · mmseβ̂{d(X, Y )|Y }. (120)

We have therefore introduced an integral representation for R(D) based on the MMSE in

estimating the distortion variable d(X, Y ) based on Y . It should be kept in mind that in

the above representation, q(y) is kept fixed and it is the optimum output distribution cor-

responding to D = Dβ, not to the distortion levels pertaining to values of the integration

β̂. Alternatively, q can be any fixed output distribution, not necessarily the optimum dis-

tribution, and then the above integrals correspond to Rq(Dβ) and Dβ, where Rq(D) is the

minimum of I(X;Y ) subject to the distortion constraint and the additional constraint that

the output distribution is q.

Example. Consider the binary symmetric source {q(y)}, where the coding distribution {p(x)}
is binary and symmetric as well. Let d be the Hamming distortion measure. Then,

Pβ(x|y) =
e−βd(x,y)

1 + e−β
,
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and since this channel is symmetric, it is clear that

Pr{d(X, Y ) = 1|Y = y} =
e−β

1 + e−β
= D,

independently of y, in other words, d(X, Y ) is independent of Y . It follows then that

mmseβ{d(X, Y )|Y }, which is also the expected conditional variance of d(X, Y ) given Y , is

the same as the unconditional variance of d(X, Y ), which is easily found to be e−β/(1+e−β)2.

Thus,

R(D) =

∫ β

0

β̃e−β̃dβ̃

(1 + e−β̃)2

= ln 2 +
βe−β

1 + eβ
− ln(1 + eβ)

= ln 2 − h2

(

e−β

1 + e−β

)

= ln 2 − h2(D), (121)

as expected.

More often than not, an exact closed–form expression of R(D) is hard to obtain, and

one must resort to bounds. The MMSE representation opens the door to the derivation of

families of upper and lower bounds on Rq(D), which are based on upper and lower bounds

on the MMSE, offered by the plethora of bounds available in estimation theory. This line

of thought was exemplified and further developed in [72], where it was demonstrated that

MMSE–based bounds may sometimes be significantly tighter than traditional bounds, like

the Shannon lower bound. This demonstrates the point that the physical point of view may

inspire a new perspective that leads to new results.

A few words about the high–resolution regime are in order. The partition function of

each y is

Zy(β) =
∑

x

p(x)e−βd(x,y), (122)

or, in the continuous case,

Zy(β) =

∫

IR

dxp(x)e−βd(x,y). (123)
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Consider the Lθ distortion measure d(x, y) = |x − y|θ, where θ > 0 and consider a uniform

random coding distribution over the interval [−A,A], supposing that it is the optimal (or

close to optimal) one. Suppose further that we wish to work at a very small distortion level

D (high resolution), which means a large value of β. Then,

Zy(β) =
1

2A

∫ +A

−A
dxe−β|x−y|

θ

≈ 1

2A

∫ +∞

−∞
dxe−β|x−y|

θ

=
1

2A

∫ +∞

−∞
dxe−β|x|

θ

(124)

Thus, returning to the expression of R(D), let us minimize over β by writing the zero–

derivative equation, which yields:

D = − ∂

∂β
ln

[

1

2A

∫ +∞

−∞
dxe−β|x|

θ

]

(125)

but this is exactly the calculation of the (generalized) equipartition theorem, which gives

1/(βθ) = kT/θ. Now, we already said that β = −R′(D), and so, 1/β = −D′(R). It follows

then that the function D(R), at this high res. limit, obeys a simple differential equation:

D(R) = −D
′(R)

θ
(126)

whose solution is

D(R) = D0e
−θR. (127)

In the case where θ = 2 (quadratic distortion), we obtain that D(R) is proportional to e−2R,

which is a well–known result in high resolution quantization theory. For the Gaussian source,

this is true for all R.

We have interpreted the Legendre representation of the rate–distortion function (107) in

the spirit of the Legendre relation between the log–partition function and the entropy of a

physical system, where the parameter β plays the role of inverse temperature. An alternative

physical interpretation was given in [71],[72], in the spirit of the discussion around eqs. (38)–

(40), where the temperature was assumed fixed, the notation of β was changed to another
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symbol, say λ, with an interpretation of a generalized force acting on the system (e.g.,

pressure or magnetic field), and the distortion variable was the conjugate physical quantity

influenced by this force (e.g., volume in the case of pressure, or magnetization in the case of

a magnetic field). In this case, the minimizing λ means the equal force that each one of the

various subsystems is applying on the others when they are brought into contact and they

equilibrate (e.g., equal pressures between two volumes of a gas separated by piston which is

free to move). In this case, Rq(D) is interpreted as the free energy of the system, and the

MMSE formulas are intimately related to the fluctuation–dissipation theorem (see, e.g., [5,

Chap. 6], [39, Sect. 5.7], [59, part 2], [61, Chap. XII], [80, Sect. 2.3], [95, Chap. 15],[104, Chap.

10]) an important result statistical mechanics, which establishes a relationship between the

linear response of a system to a small perturbation from equilibrium, and the equilibrium

fluctuations of this system.

More concretely, it was shown in [71] and [75], that given a source distribution and a

distortion measure, we can describe (at least conceptually) a concrete physical system8 that

emulates the rate–distortion problem in the following manner (see Fig. 3): When no force is

applied to the system, its total length is nD0, where n is the number of particles in the system

(and also the block length in the rate–distortion problem), and D0 is as defined above. If

one applies to the system a contracting force, that increases from zero to some final value λ,

such that the length of the system shrinks to nD, where D < D0 is analogous to a prescribed

distortion level, then the following two facts hold true: (i) An achievable lower bound on the

total amount of mechanical work that must be carried out by the contracting force in order

to shrink the system to length nD, is given by

W ≥ nkTRq(D). (128)

(ii) The final force λ is related to D according to

λ = kTR′
q(D), (129)

8In particular, this system consists of a long chain of particles, e.g., a polymer.
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where R′
q(·) is the derivative of Rq(·). Thus, the rate–distortion function plays the role of a

fundamental limit, not only in information theory, but in a certain way, in physics as well.

nD λ = kTR′

q(D)

W = nkTRq(D)

nD0

Figure 3: Emulation of the rate–distortion function by a physical system.

3.3 Gibbs’ Inequality and the Second Law

Another aspect of the physical interpretation of information measures is associated with

the following question: While the laws of physics draw the boundaries between the possible

and the impossible in Nature, the coding theorems of information theory, or more precisely,

their converses, draw the boundaries between the possible and the impossible in coded com-

munication systems and data processing. Are there any relationships between these two

facts?

We next demonstrate that there are some indications that the answer to this question

is affirmative. In particular, we shall see that there is an intimate relationship between the

second law of thermodynamics and the data processing theorem (DPT), asserting that if

X → U → V is a Markov chain, then I(X;U) ≥ I(X;V ). The reason for focusing our

attention on the DPT is that it is actually the most fundamental inequality that supports
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most (if not all) proofs of converse theorems in information theory. Here are just a few points

that make this quite clear.

Lossy/lossless source coding: Consider a source vector UN = (U1, . . . UN) compressed into

a bit-stream Xn = (X1, . . . , Xn) from which the decoder generates a reproduction V N =

(V1, . . . , VN) with distortion
∑N

i=1 E{d(Ui, Vi)} ≤ ND. Then, by the DPT,

I(UN ;V N) ≤ I(Xn;Xn) = H(Xn), (130)

where I(UN ;V N) is further lower bounded by NR(D) and H(Xn) ≤ n, which together lead

to the converse to the lossy data compression theorem, asserting that the compression ratio

n/N cannot be less than R(D). The case of lossless compression is obtained as a special case

where D = 0.

Channel coding under bit error probability: Let UN = (U1, . . . UN ) be drawn from the binary

symmetric source (BSS), designating M = 2N equiprobable messages of length N . The

encoder maps UN into a channel input vector Xn, which in turn, is sent across the channel.

The receiver observes Y n, a noisy version of Xn, and decodes the message as V N . Let

Pb =
1

N

N
∑

i=1

Pr{Vi 6= Ui} (131)

designate the bit error probability. Then, by the DPT, I(UN ;V N) ≤ I(Xn;Y n), where

I(Xn;Y n) is further upper bounded by nC, C being the channel capacity, and

I(UN ;V N) = H(UN ) −H(UN |V N)

≥ N −
N
∑

i=1

H(Ui|Vi)

≥ N −
∑

i

h2(Pr{Vi 6= Ui})

≥ N [1 − h2(Pb)]. (132)

Thus, for Pb to vanish, the coding rate, N/n should not exceed C.
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Channel coding under block error probability – Fano’s inequality: Same as in the previous

item, except that the error performance is the block error probability PB = Pr{V N 6= UN}.
This, time H(UN |V N), which is identical to H(UN , E|V N), with E ≡ I{V N 6= UN}, is

decomposed as H(E|V N) + H(UN |V N , E), where the first term is upper bounded by 1

and the second term is upper bounded by PB log(2N − 1) < NPB, owing to the fact that

the maximum of H(UN |V N , E = 1) is obtained when UN is distributed uniformly over all

V N 6= UN . Putting these facts all together, we obtain Fano’s inequality PB ≥ 1−1/n−C/R,

where R = N/n is the coding rate. Thus, the DPT directly supports Fano’s inequality, which

in turn is the main tool for proving converses to channel coding theorems in a large variety

of communication situations, including network configurations.

Joint source–channel coding and the separation principle: In a joint source–channel situation,

where the source vector UN is mapped to a channel input vector Xn and the channel output

vector Y n is decoded into a reconstruction V N , the DPT gives rise to the chain of inequalities

NR(D) ≤ I(UN ;V N) ≤ I(Xn;Y n) ≤ nC, (133)

which is the converse to the joint source–channel coding theorem, whose direct part can be

achieved by separate source- and channel coding. Items 1 and 2 above are special cases of

this.

Conditioning reduces entropy: Perhaps even more often than the term “data processing

theorem” can be found as part of a proof of a converse theorem, one encounters an equivalent

of this theorem under the slogan “conditioning reduces entropy”. This in turn is part of

virtually every converse proof in the literature. Indeed, if (X,U, V ) is a triple of random

variables, then this statement means that H(X|V ) ≥ H(X|U, V ). If, in addition, X →
U → V is a Markov chain, then H(X|U, V ) = H(X|U), and so, H(X|V ) ≥ H(X|U),

which in turn is equivalent to the more customary form of the DPT, I(X;U) ≥ I(X;V ),

obtained by subtracting H(X) from both sides of the entropy inequality. In fact, as we

shall see shortly, it is this entropy inequality that lends itself more naturally to a physical
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interpretation. Moreover, we can think of the conditioning–reduces–entropy inequality as

another form of the DPT even in the absence of the aforementioned Markov condition,

because X → (U, V ) → V is always a Markov chain.

Turning now to the physics point of view, consider a system which may have two possible

Hamiltonians – E0(x) and E1(x). Let Zi(β), denote the partition function pertaining to Ei(·),
that is

Zi(β) =
∑

x

e−βEi(x), i = 0, 1. (134)

The Gibbs’ inequality asserts that

lnZ1(β) ≥ lnZ0(β) + β〈E0(X) − E1(X)〉0 (135)

where 〈·〉0 denotes averaging w.r.t. P0 – the canonical distribution pertaining the Hamiltonian

E0(·). Equivalently, this inequality can be presented as follows:

〈E1(X) − E0(X)〉0 ≥
[

− lnZ1(β)

β

]

−
[

− lnZ0(β)

β

]

≡ F1 − F0, (136)

where Fi is the free energy pertaining to the canonical ensemble of Ei, i = 0, 1.

This inequality is easily proved by defining an Hamiltonian

Eλ(x) = (1 − λ)E0(x) + λE1(x) = E0(x) + λ[E1(x) − E0(x)] (137)

and using the convexity of the corresponding log–partition function w.r.t. λ. Specifically, let

us define the partition function:

Zλ(β) =
∑

x

e−βEλ(x). (138)

Now, since Eλ(x) is affine in λ, then it is easy to see that d2 lnZλ/dλ
2 ≥ 0 (for the same

reason that d2 lnZ(β)/dβ2 ≥ 0, as was shown earlier) and so lnZλ(β) is convex in λ for

fixed β. It follows then that the curve of the function lnZλ(β), as a function of λ, must lie

above the straight line that is tangent to this curve at λ = 0 (see Fig. 4), that is, the graph

corresponding to the affine function

lnZ0(β) + λ ·
[

∂ lnZλ(β)

∂λ

]

λ=0

.
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straight line − tangent at
λ = 0.

λ

lnZλ(β)

1

Figure 4: The function lnZλ(β) is convex in λ and hence lies above its tangent at the origin.

In particular, setting λ = 1, we get:

lnZ1(λ) ≥ lnZ0(β) +
∂ lnZλ(β)

∂λ

∣

∣

∣

∣

λ=0

, (139)

and the second term is:

∂ lnZλ(β)

∂λ

∣

∣

∣

∣

λ=0

=
β
∑

x[E0(x) − E1(x)]e−βE0(x)

∑

x e
−βE0(x)

∆
= β 〈E0(X) − E1(X)〉0 , (140)

Thus, we have obtained

ln

[

∑

x

e−βE1(x)

]

≥ ln

[

∑

x

e−βE0(x)

]

+ β 〈E0(X) − E1(X)〉0 , (141)

and the proof is complete. In fact, the difference between the l.h.s. and the r.h.s. is exactly

D(P0‖P1), where Pi is the B–G distribution pertaining to Ei(·), i = 0, 1.

We now offer a possible physical interpretation to the Gibbs’ inequality: Imagine that a

system with Hamiltonian E0(x) is in equilibrium for all t < 0, but then, at time t = 0, the

Hamiltonian changes abruptly from the E0(x) to E1(x) (e.g., by suddenly applying a force

on the system), which means that if the system is found at state x at time t = 0, additional
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energy of W = E1(x) − E0(x) is suddenly ‘injected’ into the system. This additional energy

can be thought of as work performed on the system, or as supplementary potential energy.

Since this passage between E0 and E1 is abrupt, the average of W should be taken w.r.t. P0,

as the state x does not change instantaneously. This average is exactly what we have at the

left–hand side eq. (136). The Gibbs inequality tells us then that this average work is at least

as large as ∆F = F1−F0, the increase in free energy.9 The difference 〈W 〉0−∆F is due to the

irreversible nature of the abrupt energy injection, and this irreversibility means an increase of

the total entropy of the system and its environment, and so, the Gibbs’ inequality is, in fact,

a version of the second law of thermodynamics. This excess work beyond the free–energy

increase, 〈W 〉0 − ∆F , which can be thought of as the “dissipated work,” can easily shown

to be equal to kT ·D(P0‖P1), where P0 and P1 are the canonical distributions pertaining to

E0 and E1, respectively. Thus, the divergence is given yet another physical significance.

Now, let us see how the Gibbs’ inequality is related to the DPT. Consider a triple of

random variables (X,U ,V ) which form a Markov chain X → U → V . The DPT asserts

that I(X; U) ≥ I(X; V ). We can obtain the DPT as a special case of the Gibbs inequal-

ity as follows: For a given realization (u,v) of the random variables (U ,V ), consider the

Hamiltonians

E0(x) = − lnP (x|u) = − lnP (x|u,v) (142)

and

E1(x) = − lnP (x|v). (143)

Let us also set β = 1. Thus, for a given (u,v):

〈W 〉0 = 〈E1(X) − E0(X)〉0
=
∑

x

P (x|u,v)[lnP (x|u) − lnP (x|v)]

= H(X|V = v) −H(X|U = u) (144)

9This is related to the interpretation of the free–energy difference ∆F = F1 − F0 as being the maximum
amount of work in an isothermal process.
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and after further averaging w.r.t. (U ,V ), the average work becomes

H(X|V ) −H(X|U) = I(X; U) − I(X; V ). (145)

Concerning the free energies, we have

Z0(β = 1) =
∑

x

exp{−1 · [− lnP (x|u,v)]} =
∑

x

P (x|u,v) = 1 (146)

and similarly,

Z1(β = 1) =
∑

x

P (x|v) = 1 (147)

which means that F0 = F1 = 0, and so ∆F = 0 as well. So by the Gibbs inequality, the

average work I(X; U) − I(X; V ) cannot be smaller than the free–energy difference, which

in this case vanishes, namely,

I(X; U) − I(X; V ) ≥ 0, (148)

which is the DPT. Note that in this case, there is a maximum degree of irreversibility: The

identity

I(X; U) − I(X; V ) = H(X|V ) −H(X|U) (149)

means that whole work

W = I(X; U) − I(X; V ) (150)

goes for entropy increase

S1T − S0T = H(X|V ) · 1 −H(X|U) · 1, (151)

whereas the free energy remains unchanged, as mentioned earlier.

The difference between I(X; U) and I(X; V ), which accounts for the rate loss in any

suboptimal coded communication system, is then given the meaning of irreversibility and

entropy production in the corresponding physical system. Optimum (or nearly optimum)

communication systems are corresponding to reversible isothermal processes, where the full

free energy is exploited and no work is dissipated (or no work is carried out at all, in the first
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place). In other words, had there been a communication system that violated the converse

to the source/channel coding theorem, one could have created (at least conceptually) a

corresponding physical system that violates the second law of thermodynamics, and this, of

course, cannot be true.

For a more general physical perspective, let us consider again aforementioned parametric

family of Hamiltonians

Eλ(x) = E0(x) + λ[E1(x) − E0(x)] (152)

that interpolates linearly between E0(x) and E1(x). Here, the control parameter λ can

be considered a generalized force. The Jarzynski equality [43] (see also [92] and references

therein) asserts that under certain assumptions on the system and the environment, and

given any protocol for a temporal change in λ, designated by {λt}, for which λt = 0 for all

t < 0, and λt = 1 for all t ≥ τ (τ ≥ 0), the work W applied to the system is a random

variable that satisfies

E{e−βW} = e−β∆F . (153)

By Jensen’s inequality,

E{e−βW} ≥ exp(−βE{W}), (154)

which then gives E{W} ≥ ∆F , for an arbitrary protocol {λt}. The Gibbs inequality is then

a special case, where λt is given by the unit step function, but it applies regardless of the

conditions listed in [92]. At the other extreme, when λt changes very slowly, corresponding

to a reversible process, W approaches determinism, and then Jensen’s inequality becomes

tight. In the limit of an arbitrarily slow process, this yields W = ∆F , with no increase in

entropy.

Returning now to the realm of information theory, the natural questions are: What is the

information–theoretic analogue of Jarzynski’s equality? Does it lead to a new generalized

version of the information inequality? In other words, if the Gibbs inequality is obtained

from Jarzynski’s equality for the special case where the protocol {λt} is the unit step function

(i.e., λt = u(t)), then what would be the generalized information inequality corresponding
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to a general protocol {λt}? We next make an attempt to answer these questions at least

partially.

First, observe that for Ei(x) = − lnPi(x), i = 0, 1, and β = 1, Jarzynski’s equality, for

the case λt = u(t), holds in a straightforward manner:

E0{e−W (X)} =
∑

x

P0(x)e
lnP1(x)−lnP0(x)

= 1 = e−∆F . (155)

How does this extend to a general protocol {λt}? Considering the family of linear interpo-

lations between these two Hamiltonians, let P0 and P1 be two probability distributions, and

for λ ∈ [0, 1], define

Pλ(x) =
P 1−λ

0 (x)P λ
1 (x)

Z(λ)
, (156)

where

Z(λ) =
∑

x

P 1−λ
0 (x)P λ

1 (x). (157)

This is the Boltzmann distribution pertaining to the Hamiltonian

Eλ(x) = (1 − λ)[− lnP0(x)] + λ[− lnP1(x)]. (158)

Now, consider an arbitrary (not necessarily monotonically increasing) sequence of values of

λ: 0 ≡ λ0, λ1, . . . , λn−1, λn ≡ 1, and let {Xi}n−1
i=0 be independent random variables, Xi ∼ Pλi ,

i = 0, 1, . . . , (n − 1). This corresponds to a protocol where λt is a staircase function with

jumps of sizes (λi+1 − λi), and where it is also assumed that the plateau segments of λt

are long enough to let the system equilibrate for each λi. Then, we can easily prove a

Jarzynski–like equality as follows:

E{e−W} = E

{

exp

[

n−1
∑

i=0

(λi+1 − λi) ln
P1(Xi)

P0(Xi)

]}

=

n−1
∏

i=0

Eλi

{

exp

[

(λi+1 − λi) ln
P1(Xi)

P0(Xi)

]}

=

n−1
∏

i=0

(

∑

x

Pλi(x)

[

P1(x)

P0(x)

]λi+1−λi
)
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=
n−1
∏

i=0

Z(λi+1)

Z(λi)
=
Z(λn)

Z(λ0)
=
Z(1)

Z(0)
=

1

1
= 1. (159)

In the limit of large n, if the density of {λi} grows without bound across the entire unit

interval, we get the following information–theoretic version of Jarzynski’s equality:

E

{

exp

[

−
∫ 1

0

dλt ln
P0(Xt)

P1(Xt)

]}

= 1, (160)

where, again {λt} is an arbitrary protocol, starting at λ0 = 0 and ending at λτ = 1. Apply-

ing Jensen’s inequality to the left–hand side, we obtain the following generalization of the

information inequality for a general protocol:

E{W} ≡
∫ 1

0

dλt · Eλt

{

ln
P0(X)

P1(X)

}

≥ 0, (161)

with equality in the case where λt is differentiable everywhere, which corresponds to a re-

versible process. Returning to the simpler case, of finitely many steps, this becomes

E{W} ≡
n−1
∑

i=0

(λi+1 − λi)Eλi

{

ln
P0(X)

P1(X)

}

≥ 0. (162)

In this sense, the left–hand side can be thought of as a generalized relative entropy pertaining

to an arbitrary protocol.

This inequality has a direct relationship to the behavior of error exponents of hypothesis

testing and the Neyman–Pearson lemma: Let P0 and P1 be two probability distributions of a

random variable X taking values in an alphabet X . Given an observation x ∈ X , one would

like to decide whether it emerged from P0 or P1. A decision rule is a partition of X into two

complementary regions X0 and X1, such that whenever X ∈ Xi one decides in favor of the

hypothesis that X has emerged from Pi, i = 0, 1. Associated with any decision rule, there

are two kinds of error probabilities: P0(X1) is the probability of deciding in favor of P1 while

x has actually been generated by P0, and P1(X0) is the opposite kind of error. The Neyman–

Pearson lemma asserts that the optimum trade-off is given by the likelihood ratio test (LRT)

X ∗
0 = (X ∗

1 )c = {x : P0(x)/P1(x) ≥ µ}, where µ is a parameter that controls the trade-off.

Assume now that instead of one observation x, we have a vector x of n i.i.d. observations
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(x1, . . . , xn), emerging either all from P0, or all from P1. In this case, the error probabilities

of the two kinds, pertaining to the LRT, P0(x)/P1(x) ≥ µn ≡ eθn, can decay asymptotically

exponentially, provided that θ is chosen properly, and the asymptotic exponents,

e0 = lim
n→∞

[

−1

n
lnP0(X ∗

1 )

]

(163)

and

e1 = lim
n→∞

[

−1

n
lnP1(X ∗

0 )

]

(164)

can be easily found (e.g., by using the method of types) to be

ei(λ) = D(Pλ‖Pi) =
∑

x∈X
Pλ(x) ln

Pλ(x)

Pi(x)
; i = 0, 1 (165)

where Pλ(x) is defined as before and λ ∈ [0, 1] is determined by θ according to the relation

θ = e1(λ) − e0(λ). (166)

Now, the average work W is easily related to the error exponents:

E{W} =

∫ 1

0

dλt[e1(λt) − e0(λt)]. (167)

Thus, we see that
∫ 1

0

dλte1(λt) ≥
∫ 1

0

dλte0(λt) (168)

with equality in the reversible case. Indeed, the last inequality can be also shown to hold

using a direct derivation, and the equality is easily shown to hold whenever λt is differentiable

for every t ∈ [0, τ ], in which case, it becomes:

∫ τ

0

dtλ̇te0(λt) =

∫ τ

0

dtλ̇te1(λt). (169)

The left– (resp. right–) hand side is simply
∫ 1

0
dλe0(λ) (resp.

∫ 1

0
dλe1(λ)) which means that

the areas under the graphs of the functions e0 and e1 are always the same. This, of course,

also means that
∫ 1

0

dλθ(λ) = 0, (170)

68



where lnµ(λ) is defined according to eq. (166). While these integral relations between the

error exponent functions could have been derived without recourse to any physical consid-

erations, it is the physical point of view that gives the trigger to point out these relations.

It would be interesting to find additional meanings and utilities for the generalized in-

formation inequality proposed here, as well as to figure out whether this is a Shannon-type

inequality or a non–Shannon–type inequality [128, Chaps. 13,14]. These questions are be-

yond the scope of this work, but they are currently under study.

A more detailed exposition of the results of this section, as well as their implications, is

provided in [73].

The Gibbs’ Inequality and the Log–Sum Inequality

We now wish to take another look at the Gibbs’ inequality, from a completely different

perspective, namely, as a tool for generating useful bounds on the free energy, in situations

where the exact calculation is difficult (see [54, p. 145]). As we show in this part, this

inequality is nothing but the log–sum inequality, which is used in Information Theory, mostly

for proving certain qualitative properties of information measures, like the data processing

inequality of the divergence [13, Sect. 2.7]. But this equivalence now suggests that the log–

sum inequality can perhaps be used in a similar way that it is used in physics, and then

it could yield useful bounds on certain information measures. We try to demonstrate this

point, first in physics, and then in a problem related to information theory.

Suppose we have an Hamiltonian E(x) for which we wish to know the partition function

Z(β) =
∑

x

e−βE(x) (171)

but it is hard, if not impossible, to calculate in closed–form. Suppose further that for another,

somewhat different Hamiltonian, E0(x), it is rather easy to make calculations. The Gibbs’

inequality can be presented as a lower bound on lnZ(β) in terms of B–G statistics pertaining
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to E0.

ln

[

∑

x

e−βE(x)

]

≥ ln

[

∑

x

e−βE0(x)

]

+ β 〈E0(X) − E(X)〉0 , (172)

The idea now is that we can obtain pretty good bounds thanks to the fact that we may

have some freedom in the choice of E0. For example, one can define a parametric family of

functions E0 and maximize the r.h.s. w.r.t. the parameter(s) of this family, thus obtaining

the tightest lower bound within the family. Consider the following example.

Example – Non–harmonic oscillator. Consider the potential function

V (z) = Az4 (173)

and so

E(x) =
p2

2m
+ Az4, (174)

where we approximate the second term by

V0(z) =

{

0 |z| ≤ L
2

+∞ |z| > L
2

(175)

where L is a parameter to be optimized. Thus,

Z0 =
1

h

∫ +∞

−∞
dp

∫ +∞

−∞
dze−β[V0(z)+p2/(2m)]

=
1

h

∫ +∞

−∞
dp · e−βp2/(2m)

∫ +L/2

−L/2
dz

=

√
2πmkT

h
· L

and so, by the Gibbs inequality:

lnZ ≥ lnZ0 + β〈E0(X) − E(X)〉0

≥ lnZ0 −
1

kT
· 1

L

∫ +L/2

−L/2
dz · Az4

≥ ln

[

L
√

2πmkT

h

]

− AL4

80kT

∆
= f(L)
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To maximize f(L) we equate its derivative to zero:

0 =
df

dL
≡ 1

L
− AL3

20kT
=⇒ L∗ =

(

20kT

A

)1/4

. (176)

On substituting this back into the Gibbs lower bound and comparing to the exact value

of Z (which is computable in this example), we find that Zapprox ≈ 0.91Zexact, which is

fairly good, considering the fact that the infinite potential well seems to be quite a poor

approximation to the fourth order power law potential V (z) = Az4.

As somewhat better approximation is the harmonic one:

V0(z) =
mω2

0

2
· z2 (177)

where now ω0 is the free parameter to be optimized. This gives

Z0 =
1

h

∫ +∞

−∞
dp

∫ +∞

−∞
dze−β[mω2

0z
2/2+p2/(2m)] =

kT

~ω0
(178)

and this time, we get:

lnZ ≥ ln

(

kT

~ω0

)

+
1

kT

〈

mω2
0Z

2

2
−AZ4

〉

0

= ln

(

kT

~ω0

)

+
1

2
− 3AkT

m2ω4
0

∆
= f(ω0)

To find the maximizing f , we have

0 =
df

dω0
≡ − 1

ω0
+

12AkT

m2ω5
0

=⇒ ω∗
0 =

(12AkT )1/4

√
m

. (179)

This time, we get Zapprox ≈ 0.95Zexact, i.e., this approximation is even better. �

Returning from physics to information theory, let us now look at the Gibbs inequality

slightly differently. What we actually did, in different notation, is the following: Consider

the function:

Z(λ) =

n
∑

i=1

a1−λ
i bλi =

n
∑

i=1

aie
−λ ln(ai/bi), (180)
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where {ai} and {bi} are positive reals. Since lnZ(λ) is convex (as before), we have:

ln

(

n
∑

i=1

bi

)

≡ lnZ(1)

≥ lnZ(0) + 1 · d lnZ(λ)

dλ

∣

∣

∣

∣

λ=0

= ln

(

n
∑

i=1

ai

)

+

∑n
i=1 ai ln(bi/ai)
∑n

i=1 ai

which is nothing but the log–sum inequality. Once again, the idea is to lower bound an

expression ln(
∑n

i=1 bi), which may be hard to calculate, by the expression on the l.h.s. which

is hopefully easier, and allows a degree of freedom concerning the choice of {ai}, at least in

accordance to some structure, and depending on a limited set of parameters.

Consider, for example, a hidden Markov model (HMM), which is the output of a DMC

W (y|x) =
∏n

t=1 W (yt|xt) fed by a first–order Markov process X, governed by Q(x) =
∏n

t=1Q(xt|xt−1). The entropy rate of the hidden Markov process {Yt} does not admit a

closed–form expression, so we would like to have at least good bounds. The importance of

such bounds is self–evident, for example, in the derivation of upper bounds on the capacity

of finite–state channels [34, Sect. 4.6]. Here, we propose an upper bound that stems from

the Gibbs’ inequality, or the log–sum inequality.

The probability distribution of y is

P (y) =
∑

x

n
∏

t=1

[W (yt|xt)Q(xt|xt−1)]. (181)

This summation does not lend itself to a nice closed–form expression, but if the t–th factor

depended only on t, this would have been easy and simple, as the sum of products would

have boiled down to a product of sums. This motivates the following use of the log–sum

inequality: For a given y, let us think of x as the index i of the log–sum inequality and then

b(x) =
n
∏

t=1

[W (yt|xt)Q(xt|xt−1)]. (182)

Let us now define

a(x) =
n
∏

t=1

P0(xt, yt), (183)
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where P0 is an arbitrary joint distribution over X × Y , to be optimized eventually. Thus,

applying the log–sum inequality, we get:

lnP (y) = ln

(

∑

x

b(x)

)

≥ ln

(

∑

x

a(x)

)

+

∑

x a(x) ln[b(x)/a(x)]
∑

x a(x)

= ln

(

∑

x

n
∏

t=1

P0(xt, yt)

)

+
1

∑

x
∏n

t=1 P0(xt, yt)
×

∑

x

[

n
∏

t=1

P0(xt, yt)

]

· ln
[

n
∏

t=1

Q(xt|xt−1)
W (yt|xt)
P0(xt, yt)

]

(184)

Now, let us denote P0(y) =
∑

x∈X P0(x, y), which is the marginal of y under P0. Then, the

first term is simply
∑n

t=1 lnP0(yt). As for the second term, we have:

∑

x [
∏n

t=1 P0(xt, yt)] · ln[
∏n

t=1[Q(xt|xt−1)W (yt|xt)/P0(xt, yt)]
∑

x
∏n

t=1 P0(xt, yt)

=
n
∑

t=1

∑

x

∏n
t=1 P0(xt, yt) ln[Q(xt|xt−1)W (yt|xt)/P0(xt, yt)]

∏n
t=1 P0(yt)

=
n
∑

t=1

∏

t′ 6=t−1,t P0(yt′)
∏n

t=1 P0(yt)
·
∑

xt−1,xt

P0(xt−1, yt−1)×

P0(xt, yt) · ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

=

n
∑

t=1

∑

xt−1,xt

P0(xt−1, yt−1)P0(xt, yt)

P0(yt−1)P0(yt)
· ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

=

n
∑

t=1

∑

xt−1,xt

P0(xt−1|yt−1)P0(xt|yt) · ln
[

Q(xt|xt−1)W (yt|xt)
P0(xt, yt)

]

∆
=

n
∑

t=1

E0

{

ln

[

Q(Xt|Xt−1)W (yt|Xt)

P0(Xt, yt)

] ∣

∣

∣

∣

Yt−1 = yt−1, Yt = yt

}

where E0 denotes expectation w.r.t. the product measure of P0. Adding now the first term

of the r.h.s. of the log–sum inequality,
∑n

t=1 lnP0(yt), we end up with the lower bound:

lnP (y) ≥
n
∑

t=1

E0

{

ln

[

Q(Xt|Xt−1)W (yt|Xt)

P0(Xt|yt)

] ∣

∣

∣

∣

Yt−1 = yt−1, Yt = yt

}
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∆
=

n
∑

t=1

∆(yt−1, yt;P0). (185)

At this stage, we can perform the optimization over P0 for each y individually, and then

derive the bound on the expectation of lnP (y) to get a bound on the entropy. Note,

however, that
∑

t ∆(yt−1, yt;P0) depends on y only via its Markov statistics, i.e., the relative

frequencies of transitions y =⇒ y′ for all y, y′ ∈ Y . Thus, the optimum P0 depends on

y also via these statistics. Now, the expectation of
∑

t ∆(yt−1, yt;P0) is dominated by the

typical {y} for which these transition counts converge to the respective joint probabilities of

{Yt−1 = y, Yt = y}. So, it is expected that for large n, nothing will essentially be lost if we

first take the expectation over both sides of the log–sum inequality and only then optimize

over P0. This would yield

H(Y n) ≤ −n · max
P0

E{∆(Y0, Y1;P0)}. (186)

where the expectation on the r.h.s. is now under the real joint distribution of two consecutive

samples of {Yn}, i.e.,

P (y0, y1) =
∑

x0,x1

π(x0)Q(x1|x0)P (y0|x0)P (y1|x1), (187)

where π(·) is the stationary distribution of the underlying Markov process {xt}.

We have not pursued this derivation any further from this point, to see if it may yield

upper bounds that are tighter than existing ones, for example, the straightforward bound

H(Y n) ≤ nH(Y1|Y0). This is certainly a question that deserves further study, and if this

approach will turn out to be successful, it would be another example how the physical point

of view may be beneficial for obtaining new results in information theory.

3.4 Boltzmann’s H–Theorem and the DPT

In the previous section, we saw a relationship between the second law of thermodynamics and

the DPT, and this relationship was associated with the equilibrium (stationary) probability

distribution at any given time instant, namely, the B–G distribution. This is, in a certain
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sense, the static point of view. In this section, we explore the relationship between the

second law and the DPT from a dynamical point of view.

As said, the B–G distribution is the stationary state distribution over the microstates, but

this only a small part of the physical picture. What is missing is the temporal probabilistic

behavior, or in other words, the laws that underlie the evolution of the system microstate

with time. These are dictated by dynamical properties of the system, which constitute

the underlying physical laws in the microscopic level. It is customary then to model the

microstate at time t as a random process {Xt}, where t may denote either discrete time

or continuous time, and among the various models, one of the most common ones is the

Markov model. This Markov assumption stems from the fact that many physical dynamical

systems are modeled by stochastic differential equations, e.g., the Langevin equation and

other diffusion equations, whose solutions are Markov processes.

In this section, we discuss a few properties of these processes as well as the evolution of

information measures associated with them, like entropy, divergence (and more), and we shall

see that these are also intimately related to data processing inequalities. More concretely,

we shall see that the second law of the thermodynamics, this time, in its dynamical version,

or more precisely, the Boltzmann H–theorem, and the data processing inequality, even in the

most general form known, are both special cases of a more general principle, which we shall

establish here (see also [76] for more details).

We begin with an isolated system in continuous time, which is not necessarily assumed

to have reached yet its stationary distribution pertaining to equilibrium. Let us suppose

that the state Xt may take on values in a finite set X . For x, x′ ∈ X , let us define the state

transition rates

Wxx′ = lim
δ→0

Pr{Xt+δ = x′|Xt = x}
δ

x′ 6= x (188)

which means, in other words,

Pr{Xt+δ = x′|Xt = x} = Wxx′ · δ + o(δ). (189)
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This is in the spirit (and an extension) of the definition of a Poisson process. Denoting

Pt(x) = Pr{Xt = x}, (190)

it is easy to see that

Pt+dt(x) =
∑

x′ 6=x
Pt(x

′)Wx′xdt+ Pt(x)

(

1 −
∑

x′ 6=x
Wxx′dt

)

, (191)

where the first sum describes the probabilities of all possible transitions from other states to

state x and the second term describes the probability of not leaving state x. Subtracting Pt(x)

from both sides and dividing by dt, we immediately obtain the following set of differential

equations:
dPt(x)

dt
=
∑

x′

[Pt(x
′)Wx′x − Pt(x)Wxx′], x ∈ X , (192)

where Wxx is defined in an arbitrary manner, e.g., Wxx ≡ 0 for all x ∈ X . In the physics

terminology (see, e.g., [59],[95]), these equations are called the master equations.10 If we

define the incoming probability flux into state x as J+
t (x) =

∑

x′ Pt(x
′)Wx′x and the outgoing

probability flux from state x as J−
t (x) = Pt(x)

∑

x′ Wxx′, then the master equations tell us

that
dPt(x)

dt
= J+

t (x) − J−
t (x),

i.e., the rate of change in Pt(x) is given by the net incoming probability flux, which is the

difference J+
t (x) − J−

t (x). One can think of the total probability as some mass that must

be conserved, i.e., whatever is reduced at one place must be added back elsewhere. When

the process reaches stationarity, i.e., for all x ∈ X , Pt(x) converge to some P (x) that is

time–invariant, then

∑

x′

[P (x′)Wx′x − P (x)Wxx′] = 0, ∀ x ∈ X . (193)

This situation is called global balance or steady state. When the physical system under

discussion is isolated, namely, no energy flows into the system or out, the steady state

10Note that the master equations apply in discrete time too, provided that the derivative at the l.h.s. is
replaced by a simple difference, Pt+1(x) − Pt(x), and {Wxx′} are replaced one–step state transition proba-
bilities.
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distribution must be uniform across all states, because all accessible states must be of the

same energy and the equilibrium probability of each state depends solely on its energy. Thus,

in the case of an isolated system, P (x) = 1/|X | for all x ∈ X . From quantum mechanical

considerations, as well as considerations pertaining to time reversibility in the microscopic

level,11 it is customary to assume Wxx′ = Wx′x for all pairs {x, x′}. We then observe that,

not only do
∑

x′[P (x′)Wx′x − P (x)Wxx′] all vanish, but moreover, each individual term in

this sum vanishes, as

P (x′)Wx′x − P (x)Wxx′ =
1

|X |(Wx′x −Wxx′) = 0. (194)

This property is called detailed balance, which is stronger than global balance, and it means

equilibrium, which is stronger than steady state. While both steady–state and equilibrium

refer to situations of time–invariant state probabilities {P (x)}, a steady–state still allows

cyclic “flows of probability.” For example, a Markov process with cyclic deterministic tran-

sitions 1 → 2 → 3 → 1 → 2 → 3 → · · · is in steady state provided that the probability

distribution of the initial state is uniform (1/3, 1/3, 1/3), however, the cyclic flow among the

states is in one direction. On the other hand, in detailed balance (Wxx′ = Wx′x for an isolated

system), which is equilibrium, there is no net flow in any cycle of states. All the net cyclic

probability fluxes vanish, and therefore, time reversal would not change the probability law,

that is, {X−t} has the same probability law as {Xt} (see [57, Sect. 1.2]). Thus, equivalent

names for detailed balance are reversibility and time reversal symmetry. For example, if {Yt}
is a Bernoulli process, taking values equiprobably in {−1,+1}, then Xt defined recursively

by

Xt+1 = (Xt + Yt)modK, (195)

has a symmetric state–transition probability matrix W , a uniform stationary state distri-

bution, and it satisfies detailed balance. The equivalence between detailed balance and

11Consider, for example, an isolated system of moving particles of mass m and position vectors {ri(t)},
obeying the differential equations md2ri(t)/dt

2 =
∑

j 6=i F (rj(t) − ri(t)), i = 1, 2, . . . , n, (F (rj(t) − ri(t))

being mutual interaction forces), which remain valid if the time variable t is replaced by −t since d2
ri(t)/dt

2 =
d2ri(−t)/d(−t)2.
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time–reversal symmetry is very easy to see in the discrete–time case, where the Markov

process is defined in terms of a matrix of one–step transition probabilities {P (x′|x)}:

P (x1, . . . , xn) = P (x1)P (x2|x1)P (x3|x2) · · · P (xn|xn−1)

= P (x1|x2)P (x2)P (x3|x2) · · · P (xn|xn−1)

= P (x1|x2)P (x2|x3)P (x3)P (x4|x3) · · · P (xn|xn−1)

= · · ·

= P (x1|x2)P (x2|x3) · · · P (xn−1|xn)

= P (xn, xn−1, . . . , x1) (196)

and the continuous–time analogue is only slightly more complicated, but very similar.

In the general case of detailed balance, i.e., when P (x)Wxx′ = P (x′)Wx′x, i.e., even if P is

not necessarily the uniform distribution, there is a nice physical interpretation of the master

equations [57, p. 20]: We can write the master equations as follows:

dPt(x)

dt
=
∑

x′

1

Rxx′

[

Pt(x
′)

P (x′)
− Pt(x)

P (x)

]

, (197)

where Rxx′ = [P (x′)Wx′x]
−1 = [P (x)Wxx′]

−1. Imagine now an electric circuit where the

indices {x} designate the various nodes. Nodes x and x′ are connected by a wire with

resistance Rxx′ and every node x is grounded via a capacitor with capacitance P (x) (see Fig.

5). If Pt(x) is the charge at node x at time t, then the master equations are the Kirchoff

equations of the currents at each node in the circuit. Thus, the way in which probability

spreads across the states is analogous to the way that electrical charge spreads across the

circuit and probability fluxes are now analogous to electrical currents. In equilibrium, all

nodes have the same potential, Pt(x)/P (x) = 1, and hence detailed balance corresponds to

the situation where all individual currents vanish (not only their algebraic sum).
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Figure 5: State transition diagram of a Markov chain (left part) and the electric circuit that
emulates the dynamics of {Pt(x)} (right part).

3.4.1 Monotonicity of Information Measures

Returning to the case where the process {Xt} is pertaining to an isolated and the system

has not necessarily reached equilibrium, let us take a look at the entropy of the state

H(Xt) = −
∑

x∈X
Pt(x) logPt(x). (198)

The Boltzmann H–theorem (see, e.g., [5, Chap. 7], [54, Sect. 3.5], [59, pp. 171–173] [95, pp.

624–626]) asserts that H(Xt) is monotonically non–decreasing. It is important to stress that

while this result has the general spirit of the second law of thermodynamics, it is not quite the

same statement, because H(Xt) is not really the physical entropy of the system outside the

regime of equilibrium. The second law simply states that if a system is thermally isolated,

then for any process that begins in equilibrium and ends in (possibly, another) equilibrium,

the entropy of the final state is never smaller than the entropy of the initial state, but there

is no statement concerning monotonic evolution of the entropy (whatever its definition may

be) along the process itself, when the system is out of equilibrium.

To see why the H–theorem is true, we next show that detailed balance implies

dH(Xt)

dt
≥ 0, (199)

where for convenience, we denote dPt(x)/dt by Ṗt(x). Now,

dH(Xt)

dt
= −

∑

x

[Ṗt(x) logPt(x) + Ṗt(x)]
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= −
∑

x

Ṗt(x) logPt(x)

= −
∑

x

∑

x′

Wx′x[Pt(x
′) − Pt(x)] logPt(x))

= −1

2

∑

x,x′

Wx′x[Pt(x
′) − Pt(x)] logPt(x)−

1

2

∑

x,x′

Wx′x[Pt(x) − Pt(x
′)] logPt(x

′)

=
1

2

∑

x,x′

Wx′x[Pt(x
′) − Pt(x)] · [logPt(x

′) − logPt(x)]

≥ 0, (200)

where in the second line we used the fact that
∑

x Ṗt(x) = 0, in the third line we used

detailed balance (Wxx′ = Wx′x), and the last inequality is due to the increasing monotonicity

of the logarithmic function: the product [Pt(x
′) − Pt(x)] · [logPt(x

′) − logPt(x)] cannot be

negative for any pair (x, x′), as the two factors of this product are either both negative,

both zero, or both positive. Thus, H(Xt) cannot decrease with time. The H–theorem

has a discrete–time analogue: If a finite–state Markov process has a symmetric transition

probability matrix (which is the discrete–time counterpart of the above detailed balance

property), which means that the stationary state distribution is uniform, then H(Xt) is a

monotonically non–decreasing sequence.

A well–known paradox, in this context, is associated with the notion of the arrow of time.

On the one hand, we are talking about time–reversible processes, obeying detailed balance,

but on the other hand, the increase of entropy suggests that there is asymmetry between

the two possible directions that the time axis can be exhausted, the forward direction and

the backward direction. If we go back in time, the entropy would decrease. So is there

an arrow of time? This paradox was resolved, by Boltzmann himself, once he made the

clear distinction between equilibrium and non–equilibrium situations: The notion of time

reversibility is associated with equilibrium, where the process {Xt} is stationary. On the

other hand, the increase of entropy is a result that belongs to the non–stationary regime,

where the process is on its way to stationarity and equilibrium. In the latter case, the system
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has been initially prepared in a non–equilibrium situation. Of course, when the process is

stationary, H(Xt) is fixed and there is no contradiction.

As mentioned earlier, for a general Markov process, whose steady state–distribution is

not necessarily uniform, the condition of detailed balance, which means time–reversibility

[57], reads

P (x)Wxx′ = P (x′)Wx′x, (201)

in the continuous–time case. In the discrete–time case (where t takes on positive integer

values only), it is defined by a similar equation, except that Wxx′ and Wx′x are replaced by

the corresponding one–step state transition probabilities, i.e.,

P (x)P (x′|x) = P (x′)P (x|x′), (202)

where

P (x′|x) ∆
= Pr{Xt+1 = x′|Xt = x}. (203)

The physical interpretation is that now our system is (a small) part of a much larger isolated

system, which obeys detailed balance w.r.t. the uniform equilibrium distribution, as before.

A well known example of a process that obeys detailed balance in its more general form is

the M/M/1 queue with an arrival rate λ and service rate µ (λ < µ). Here, since all states are

arranged along a line, with bidirectional transitions between neighboring states only (see Fig.

6), there cannot be any cyclic probability flux. The steady–state distribution is well–known

to be geometric

P (x) =

(

1 − λ

µ

)

·
(

λ

µ

)x

, x = 0, 1, 2, . . . , (204)

which indeed satisfies the detailed balance P (x)λ = P (x+ 1)µ for all x. Thus, the Markov

process {Xt}, designating the number of customers in the queue at time t, is time–reversible.

For the sake of simplicity, from this point onward, our discussion will focus almost

exclusively on discrete–time Markov processes, but the results to be stated, will hold for

continuous–time Markov processes as well. We will continue to denote by Pt(x) the prob-

ability of Xt = x, except that now t will be limited to take on integer values only. The

one–step state transition probabilities will be denoted by {P (x′|x)}, as mentioned earlier.
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Figure 6: State transition diagram of an M/M/1 queue.

How does the H–theorem extend to situations where the stationary state distribution is

not uniform? In [13, p. 82], it is shown (among other things) that the divergence,

D(Pt‖P ) =
∑

x∈X
Pt(x) log

Pt(x)

P (x)
, (205)

where P = {P (x), x ∈ X} is a stationary state distribution, is a monotonically non–

increasing function of t. Does this result have a physical interpretation, like the H–theorem

and its connotation with the second law of thermodynamics? When it comes to non–isolated

systems, where the steady state distribution is non–uniform, the extension of the second law

of thermodynamics, replaces the principle of increase of entropy by the principle of decrease

of free energy, or equivalently, the decrease of the difference between the free energy at time t

and the free energy in equilibrium. The information–theoretic counterpart of this free energy

difference is the divergence D(Pt‖P ), as we have seen earlier. Thus, the monotonic decrease

of D(Pt‖P ) has a simple physical interpretation in the spirit of of free energy decrease, which

is the natural extension of the entropy increase.12 Indeed, particularizing this to the case

where P is the uniform distribution (as in an isolated system), then

D(Pt‖P ) = log |X | −H(Xt), (206)

which means that the decrease of the divergence is equivalent to the increase of entropy, as

before. However, here the result is more general than the H–theorem from an additional

aspect: It does not require detailed balance. It only requires the existence of the stationary

state distribution. Note that even in the earlier case, of an isolated system, detailed balance,

12Once again, we reiterate that a similar digression as before applies here too: The free energy is defined
only in equilibrium, thus D(Pt‖P ) is not really the free energy out of equilibrium.
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which means symmetry of the state transition probability matrix (P (x′|x) = P (x|x′)), is

a stronger requirement than uniformity of the stationary state distribution, as the latter

requires merely that the matrix {P (x′|x)} would be doubly stochastic, i.e.,
∑

x P (x|x′) =
∑

x P (x′|x) = 1 for all x′ ∈ X , which is weaker than symmetry of the matrix itself. The

results shown in [13] are, in fact, somewhat more general: Let Pt = {Pt(x)} and P ′
t = {P ′

t (x)}
be two time–varying state–distributions pertaining to the same Markov chain, but induced

by two different initial state distributions, {P0(x)} and {P ′
0(x)}, respectively. ThenD(Pt‖P ′

t)

is monotonically non–increasing. This is easily seen as follows:

D(Pt‖P ′
t) =

∑

x

Pt(x) log
Pt(x)

P ′
t (x)

=
∑

x,x′

Pt(x)P (x′|x) log
Pt(x)P (x′|x)
P ′
t (x)P (x′|x)

=
∑

x,x′

P (Xt = x, Xt+1 = x′) log
P (Xt = x, Xt+1 = x′)

P ′(Xt = x, Xt+1 = x′)

≥ D(Pt+1‖P ′
t+1) (207)

where the last inequality follows from the data processing theorem of the divergence: the

divergence between two joint distributions of (Xt, Xt+1) is never smaller than the divergence

between corresponding marginal distributions of Xt+1. Another interesting special case of

this result is obtained if we now take the first argument of the divergence to the a stationary

state distribution: This will mean that D(P‖Pt) is also monotonically non–increasing.

In [57, Theorem 1.6], there is a further extension of all the above monotonicity re-

sults, where the ordinary divergence is actually replaced by the so called f–divergence, a

generalized divergence which was invented by Csiszár [15] (though the relation to the f–

divergence is not mentioned in [57]): In a nutshell, the f–divergence between two proba-

bility distributions P1 and P2 is defined similarly as the ordinary divergence, D(P1‖P2) =
∑

x P1(x) [− log(P2(x)/P1(x))], except that the negative logarithm function is replaced by a

general convex function f , that is

Df (P1‖P2) =
∑

x

P1(x)f

(

P2(x)

P1(x)

)

, (208)
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but throughout the sequel, we will denote the general convex function by Q rather than f .

For a pair of correlated random variables, if P1 is taken to be their joint distribution and

P2 is the product of their marginals, then Df amounts to a generalized mutual information

measure, which is well known to admit a data processing inequality [15], [131].

Returning now to [57, Theorem 1.6], if {Xt} is a Markov process with a given state

transition probability matrix {P (x′|x)}, then the function

U(t) = DQ(P‖Pt) =
∑

x∈X
P (x) ·Q

(

Pt(x)

P (x)

)

(209)

is monotonically non–increasing, provided that Q is convex. Moreover, U(t) monotonically

strictly decreasing if Q is strictly convex and {Pt(x)} is not identical to {P (x)}. To see why

this is true, define the backward transition probability matrix by

P̃ (x|x′) =
P (x)P (x′|x)

P (x′)
. (210)

Obviously,
∑

x

P̃ (x|x′) = 1 (211)

for all x′ ∈ X , and so,

Pt+1(x)

P (x)
=
∑

x′

Pt(x
′)P (x|x′)
P (x)

=
∑

x′

P̃ (x′|x)Pt(x′)
P (x′)

. (212)

By the convexity of Q:

U(t+ 1) =
∑

x

P (x) ·Q
(

Pt+1(x)

P (x)

)

=
∑

x

P (x) ·Q
(

∑

x′

P̃ (x′|x)Pt(x
′)

P (x′)

)

≤
∑

x

∑

x′

P (x)P̃ (x′|x) ·Q
(

Pt(x
′)

P (x′)

)

=
∑

x

∑

x′

P (x′)P (x|x′) ·Q
(

Pt(x
′)

P (x′)

)

=
∑

x′

P (x′) ·Q
(

Pt(x
′)

P (x′)

)

= U(t). (213)
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Now, a few interesting choices of the function Q may be considered: As proposed in [57, p.

19], for Q(u) = u lnu, we have U(t) = D(Pt‖P ), and we are back to the aforementioned

result in [13]. Another interesting choice is Q(u) = − ln u, which gives U(t) = D(P‖Pt).
Thus, the monotonicity of D(P‖Pt) is also obtained as a special case.13 Yet another choice

is Q(u) = −us, where s ∈ [0, 1] is a parameter. This would yield the increasing monotonicity

of
∑

x P
1−s(x)P s

t (x), a ‘metric’ that plays a role in the theory of asymptotic exponents of

error probabilities pertaining to the optimum likelihood ratio test between two probability

distributions [119, Chapter 3]. In particular, the choice s = 1/2 yields balance between the

two kinds of error and it is intimately related to the Bhattacharyya distance. Returning, for

a moment, to the realm of continuous–time Markov processes in detailed balance, with the

above–described electrical circuit analogue, then if we now choose Q(u) = 1
2
u2, then

U(t) =
1

2

∑

x

P 2
t (x)

P (x)
, (214)

which means that the energy stored in the capacitors dissipates as heat in the wires until

the system reaches equilibrium.

We have seen, in the above examples, that various choices of the function Q yield various

f–divergences, or ‘metrics’, between {P (x))} and {Pt(x)}, which are both marginal distribu-

tions of a single symbol x. What about joint distributions of two or more symbols? Consider,

for example, the function

J(t) =
∑

x,x′

P (X0 = x,Xt = x′) ·Q
(

P (X0 = x)P (Xt = x′)

P (X0 = x,Xt = x′)

)

, (215)

where Q is convex as before. Here, by the same token, J(t) is the f–divergence between

the joint probability distribution {P (X0 = x,Xt = x′)} and the product of marginals

{P (X0 = x)P (Xt = x′)}, namely, it is the generalized mutual information of [15] and

[131], as mentioned earlier. Now, using a similar chain of inequalities as before, we get the

13We are not yet in a position to obtain the monotonicity of D(Pt‖P ′
t ) as a special case of the monotonicity

of DQ(P‖Pt). This will require a slight further extension of this information measure, to be carried out later
on.
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non–decreasing monotonicity of J(t) as follows:

J(t) =
∑

x,x′,x′′

P (X0 = x,Xt = x′, Xt+1 = x′′)×

Q

(

P (X0 = x)P (Xt = x′)

P (X0 = x,Xt = x′)
· P (Xt+1 = x′′|Xt = x′)

P (Xt+1 = x′′|Xt = x′)

)

=
∑

x,x′′

P (X0 = x,Xt+1 = x′′)
∑

x′

P (Xt = x′|X0 = x,Xt+1 = x′′)×

Q

(

P (X0 = x)P (Xt = x′, Xt+1 = x′′)

P (X0 = x,Xt = x′, Xt+1 = x′′)

)

≤
∑

x,x′′

P (X0 = x,Xt+1 = x′′)×

Q

(

∑

x′

P (Xt = x′|X0 = x,Xt+1 = x′′)×

P (X0 = x)P (Xt = x′, Xt+1 = x′′)

P (X0 = x,Xt = x′, Xt+1 = x′′)

)

=
∑

x,x′′

P (X0 = x,Xt+1 = x′′)×

Q

(

∑

x′

P (X0 = x)P (Xt = x′, Xt+1 = x′′)

P (X0 = x,Xt+1 = x′′)

)

=
∑

x,x′′

P (X0 = x,Xt+1 = x′′) ·Q
(

P (X0 = x)P (Xt+1 = x′′)

P (X0 = x,Xt+1 = x′′)

)

= J(t+ 1). (216)

This time, we assumed only the Markov property of (X0, Xt, Xt+1) (not even homogeneity).

This is, in fact, nothing but the generalized data processing theorem of Ziv and Zakai [131].

This data processing theorem sometimes gives tighter lower bounds on the distortion of

simple joint source–channel codes. For example, consider a binary symmetric source and

an erasure channel with erasure probaliblity p. Using the convex function Q(t) = 1/t, one

obtains the lower bound D ≥ (1 − √
1 − p)/2, which is tighter (larger) than the ordinary

data processing bound of D ≥ h−1(p) (see [131] for more details on this example as well as

a few other examples).
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3.4.2 A Unified Framework

In spite of the general resemblance (via the notion of the f–divergence), the last monotonicity

result, concerning J(t), and the monotonicity of D(Pt‖P ′
t ), do not seem, at first glance, to

fall in the framework of the monotonicity of the f–divergence DQ(P‖Pt). This is because in

the latter, there is an additional dependence on a stationary state distribution that appears

neither in D(Pt‖P ′
t) nor in J(t). However, two simple observations can put them both in the

framework of the monotonicity of DQ(P‖Pt).

The first observation is that the monotonicity of U(t) = DQ(P‖Pt) continues to hold

(with a straightforward extension of the proof) if Pt(x) is extended to be a vector of time

varying state distributions (P 1
t (x), P

2
t (x), . . . , P k

t (x)), and Q is taken to be a convex function

of k variables. Moreover, each component P i
t (x) does not have to be necessarily a probability

distribution. It can be any function µit(x) that satisfies the recursion

µit+1(x) =
∑

x′

µit(x
′)P (x|x′), 1 ≤ i ≤ k. (217)

Let us then denote µt(x) = (µ1
t (x), µ

2
t (x), . . . , µ

k
t (x)) and assume that Q is jointly convex in

all its k arguments. Then the redefined function

U(t) =
∑

x∈X
P (x) ·Q

(

µt(x)

P (x)

)

=
∑

x∈X
P (x) ·Q

(

µ1
t (x)

P (x)
, . . . ,

µkt (x)

P (x)

)

(218)

is monotonically non–increasing with t.

The second observation is rooted in convex analysis, and it is related to the notion of

the perspective of a convex function and its convexity property [8]. Here, a few words of

background are in order. Let Q(u) be a convex function of the vector u = (u1, . . . , uk) and

let v > 0 be an additional variable. Then, the function

Q̃(v, u1, u2, . . . , uk)
∆
= v ·Q

(u1

v
,
u2

v
, . . . ,

uk
v

)

(219)

is called the perspective function of Q. A well–known property of the perspective operation

is conservation of convexity, in other words, if Q is convex in u, then Q̃ is convex in (v,u).
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The proof of this fact, which is straightforward, can be found, for example, in [8, p. 89,

Subsection 3.2.6] (see also [17]) and it is brought here for the sake of completeness: Letting

λ1 and λ2 be two non–negative numbers summing to unity and letting (v1,u1) and (v2,u2)

be given, then

Q̃(λ1(v1,u1) + λ2(v2,u2))

= (λ1v1 + λ2v2) ·Q
(

λ1u1 + λ2u2

λ1v1 + λ2v2

)

= (λ1v1 + λ2v2) ·Q
(

λ1v1

λ1v1 + λ2v2
· u1

v1
+

λ2v2

λ1v1 + λ2v2
· u2

v2

)

≤ λ1v1Q

(

u1

v1

)

+ λ2v2Q

(

u2

v2

)

= λ1Q̃(v1,u1) + λ2Q̃(v2,u2). (220)

Putting these two observations together, we can now state the following result:

Theorem 1 Let

V (t) =
∑

x

µ0
t (x)Q

(

µ1
t (x)

µ0
t (x)

,
µ2
t (x)

µ0
t (x)

, . . . ,
µkt (x)

µ0
t (x)

)

, (221)

where Q is a convex function of k variables and {µit(x)}ki=0 are arbitrary functions that satisfy

the recursion

µit+1(x) =
∑

x′

µit(x
′)P (x|x′), i = 0, 1, 2, . . . , k, (222)

and where µ0
t (x) is moreover strictly positive. Then, V (t) is a monotonically non–increasing

function of t.

Using the above mentioned observations, the proof of Theorem 1 is straightforward: Letting

P be a stationary state distribution of {Xt}, we have:

V (t) =
∑

x

µ0
t (x)Q

(

µ1
t (x)

µ0
t (x)

,
µ2
t (x)

µ0
t (x)

, . . . ,
µkt (x)

µ0
t (x)

)

=
∑

x

P (x) · µ
0
t (x)

P (x)
Q

(

µ1
t (x)/P (x)

µ0
t (x)/P (x)

, . . . ,
µkt (x)/P (x)

µ0
t (x)/P (x)

)

=
∑

x

P (x)Q̃

(

µ0
t (x)

P (x)
,
µ1
t (x)

P (x)
, . . . ,

µkt (x)

P (x)

)

. (223)
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Since Q̃ is the perspective of the convex function Q, then it is convex as well, and so, the

monotonicity of V (t) follows from the first observation above. It is now readily seen that

both D(Pt‖P ′
t) and J(t) are special cases of V (t) and hence we have covered all special cases

under the umbrella of the more general information functional V (t).

In analogy to the link between J(t) and the generalized information measure of [15]

and [131], a similar link can be drawn between V (t) and an even more general mutual

information measure [129] that also admits a data processing inequality. For a given pair

of random variables, this generalized information measure is defined by the same expression

as V (t), where µ0
t plays the role of the joint probability distribution of this pair of random

variables, and µ1
t , . . . , µ

k
t are arbitrary measures associated with this pair. This gives rise

to a new look at the generalized data processing theorem, which suggests to exploit certain

degrees of freedom that may lead to better bounds, for a given choice of the convex function

that defines the generalized mutual information. This point is demonstrated in detail in [76].

3.5 Generalized Temperature and Fisher Information

The last information measure to be discussed in this chapter is the Fisher information. As

argued in [85], the Fisher information turns out to be intimately related to a generalized no-

tion of temperature, pertaining to non–equilibrium situations. In this section, we summarize

the main derivations and findings of [85], where the main mathematical tool is an interesting

modified version of de Bruijn’s identity (see, e.g., [13, Sect. 17.7]. Specifically, the ordinary

version of de Bruin’s identity relates the Fisher information to the derivative of differential

entropy of a random variable X +
√
δZ w.r.t. δ, where X and Z are independent and Z

is Gaussian. On the other hand, the modified de Bruijn identity of [85] is more general in

the sense of allowing Z to have any density with zero mean, but less general in the sense of

limiting the applicability of the identity to the vicinity of δ = 0.

We begin by recalling the definition of temperature according to

1

T
=

(

∂S

∂E

)

V

. (224)
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This definition corresponds to equilibrium. As we know, when the Hamiltonian is quadratic,

i.e., E(x) = α
2
x2, the Boltzmann distribution, which is the equilibrium distribution, is Gaus-

sian:

P (x) =
1

Z(β)
exp

{

−β · α
2

N
∑

i=1

x2
i

}

(225)

and by the energy equipartition theorem, the average internal energy is given by

Ē(P )
∆
=

〈

α

2

N
∑

i=1

X2
i

〉

P

=
NkT

2
. (226)

In Chapter 2, we also computed the entropy, which is nothing but the entropy of a Gaussian

vector S(P ) = Nk
2

ln(2πe
αβ

).

Consider now another probability density function Q(x), which means a non–equilibrium

probability law if it differs from P . Consider now the energy and the entropy pertaining to

Q:

Ē(Q) =

〈

α

2

N
∑

i=1

X2
i

〉

Q

=

∫

dxQ(x) ·
[

α

2

N
∑

i=1

x2
i

]

(227)

S(Q) = k · 〈− lnQ(X)〉Q = −k
∫

dxQ(x) lnQ(x), (228)

where again, we remind the reader that this definition of entropy may be questionable in

absence of equilibrium, as was mentioned in Chapter 2. In order to define a notion of

generalized temperature, we have to establish a notion of a derivative of S(Q) w.r.t. Ē(Q).

Such a definition may make sense if it turns out that the ratio between the response of S to

perturbations in Q and the response of Ē to the same perturbations, is independent of the

“direction” of this perturbation, as long as it is “small” in some reasonable sense. It turns

out the de Bruijn identity, in its modified version described above, helps us here.

Consider the perturbation of X by
√
δZ thus defining the perturbed version of X as

Xδ = X +
√
δZ, where δ > 0 is small and Z is an arbitrary i.i.d. zero–mean random

vector, not necessarily Gaussian, whose components all have unit variance. Let Qδ denote

the density of Xδ, which is, of course, the convolution between Q and the density of Z,
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scaled by
√
δ. The proposed generalized definition of temperature is:

1

T
∆
= lim

δ→0

S(Qδ) − S(Q)

Ē(Qδ) − Ē(Q)
. (229)

The denominator is easy to handle since

E‖X +
√
δZ‖2 − E‖X‖2 = 2

√
δEXTZ +Nδ = Nδ (230)

and so, Ē(Qδ) − Ē(Q) = Nαδ/2. In view of the above, our new definition of temperature

becomes:

1

T

∆
=

2k

Nα
· lim
δ→0

h(X +
√
δZ) − h(X)

δ

=
2k

Nα
· ∂h(X +

√
δZ)

∂δ

∣

∣

∣

∣

δ=0

. (231)

First, it is important to understand that the numerator of the middle expression is positive

(and hence so is T ) since

S(Qδ) = kh(X +
√
δZ) ≥ kh(X +

√
δZ|Z) = kh(X) = S(Q). (232)

In order to move forward from this point, we will need the aforementioned modified version

of de Bruijn’s identity. Suppose we have a family of pdf’s {Qθ(x)} where θ is a continuous

valued parameter. The Fisher information is defined as

J(θ) = Eθ

{

[

∂ lnQθ(X)

∂θ

]2
}

=

∫ +∞

−∞

dx

Qθ(x)

[

∂

∂θ
Qθ(x)

]2

, (233)

where Eθ{·} denotes expectation w.r.t. Qθ. Consider now the special case where θ is a shift

parameter (a.k.a. location parameter), i.e., Qθ(x) = Q(x− θ), then

J(θ) =

∫ +∞

−∞

dx

Q(x− θ)

[

∂

∂θ
Q(x− θ)

]2

=

∫ +∞

−∞

dx

Q(x− θ)

[

∂

∂x
Q(x− θ)

]2

=

∫ +∞

−∞

dx

Q(x)

[

∂

∂x
Q(x)

]2

∆
= J (234)
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independently of θ. As J is merely a functional of Q, we will henceforth denote it as J(Q),

with a slight abuse of notation. For the vector case, we define the Fisher information matrix,

whose elements are

Jij(Q) =

∫

IRN

dx

Q(x)

[

∂Q(x)

∂xi
· ∂Q(x)

∂xj

]

i, j = 1, . . . , N. (235)

Shortly, we will relate T with the trace of this matrix.

To this end, we will need the following result, which, as described before, is a variant of

the well–known de Bruijn identity, beginning with the scalar case: Let Q be the pdf of a

scalar random variable X of finite variance. Let Z be a zero–mean, unit variance random

variable, independent of X, and let Xδ = X +
√
δZ. Then, it is proved in [85] that

∂h(X +
√
δZ)

∂δ

∣

∣

∣

∣

δ=0

=
J(Q)

2
. (236)

As explained in the introductory paragraph above, the original de Bruijn identity allows only

a Gaussian perturbation Z, but it holds for any δ. Here, on the other hand, we allow an

arbitrary density M(z) of Z, but we insist on δ → 0. Consider the characteristic functions:

ΦX(s) =

∫ +∞

−∞
dxesxQ(x) (237)

and

ΦZ(s) =

∫ +∞

−∞
dzeszM(z). (238)

Due to the independence

ΦXδ
(s) = ΦX(s) · Φ√

δZ(s)

= ΦX(s) · ΦZ(
√
δs)

= ΦX(s) ·
∫ +∞

−∞
dze

√
δszM(z)

= ΦX(s) ·
∞
∑

i=0

(
√
δs)i

i!
µi(M)

= ΦX(s) ·
(

1 +
δs2

2
+ · · ·

)

(239)

92



where µi(M) denotes the i–th moment pertaining to the density M , and where we have used

the assumption that µ1(M) = 0. Applying the inverse Fourier transform, we get:

Qδ(x) = Q(x) +
δ

2
· ∂

2Q(x)

∂x2
+ o(δ), (240)

and so,
∂Qδ(x)

∂δ

∣

∣

∣

∣

δ=0

=
1

2
· ∂

2Q(x)

∂x2
∼ 1

2
· ∂

2Qδ(x)

∂x2
. (241)

Now, let us look at the differential entropy:

h(Xδ) = −
∫ +∞

−∞
dxQδ(x) lnQδ(x). (242)

Taking the derivative w.r.t. δ, we get:

∂h(Xδ)

∂δ
= −

∫ +∞

−∞
dx

[

∂Qδ(x)

∂δ
+
∂Qδ(x)

∂δ
· lnQδ(x)

]

= − ∂

∂δ

∫ +∞

−∞
dxQδ(x) −

∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x)

= − ∂

∂δ
1 −

∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x)

= −
∫ +∞

−∞
dx
∂Qδ(x)

∂δ
· lnQδ(x) (243)

and so,

∂h(Xδ)

∂δ

∣

∣

∣

∣

δ=0

= −
∫ +∞

−∞
dx · ∂Qδ(x)

∂δ

∣

∣

∣

∣

δ=0

· lnQ(x)

= −
∫ +∞

−∞
dx · 1

2

d2Q(x)

d2x
· lnQ(x). (244)

Integrating by parts, we obtain:

∂h(Xδ)

∂δ

∣

∣

∣

∣

δ=0

=

[

−1

2
· dQ(x)

dx
· lnQ(x)

]+∞

−∞
+

1

2

∫ +∞

−∞

dx

Q(x)

[

∂Q(x)

∂x

]2

. (245)

The first term can be shown to vanish since

Q̇(x) ln
√

Q(x) =
Q̇(x)
√

Q(x)
·
√

Q(x) ln
√

Q(x),
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where the second factor obviously tends to zero as |x| → ∞ (as Q(x) must tend to zero) and

the first factor must be bounded since the integral of [Q̇(x)/
√

Q(x)]2, which is the Fisher

information, is finite. The second term in (245) is exactly J(Q)/2. This completes the proof

of the modified de Bruijn identity.

This result can be extended straightforwardly to the vector case, showing that for a vector

Z with i.i.d. components, all with zero mean:

∂h(X +
√
δZ)

∂δ
=

1

2

N
∑

i=1

∫

IRN

dx

Q(x)

[

∂Q(x)

∂xi

]2

=
1

2

N
∑

i=1

Jii(Q)

=
1

2
tr{J(Q)}. (246)

Putting all this together, we end up with the following generalized definition of temperature:

1

T
=

k

Nα
· tr{J(Q)}. (247)

In the case where Q is symmetric w.r.t. all components of x, {Jii} are all the same, call it

J(Q), and then
1

T
=
k

α
· J(Q) (248)

or, equivalently,

T =
α

kJ(Q)
=
α

k
· CRB (249)

where CRB is the Cramér–Rao bound. High temperature means strong noise and this in

turn means that it is hard to estimate the mean of X. In the Boltzmann case,

J(Q) =
1

Var{X} = αβ =
α

kT
(250)

and we are back to the ordinary definition of temperature.

Another way to look at this result is as an extension of the energy equipartition theorem:

As we recall, in the ordinary case of a quadratic Hamiltonian and in equilibrium, we have:

〈E(X)〉 =
〈α

2
X2
〉

=
kT

2
(251)
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or
α

2
σ2 ∆

=
α

2
〈X2〉 =

kT

2
. (252)

In the passage to the more general case, σ2 should be replaced by 1/J(Q) = CRB. Thus,

the induced generalized equipartition function, doesn’t talk about average energy but about

the CRB:
α

2
· CRB =

kT

2
. (253)

Now, the CRB is a lower bound to the estimation error which, in this case, is a translation

parameter. For example, let x denote the location of a mass m tied to a spring of strength

mω2
0 and equilibrium location θ. Then,

E(x) =
mω2

0

2
(x− θ)2. (254)

In this case, α = mω2
0, and we get:

estimation error energy =
mω2

0

2
· E(θ̂(X) − θ)2 ≥ kT

2
(255)

where θ̂(X) is any unbiased estimator of θ based on a measurement of X. This is to say

that the generalized equipartition theorem talks about the estimation error energy in the

general case. Again, in the Gaussian case, the best estimator is θ̂(x) = x and we are back

to ordinary energy and the ordinary equipartition theorem.

In a follow–up paper [86], Narayanan and Srinivasa have slightly modified their definition

of generalized temperature and applied it to the paradigm of a system that obeys a first

order stochastic differential equation driven by white noise (Langevin dynamics). It was

demonstrated that, away from equilibrium, the corresponding Cramér–Rao inequality can

be interpreted as a statement of the second law.

95



4 Analysis Tools and Asymptotic Methods

4.1 Introduction

So far we have dealt mostly with relatively simple situations, where the Hamiltonian is

additive, and then the resulting B–G distribution is i.i.d. But this is seldom the case in

reality. Most models in physics, including those that will prove relevant for information

theory, as we shall see in the sequel, are much more complicated, more difficult, but also

more interesting. More often than not, they are so complicated and difficult, that they do not

lend themselves to closed–form analysis at all. In some cases, analysis is still possible, but it

requires some more powerful mathematical tools and techniques, which suggest at least some

asymptotic approximations. The purpose of this chapter is to prepare these tools, before we

can go on to the more challenging settings.

Before diving into the technical material, let us first try to give the flavor of the kind of

calculations that we are now addressing. The best way of doing this is by example. We have

seen in Subsection 2.6 the example of quantum particles, whose partition function is given

by

ZN(β) =
∑

N :
P

r Nr=N

exp

{

−β
∑

r

Nrǫr

}

. (256)

As mentioned already in Subsection 2.6, this partition function is hard to calculate in closed

form due to the constraint
∑

rNr = N . However, we have also defined therein the grand

partition function, which may play the role of z–transform, or a generating function

Ξ(β, z) =
∑

N≥0

zNZN(β), (257)

and we saw that Ξ(β, z) has an easy closed–form expression

Ξ(β, z) =
∏

r

[

∑

Nr

(

ze−βǫr
)Nr

]

. (258)

Splendid, but how can we get back from Ξ(β, z) to ZN(β)?
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The general idea is to apply the inverse z–transform:

ZN(β) =
1

2πj

∮

C

Ξ(β, z)dz

zN+1
=

1

2πj

∮

C
Ξ(β, z)e−(N+1) ln zdz, (259)

where z is a complex variable, j =
√
−1, and C is any clockwise closed path encircling the

origin and entirely in the region of convergence. An exact calculation of integrals of this

type might still be difficult, in general, but often, we would be happy enough if at least we

could identify how they behave in the thermodynamic limit of large N .

Similar needs are frequently encountered in information–theoretic problems. One ex-

ample is in universal source coding (see, e.g., [13], Chapter 13, in particular, Sect. 13.2,

and references therein). Suppose we have a family of information sources indexed by some

parameter θ, say, Bernoulli with parameter θ ∈ [0, 1], i.e.,

Pθ(x) = (1 − θ)N−nθn, (260)

where x ∈ {0, 1}N and n ≤ N is the number of 1’s in x. When θ is unknown, it is customary

to construct a universal code as the Shannon code w.r.t. a certain mixture of these sources

P (x) =

∫ 1

0

dθw(θ)Pθ(x) =

∫ 1

0

dθw(θ)eNf(θ) (261)

where

f(θ) = ln(1 − θ) + q ln

(

θ

1 − θ

)

; q =
n

N
. (262)

So here again, we need to evaluate an integral of an exponential function of N (this time,

on the real line), in order to assess the performance of this universal code.

These are exactly the points where the first tool that we are going to study, namely, the

saddle point method (a.k.a. the steepest descent method) enters into the picture: it gives us

a way to assess how integrals of this kind scale as exponential functions of N , for large N .

More generally, the saddle point method is a tool for evaluating the exponential order (and

also the second order behavior) of an integral of the form

∫

P
g(z)eNf(z)dz P is a path in the complex plane. (263)
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We begin with the simpler case where the integration is over the real line (or a subset of

the real line), whose corresponding asymptotic approximation method is called the Laplace

method of integration. The exposition of the material in this chapter follows, to a large

extent, the book by de Bruijn [20, Chapters 4,5], but with several modifications.

4.2 The Laplace Method

Consider first an integral of the form:

FN
∆
=

∫ +∞

−∞
eNh(x)dx, (264)

where the function h(·) is independent of N . How does this integral behave exponentially

for large N? Clearly, if it was a sum, like
∑

i e
Nhi , rather than an integral, and the number

of terms was finite and independent of N , then the dominant term, eN maxi hi, would have

dictated the exponential behavior. This continues to be true even if the sum contains in-

finitely many terms, provided that the tail of this series decays sufficiently rapidly. Since the

integral is a limit of sums, it is conceivable to expect, at least when h(·) is “sufficiently nice”,

that something of the same spirit would happen with FN , namely, that its exponential order

would be, in analogy, eN maxh(x). In what follows, we are going to show this more rigorously,

and as a bonus, we will also be able to say something about the second order behavior. In

the above example of universal coding, this gives rise to redundancy analysis.

We will make the following assumptions on h:

1. h is real and continuous.

2. h is maximum at x = 0 and h(0) = 0 (w.l.o.g).

3. h(x) < 0 ∀x 6= 0, and ∃b > 0, c > 0 s.t. |x| ≥ c implies h(x) ≤ −b.

4. The integral defining FN converges for all sufficiently large N . Without loss of gener-

ality, let this sufficiently large N be N = 1, i.e.,
∫ +∞
−∞ eh(x)dx <∞.
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5. The derivative h′(x) exists at a certain neighborhood of x = 0, and h′′(0) < 0. Thus,

h′(0) = 0.

From these assumptions, it follows that for all δ > 0, there is a positive number η(δ) s.t. for

all |x| ≥ δ, we have h(x) ≤ −η(δ). For δ ≥ c, this is obvious from assumption 3. If δ < c,

then the maximum of the continuous function h across the interval [δ, c] is strictly negative.

A similar argument applies to the interval [−c,−δ]. Consider first the tails of the integral

under discussion:
∫

|x|≥δ
eNh(x)dx =

∫

|x|≥δ
dxe(N−1)h(x)+h(x)

≤
∫

|x|≥δ
dxe−(N−1)η(δ)+h(x)

≤ e−(N−1)η(δ) ·
∫ +∞

−∞
eh(x)dx→ 0 (265)

and the convergence to zero is exponentially fast. In other words, the tails’ contribution is

vanishingly small. It remains to examine the integral from −δ to +δ, that is, the neighbor-

hood of x = 0. In this neighborhood, we shall use the Taylor series expansion of h. Since

h(0) = h′(0) = 0, then h(x) ≈ 1
2
h′′(0)x2. More precisely, for all ǫ > 0, there is δ > 0 s.t.

∣

∣

∣

∣

h(x) − 1

2
h′′(0)x2

∣

∣

∣

∣

≤ ǫx2 ∀|x| ≤ δ. (266)

Thus, this integral is sandwiched as follows:
∫ +δ

−δ
exp

{

N

2
(h′′(0) − ǫ)x2

}

dx ≤
∫ +δ

−δ
eNh(x)dx

≤
∫ +δ

−δ
exp

{

N

2
(h′′(0) + ǫ)x2

}

dx. (267)

The right–most side is further upper bounded by
∫ +∞

−∞
exp

{

N

2
(h′′(0) + ǫ)x2

}

dx (268)

and since h′′(0) < 0, then h′′(0)+ ǫ = −(|h′′(0)|− ǫ), and so, the latter is a Gaussian integral

given by
√

2π

(|h′′(0)| − ǫ)N
. (269)
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The left–most side of eq. (267) is further lower bounded by
∫ +δ

−δ
exp

{

−N
2

(|h′′(0)| + ǫ)x2

}

dx

=

∫ +∞

−∞
exp

{

−N
2

(|h′′(0)| + ǫ)x2

}

dx−
∫

|x|≥δ
exp

{

−N
2

(|h′′(0)| + ǫ)x2

}

dx

=

√

2π

(|h′′(0)| + ǫ)N
− 2Q(δ

√

n(|h′′(0)| + ǫ))

≥
√

2π

(|h′′(0)| + ǫ)N
−O

(

exp

{

−N
2

(|h′′(0)| + ǫ)δ2

})

∼
√

2π

(|h′′(0)| + ǫ)N
(270)

where the notation AN ∼ BN means that limN→∞AN/BN = 1. Since ǫ and hence δ can be

made arbitrary small, we find that

∫ +δ

−δ
eNh(x)dx ∼

√

2π

|h′′(0)|N . (271)

Finally, since the tails contribute an exponentially small term, which is negligible compared

to the contribution of O(1/
√
N) order of the integral across [−δ,+δ], we get:

∫ +∞

−∞
eNh(x)dx ∼

√

2π

|h′′(0)|N . (272)

Slightly more generally, if h is maximized at an arbitrary point x = x0 this is completely

immaterial because an integral over the entire real line is invariant under translation of the

integration variable. If, furthermore, the maximum h(x0) is not necessarily zero, we can

make it zero by decomposing h according to h(x) = h(x0) + [h(x) − h(x0)] and moving the

first term as a constant factor of eNh(x0) outside of the integral. The result would then be

∫ +∞

−∞
eNh(x)dx ∼ eNh(x0) ·

√

2π

|h′′(x0)|N
(273)

Of course, the same considerations continue to apply if FN is defined over any finite or half–

infinite interval that contains the maximizer x = 0, or more generally x = x0 as an internal
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point. It should be noted, however, that if FN is defined over a finite or semi–infinite interval

and the maximum of h is obtained at an edge of this interval, then the derivative of h at that

point does not necessarily vanish, and the Gaussian integration would not apply anymore. In

this case, the local behavior around the maximum would be approximated by an exponential

exp{−N |h′(0)|x} or exp{−N |h′(x0)|x} instead, which gives a somewhat different expression.

However, the factor eNh(x0), which is the most important factor, would continue to appear.

Normally, this will be the only term that will interest us, whereas the other factor, which

provides the second order behavior will not be important for us. A further extension in the

case where the maximizer is an internal point at which the derivative vanishes, is this:

∫ +∞

−∞
g(x)eNh(x)dx ∼ g(x0)e

Nh(x0) ·
√

2π

|h′′(x0)|N
(274)

where g is another function that does not depend on N . This technique, of approximating

an integral of a function, which is exponential in some large parameter N , by neglecting the

tails and approximating it by a Gaussian integral around the maximum, is called the Laplace

method of integration.

Example: Stirling’s formula. Beginning from the identity
∫∞
0

dxe−sx = 1/s, and differenti-

ating N times both sides w.r.t. s, we get, from the l.h.s., (−1)N
∫∞
0
xNe−sxdx, and from the

r.h.s. (−1)NN !/sN+1, which together yield the identity

N ! = sN+1

∫ ∞

0

xNe−sxdx,

which holds true for every s > 0. On substituting s = N , we get

N ! = NN+1

∫ ∞

0

xNe−Nxdx.

Assessing this integral using the Laplace method, we have h(x) = ln x−x, which is maximized

at x0 = 1, with h(x0) = h′′(x0) = −1. Thus,

N ! ∼ NN+1e−N ·1
√

2π

N · 1 =

(

N

e

)N √
2πN,

which is the well–known Stirling formula for approximating N !.
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4.3 The Saddle Point Method

We now expand the scope to integrals along paths in the complex plane, which are also

encountered and even more often than one would expect (cf. the earlier example). As said,

the extension of the Laplace integration technique to the complex case is called the saddle–

point method or the steepest descent method, for reasons that will become apparent shortly.

Specifically, we are now interested in an integral of the form

FN =

∫

P
eNh(z)dz or more generally FN =

∫

P
g(z)eNh(z)dz (275)

where z = x + jy is a complex variable (j =
√
−1), and P is a certain path in the complex

plane, starting at some point A and ending at point B. We will focus first on the former

integral, without the factor g. We will assume that P is fully contained in a region where h

is analytic.

The first observation is that the value of the integral depends only on A and B, and

not on the details of P: Consider any alternate path P ′ from A to B such that h has no

singularities in the region surrounded by P⋃P ′. Then, the integral of eNh(z) over the closed

path P⋃P ′ (going from A to B via P and returning to A via P ′) vanishes, which means that

the integrals from A to B via P and via P ′ are the same. This means that we actually have

the freedom to select the integration path, as long as we do not go too far, to the other side

of some singularity point, if there is any. This point will be important in our forthcoming

considerations.

An additional important observation has to do with yet another basic property of analytic

functions: the maximum modulus theorem, which basically tells that the modulus of an

analytic function has no maxima. We will not prove here this theorem, but in a nutshell,

the point is this: Let

h(z) = u(z) + jv(z) = u(x, y) + jv(x, y), (276)

where u and v are real functions. If h is analytic, the following relationships (a.k.a. the
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Cauchy–Riemann conditions)14 between the partial derivatives of u and v must hold:

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
. (277)

Taking the second order partial derivative of u:

∂2u

∂x2
=

∂2v

∂x∂y
=

∂2v

∂y∂x
= −∂

2u

∂y2
(278)

where the first equality is due to the first Cauchy–Riemann condition and the third equality

is due to the second Cauchy–Riemann condition. Equivalently,

∂2u

∂x2
+
∂2u

∂y2
= 0, (279)

which is the Laplace equation. This means, among other things, that no point at which

∂u/∂x = ∂u/∂y = 0 can be a local maximum (or a local minimum) of u, because if it is

a local maximum in the x–direction, in which case, ∂2u/∂x2 < 0, then ∂2u/∂y2 must be

positive, which makes it a local minimum in the y–direction, and vice versa. In other words,

every point of zero partial derivatives of u must be a saddle point. This discussion applies

now to the modulus of the integrand eNh(z) because
∣

∣

∣

∣

exp{Nh(z)}
∣

∣

∣

∣

= exp[NRe{h(z)}] = eNu(z). (280)

Of course, if h′(z) = 0 at some z = z0, then the derivatives both in the vertical and the

horizontal directions vanish, that is

∂h(z)

∂x

∣

∣

∣

∣

z=z0

=
∂u

∂x

∣

∣

∣

∣

z=z0

+ j
∂v

∂x

∣

∣

∣

∣

z=z0

= 0

and
∂h(z)

∂(jy)

∣

∣

∣

∣

z=z0

= −j ∂u
∂y

∣

∣

∣

∣

z=z0

+
∂v

∂y

∣

∣

∣

∣

z=z0

= 0

which mean, among other things, that then ∂u/∂x|z=z0 = ∂u/∂y|z=z0 = 0 too, and then z0

is a saddle point of |eNh(z)| = eNu(z). Thus, zero–derivative points of h are saddle points of

|eNh(z)|.
14This is related to the fact that for the derivative f ′(z) to exist, it should be independent of the direction

at which z is perturbed, whether it is, e.g., the horizontal or the vertical direction, i.e., f ′(z) = limδ→0[f(z+
δ) − f(z)]/δ = limδ→0[f(z + jδ) − f(z)]/(jδ), where δ goes to zero along the reals.
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Another way to understand the maximum modulus principle is the following (without re-

lying just on second derivatives, which might vanish too): Given a complex analytic function

f(z), we argue that the average of f over a circle always agrees with its value at the center

of this circle. Specifically, consider the circle of radius r centered at z0, i.e., z = z0 + rejθ.

Then,

1

2π

∫ π

−π
f
(

z0 + rejθ
)

dθ =
1

2πj

∫ π

−π

f
(

z0 + rejθ
)

jrejθdθ

rejθ

=
1

2πj

∮

z=z0+rejθ

f
(

z0 + rejθ
)

d
(

z0 + rejθ
)

rejθ

=
1

2πj

∮

z=z0+rejθ

f(z)dz

z − z0
= f(z0). (281)

and so,

|f(z0)| ≤
1

2π

∫ π

−π

∣

∣

∣

∣

f
(

z0 + rejθ
)

∣

∣

∣

∣

dθ ≤ max
θ

∣

∣

∣

∣

f
(

z0 + rejθ
)

∣

∣

∣

∣

, (282)

which means that |f(z0)| cannot be strictly larger than all |f(z)| in any neighborhood (an

arbitrary radius r) of z0. Now, apply this fact to f(z) = eNh(z).

Equipped with this background, let us return to our integral FN . Since we have the

freedom to choose the path P, suppose that we can find one which passes through a saddle

point z0 (hence the name of the method) and that maxz∈P |eNh(z)| is attained at z0. We

expect then, that similarly as in the Laplace method, the integral would be dominated by

eNh(z0). Of course, such a path would be fine only if it crosses the saddle point z0 at a

direction w.r.t. which z0 is a local maximum of |eNh(z)|, or equivalently, of u(z). Moreover,

in order to apply our earlier results of the Laplace method, we will find it convenient to draw

P such that any point z in the vicinity of z0, where in the Taylor expansion is (by the fact

that h′(z0) = 0)

h(z) ≈ h(z0) +
1

2
h′′(z0)(z − z0)

2 (283)

the second term, 1
2
h′′(z0)(z− z0)

2, is purely real and negative, and then it behaves locally

as a negative parabola, just like in the Laplace method. This means that

arg{h′′(z0)(z − z0)
2} ≡ arg{h′′(z0)} + 2arg(z − z0) = π (284)
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or equivalently

arg(z − z0) =
π − arg{h′′(z0)}

2

∆
= θ. (285)

Namely, P should cross z0 in the direction θ. This direction is called the axis of z0, and

it can be shown to be the direction of steepest descent from the peak at z0 (hence the

name).15

So pictorially, we are going to select a path P from A to B, which will be composed of

three parts (see Fig. 7): The parts A→ A′ and B′ → B are quite arbitrary as they constitute

the tail of the integral. The part from A′ to B′, in the vicinity of z0, is a straight line on the

axis of z0. Now, let us decompose FN into its three parts:

axis

A′

A

B′

B

z0

Figure 7: A path P from A to B, passing via z0 along the axis.

FN =

∫ A′

A

eNh(z)dz +

∫ B′

A′

eNh(z)dz +

∫ B

B′

eNh(z)dz. (286)

As for the first and the third terms,

∣

∣

∣

∣

(

∫ A′

A

+

∫ B

B′

)

dzeNh(z)

∣

∣

∣

∣

≤
(

∫ A′

A

+

∫ B

B′

)

dz|eNh(z)|

=

(

∫ A′

A

+

∫ B

B′

)

dzeNu(z) (287)

15Note that in the direction θ− π/2, which is perpendicular to the axis, arg[h′′(z0)(z − z0)
2] = π − π = 0,

which means that h′′(z0)(z − z0)
2 is real and positive (i.e., it behaves like a positive parabola). Therefore,

in this direction, z0 is a local minimum.
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whose contribution is negligible compared to eNu(z0), just like the tails in the Laplace method.

As for the middle integral,

∫ B′

A′

eNh(z)dz ≈ eNh(z0)

∫ B′

A′

exp{Nh′′(z0)(z − z0)
2/2}dz. (288)

By changing from the complex integration variable z to the real variable x, running from −δ
to +δ, with z = z0 + xejθ (moving along the axis), we get exactly the Gaussian integral of

the Laplace method, leading to

∫ B′

A′

exp{Nh′′(z0)(z − z0)
2/2}dz = ejθ

√

2π

N |h′′(z0)|
(289)

where the factor ejθ is due to the change of variable (dz = ejθdx). Thus,

FN ∼ ejθ · eNh(z0)

√

2π

N |h′′(z0)|
, (290)

and slightly more generally,

∫

P
g(z)eNh(z)dz ∼ ejθg(z0)e

Nh(z0)

√

2π

N |h′′(z0)|
(291)

The idea of integration along the axis is that along this direction, the ‘phase’ of eNh(z)

is locally constant, and only the modulus varies. Had the integration been along another

direction with an imaginary component jφ(z), the function eNh(z) would have undergone

‘modulation’, i.e., it would have oscillated with a complex exponential eNjφ(z) of a very high

‘frequency’ (proportional to N) and then eNu(z0) would not have guaranteed to dictate the

modulus and to dominate the integral.

Now, an important comment is in order: What happens if there is more than one saddle

point? Suppose we have two saddle points, z1 and z2. On a first thought, one may be

concerned by the following consideration: We can construct two paths from A to B, path P1

crossing z1, and path P2 crossing z2. Now, if zi is the highest point along Pi for both i = 1 and

i = 2, then FN is exponentially both eNh(z1) and eNh(z2) at the same time. If h(z1) 6= h(z2),

this is a contradiction. But the following consideration shows that this cannot happen as
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long as h(z) is analytic within the region C surrounded by P1 ∪ P2. Suppose conversely,

that the scenario described above happens. Then either z1 or z2 maximize |eNh(z)| along the

closed path P1 ∪ P2. Let us say that it is z1. We claim that then z1 cannot be a saddle

point, for the following reason: No point in the interior of C can be higher than z1, because

if there was such a point, say, z3, then we had

max
z∈C

|eNh(z)| ≥ |eNh(z3)| > |eNh(z1)| = max
z∈P1∪P2

|eNh(z)| (292)

which contradicts the maximum modulus principle. This then means, among other things,

that in every neighborhood of z1, all points in C are lower than z1, including points found in a

direction perpendicular to the direction of the axis through z1. But this contradicts the fact

that z1 is a saddle point: Had it been a saddle point, it would be a local maximum along the

axis and a local minimum along the perpendicular direction. Since z1 was assumed a saddle

point, then it cannot be the highest point on P1, which means that it doesn’t dominate the

integral.

One might now be concerned by the thought that the integral along P1 is then dominated

by an even higher contribution, which still seems to contradict the lower exponential order

of eNh(z2) attained by the path P2. However, this is not the case. The highest point on

the path is guaranteed to dominate the integral only if it is a saddle point. Consider, for

example, the integral FN =
∫ a+j2π

a+j0
eNzdz. Along the vertical line from a+ j0 to a+ j2π, the

modulus (or attitude) is eNa everywhere. If the attitude alone had been whatever counts

(regardless of whether it is a saddle point or not), the exponential order of (the modulus of)

this integral would be eNa. However, the true value of this integral is zero! The reason for

this disagreement is that there is no saddle point along this path.

What about a path P that crosses both z1 and z2? This cannot be a good path for the

saddle point method, for the following reason: Consider two slightly perturbed versions of

P: path P1, which is very close to P, it crosses z1, but it makes a tiny detour that bypasses

z2, and similarly path P2, passing via z2, but with a small deformation near z1. Path P2

includes z2 as saddle point, but it is not the highest point on the path, since P2 passes near

107



z1, which is higher. Path P1 includes z1 as saddle point, but it cannot be the highest point on

the path because we are back to the same situation we were two paragraphs ago. Since both

P1 and P2 are bad choices, and since they are both arbitrarily close to P, then P cannot be

good either.

To summarize: if we have multiple saddle points, we should find the one with the lowest

attitude and then we have a chance to find a path through this saddle point (and only this

one) along which this saddle point is dominant.

Consider next a few simple examples.

Example 1 – relation between Ω(E) and Z(β) revisited. Assuming, without essential loss

of generality, that the ground–state energy of the system is zero, we have seen before the

relation

Z(β) =

∫ ∞

0

dEΩ(E)e−βE , (293)

which actually means that Z(β) is the Laplace transform of Ω(E). Consequently, this means

that Ω(E) is the inverse Laplace transform of Z(β), i.e.,

Ω(E) =
1

2πj

∫ γ+j∞

γ−j∞
eβEZ(β)dβ, (294)

where the integration in the complex plane is along the vertical line Re(β) = γ, which is

chosen to the right of all singularity points of Z(β). In the large N limit, this becomes

Ω(E)
·
=

1

2πj

∫ γ+j∞

γ−j∞
eN [βǫ+φ(β)]dβ, (295)

which can now be assessed using the saddle point method. The derivative of the bracketed

term at the exponent vanishes at the value of β that solves the equation φ′(β) = −ǫ, which is

β∗(ǫ) ∈ IR, thus we will choose γ = β∗(ǫ) (assuming that this is a possible choice) and thereby

let the integration path pass through this saddle point. At β = β∗(ǫ), | exp{N [βǫ+ φ(β)]}|
has its maximum along the vertical direction, β = β∗(ǫ)+ jω, −∞ < ω < +∞ (and hence it

dominates the integral), but since it is a saddle point, it minimizes | exp{N [βǫ + φ(β)]}| =

exp{N [βǫ+ φ(β)]}, in the horizontal direction (the real line). Thus,

Ω(E)
·
= exp{N min

β∈IR
[βǫ+ φ(β)]} = eNΣ(ǫ), (296)
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as we have seen in Chapter 2.

Example 2 – size of a type class. This is a question that can very easily be answered using

simple combinatorics (the method of types). Among all binary sequences of length N , how

many have n 1’s and (N − n) 0’s? Let us calculate this number, Mn, using the saddle point

method (see also [80, Sect. 4.7] for a more general calculation):

Mn =
∑

x∈{0,1}N

I
{

N
∑

i=1

xi = n

}

=
1
∑

x1=0

. . .
1
∑

xN=0

I
{

N
∑

i=1

xi = n

}

=

1
∑

x1=0

. . .

1
∑

xN=0

1

2π

∫ 2π

0

dω exp

{

jω

(

n−
N
∑

i=1

xi

)}

=

∫ 2π

0

dω

2π

1
∑

x1=0

. . .

1
∑

xN=0

exp

{

jω

(

n−
N
∑

i=1

xi

)}

=

∫ 2π

0

dω

2π
ejωn

N
∏

i=1

[

1
∑

xi=0

e−jωxi

]

=

∫ 2π

0

dω

2π
ejωn(1 + e−jω)N

=

∫ 2π

0

dω

2π
exp{N [jωα + ln(1 + e−jω)]}

=

∫ 2πj

0

dz

2πj
exp{N [zα + ln(1 + e−z)]} (297)

where we have denoted α = n/N and in the last step we changed the integration variable

according to z = jω. This is an integral with a starting point A at the origin and an ending

point B at 2πj. Here, h(z) = zα + ln(1 + e−z), and the saddle point, where h′(z) = 0, is on

the real axis: z0 = ln 1−α
α

, where h(z0) gives the binary entropy of α, as expected. Thus, the

integration path must be deformed to pass through this point on the real axis, and then to

approach back the imaginary axis, so as to arrive at B. There is one caveat here, however:

The points A and B are both higher than z0: While u(z0) = −α ln(1−α)− (1−α) ln(1−α),

at the edges we have u(A) = u(B) = ln 2. So this is not a good saddle–point integral to
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work with.

Two small modifications can, however, fix the problem: The first is to define the inte-

gration interval of ω to be [−π, π] rather than [0, 2π] (which is, of course, legitimate), and

then z would run from −jπ to +jπ. The second is the following: Consider again the first

line of the expression of Mn above, but before doing anything else, let us multiply the whole

expression (outside the summation) by eθn (θ an arbitrary real), whereas the summand will

be multiplied by e−θ
P

i xi, which exactly cancels the factor of eθn for every non–zero term of

this sum. We can now repeat exactly the same calculation as above, but this time we get:

Mn =

∫ θ+jπ

θ−jπ

dz

2πj
exp{N [zα + ln(1 + e−z)]}, (298)

namely, we moved the integration path to a parallel vertical line and shifted it by the

amount of π to the south. Now, we have the freedom to choose θ. The obvious choice is to

set θ = ln 1−α
α

, so that we cross the saddle point z0. Now z0 is the highest point on the path.

Moreover, the vertical direction of the integration is also the direction of the axis of z0 as it

should be. Also, the second order factor of O(1/
√
N) of the saddle point integration agrees

with the same factor that we can see from the Sterling approximation in the more refined

formula.

A slightly different look at this example is as follows. Consider the Schottky example

and the partition function

Z(β) =
∑

x

e−βǫ0
P

i xi, (299)

which, on the one hand, is given by
∑N

n=0Mne
−βǫ0n, and on the other hand, is given also by

(1 + e−βǫ0)N . Thus, defining s = e−βǫ0, we have

Z(s) =
N
∑

n=0

Mns
n, (300)

and so, Z(s) = (1 + s)N is the z–transform of the finite sequence {Mn}Nn=0. Consequently,

Mn is given by the inverse z–transform of Z(s) = (1 + s)N , i.e.,

Mn =
1

2πj

∮

(1 + s)Ns−n−1ds
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=
1

2πj

∮

exp{N [ln(1 + s) − α ln s]}ds (301)

This time, the integration path is any closed path that surrounds the origin, the saddle point

is s0 = α/(1 − α), so we take the path to be a circle whose radius is r = α
1−α . The rest of

the calculation is essentially the same as before, and of course, so is the result. Note that

this is actually the very same integral as before up to a change of the integration variable

from z to s, according to s = e−z, which maps the vertical straight line between θ − πj and

θ + πj onto a circle of radius e−θ, centered at the origin. �

Example 3 – surface area of a sphere. This is largely a continuous analogue of Example

2, which is given in order to show that this method, unlike the combinatorial method of

types, extends to the continuous alphabet case. Let us compute the surface area of an

N–dimensional sphere with radius NR:

SN =

∫

IRN

dx · δ
(

NR −
N
∑

i=1

x2
i

)

= eNθR
∫

IRN

dxe−θ
P

i x
2
i · δ

(

NR −
N
∑

i=1

x2
i

)

= eNθR
∫

IRN

dxe−θ
P

i x
2
i

∫ +∞

−∞

dω

2π
ejω(NR−P

i x
2
i )

= eNθR
∫ +∞

−∞

dω

2π
ejωNR

∫

IRN

dxe−(θ+jω)
P

i x
2
i

= eNθR
∫ +∞

−∞

dω

2π
ejωNR

[∫

IR

dxe−(θ+jω)x2

]N

= eNθR
∫ +∞

−∞

dω

2π
ejωNR

(

π

θ + jω

)N/2

=
πN/2

2π

∫ +∞

−∞
dω exp

{

N

[

(θ + jω)R− 1

2
ln(θ + jω)

]}

=
πN/2

2πj

∫ θ+j∞

θ−j∞
dz exp

{

N

[

zR − 1

2
ln z

]}

. (302)

where δ(·) denotes the Dirac delta function. So here

h(z) = zR − 1

2
ln z (303)
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and the integration is along an arbitrary vertical straight line parametrized by θ. We will

select this straight line to pass via the saddle point z0 = 1
2R

. Now,

h(z0) =
1

2
ln(2πeR), (304)

which is exactly the differential entropy of a Gaussian random variable, as expected. �

Comment: In these examples, we have used an additional trick: whenever we had to

deal with an problematic non–analytic function like the δ function, we presented it as the

inverse Fourier transform of a ‘nice’ function, and then changed the order of integrations and

summations. This idea will be repeated in the sequel. It is used very frequently in physics

literature.

4.4 Extended Example: Capacity of a Disordered System

To summarize the analysis tools that we have seen thus far, we provide here an extended

example of analyzing the capacity of a certain model of a disordered magnetic material,

namely, the Sherrington–Kirkpatrick spin glass. We will elaborate more on models of this

kind in the next chapter, but for now, this is merely brought here as an extensive exercise.

The derivation and the results here follow the work of Shental and Kanter [105] (see also

[21]).

For a given positive integer N , consider a set of N(N − 1)/2 i.i.d., zero–mean Gaussian

random variables, {Jiℓ, 1 ≤ i < ℓ ≤ N} all with variance J2/N , where J > 0 is fixed. Now

form a symmetric N×N zero–diagonal matrix from {Jiℓ}, thus extending the definition of Jij

for all pairs (i, ℓ) in the range {1, 2, . . . , N}. The problem addressed in [105] is the following:

For a typical realization of {Jiℓ}, how many binary sequences s = (s1, . . . , sN) ∈ {−1,+1}N

can be found such that the equations

si = sgn

(

∑

ℓ

Jiℓsℓ

)

, i = 1, . . . , N, (305)

are all satisfied simultaneously?
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In a nutshell, the motivation for this question is that in the Sherrington–Kirkpatrick spin

glass model, each such solution is a meta–stable state, which can be used to store information.

The evaluation of the number of meta–stable states determines then the amount of memory,

or the capacity of this system.

Let M(N) denote the number of solutions of these equations in {−1,+1}N and define

the capacity of the system as

C = lim
N→∞

ln M̄(N)}
N

, (306)

where M̄(N) is the expectation of M(N), taken w.r.t. the randomness of {Jiℓ} and where

it is assumed that the limit exists. Note that this is different, and in general larger, than

limN→∞
1
N

E{lnM(N)}, which captures the capacity for a typical realization of the system.

These two different definitions will be discussed later, in Subsection 5.7.

The main result of [105] is the following single–letter expression for the capacity:

C = ln[2(1 −Q(t))] − t2

2
(307)

where

Q(t)
∆
=

1

2π

∫ ∞

t

du · e−u2/2 (308)

and t is the solution to the equation

t =
e−t

2/2

√
2π[1 −Q(t)]

. (309)

In fact, Shental and Kanter address a slightly more general question: Quite obviously,

the meta–stability condition is that for every i there exists λi > 0 such that

λisi =
∑

j

Jijsj. (310)

The question addressed is then the following: Given a constant K, what is the expected

number of states s for which there is λi > K for each i such that λisi =
∑

j Jijsj? For

K → −∞, one expects C → ln 2, and for K → ∞, one expects C → 0. The case of interest

is K = 0.

113



Turning now to the analysis, we first observe that for each such state,

∫ ∞

K

· · ·
∫ ∞

K

N
∏

i=1

[

dλiδ

(

∑

ℓ

Jiℓsℓ − λisi

)]

= 1 (311)

thus

M(N) =

∫ ∞

K

· · ·
∫ ∞

K

N
∏

i=1

dλi
∑

s

〈

N
∏

i=1

δ

(

∑

ℓ

Jiℓsℓ − λisi

)〉

J

, (312)

where 〈·〉J denotes expectation w.r.t. the randomness of {Jiℓ}. Now, since {Jiℓ} are N(N −
1)/2 i.i.d., zero–mean Gaussian random variables with variance J2/n, the expected number

of solutions M̄(N) is given by

M̄(N) =

(

N

2πJ2

)N(N−1)/4 ∫

IRN(N−1)/2

dJ exp

{

− N

2J2

∑

i>ℓ

J2
iℓ

}

×

∑

s

∫ ∞

K

· · ·
∫ ∞

K

dλ ·
N
∏

i=1

δ

(

∑

ℓ

Jiℓsℓ − λisi

)

. (313)

The next step is to represent each Dirac function as an inverse Fourier transform as we did

earlier, i.e.,

δ(x) =
1

2π

∫ +∞

−∞
dωejωx j =

√
−1 (314)

and then

M̄(N) =

(

N

2πJ2

)N(N−1)/4 ∫

IRN(N−1)/2

dJ×

exp

{

− N

2J2

∑

i>ℓ

J2
iℓ

}

·
∑

s

∫ ∞

K

· · ·
∫ ∞

K

dλ×

∫

IRN

dω

(2π)N

N
∏

i=1

exp

{

jωi

(

∑

ℓ

Jiℓsℓ − λisi

)}

=

(

N

2πJ2

)N(N−1)/4 ∫

IRN(N−1)/2

dJ
∑

s

∫ ∞

K

· · ·
∫ ∞

K

dλ×

∫

IRN

dω

(2π)N
exp

{

− N

2J2

∑

i>ℓ

J2
iℓ+

j
∑

i>ℓ

Jiℓ(ωisℓ + ωℓsi) − j
∑

i

ωisiλi

}

(315)
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We now use the so called Hubbard–Stratonovich transform, which is nothing but the identity

∫

IR

dxeax
2+bx ≡

√

π

a
eb

2/(4a), (316)

with the assignments a = n/(2J2) and b = ωisℓ + ωℓsi to obtain

M̄(N) =
∑

s

∫ ∞

K

· · ·
∫ ∞

K

dλ

∫

IRN

dω

(2π)n
×

N
∏

i=1

e−jωisiλi

∏

i>ℓ

exp{−(ωisℓ + ωℓsi)
2J2/(2N)}. (317)

Next observe that the summand does not actually depend on s because each si is multiplied

by an integration variable that runs over IR and thus the sign of si may be absorbed by

this integration variable anyhow. Thus, all 2N contributions are the same as that of s =

(+1, . . . ,+1):

M̄(N) = 2N
∫ ∞

K

· · ·
∫ ∞

K

dλ

∫

IRN

dω

(2π)N
×

N
∏

i=1

e−jωiλi

∏

i>ℓ

exp{−(ωi + ωℓ)
2J2/(2N)}. (318)

Next use the following identity:

J2

2N

∑

i>ℓ

(ωi + ωℓ)
2 = J2 (N − 1)

2N

∑

i

ω2
i +

J2

N

∑

i>ℓ

ωiωℓ, (319)

and so for large N ,

J2

2N

∑

i>ℓ

(ωi + ωℓ)
2 ≈ J2

2

∑

i

ω2
i +

J2

N

∑

i>ℓ

ωiωℓ

≈ J2

2

∑

i

ω2
i +

J2

2N

(

N
∑

i=1

ωi

)2

. (320)

Thus

M̄(N) ≈ 2n
∫ ∞

K

· · ·
∫ ∞

K

dλ

∫

IRn

dω

(2π)n
×

n
∏

i=1

exp







−jωiλi −
J2

2

n
∑

i=1

ω2
i −

J2

2n

(

n
∑

i=1

ωi

)2






. (321)
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We now use again the Hubbard–Stratonovich transform

ea
2 ≡

∫

IR

dt

2π
ej

√
2at−t2/2 (322)

and then, after changing variables λi → Jλi and Jωi → ωi, we get:

M̄(N) ≈ 1

πn
· 1√

2π

∫ ∞

K/J

· · ·
∫ ∞

K/J

dλ

∫

IR

dte−t
2/2×

n
∏

i=1

[

∫

IR

dωi exp

{

jωi

(

−λi +
t√
n

)

− 1

2

n
∑

i=1

ω2
i

}]

(323)

Changing the integration variable from t/
√
n to t, this becomes

M̄(N) ≈ 1

πN
· N√

2π

∫

IR

dte−Nt
2/2

[
∫ ∞

K/λ

dλ

∫

IR

dωejω(t−λ)−ω2/2

]N

=
1

πN
· N√

2π

∫

IR

dte−Nt
2/2

[√
2π

∫ ∞

K/λ

dλe−(t−λ)2/2

]N

=
1

πN
· N√

2π

∫

IR

dte−N(t+K/J)2/2

[√
2π

∫ t

−∞
dλe−λ

2/2

]N

=
1

πN
· N√

2π

∫

IR

dte−N(t+K/J)2/2 · [2π(1 −Q(t))]N

=
N√
2π

∫

IR

dt exp

{

−N
2

(t+K/J)2 + ln[2(1 −Q(t))]

}

≈ exp

{

N · max
t

[

ln(2(1 −Q(t)) − (t+K/J)2

2

]}

(324)

where in the last step, we used the saddle point method. The maximizing t zeroes out the

derivative, i.e., it solves the equation

e−t
2/2

√
2π[1 −Q(t)]

= t+
K

J
(325)

which for K = 0, gives exactly the asserted result about the capacity.

4.5 The Replica Method

The replica method is one of the most useful tools, which originally comes from statistical

physics, but it finds its use in a variety of other fields, with communications and informa-

tion theory included (e.g., multiuser detection). As we shall see, there are many models in
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statistical physics, where the partition function Z depends, among other things, on some

random parameters (to model disorder), and then Z, or lnZ, becomes a random variable

as well. Furthermore, it turns out that more often than not, the random variable 1
N

lnZ

exhibits a concentration property, or in the jargon of physicists, a self–averaging property: in

the thermodynamic limit of N → ∞, it falls in the vicinity of its expectation 1
N
〈lnZ〉, with

very high probability. Therefore, the computation of the per–particle free energy (and hence

also many other physical quantities), for a typical realization of these random parameters,

is associated with the computation of 〈lnZ〉. The problem is that in most of the interest-

ing cases, the exact closed form calculation of this expectation is extremely difficult if not

altogether impossible. This is the point where the replica method enters into the picture.

Before diving into the description of the replica method, it is important to make a certain

digression: This is a non–rigorous method, and it is not quite clear (yet) what are exactly

the conditions under which it gives the correct result. Physicists tend to believe in it very

strongly, because in many situations it gives results that make sense, agree with intuition, or

make good fit to experimental results and/or simulation results. Moreover, in many cases,

predictions made by the replica theory were confirmed by other, rigorous mathematical

methods. The problem is that when there are no other means to test its validity, there is

no certainty that it is credible and reliable. In such cases, it is believed that the correct

approach would be to refer to the results it provides, as a certain educated guess or as a

conjecture, rather than a solid scientific truth. Indeed, some reservations concerning the

replica method have been raised in the literature [29], [118], [130]. Another, related method

is the cavity method (see, e.g, [80, Chap. 19]), but it will not be covered in this work.

As we shall see shortly, the problematics of the replica method is not just that it depends

on a certain interchangeability between a limit and an integral, but more severely, that the

procedure that it proposes, is actually not even well–defined. In spite of these reservations,

which are well known, the replica method has become highly popular and it is used extremely

widely. A very partial list of (mostly relatively recent) articles that make use of this method

includes [10], [11], [37], [41], [50], [51], [53], [58], [49],[52], [84], [83], [113],[114],[115], [107],
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[126], and [127]. It is then appropriate to devote to the replica method some attention, and

so, we shall indeed present its mean ideas, in the general level, up to a certain point. We

shall not use, however, the replica method elsewhere in this work.

Consider then the calculation of E lnZ. The problem is that Z is a sum, and it is not

easy to say something intelligent on the logarithm of a sum of many terms, let alone the

expectation of this log–sum. If, instead, we had to deal with integer moments of Z, i.e.,

EZm, this would have been much easier, because integer moments of sums, are sums of

products. The idea is therefore to seek a way to relate moments EZm to E lnZ. This can

be done if real, rather than just integer, moments are allowed. These could be related via

the simple relation

E lnZ = lim
m→0

EZm − 1

m
= lim

m→0

ln EZm

m
(326)

provided that the expectation operator and the limit over m can be interchanged. But we

know how to deal only with integer moments of m. The first courageous idea of the replica

method, at this point, is to offer the following recipe: Compute EZm, for a general positive

integer m, and obtain an expression which is a function of m. Once this has been done,

forget that m is an integer, and consider it as a real variable. Finally, use the above identity,

taking the limit of m→ 0.

Beyond the technicality of interchanging the expectation operator with the limit, which

applies in most conceivable cases, there is a more serious concern here, and this is that

the above procedure is not well–defined, as mentioned earlier: We derive an expression

f(m)
∆
= EZm, which is originally meant for m integer only, and then ‘interpolate’ in between

integers by using the same expression, in other words, we take the analytic continuation.

Actually, the right–most side of the above identity is f ′(0) where f ′ is the derivative of f .

But there are infinitely many functions of a continuous variable m that match given values

for integer values of m: If f(m) is such, then f̃(m) = f(m)+g(m) is good as well, for every g

that vanishes on the integers, for example, take g(m) = A sin(πm). Nonetheless, f̃ ′(0) might

be different from f ′(0), and this is indeed the case with the example where g is sinusoidal.

So in this step of the procedure there is some weakness, but this point is simply ignored.
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After this introduction, let us now present the replica method on a concrete example,

which is essentially taken from [80, Sect. 8.1]. In this example, Z =
∑2N

i=1 e
−βEi, where

{Ei}2N

i=1 are i.i.d. random variables. In the sequel, we will work with this model quite a

lot, after we see how it is relevant. It is called the random energy model (REM). For now,

however, this is just a technical example on which we demonstrate the replica method. As

the replica method suggests, let us first look at the integer moments. First, what we have is:

Zm =





2N
∑

i=1

e−βEi





m

=
2N
∑

i1=1

. . .
2N
∑

im=1

exp{−β
m
∑

a=1

Eia}. (327)

The right–most side can be thought of as the partition function pertaining to a new system,

consisting of m independent replicas (hence the name of the method) of the original system.

Each configuration of the new system is indexed by an m–tuple i = (i1, . . . , im), where each

ia runs from 1 to 2N , and the energy is
∑

aEia . Let us now rewrite Zm slightly differently:

Zm =

2N
∑

i1=1

. . .

2N
∑

im=1

exp

{

−β
m
∑

a=1

Eia

}

=
∑

i

exp







−β
m
∑

a=1

2N
∑

j=1

I(ia = j)Ej







=
∑

i

exp







−β
2N
∑

j=1

m
∑

a=1

I(ia = j)Ej







=
∑

i

2N
∏

j=1

exp

{

−β
m
∑

a=1

I(ia = j)Ej

}

Let us now further suppose that each Ej is N (0, NJ2/2), as is customary in the REM, for

reasons that we shall see later on. Then, taking expectations w.r.t. this distribution, we get:

EZm =
∑

i

E

2N
∏

j=1

exp

{

−β
m
∑

a=1

I(ia = j)Ej

}

=
∑

i

2N
∏

j=1

exp

{

β2NJ2

4

m
∑

a,b=1

I(ia = j)I(ib = j)

}
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=
∑

i

exp







β2NJ2

4

m
∑

a,b=1

2N
∑

j=1

I(ia = j)I(ib = j)







=
∑

i

exp

{

β2NJ2

4

m
∑

a,b=1

I(ia = ib)

}

.

We now define an m × m binary matrix Q, called the overlap matrix, whose entries are

Qab = I(ia = ib). Note that the summand in the last expression depends on i only via

Q. Let MN (Q) denote the number of configurations {i} whose overlap matrix is Q. We

have to exhaust all possible overlap matrices, which are all binary symmetric matrices with

1’s on the main diagonal. Observe that the number of such matrices is 2m(m−1)/2 whereas

the number of configurations is 2Nm. Thus we are dividing the exponentially large number

of configurations into a relatively small number (independent of N) of equivalence classes,

something that rings the bell of the method of types. Let us suppose, for now, that there is

some function s(Q) such that MN (Q)
·
= eNs(Q), and so

EZm ·
=
∑

Q

eNg(Q) (328)

with:

g(Q) =
β2J2

4

m
∑

a,b=1

Qab + s(Q). (329)

From this point onward, the strategy is to use the saddle point method. Note that the

function g(Q) is symmetric under replica permutations: let π be a permutation operator of

m objects and letQπ be the overlap matrix with entries Qπ
ab = Qπ(a)π(b). Then, g(Qπ) = g(Q).

This property is called replica symmetry (RS), and this property is inherent to the replica

method. In light of this, the first natural idea that comes to our mind is to postulate that

the saddle point is symmetric too, in other words, to assume that the saddle–point Q has

1’s on its main diagonal and all other entries are taken to be the same (binary) value, call it

q0. Now, there are only two possibilities:

• q0 = 0 and then MN(Q) = 2N(2N−1)···(2N−m+1), which implies that s(Q) = m ln 2,

and then g(Q) = g0(Q)
∆
= m(β2J2/4 + ln 2), thus (lnEZm)/m = β2J2/4 + ln 2, and so
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is the limit as m → 0. Later on, we will compare this with the result obtained from a

more rigorous derivation.

• q0 = 1, which means that all components of i are the same, and then MN(Q) = 2N ,

which means that s(Q) = ln 2 and so, g(Q) = g1(Q)
∆
= m2β2J2/4 + ln 2.

Now, one should check which one of these saddle points is the dominant one, depending on

β and m. For m ≥ 1, the behavior is dominated by max{g0(Q), g1(Q)}, which is g1(Q) for

β ≥ βc(m)
∆
= 2

J

√

ln 2/m, and g0(Q) otherwise. For m < 1 (which is, in fact, the relevant case

for m → 0), one should look at min{g0(Q), g1(Q)}, which is g0(Q) in the high–temperature

range. As it turns out, in certain regions in the β–m plane, we must back off from the ‘belief’

that dominant configurations are purely symmetric, and resort to the quest for dominant

configurations with a lower level of symmetry. The first step, after having exploited the

purely symmetric case above, is called one–step replica symmetry breaking (1RSB), and this

means some partition of the set {1, 2, . . . , m} into two complementary subsets (say, of equal

size) and postulating a saddle point Q of the following structure:

Qab =







1 a = b
q0 a and b are in the same subset
q1 a and b are in different subsets

(330)

In further steps of symmetry breaking, one may split {1, 2, . . . , m} to a larger number of

subsets or even introduce certain hierarchical structures. The replica method includes a

variety of heuristic guidelines in this context. We will not delve into them any further in the

framework of this monograph, but the interested reader can easily find more details in the

literature, specifically, in [80].
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5 Interacting Particles and Phase Transitions

In this chapter, we introduce additional physics background pertaining to systems with

interacting particles. When the interactions among the particles are sufficiently significant,

the system exhibits a certain collective behavior that, in the thermodynamic limit, may

be subjected to phase transitions, i.e., abrupt changes in the behavior and the properties

of the system in the presence of a gradual change in an external control parameter, like

temperature, pressure, or magnetic field.

Analogous abrupt transitions, in the asymptotic behavior, are familiar to us also in in-

formation theory. For example, when the signal–to–noise (SNR) of a coded communication

system crosses the value for which the capacity meets the coding rate, there is an abrupt

transition between reliable communication and unreliable communication, where the proba-

bility of error essentially jumps between zero and one. Are there any relationships between

the phase transitions in physics and those in information theory? It turns out that the an-

swer is affirmative to a large extent. By mapping the mathematical formalism of the coded

communication problem to that of an analogous physical system with interacting particles,

some insights on these relations can be obtained. We will see later on that these insights

can also be harnessed for sharper analysis tools.

5.1 Introduction – Sources of Interaction

As already mentioned in the introductory part of the previous chapter, so far, we have dealt

almost exclusively with systems that have additive Hamiltonians, E(x) =
∑

i E(xi), which

means that the particles are i.i.d. and there is no interaction: each particle behaves as if it was

alone in the world. In Nature, of course, this is seldom really the case. Sometimes this is still

a reasonably good approximation, but in many other cases, the interactions are appreciably

strong and cannot be neglected. Among the different particles there could be many sorts of

mutual forces, such as mechanical, electrical, or magnetic forces, etc. There could also be

interactions that stem from quantum–mechanical effects: As described at the end of Chapter
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2, Pauli’s exclusion principle asserts that for Fermions (e.g., electrons), no quantum state

can be populated by more than one particle. This gives rise to a certain mutual influence

between particles. Another type of interaction stems from the fact that the particles are

indistinguishable, so permutations between them are not considered as distinct states. For

example, referring again to the example of quantum statistics, at the end of Chapter 2, had

the N particles been statistically independent, the resulting partition function would be

ZN(β) =

[

∑

r

e−βǫr

]N

=
∑

N :
P

r Nr=N

N !
∏

rNr!
· exp

{

−β
∑

r

Nrǫr

}

(331)

whereas in eq. (82), the combinatorial factor, N !/
∏

rNr!, that distinguishes between the

various permutations among the particles, is absent. This introduces dependency, which

physically means interaction.16

5.2 Models of Interacting Particles

The simplest forms of deviation from the purely additive Hamiltonian structure are those

that consists, in addition to the individual energy terms, {E(xi)}, also terms that depend on

pairs, and/or triples, and/or even larger cliques of particles. In the case of purely pairwise

interactions, this means a structure like the following:

E(x) =

N
∑

i=1

E(xi) +
∑

(i,j)

ε(xi, xj) (332)

where the summation over pairs can be defined over all pairs i 6= j, or over some of the pairs,

according to a given rule, e.g., depending on the distance between particle i and particle j,

and according to the geometry of the system, or according to a certain graph whose edges

connect the relevant pairs of variables (that in turn, are designated as nodes).

16Indeed, in the case of the boson gas, there is a well–known effect referred to as Bose–Einstein conden-

sation, which is actually a phase transition, but phase transitions can occur only in systems of interacting
particles, as will be discussed in this set of lectures.
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For example, in a one–dimensional array (a lattice) of particles, a customary model ac-

counts for interactions between neighboring pairs only, neglecting more remote ones, thus the

second term above would be
∑

i ε(xi, xi+1). A well known special case of this is that of a poly-

mer [28], or a solid with crystal lattice structure, where in the one–dimensional version of the

model, atoms are thought of as a chain of masses connected by springs (see left part of Fig.

8), i.e., an array of coupled harmonic oscillators. In this case, ε(xi, xi+1) = 1
2
K(ui+1 − ui)

2,

where K is a constant and ui is the displacement of the i-th atom from its equilibrium lo-

cation, i.e., the potential energies of the springs. This model has an easy analytical solution

(by applying a Fourier transform on the sequence {ui}), where by “solution”, we mean a

closed–form, computable formula for the log–partition function, at least in the thermody-

namic limit. In higher dimensional arrays (or lattices), similar interactions apply, there are

Figure 8: Elastic interaction forces between adjacent atoms in a one–dimensional lattice (left part
of the figure) and in a two–dimensional lattice (right part).

just more neighbors to each site, from the various directions (see right part of Fig. 8). In a

system where the particles are mobile and hence their locations vary and have no geometrical

structure, like in a gas, the interaction terms are also potential energies pertaining to the

mutual forces (see Fig. 9), and these normally depend solely on the distances ‖~ri − ~rj‖. For

124



Figure 9: Mobile particles and mutual forces between them.

example, in a non–ideal gas,

E(x) =

N
∑

i=1

‖~pi‖2

2m
+
∑

i6=j
V (‖~ri − ~rj‖). (333)

A very simple special case is that of hard spheres (Billiard balls), without any forces, where

V (‖~ri − ~rj‖) =

{

∞ ‖~ri − ~rj‖ < 2R
0 ‖~ri − ~rj‖ ≥ 2R

(334)

which expresses the simple fact that balls cannot physically overlap. This model can (and

indeed is) being used to obtain bounds on sphere–packing problems, which are very relevant

to channel coding theory. This model is not solvable in general and its solution is an open

challenge. The interested reader can find more details on this line of research, in several

articles, such as [18], [64], [99], [97], on the physical aspects, as well as [91] and [93] on the

application to coding theory.

Yet another example of a model, or more precisely, a very large class of models with

interactions, are those of magnetic materials. These models will closely accompany our

discussions from this point onward, because as described in the Introduction, some of them

lend themselves to mathematical formalisms that are analogous to those of coding problems,

as we shall see. Few of these models are solvable, most of them are not. For the purpose of

our discussion, a magnetic material is one for which the relevant property of each particle

is its magnetic moment. The magnetic moment is a vector proportional to the angular
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momentum of a revolving charged particle (like a rotating electron, or a current loop), or the

spin, and it designates the intensity of its response to the net magnetic field that this particle

‘feels’. This magnetic field may be the superposition of an externally applied magnetic field

and the magnetic fields generated by the neighboring spins.

Quantum mechanical considerations dictate that each spin, which will be denoted by si,

is quantized, that is, it may take only one out of finitely many values. In the simplest case

to be adopted in our study – two values only. These will be designated by si = +1 (“spin

up”) and si = −1 (“spin down”), corresponding to the same intensity, but in two opposite

directions, one parallel to the magnetic field, and the other – anti-parallel (see Fig. 10). The

Figure 10: Illustration of a spin array on a square lattice.

Hamiltonian associated with an array of spins s = (s1, . . . , sN) is customarily modeled (up

to certain constants that, among other things, accommodate for the physical units) with a

structure like this:

E(s) = −B ·
N
∑

i=1

si −
∑

(i,j)

Jijsisj, (335)

where B is the externally applied magnetic field and {Jij} are the coupling constants that

designate the levels of interaction between spin pairs, and they depend on properties of
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the magnetic material and on the geometry of the system. The first term accounts for the

contributions of potential energies of all spins due to the magnetic field, which in general,

are given by the inner product ~B · ~si, but since each ~si is either parallel or anti-parallel to

~B, as said, these boil down to simple products, where only the sign of each si counts. Since

P (s) is proportional to e−βE(s), the spins ‘prefer’ to be parallel, rather than anti-parallel to

the magnetic field. The second term in the above Hamiltonian accounts for the interaction

energy. If Jij are all positive, they also prefer to be parallel to one another (the probability

for this is larger), which is the case where the material is called ferromagnetic (like iron and

nickel). If they are all negative, the material is antiferromagnetic. In the mixed case, it is

called a spin glass. In the latter, the behavior is rather complicated, as we shall see later on.

Of course, the above model for the Hamiltonian can (and, in fact, is being) generalized

to include interactions formed also, by triples, quadruples, or any fixed size p (that does not

grow with N) of spin–cliques. At this point, it is instructive to see the relation between

spin–array models (especially, those that involve large cliques of spins) to linear channel

codes, which was first identified by Sourlas [111],[112]. Consider a linear code defined by

a set of m parity–check equations (in GF (2)), each involving the modulo–2 sum of some

subset of the components of the codeword x. I.e., the ℓ–th parity–check equation is:

xiℓ1 ⊕ xiℓ2 ⊕ · · · ⊕ xiℓkℓ

= 0, ℓ = 1, . . . , m, (336)

where iℓj is the index of the j–th bit that takes part in the ℓ–th parity–check equation and kℓ is

the number of bits involved in that equation. Transforming from xi ∈ {0, 1} to si ∈ {−1,+1}
via si = 1 − 2xi, this is equivalent to

siℓ1siℓ2 · · · siℓkℓ

= 1, ℓ = 1, . . . , m. (337)

The maximum a–posteriori (MAP) decoder estimates s based on the posterior

P (s|y) =
P (s)P (y|s)

Z(y)
; Z(y) =

∑

s

P (s)P (y|s) = P (y), (338)

where P (s) is normally assumed uniform over the codewords (we will elaborate on this

posterior distribution function later on). Assuming, e.g., a binary symmetric channel (BSC)
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or a Gaussian channel P (y|s), the relevant distance between the codeword s = (s1, . . . , sN)

and the channel output y = (y1, . . . , yN) is proportional to ‖s − y‖2 = const. − 2
∑

i siyi.

Thus, P (s|y) can be thought of as a B–G distribution with Hamiltonian

E(s|y) = −J
N
∑

i=1

siyi +
m
∑

ℓ=1

φ(siℓ1siℓ2 · · · siℓkℓ

) (339)

where J is some constant (depending on the channel parameters), the function φ(u) vanishes

for u = 1 and becomes infinite for u 6= 1, and the partition function given by the denominator

of P (s|y). The first term plays the analogous role to that of the contribution of the magnetic

field in a spin system model, where each ‘spin’ si ‘feels’ a different magnetic field proportional

to yi, and the second term accounts for the interactions among cliques of spins. In the case

of low–density parity check (LDPC) codes, where each parity check equation involves only

a small number of bits {si}, these interaction terms amount to cliques of relatively small

sizes.17 For a general code, the second term is replaced by φC(s), which is zero for s ∈ C and

infinite otherwise.

Another aspect of this model of a coded communication system pertains to calculations

of mutual information and capacity. The mutual information between S and Y is, of course,

given by

I(S; Y ) = H(Y ) −H(Y |S). (340)

The second term is easy to calculate for every additive channel – it is simply the entropy of

the additive noise. The first term is harder to calculate:

H(Y ) = −E{lnP (Y )} = −E{lnZ(Y )}. (341)

Thus, we are facing a problem of calculating the free energy of a spin system with random

magnetic fields designated by the components of Y . This is the kind of calculations we

17Error correction codes can be represented by bipartite graphs with two types of nodes: variable nodes
corresponding to the various si and function nodes corresponding to cliques. There is an edge between
variable node i and function node j if si is a member in clique j. Of course each si may belong to more than
one clique. When all cliques are of size 2, there is no need for the function nodes, as edges between nodes i
and j simply correspond to parity check equations involving si and sj .
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mentioned earlier in the context of the replica method. Indeed, the replica method is used

extensively in this context.

As we shall see in the sequel, it is also customary to introduce an inverse temperature

parameter β, by defining

Pβ(s|y) =
P β(s)P β(y|s)

Z(β|y)
=
e−βE(s|y)

Z(β|y)
(342)

where β controls the sharpness of the posterior distribution and

Z(β|y) =
∑

s

e−βE(s|y). (343)

The motivations of this will be discussed extensively later on.

Finally, it should be pointed out that the analogies between models and magnetic mate-

rials and models of communications and signal processing are not limited to the application

described above. Consider, for example, the very common signal model

y = Hs + w, (344)

where H is a matrix (with either deterministic or random entries) and w is a Gaussian

noise vector, with i.i.d. components, independent of s (and H). In this case, the posterior,

Pβ(s|y), is proportional to

exp

{

− β

2σ2
‖y − Hs‖2

}

, (345)

where the exponent (after expansion of the norm), clearly includes an “external–field term,”

proportional to yTHs, and a “pairwise spin–spin interaction term,” proportional to sTRs,

where R = HTH .

We will get back to this important class of models, as well as its many extensions, shortly.

But before that, we discuss a very important effect that exists in some systems with strong

interactions (both in magnetic materials and in other models): the effect of phase transitions.

5.3 A Qualitative Discussion on Phase Transitions

As was mentioned in the introductory paragraph of this chapter, a phase transition means

an abrupt change in the collective behavior of a physical system, as we change gradually one
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of the externally controlled parameters, like the temperature, pressure, or magnetic field.

The most common example of a phase transition in our everyday life is the water that we

boil in the kettle when we make coffee, or when it turns into ice as we put it in the freezer.

What exactly these phase transitions are? Before we refer to this question, it should be

noted that there are also “phase transitions” in the behavior of communication systems: We

already mentioned the phase transition that occurs as the SNR passes a certain limit (for

which capacity crosses the coding rate), where there is a sharp transition between reliable

and unreliable communication, i.e., the error probability (almost) ‘jumps’ from 0 to 1 or

vice versa. Another example is the phenomenon of threshold effects in highly non–linear

communication systems (e.g., FM, PPM, FPM, etc., see [123, Chap. 8]).

Are there any relationships between these phase transitions and those of physics? We will

see shortly that the answer is generally affirmative. In physics, phase transitions can occur

only if the system has interactions. Consider, the above example of an array of spins with

B = 0, and let us suppose that all Jij > 0 are equal, and thus will be denoted commonly by

J . Then,

P (s) =
exp

{

βJ
∑

(i,j) sisj

}

Z(β)
(346)

and, as mentioned earlier, this is a ferromagnetic model, where all spins ‘like’ to be in the

same direction, especially when β and/or J is large. In other words, the interactions, in this

case, tend to introduce order into the system. On the other hand, the second law talks about

maximum entropy, which tends to increase the disorder. So there are two conflicting effects

here. Which one of them prevails?

The answer turns out to depend on temperature. Recall that in the canonical ensemble,

equilibrium is attained at the point of minimum free energy f = ǫ − Ts(ǫ). Now, T plays

the role of a weighting factor for the entropy. At low temperatures, the weight of the second

term of f is small, and minimizing f is approximately equivalent to minimizing ǫ, which is

obtained by states with a high level of order, as E(s) = −J∑(i,j) sisj, in this example. As

T grows, however, the weight of the term −Ts(ǫ) increases, and min f , becomes more and
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more equivalent to max s(ǫ), which is achieved by states with a high level of disorder (see

Fig. 11). Thus, the order–disorder characteristics depend primarily on temperature. It turns

f

ǫ∗1 ǫ∗2

T = 0

T1 T2 > T1

T2

ǫ

Figure 11: Qualitative graphs of f(ǫ) at various temperatures. The minimizing ǫ increases with
T .

out that for some magnetic systems of this kind, this transition between order and disorder

may be abrupt, in which case, we call it a phase transition. At a certain critical temperature,

called the Curie temperature, there is a sudden transition between order and disorder. In

the ordered phase, a considerable fraction of the spins align in the same direction, which

means that the system is spontaneously magnetized (even without an external magnetic

field), whereas in the disordered phase, about half of the spins are in either direction, and

then the net magnetization vanishes. This happens if the interactions, or more precisely,

their dimension in some sense, is strong enough.

What is the mathematical significance of a phase transition? If we look at the partition

function, Z(β), which is the key to all physical quantities of interest, then for every finite N ,

this is simply the sum of finitely many exponentials in β and therefore it is continuous and

differentiable infinitely many times. So what kind of abrupt changes could there possibly

be in the behavior of this function? It turns out that while this is true for all finite N , it

is no longer necessarily true if we look at the thermodynamical limit, i.e., if we look at the

behavior of

φ(β) = lim
N→∞

lnZ(β)

N
. (347)

While φ(β) must be continuous for all β > 0 (since it is convex), it need not necessarily have

continuous derivatives. Thus, a phase transition, if exists, is fundamentally an asymptotic
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property, it may exist in the thermodynamical limit only. While a physical system is, after

all finite, it is nevertheless well approximated by the thermodynamical limit when it is very

large. By the same token, if we look at the analogy with a coded communication system: for

any finite block–length n, the error probability is a smooth function of the SNR, but in the

limit of large n, it behaves like a step function that jumps between 0 and 1 at the critical

SNR. As said earlier, we shall see that the two things are related.

Back to the physical aspects, the above discussion explains also why a system with-

out interactions, where all {xi} are i.i.d., cannot have phase transitions. In this case,

ZN(β) = [Z1(β)]N , and so, φ(β) = lnZ1(β), which is always a smooth function without

any irregularities. For a phase transition to occur, the particles must behave in some collec-

tive manner, which is the case only if interactions take place.

There is a distinction between two types of phase transitions:

• If φ(β) has a discontinuous first order derivative, then this is called a first order phase

transition.

• If φ(β) has a continuous first order derivative, but a discontinuous second order deriva-

tive then this is called a second order phase transition, or a continuous phase transition.

We can talk, of course, about phase transitions w.r.t. additional parameters other than

temperature. In the above magnetic example, if we introduce back the magnetic field B

into the picture, then Z, and hence also φ, become functions of B too. If we then look at

derivative of

φ(β,B) = lim
N→∞

lnZ(β,B)

N

= lim
N→∞

1

N
ln





∑

s

exp







βB

N
∑

i=1

si + βJ
∑

(i,j)

sisj









 (348)

w.r.t. the product (βB), which multiplies the magnetization,
∑

i si, at the exponent, this

132



would give exactly the average magnetization per spin

m(β,B) =

〈

1

N

N
∑

i=1

Si

〉

, (349)

and this quantity might not always be continuous. Indeed, as mentioned earlier, below

the Curie temperature there might be a spontaneous magnetization. If B ↓ 0, then this

magnetization is positive, and if B ↑ 0, it is negative, so there is a discontinuity at B = 0.

We shall see this more concretely later on.

5.4 Phase Transitions of the Rate–Distortion Function

We already mentioned that in the realm of information theory, there are phenomena that

resemble phase transitions, like threshold effects in non–linear communication systems and

the abrupt transitions from reliable to unreliable communication. Before we describe (in the

next sections) in detail, models of interacting spins, with and without phase transitions, we

pause, in this section, to discuss yet another type of a quite non–trivial phase transition,

which occurs in the world of information theory: a phase transition in the behavior of the

rate–distortion function. This type of a phase transition is very different from the class of

phase transitions we discussed thus far: it stems from the optimization of the distribution of

the reproduction variable, which turns out to have a rather irregular behavior, as we shall

see. The derivation and the results, in this section, follow the paper by Rose [101]. This

section can be skipped without loss of continuity.

We have seen in Chapter 2 that the rate–distortion function of a source P = {p(x), x ∈
X} can be expressed as

R(D) = −min
β≥0

[

βD +
∑

x

p(x) ln

(

∑

y

q(y)e−βd(x,y)
)]

(350)

where Q = {q(y), y ∈ Y} is the output marginal of the test channel, which is also the one

that minimizes this expression. We are now going to take a closer look at this function in

the context of the quadratic distortion function d(x, y) = (x− y)2. As said, the optimum Q
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is the one that minimizes the above expression, or equivalently, the free energy

f(Q) = − 1

β

∑

x

p(x) ln

(

∑

y

q(y)e−βd(x,y)
)

(351)

and in the continuous case, summations should be replaced by integrals:

f(Q) = − 1

β

∫ +∞

−∞
dxp(x) ln

(∫ +∞

−∞
dyq(y)e−βd(x,y)

)

. (352)

Consider the representation of the random variable Y as a function of U ∼ unif[0, 1], and

then, instead of optimizing Q, one should optimize the function y(u) in:

f(y(·)) = − 1

β

∫ +∞

−∞
dxp(x) ln

(
∫ 1

0

dµ(u)e−βd(x,y(u))

)

, (353)

where µ(·) is the Lebesgue measure (the uniform measure). A necessary condition for opti-

mality,18 which must hold for almost every u is:

∫ +∞

−∞
dxp(x) ·

[

e−βd(x,y(u))

∫ 1

0
dµ(u′)e−βd(x,y(u′))

]

· ∂d(x, y(u))
∂y(u)

= 0. (354)

Now, let us define the support of y as the set of values that y may possibly take on. Thus,

this support is a subset of the set of all points {y0 = y(u0)} for which:

∫ +∞

−∞
dxp(x) ·

[

e−βd(x,y0)
∫ 1

0
dµ(u′)e−βd(x,y(u′))

]

· ∂d(x, y(u))
∂y(u)

∣

∣

∣

∣

y(u)=y0

= 0. (355)

This is because y0 must be a point that is obtained as y(u) for some u. Let us define now

the posterior:

q(u|x) =
e−βd(x,y(u))

∫ 1

0
dµ(u′)e−βd(x,y(u′))

. (356)

Then,
∫ +∞

−∞
dxp(x)q(u|x) · ∂d(x, y(u))

∂y(u)
= 0. (357)

But p(x)q(u|x) is a joint distribution p(x, u), which can also be thought of as µ(u)p(x|u).
So, if we divide the last equation by µ(u), we get, for almost all u:

∫ +∞

−∞
dxp(x|u)∂d(x, y(u))

∂y(u)
= 0. (358)

18The details are in [101], but intuitively, instead of a function y(u) of a continuous variable u, think of
a vector y whose components are indexed by u, which take on values in some grid of [0, 1]. In other words,

think of the argument of the logarithmic function as
∑1

u=0 e
−βd(x,yu).
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Now, let us see what happens in the case of the quadratic distortion, d(x, y) = (x − y)2.

Suppose that the support of Y includes some interval I0 as a subset. For a given u, y(u) is

nothing other than a number, and so the optimality condition must hold for every y ∈ I0.

In the case of the quadratic distortion, this optimality criterion means

∫ +∞

−∞
dxp(x)λ(x)(x− y)e−β(x−y)2 = 0, ∀y ∈ I0 (359)

with

λ(x)
∆
=

1
∫ 1

0
dµ(u)e−βd(x,y(u))

=
1

∫ +∞
−∞ dyq(y)e−βd(x,y)

, (360)

or, equivalently,
∫ +∞

−∞
dxp(x)λ(x)

∂

∂y

[

e−β(x−y)2
]

= 0. (361)

Since this must hold for all y ∈ I0, then all derivatives of the l.h.s. must vanish within I0,

i.e.,
∫ +∞

−∞
dxp(x)λ(x)

∂n

∂yn

[

e−β(x−y)2
]

= 0. (362)

Now, considering the Hermitian polynomials

Hn(z)
∆
= eβz

2 dn

dzn
(e−βz

2

) (363)

this requirement means

∫ +∞

−∞
dxp(x)λ(x)Hn(x− y)e−β(x−y)2 = 0. (364)

In words: λ(x)p(x) is orthogonal to all Hermitian polynomials of order ≥ 1 w.r.t. the weight

function e−βz
2
. Now, as is argued in the paper, since these polynomials are complete in

L2(e−βz
2
), we get

p(x)λ(x) = const. (365)

because H0(z) ≡ 1 is the only basis function orthogonal to all Hn(z), n ≥ 1. This yields,

after normalization:

p(x) =

√

β

π

∫ 1

0

dµ(u)e−β(x−y(u))2
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=

√

β

π

∫ +∞

−∞
dyq(y)e−β(x−y)2

= Q ⋆N
(

0,
1

2β

)

, (366)

where ⋆ denotes convolution. The interpretation of the last equation is simple: the marginal

of X is given by the convolution between the marginal of Y and the zero–mean Gaussian

distribution with variance D = 1/(2β) (= kT/2 of the equipartition theorem, as we already

saw in Chapter 2). This means that X must be representable as

X = Y + Z (367)

where Z ∼ N
(

0, 1
2β

)

and independent of Y . As is well known, this is exactly what happens

when R(D) coincides with its Gaussian lower bound, a.k.a. the Shannon lower bound (SLB).

Here is a reminder of this:

R(D) = h(X) − max
E(X−Y )2≤D

h(X|Y )

= h(X) − max
E(X−Y )2≤D

h(X − Y |Y )

≥ h(X) − max
E(X−Y )2≤D

h(X − Y )

= h(X) − max
EZ2≤D

h(Z) Z
∆
= X − Y

≥ h(X) − 1

2
ln(2πeD)

∆
= RS(D), (368)

where RS(D) designates the SLB. The conclusion then is that if the support of Y includes

an interval (no matter how small) then R(D) coincides with RS(D). This implies that in

all those cases that RS(D) is not attained, the support of the optimum test channel output

distribution must be singular, i.e., it cannot contain an interval. It can be, for example, a

set of isolated points.

But we also know that whenever R(D) meets the SLB for some D = D0, then it must

also coincide with it for all D < D0. This follows from the following simple consideration:

If X can be represented as Y + Z, where Z ∼ N (0, D0) is independent of Y , then for every
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D < D0, we can always decompose Z as Z1 + Z2, where Z1 and Z2 are both zero–mean

independent Gaussian random variables with variances D0 −D and D, respectively. Thus,

X = Y + Z = (Y + Z1) + Z2
∆
= Y ′ + Z2 (369)

and we have represented X as a noisy version of Y ′ with noise variance D. Whenever X

can be thought of as a mixture of Gaussians, R(D) agrees with its SLB for all D up to the

variance of the narrowest Gaussian in this mixture. Thus, in these cases:

R(D)

{

= RS(D) D ≤ D0

> RS(D) D > D0
(370)

It follows then that in all these cases, the optimum output marginal contains intervals for

all D ≤ D0 and then becomes abruptly singular as D exceeds D0.

From the viewpoint of statistical mechanics, this has the flavor of a phase transition.

Consider first an infinite temperature, i.e., β = 0, which means unlimited distortion. In

this case, the optimum output marginal puts all its mass on one point: y = E(X), so it is

definitely singular. This remains true even if we increase β to be the inverse temperature

that corresponds to Dmax, the smallest distortion for which R(D) = 0. If we further increase

β, the support of Y begins to change. In the next step it can include two points, then three

points, etc. Then, if there is D0 below which the SLB is met, then the support of Y abruptly

becomes one that contains one interval at least. This point is also demonstrated numerically

in [101].

5.5 The One–Dimensional Ising Model

As promised, we now return to models of interacting spins. The most familiar one is the

one–dimensional Ising model, according to which

E(s) = −B
N
∑

i=1

si − J

N
∑

i=1

sisi+1 (371)

with the periodic boundary condition sN+1 = s1. Thus,

Z(β,B) =
∑

s

exp

{

βB
N
∑

i=1

si + βJ
N
∑

i=1

sisi+1

}
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=
∑

s

exp

{

h

N
∑

i=1

si +K

N
∑

i=1

sisi+1

}

h
∆
= βB, K

∆
= βJ

=
∑

s

exp

{

h

2

N
∑

i=1

(si + si+1) +K

N
∑

i=1

sisi+1

}

. (372)

Consider now the 2 × 2 matrix P whose entries are exp{h
2
(s+ s′) +Kss′}, s, s ∈ {−1,+1},

i.e.,

P =

(

eK+h e−K

e−K eK−h

)

. (373)

Also, si = +1 will be represented by the column vector σi = (1, 0)T and si = −1 will be

represented by σi = (0, 1)T . Thus,

Z(β,B) =
∑

σ1

· · ·
∑

σN

(σT1 Pσ2) · (σT2 Pσ3) · · · (σTNPσ1)

=
∑

σ1

σT1 P

(

∑

σ2

σ2σ
T
2

)

P

(

∑

σ3

σ3σ
T
3

)

P · · · P
(

∑

σN

σnσ
T
N

)

Pσ1

=
∑

σ1

σT1 P · I · P · I · · · I · Pσ1

=
∑

σ1

σT1 P
Nσ1

= tr{PN}

= λN1 + λN2 (374)

where λ1 and λ2 are the eigenvalues of P , which are

λ1,2 = eK cosh(h) ±
√

e−2K + e2K sinh2(h). (375)

Letting λ1 denote the larger (the dominant) eigenvalue, i.e.,

λ1 = eK cosh(h) +

√

e−2K + e2K sinh2(h), (376)

then clearly,

φ(h,K) = lim
N→∞

lnZ

N
= lnλ1. (377)

The average magnetization is

M(h,K) =

〈

N
∑

i=1

Si

〉
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=

∑

s(
∑N

i=1 si) exp{h∑N
i=1 si +K

∑N
i=1 sisi+1}

∑

s exp{h∑N
i=1 si +K

∑N
i=1 sisi+1}

=
∂ lnZ(h,K)

∂h
(378)

and so, the per–spin magnetization is:

m(h,K)
∆
= lim

N→∞
M(h,K)

N
=
∂φ(h,K)

∂h
=

sinh(h)
√

e−4K + sinh2(h)
(379)

or, returning to the original parametrization:

m(β,B) =
sinh(βB)

√

e−4βJ + sinh2(βB)
. (380)

For β > 0 and B > 0 this is a smooth function, and so, there is are no phase transitions and

no spontaneous magnetization at any finite temperature.19 However, at the absolute zero

(β → ∞), we get

lim
B↓0

lim
β→∞

m(β,B) = +1; lim
B↑0

lim
β→∞

m(β,B) = −1, (381)

thus m is discontinuous w.r.t. B at β → ∞, which means that there is a phase transition at

T = 0. In other words, the Curie temperature is Tc = 0.

We see then that one–dimensional Ising model is easy to handle, but it is not very

interesting in the sense that there is actually no phase transition. The extension to the

two–dimensional Ising model on the square lattice is surprisingly more difficult, but it is still

solvable, albeit without a magnetic field. It was first solved in 1944 by Onsager [89], who

has shown that it exhibits a phase transition with Curie temperature given by

Tc =
2J

k ln(
√

2 + 1)
. (382)

For lattice dimension larger than two, the problem is still open.

It turns out then that whatever counts for the existence of phase transitions, is not only

the intensity of the interactions (designated by the magnitude of J), but more importantly,

19Note, in particular, that for J = 0 (i.i.d. spins) we get paramagnetic characteristicsm(β,B) = tanh(βB),
in agreement with the result pointed out in the example of two–level systems, in one of our earlier discussions.
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the “dimensionality” of the structure of the pairwise interactions. If we denote by nℓ the

number of ℓ–th order neighbors of every given site, namely, the number of sites that can be

reached within ℓ steps from the given site, then whatever counts is how fast does the sequence

{nℓ} grow, or more precisely, what is the value of d
∆
= limℓ→∞

1
ℓ
lnnℓ, which is exactly the

ordinary dimensionality for hyper-cubic lattices. Loosely speaking, this dimension must be

sufficiently large for a phase transition to exist.

To demonstrate this point, we next discuss an extreme case of a model where this dimen-

sionality is actually infinite. In this model “everybody is a neighbor of everybody else” and

to the same extent, so it definitely has the highest connectivity possible. This is not quite a

physically realistic model, but the nice thing about it is that it is easy to solve and that it

exhibits a phase transition that is fairly similar to those that exist in real systems. It is also

intimately related to a very popular approximation method in statistical mechanics, called

the mean field approximation. Hence it is sometimes called the mean field model. It is also

known as the Curie–Weiss model or the infinite range model.

Finally, we should comment that there are other “infinite–dimensional” Ising models, like

the one defined on the Bethe lattice (an infinite tree without a root and without leaves),

which is also easily solvable (by recursion) and it also exhibits phase transitions [4], but we

will not discuss it here.

5.6 The Curie–Weiss Model

According to the Curie–Weiss (C–W) model,

E(s) = −B
N
∑

i=1

si −
J

2N

∑

i6=j
sisj. (383)

Here, all pairs {(si, sj)} communicate to the same extent, and without any geometry. The

1/N factor here is responsible for keeping the energy of the system extensive (linear in N),

as the number of interaction terms is quadratic in N . The factor 1/2 compensates for the

fact that the summation over i 6= j counts each pair twice. The first observation is the trivial
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fact that
(

∑

i

si

)2

=
∑

i

s2
i +

∑

i6=j
sisj = N +

∑

i6=j
sisj (384)

where the second equality holds since s2
i ≡ 1. It follows then, that our Hamiltonian is, up

to a(n immaterial) constant, equivalent to

E(s) = −B
N
∑

i=1

si −
J

2N

(

N
∑

i=1

si

)2

= −N



B ·
(

1

N

N
∑

i=1

si

)

+
J

2

(

1

N

N
∑

i=1

si

)2


 , (385)

thus E(s) depends on s only via the magnetization m(s) = 1
N

∑

i si. This fact makes the

C–W model very easy to handle similarly as in the method of types:

ZN(β,B) =
∑

s

exp

{

Nβ

[

B ·m(s) +
J

2
m2(s)

]}

=
+1
∑

m=−1

Ω(m) · eNβ(Bm+Jm2/2)

·
=

+1
∑

m=−1

eNh2((1+m)/2) · eNβ(Bm+Jm2/2)

·
= exp

{

N · max
|m|≤1

[

h2

(

1 +m

2

)

+ βBm+
βm2J

2

]}

(386)

and so,

φ(β,B) = max
|m|≤1

[

h2

(

1 +m

2

)

+ βBm+
βm2J

2

]

. (387)

The maximum is found by equating the derivative to zero, i.e.,

0 =
1

2
ln

(

1 −m

1 +m

)

+ βB + βJm ≡ − tanh−1(m) + βB + βJm (388)

or equivalently, the maximizing (and hence the dominant) m is a solution m∗ to the equa-

tion20

m = tanh(βB + βJm).

20Once again, for J = 0, we are back to non–interacting spins and then this equation gives the paramagnetic
behavior m = tanh(βB).
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Consider first the case B = 0, where the equation boils down to

m = tanh(βJm). (389)

It is instructive to look at this equation graphically. Referring to Fig. 12, we have to make

a distinction between two cases: If βJ < 1, namely, T > Tc
∆
= J/k, the slope of the function

y = tanh(βJm) at the origin, βJ , is smaller than the slope of the linear function y = m,

which is 1, thus these two graphs intersect only at the origin. It is easy to check that in this

case, the second derivative of

ψ(m)
∆
= h2

(

1 +m

2

)

+
βJm2

2
(390)

at m = 0 is negative, and therefore it is indeed the maximum (see Fig. 13, left part). Thus,

the dominant magnetization is m∗ = 0, which means disorder and hence no spontaneous

magnetization for T > Tc. On the other hand, when βJ > 1, which means temperatures

m

y = m

y = tanh(βJm)

y = tanh(βJm)

+m0

−m0

y = m

m

Figure 12: Graphical solutions of equation m = tanh(βJm): The left part corresponds to the case
βJ < 1, where there is one solution only, m∗ = 0. The right part corresponds to the case βJ > 1,
where in addition to the zero solution, there are two non–zero solutions m∗ = ±m0.

lower than Tc, the initial slope of the tanh function is larger than that of the linear function,

but since the tanh function cannot take values outside the interval (−1,+1), the two functions

must intersect also at two additional, symmetric, non–zero points, which we denote by +m0

and −m0 (see Fig. 12, right part). In this case, it can readily be shown that the second

derivative of ψ(m) is positive at the origin (i.e., there is a local minimum at m = 0) and

negative at m = ±m0, which means that there are maxima at these two points (see Fig. 13,

right part). Thus, the dominant magnetizations are ±m0, each capturing about half of the

probability.
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m

ψ(m)

+m0−m0
m

ψ(m)

Figure 13: The function ψ(m) = h2((1 +m)/2) + βJm2/2 has a unique maximum at m = 0 when
βJ < 1 (left graph) and two local maxima at ±m0, in addition to a local minimum at m = 0, when
βJ > 1 (right graph).

Consider now the case βJ > 1, where the magnetic field B is brought back into the

picture. This will break the symmetry of the right graph of Fig. 13 and the corresponding

graphs of ψ(m) would be as in Fig. 14, where now the higher local maximum (which is also

the global one) is at m0(B) whose sign is as that of B. But as B → 0, m0(B) → m0 of Fig.

13. Thus, we see the spontaneous magnetization here. Even after removing the magnetic

ψ(m)

m
−m0(B)

m

ψ(m)

+m0(B)

Figure 14: The case βJ > 1 with a magnetic field B. The left graph corresponds to B < 0 and
the right graph – to B > 0.

field, the system remains magnetized to the level of m0, depending on the direction (the

sign) of B before its removal. Obviously, the magnetization m(β,B) has a discontinuity at

B = 0 for T < Tc, which is a first order phase transition w.r.t. B (see Fig. 15). We note

that the point T = Tc is the boundary between the region of existence and the region of

non–existence of a phase transition w.r.t. B. Such a point is called a critical point. The

phase transition w.r.t. β is of the second order.
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−1

+1

m(β,B)

B

T > Tc

T = Tc

T < Tc

−m0

+m0

Figure 15: Magnetization vs. magnetic field: For T < Tc there is spontaneous magnetization:
limB↓0 m(β,B) = +m0 and limB↑0m(β,B) = −m0, and so there is a discontinuity at B = 0.

Finally, we should mention here an alternative technique that can be used to analyze this

model, which is based on the Hubbard–Stratonovich transform and the saddle point method.

Specifically, we have the following chain of equalities:

Z(h,K) =
∑

s

exp







h

N
∑

i=1

si +
K

2N

(

N
∑

i=1

si

)2






h
∆
= βB, K

∆
= βJ

=
∑

s

exp

{

h

N
∑

i=1

si

}

· exp







K

2N

(

N
∑

i=1

si

)2






=
∑

s

exp

{

h
N
∑

i=1

si

}

·
√

N

2πK

∫

IR

dz exp

{

−Nz
2

2K
+ z ·

N
∑

i=1

si

}

=

√

N

2πK

∫

IR

dze−Nz
2/(2K)

∑

s

exp

{

(h + z)
N
∑

i=1

si

}

=

√

N

2πK

∫

IR

dze−Nz
2/(2K)

[

1
∑

s=−1

e(h+z)s

]N

=

√

N

2πK

∫

IR

dze−Nz
2/(2K)[2 cosh(h+ z)]N

= 2N ·
√

N

2πK

∫

IR

dz exp{N [ln cosh(h+ z) − z2/(2K)]} (391)
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Using the the saddle point method (or the Laplace method), this integral is dominated by

the maximum of the function in the square brackets at the exponent of the integrand, or

equivalently, the minimum of the function

γ(z) =
z2

2K
− ln cosh(h+ z). (392)

by equating its derivative to zero, we get the very same equation as m = tanh(βB + βJm)

by setting z = βJm. The function γ(z) is different from the function ψ that we maximized

earlier, but the extremum is the same. This function is called the Landau free energy.

5.7 Spin Glasses and Random Code Ensembles

So far we discussed only models where the non–zero coupling coefficients, J = {Jij} are equal,

thus they are either all positive (ferromagnetic models) or all negative (antiferromagnetic

models). As mentioned earlier, there are also models where the signs of these coefficients are

mixed, which are called spin glass models.

Spin glass models have a much more complicated and more interesting behavior than

ferromagnets, because there might be metastable states due to the fact that not necessarily

all spin pairs {(si, sj)} can be in their preferred mutual polarization. It might be the case that

some of these pairs are “frustrated.” In order to model situations of amorphism and disorder

in such systems, it is customary to model the coupling coefficients as random variables.

Some models allow, in addition to the random coupling coefficients, also random local

fields, i.e., the term −B∑i si in the Hamiltonian, is replaced by −∑iBisi, where {Bi}
are random variables, similarly as in the representation of P (s|y) pertaining to a coded

communication system, as discussed earlier, where {yi} play the role of local magnetic fields.

The difference, however, is that here the {Bi} are normally assumed i.i.d., whereas in the

communication system model P (y) exhibits memory (even if the channel is memoryless)

due to memory in P (s). Another difference is that in the physics model, the distribution

of {Bi} is assumed to be independent of temperature, whereas in coding, if we introduce

a temperature parameter by exponentiating (i.e., Pβ(s|y) ∝ P β(s)P β(y|s)), the induced
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marginal of y will depend on β.

In the following discussion, let us refer to the case where only the coupling coefficients J

are random variables (similar things can be said in the more general case, discussed in the

last paragraph). This model with random parameters means that there are now two levels

of randomness:

• Randomness of the coupling coefficients J .

• Randomness of the spin configuration s given J , according to the Boltzmann distri-

bution, i.e.,

P (s|J) =
exp

{

β
[

B
∑N

i=1 si +
∑

(i,j) Jijsisj

]}

Z(β,B|J)
. (393)

However, these two sets of random variables have a rather different stature. The underlying

setting is normally such that J is considered to be randomly drawn once and for all, and

then remain fixed, whereas s keeps varying all the time (according to the dynamics of the

system). At any rate, the time scale along which s varies is much smaller than that of J .

Another difference is that J is normally not assumed to depend on temperature, whereas s,

of course, does. In the terminology of physicists, s is considered an annealed random variable,

whereas J is considered a quenched random variable. Accordingly, there is a corresponding

distinction between annealed averages and quenched averages.

Actually, there is (or, more precisely, should be) a parallel distinction when we consider

ensembles of randomly chosen codes in Information Theory. When we talk about random

coding, we normally think of the randomly chosen code as being drawn once and for all,

we do not reselect it after each transmission (unless there are security reasons to do so),

and so, a random code should be thought of us a quenched entity, whereas the source(s)

and channel(s) are more naturally thought of as annealed entities. Nonetheless, this is not

what we usually do in Information Theory. We normally take double expectations of some

performance measure w.r.t. both source/channel and the randomness of the code, on the
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same footing.21 We will elaborate on this point later on.

Returning to spin glass models, let is see what is exactly the difference between the

quenched averaging and the annealed one. If we examine, for instance, the free energy, or

the log–partition function, lnZ(β|J), this is now a random variable, of course, because it

depends on the random J . If we denote by 〈·〉J the expectation w.r.t. the randomness of

J , then quenched averaging means 〈lnZ(β|J)〉J (with the motivation of the self–averaging

property of the random variable lnZ(β|J) in many cases), whereas annealed averaging means

ln〈Z(β|J)〉J . Normally, the relevant average is the quenched one, but it is typically also

much harder to calculate (and it is customary to apply the replica method then). Clearly,

the annealed average is never smaller than the quenched one because of Jensen’s inequality,

but they sometimes coincide at high temperatures. The difference between them is that

in quenched averaging, the dominant realizations of J are the typical ones, whereas in

annealed averaging, this is not necessarily the case. This follows from the following sketchy

consideration. As for the annealed average, we have:

〈Z(β|J)〉 =
∑

J

P (J)Z(β|J)

≈
∑

α

Pr{J : Z(β|J)
·
= eNα} · eNα

≈
∑

α

e−NE(α) · eNα (assuming exponential probabilities)

·
= eN maxα[α−E(α)] (394)

which means that the annealed average is dominated by realizations of the system with

lnZ(β|J)

N
≈ α∗ ∆

= arg max
α

[α− E(α)], (395)

which may differ from the typical value of α, which is

α = φ(β) ≡ lim
N→∞

1

N
〈lnZ(β|J)〉 . (396)

On the other hand, when it comes to quenched averaging, the random variable lnZ(β|J)

21There are few exceptions to this rule, like the work of Barg and Forney [3].
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behaves linearly in N , and concentrates strongly around the typical value Nφ(β), whereas

other values are weighted by (exponentially) decaying probabilities.

In the coded communication setting, there is a strong parallelism. Here, there is a

distinction between the exponent of the average error probability, ln EPe(C) (annealed) and

the average exponent of the error probability E lnPe(C) (quenched), where Pe(C) is the error

probability of a randomly selected code C. Very similar things can be said here too.

The literature on spin glasses includes many models for the randomness of the coupling

coefficients. We end this part by listing just a few.

• The Edwards–Anderson (E–A) model, where {Jij} are non–zero for nearest–neighbor

pairs only (e.g., j = i± 1 in one–dimensional model). According to this model, these

Jij’s are i.i.d. random variables, which are normally modeled to have a zero–mean

Gaussian pdf, or binary symmetric with levels ±J0. It is customary to work with a

zero–mean distribution if we have a pure spin glass in mind. If the mean is nonzero,

the model has either a ferromagnetic or an anti-ferromagnetic bias, according to the

sign of the mean.

• The Sherrington–Kirkpatrick (S–K) model, which is similar to the E–A model, except

that the support of {Jij} is extended to include all N(N − 1)/2 pairs, and not only

nearest–neighbor pairs. This can be thought of as a stochastic version of the C–W

model in the sense that here too, there is no geometry, and every spin ‘talks’ to every

other spin to the same extent, but here the coefficients are random, as said.

• The p–spin model, which is similar to the S–K model, but now the interaction term

consists, not only of pairs, but also triples, quadruples, and so on, up to cliques of size

p, i.e., products si1si2 · · ·sip, where (i1, . . . , ip) exhaust all possible subsets of p spins out

of N . Each such term has a Gaussian coefficient Ji1,...,ip with an appropriate variance.

Considering the p–spin model, it turns out that if we look at the extreme case of p → ∞
(taken after the thermodynamic limit N → ∞), the resulting behavior turns out to be ex-
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tremely erratic: all energy levels {E(s)}s∈{−1,+1}N become i.i.d. Gaussian random variables.

This is, of course, a toy model, which has very little to do with reality (if any), but it is sur-

prisingly interesting and easy to work with. It is called the random energy model (REM). We

have already mentioned it as an example on which we demonstrated the replica method. We

are next going to discuss it extensively because it turns out to be very relevant for random

coding models.
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6 The Random Energy Model and Random Coding

In this chapter, we first focus on the REM and its properties, and then relate it to random

code ensembles. The first two sections are inspired by the exposition in [80, Chapters 5 and

6], but with a slightly different flavor and somewhat more detail.

6.1 REM Without a Magnetic Field

The REM was proposed by Derrida in the early eighties of the previous century in a series

of papers [22], [23], [24]. As mentioned at the end of the previous chapter, the REM is

inspired by the limit p → ∞ in the p–spin model. More specifically, Derrida showed that

the correlations between the random energies of two configurations, s and s′, in the p–spin

model are given by
(

1

N

N
∑

i=1

sis
′
i

)p

, (397)

and since | 1
N

∑N
i=1 sis

′
i| < 1, these correlations vanish as p→ ∞. This has motivated Derrida

to propose a model according to which the configurational energies {E(s)}, in the absence of

a magnetic field, are simply i.i.d. zero–mean Gaussian random variables with a variance that

grows linearly with N (again, for reasons of extensivity). More concretely, this variance is

taken to be NJ2/2, where J is a constant parameter. This means that we actually forget that

the spin array has any structure of the kind that we have seen before, and we simply randomly

draw an independent Gaussian random variable E(s) ∼ N (0, NJ2/2) (other distributions

are also possible) for every configuration s. Thus, the partition function Z(β) =
∑

s e
−βE(s)

is a random variable as well, of course.

This is a toy model that does not describe faithfully any realistic physical system, but

we will devote to it some considerable time, for several reasons:

• It is simple and easy to analyze.

• In spite of its simplicity, it is rich enough to exhibit phase transitions, and therefore it

is interesting.
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• Most importantly, it will prove very relevant to the analogy with coded communication

systems with randomly selected codes.

As we shall see quite shortly, there is an intimate relationship between phase transitions

of the REM and phase transitions in the behavior of coded communication systems, most

notably, transitions between reliable and unreliable communication, but others as well.

What is the basic idea that stands behind the analysis of the REM? As said,

Z(β) =
∑

s

e−βE(s) (398)

where E(s) ∼ N (0, NJ2/2) are i.i.d. Consider the density of states Ω(E), which is now

a random variable: Ω(E)dE is the number of configurations {s} whose randomly selected

energy E(s) happens to fall between E and E + dE, and of course,

Z(β) =

∫ +∞

−∞
dEΩ(E)e−βE . (399)

How does the random variable Ω(E)dE behave like? First, observe that, ignoring non–

exponential factors:

Pr{E ≤ E(s) ≤ E + dE} ≈ f(E)dE
·
= e−E

2/(NJ2)dE, (400)

and so,

〈Ω(E)dE〉 ·
= 2N · e−E2/(NJ2) = exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

. (401)

We have reached the pivotal point behind the analysis of the REM, which is based on a

fundamental principle that goes far beyond the analysis of the first moment of Ω(E)dE. In

fact, this principle is frequently used in random coding arguments in information theory:

Suppose that we have eNA (A > 0, independent of N) independent events {Ei}, each one

with probability Pr{Ei} = e−NB (B > 0, independent of N). What is the probability that

at least one of the Ei’s would occur? Intuitively, we expect that in order to see at least one

or a few successes, the number of experiments should be at least about 1/Pr{Ei} = eNB. If
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A > B then this is the case. On the other hand, for A < B, the number of trials is probably

insufficient for seeing even one success. Indeed, a more rigorous argument gives:

Pr







eNA
⋃

i=1

Ei







= 1 − Pr







eNA
⋂

i=1

E ci







= 1 −
(

1 − e−NB
)eNA

= 1 − exp{eNA ln(1 − e−NB)}

≈ 1 − exp{−eNAe−NB}

= 1 − exp{−eN(A−B)}

→
{

1 A > B
0 A < B

(402)

Now, to another question: For A > B, how many of the Ei’s would occur in a typical

realization of this set of experiments? The number ΩN of ‘successes’ is given by
∑eNA

i=1 I{Ei},
namely, it is the sum of eNA i.i.d. binary random variables whose expectation is E{ΩN} =

eN(A−B). Therefore, its probability distribution concentrates very rapidly around its mean.

In fact, the events {ΩN ≥ eN(A−B+ǫ)} (ǫ > 0, independent of N) and {ΩN ≤ eN(A−B−ǫ)} are

large deviations events whose probabilities decay exponentially in the number of experiments,

eNA, and hence double–exponentially in N .22 Thus, for A > B, the number of successes is

“almost deterministically” about eN(A−B).

Now, back to the REM: For E whose absolute value is less than

E0
∆
= NJ

√
ln 2 (403)

the exponential increase rate, A = ln 2, of the number 2N = eN ln 2 of configurations (which

is the number of independent trials in randomly drawing energies {E(s)}) is faster than the

exponential decay rate of the probability, e−N [E/(nJ)]2) = e−N(ǫ/J)2 (i.e., B = (ǫ/J)2) that

E(s) would happen to fall around E. In other words, the number of these trials is way larger

than the reciprocal of this probability and in view of the earlier discussion, the probability

22This will be shown rigorously later on.
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that

Ω(E)dE =
∑

s

I{E ≤ E(s) ≤ E + dE}. (404)

would deviate from its mean, which is exponentially exp{N [ln 2− (E/(NJ))2]}, by a multi-

plicative factor that falls out of the interval [e−Nǫ, e+Nǫ], decays double–exponentially with

N . In other words, we argue that for −E0 < E < +E0, the event

e−Nǫ · exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

≤ Ω(E)dE

≤ e+Nǫ · exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

happens with probability that tends to unity in a double–exponential rate. As discussed,

−E0 < E < +E0 is exactly the condition for the expression in the square brackets at the

exponent [ln 2 − ( E
NJ

)2] to be positive, thus Ω(E)dE is exponentially large. On the other

hand, if |E| > E0, the number of trials 2N is way smaller than the reciprocal of the probability

of falling around E, and so, most of the chances are that we will see no configurations at

all with energy about E. In other words, for these large values of |E|, Ω(E) = 0 for typical

realizations of the REM (see Fig. 16, left part). It follows then that for such a typical

realization,

Z(β) ≈
∫ +E0

−E0

〈dE · Ω(E)〉 e−βE

·
=

∫ +E0

−E0

dE · exp

{

N

[

ln 2 −
(

E

NJ

)2
]}

· e−βE

=

∫ +E0

−E0

dE · exp

{

N

[

ln 2 −
(

E

NJ

)2

− β ·
(

E

N

)

]}

= N ·
∫ +ǫ0

−ǫ0
dǫ · exp

{

N

[

ln 2 −
( ǫ

J

)2

− βǫ

]}

·
= exp

{

N · max
|ǫ|≤ǫ0

[

ln 2 −
( ǫ

J

)2

− βǫ

]}

, (405)

where we have defined ǫ = E/N and ǫ0 = E0/N , and where in the last step we have used

Laplace integration. The maximization problem at the exponent is very simple: it is that of
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a quadratic function across an interval. The solution is of either one of two types, depending

on whether the maximum is attained at a zero–derivative internal point in (−ǫ0,+ǫ0) or

at an edge-point. The choice between the two depends on β. Specifically, we obtain the

following:

φ(β) = lim
N→∞

lnZ(β)

N
=

{

ln 2 + β2J2

4
β ≤ βc

βJ
√

ln 2 β > βc
(406)

where βc = 2
J

√
ln 2. This dichotomy between two types of behavior means a phase transition.

The function φ(β) changes its behavior abruptly at β = βc, from being quadratic in β to

being linear in β (see also Fig. 16, right part). The function φ is continuous (as always), and

so is its first derivative, but the second derivative is not. Thus, it is a second order phase

transition. Note that in the quadratic range, this expression is precisely the same as we got

using the replica method, when we hypothesized that the dominant configuration is fully

symmetric and is given by Q = Im×m. Thus, the replica symmetric solution indeed gives

the correct result in the high temperature regime, but the low temperature regime seems to

require symmetry breaking. What is the significance of each one of these phases? Let us

Σ(ǫ)

+ǫ0−ǫ0 ǫ

Σ(ǫ) = ln 2 −
`

ǫ
J

´2

φ(β) = βJ
√

ln 2

φ(β) = ln 2 + β2J2

4

φ(β)

β

βc

Figure 16: The entropy function and the normalized log–partition function of the REM.

begin with the second line of the above expression of φ(β), which is φ(β) = βJ
√

ln 2 ≡ βǫ0

for β > βc. What is the meaning of linear dependency of φ in β? Recall that the entropy Σ
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is given by

Σ(β) = φ(η) + βǫ = φ(β) − β · φ′(β), (407)

which in the case where φ is linear, simply vanishes. Zero entropy means that the partition

function is dominated by a subexponential number of ground–state configurations (with per–

particle energy about ǫ0), just like when it is frozen (see also Fig. 16, left part: Σ(−ǫ0) = 0).

For this reason, we refer to this phase as the frozen phase or the glassy phase.23 In the high–

temperature range, on the other hand, the entropy is strictly positive and the dominant

per–particle energy level is ǫ∗ = −1
2
βJ2, which is the point of zero–derivative of the function

[ln 2 − (ǫ/J)2 − βǫ]. Here the partition is dominated by exponentially many configurations

whose energy is E∗ = nǫ∗ = −N
2
βJ2. As we shall see later on, in this range, the behavior

of the system is essentially paramagnetic (like in a system of i.i.d. spins), and so it is called

the paramagnetic phase.

We therefore observe that the type of phase transition here is different from the one in the

Curie–Weiss model. Here, there is is no spontaneous magnetization transition, but rather

on a glass transition. In fact, we will not see here a spontaneous magnetization even when

a magnetic field is applied (see Sect. 7.1).

From φ(β), one can go ahead and calculate other physical quantities, but we will not do

this now. As a final note in this context, it should be emphasized that since the calculation

of Z was carried out for the typical realizations of the quenched random variables {E(s)},
we have actually calculated the quenched average of limN→∞(lnZ)/N . As for the annealed

average, we have

lim
N→∞

ln〈Z(β)〉
N

= lim
N→∞

1

N
ln

[
∫

IR

〈Ω(E)dǫ〉e−βNǫ
]

= lim
N→∞

1

N
ln

[∫

IR

exp

{

N

[

ln 2 −
( ǫ

J

)2

− βǫ

]}]

= max
ǫ∈IR

[

ln 2 −
( ǫ

J

)2

− βǫ

]

23In this phase, the system behaves like a glass: on the one hand, it is frozen (so it consolidates), but on
the other hand, it remains disordered and amorphous, like a liquid.
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= ln 2 +
β2J2

4
, (408)

which is the paramagnetic expression, without any phase transition since the maximization

over ǫ is not constrained. This demonstrates the point that the annealed approximation is

fine for high temperatures, but probably not for low temperatures, and it may fail to detect

phase transitions.

6.2 Random Code Ensembles and the REM

Let us now see how does the REM relate to random code ensembles. This relationship was

first observed in [82], but it is presented more comprehensively in [80]. The discussion in this

section is based on [80], as well as on [69], but with more emphasis on the error exponent

analysis technique that stems from this relation to the REM, which will be outlined in Section

6.3. Other relevant references, in this context, are [3] and [33].

Consider a discrete memoryless channel (DMC), defined by the conditional probability

distribution

P (y|x) =

n
∏

i=1

p(yi|xi), (409)

where the input n–vector x = (x1, . . . , xn) belongs to a codebook C = {x1,x2, . . . ,xM},
M = enR, with uniform priors, and where R is the coding rate in nats per channel use. The

induced posterior, for x ∈ C, is then:

P (x|y) =
P (y|x)

∑

x′∈C P (y|x′)

=
e− ln[1/P (y|x)]

∑

x′∈C e
− ln[1/P (y|x′)]

. (410)

Here, the second line is deliberately written in a form that resembles the Boltzmann dis-

tribution, which naturally suggests to consider, more generally, the posterior distribution

parametrized by β, that is

Pβ(x|y) =
P β(y|x)

∑

x′∈C P
β(y|x′)
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=
e−β ln[1/P (y|x)]

∑

x′∈C e
−β ln[1/P (y|x′)]

∆
=
e−β ln[1/P (y|x)]

Z(β|y)
(411)

There are a few motivations for introducing the temperature parameter:

• It allows a degree of freedom in case there is some uncertainty regarding the channel

noise level (small β corresponds to high noise level).

• It is inspired by the ideas behind simulated annealing techniques: by sampling from Pβ

while gradually increasing β (cooling the system), the minima of the energy function

(ground states) can be found.

• By applying symbol-wise maximum a-posteriori (MAP) decoding, i.e., decoding the

ℓ–th symbol of x as argmaxa Pβ(xℓ = a|y), where

Pβ(xℓ = a|y) =
∑

x∈C: xℓ=a

Pβ(x|y), (412)

we obtain a family of finite–temperature decoders (originally proposed by Ruján [102])

parametrized by β, where β = 1 corresponds to minimum symbol error probability

(with respect to the real underlying channel P (y|x)) and β → ∞ corresponds to

minimum block error probability.

• This is one of our main motivations: the corresponding partition function, Z(β|y),

namely, the sum of (conditional) probabilities raised to some power β, is an expression

frequently encountered in Rényi information measures as well as in the analysis of

random coding exponents using Gallager’s techniques. Since the partition function

plays a key role in statistical mechanics, as many physical quantities can be derived

from it, then it is natural to ask if it can also be used to gain some insights regarding

the behavior of random codes at various temperatures and coding rates.

For the sake of simplicity, let us suppose further now that we are dealing with the binary
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symmetric channel (BSC) with crossover probability p, and so,

P (y|x) = pd(x,y)(1 − p)n−d(x,y) = (1 − p)ne−Jd(x,y), (413)

where J = ln 1−p
p

and d(x,y) is the Hamming distance. Thus, the partition function can be

presented as follows:

Z(β|y) = (1 − p)βn
∑

x∈C
e−βJd(x,y). (414)

Now consider the fact that the codebook C is selected at random: Every codeword is ran-

domly chosen independently of all other codewords. At this point, the analogy to the REM,

and hence also its relevance, become apparent: If each codeword is selected independently,

then the ‘energies’ {Jd(x,y)} pertaining to the partition function

Z(β|y) = (1 − p)βn
∑

x∈C
e−βJd(x,y), (415)

(or, in the case of a more general channel, the energies {− ln[1/P (y|x)]} pertaining to

the partition function Z(β|y) =
∑

x∈C e
−β ln[1/P (y|x)]), are i.i.d. random variables for all

codewords in C, with the exception of the codeword x0 that was actually transmitted and

generated y.24 Since we have seen phase transitions in the REM, it is conceivable to expect

them also in the statistical physics of the random code ensemble, and indeed we will see

them shortly.

Further, we assume that each symbol of each codeword is drawn by fair coin tossing, i.e.,

independently and with equal probabilities for ‘0’ and ‘1’. As said, we have to distinguish

now between the contribution of the correct codeword x0, which is

Zc(β|y)
∆
= (1 − p)βne−Jd(x0,y) (416)

and the contribution of all other (incorrect) codewords:

Ze(β|y)
∆
= (1 − p)βn

∑

x∈C\{x0}
e−Jd(x,y). (417)

24This one is still independent, but it has a different distribution, and hence will be handled separately.
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Concerning the former, things are very simple: Typically, the channel flips about np bits out

the n transmissions, which means that with high probability, d(x0,y) is about np, and so

Zc(β|y) is expected to take values around (1− p)βne−βJnp. The more complicated and more

interesting question is how does Ze(β|y) behave, and here the treatment will be very similar

to that of the REM.

Given y, define Ωy(d) as the number of incorrect codewords whose Hamming distance

from y is exactly d. Thus,

Ze(β|y) = (1 − p)βn
n
∑

d=0

Ωy(d) · e−βJd. (418)

Just like in the REM, here too, the enumerator Ωy(d) is the sum of an exponential number,

enR, of binary i.i.d. random variables:

Ωy(d) =
∑

x∈C\{x0}
I{d(x,y) = d}. (419)

According to the method of types, the probability of a single ‘success’ {d(X,y) = nδ} is

given by

Pr{d(X,y) = nδ} ·
=
enh2(δ)

2n
= exp{−n[ln 2 − h2(δ)]}. (420)

Thus, as in the REM, we have an exponential number of trials, enR, each one with an

exponentially decaying probability of success, e−n[ln 2−h2(δ)]. We already know how does this

experiment behave: It depends which exponent is faster. If R > ln 2−h2(δ), we will typically

see about exp{n[R+ h2(δ)− ln 2]} codewords at distance d = nδ from y. Otherwise, we see

none. So the critical value of δ is the solution to the equation

R + h2(δ) − ln 2 = 0. (421)

There are two solutions to this equation, which are symmetric about 1/2. The smaller one is

called the Gilbert–Varshamov (G–V) distance25 and it will be denoted by δGV (R) (see Fig.

17). The other solution is, of course, δ = 1 − δGV (R). Thus, the condition R > ln 2 − h2(δ)

25The G–V distance was originally defined and used in coding theory for the BSC.
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Figure 17: The Gilbert–Varshamov distance as the smaller solution to the equation R + h2(δ) −
ln 2 = 0.

is equivalent to δGV (R) < δ < 1 − δGV (R), and so, for a typical code in the ensemble:

Ze(β|y) ≈ (1 − p)βn
1−δGV (R)
∑

δ=δGV (R)

exp{n[R + h2(δ) − ln 2]} · e−βJnδ

= (1 − p)βnen(R−ln 2) ·
1−δGV (R)
∑

δ=δGV (R)

exp{n[h2(δ) − βJδ]}

= (1 − p)βnen(R−ln 2)×

exp

{

n · max
δGV (R)≤δ≤1−δGV (R)

[h2(δ) − βJδ]

}

. (422)

Now, similarly as in the REM, we have to maximize a certain function within a limited

interval. And again, there are two phases, corresponding to whether the maximizer falls

at an edge–point (glassy phase) or at an internal point with zero derivative (paramagnetic

phase). It is easy to show that in the paramagnetic phase, the maximum is attained at

δ∗ = pβ
∆
=

pβ

pβ + (1 − p)β
(423)

and then

φ(β) = R− ln 2 + ln[pβ + (1 − p)β]. (424)

In the glassy phase, δ∗ = δGV (R) and then

φ(β) = β[δGV (R) ln p+ (1 − δGV (R)) ln(1 − p)], (425)
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which is again, linear in β and hence corresponds to zero entropy. The boundary between

the two phases occurs when β is such that δGV (R) = pβ, which is equivalent to

β = βc(R)
∆
=

ln[(1 − δGV (R))/δGV (R)]

ln[(1 − p)/p]
. (426)

Thus, β < βc(R) is the paramagnetic phase of Ze and β > βc(R) is its glassy phase.

But now we should remember that Ze is only part of the partition function and it is

now the time to put the contribution of Zc back into the picture. Checking the dominant

contribution of Z = Ze + Zc as a function of β and R, we can draw a phase diagram,

where we find that there are actually three phases, two contributed by Ze, as we have

already seen (paramagnetic and glassy), plus a third phase – contributed by Zc, namely, the

ordered or the ferromagnetic phase, where Zc dominates (cf. Fig. 18), which means reliable

communication, as the correct codeword x0 dominates the partition function and hence the

posterior distribution. The boundaries of the ferromagnetic phase designate phase transitions

from reliable to unreliable decoding.

paramagnetic

glassy

fe
rr

om
ag

ne
tic

R

T = 1/β

1

T = Tc(R)

T = T0(R)

C

Figure 18: Phase diagram of the finite–temperature MAP decoder.

Both the glassy phase and the paramagnetic phase correspond to unreliable communi-

cation. What is the essential difference between them? As in the REM, the difference is

that in the glassy phase, Z is dominated by a subexponential number of codewords at the

‘ground–state energy’, namely, that minimum seen distance of nδGV (R), whereas in the para-

magnetic phase, the dominant contribution comes from an exponential number of codewords
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at distance npβ . In the glassy phase, there is seemingly a smaller degree of uncertainty since

H(X|Y ) that is induced from the finite–temperature posterior has zero entropy. But this is

fictitious since the main support of the posterior belongs to incorrect codewords. This is to

say that we may have the illusion that we know quite a lot about the transmitted codeword,

but what we know is wrong! This is like an event of an undetected error. In both glassy

and paramagnetic phases, above capacity, the ranking of the correct codeword, in the list of

decreasing Pβ(x|y), is about en(R−C).

6.3 Random Coding Exponents

It turns out that these findings are relevant to ensemble performance analysis of codes. This

is because many of the bounds on code performance include summations of P β(y|x) (for

some β), which are exactly the partition functions that we worked with in the derivations

of the previous subsection. These considerations can sometimes even help to get tighter

bounds. We will first demonstrate this point in the context of the analysis of the probability

of correct decoding above capacity.

We begin with the following well known expression of the probability of correct decoding:

Pc =
1

M

∑

y

max
x∈C

P (y|x)

= lim
β→∞

1

M

∑

y

[

∑

x∈C
P β(y|x)

]1/β

(427)

The expression in the square brackets is readily identified with the partition function, and

we note that the combination of R > C and β → ∞ takes us deep into the glassy phase.

Taking the ensemble average, we get:

P̄c = lim
β→∞

1

M

∑

y

E







[

∑

x∈C
P β(y|x)

]1/β






. (428)

At this point, the traditional approach would be to insert the expectation into the square

brackets by applying Jensen’s inequality (for β ≥ 1), which would give us an upper bound.

162



Instead, our previous treatment of random code ensembles as a REM–like model can give

us a hand on exponentially tight evaluation of the last expression, with Jensen’s inequality

being avoided. Consider the following chain:

E







[

∑

x∈C
P β(y|x)

]1/β






= (1 − p)nE







[

n
∑

d=0

Ωy(d)e−βJd

]1/β






·
= (1 − p)nE

{

[

max
0≤d≤n

Ωy(d)e−βJd
]1/β

}

= (1 − p)nE

{

max
0≤d≤n

[Ωy(d)]1/β · e−Jd
}

·
= (1 − p)nE

{

n
∑

d=0

[Ωy(d)]1/β · e−Jd
}

= (1 − p)n
n
∑

d=0

E
{

[Ωy(d)]1/β
}

· e−Jd

Thus, it boils down to the calculation of (non–integer) moments of Ωy(d). At this point, we

adopt the main ideas of the treatment of the REM, distinguishing between the values of δ

below the G–V distance, and those that are above it. Before we actually assess the moments

of Ωy(d), we take a closer look at the asymptotic behavior of these random variables. This

will also rigorize our earlier discussion on the Gaussian REM.

For two numbers a and b in [0, 1], let us define the binary divergence as

D(a‖b) = a ln
a

b
+ (1 − a) ln

1 − a

1 − b
. (429)

Using the inequality

ln(1 + x) = − ln

(

1 − x

1 + x

)

≥ x

1 + x
,

we get the following lower bound to D(a‖b):

D(a‖b) = a ln
a

b
+ (1 − a) ln

1 − a

1 − b

= a ln
a

b
+ (1 − a) ln

(

1 +
b− a

1 − b

)

≥ a ln
a

b
+ (1 − a) · (b− a)/(1 − b)

1 + (b− a)/(1 − b)
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= a ln
a

b
+ b− a

> a
(

ln
a

b
− 1
)

Now, as mentioned earlier, Ωy(d) is the sum of enR i.i.d. binary random variables, i.e.,

Bernoulli random variables with parameter e−n[ln 2−h2(δ)]. Consider the event Ωy(d) ≥ enA,

A ≥ 0, which means that the relative frequency of ‘successes’ exceeds enA

enR = e−n(R−A). Then

this is a large deviations event if e−n(R−A) > e−n[ln 2−h2(δ)], that is,

A > R+ h2(δ) − ln 2. (430)

Using the Chernoff bound,26 one can easily show that

Pr{Ωy(d) ≥ enA} ≤ exp{−enRD(e−n(R−A)‖e−n[ln 2−h2(δ)])}. (431)

Now, by applying the above lower bound to the binary divergence, we can further upper

bound the last expression as

Pr{Ωy(d) ≥ enA} ≤ exp{−enR · e−n(R−A)×

(n[ln 2 −R − h2(δ) + A] − 1)}

= exp{−enA · (n[ln 2 − R− h2(δ) + A] − 1)}

Now, suppose first that δGV (R) < δ < 1 − δGV (R), and take A = R + h2(δ) − ln 2 + ǫ,

where ǫ > 0 may not necessarily be small. In this case, the term in the square brackets

is ǫ, which means that the right–most side decays doubly–exponentially rapidly. Thus,

for δGV (R) < δ < 1 − δGV (R), the probability that Ωy(d) exceeds E{Ωy(d)} · enǫ decays

double–exponentially fast with n. One can show in a similar manner27 that Pr{Ωy(d) <

E{Ωy(d)} · e−nǫ} decays in a double exponential rate as well. Finally, consider the case

where δ < δGV (R) or δ > 1 − δGV (R), and let A = 0. This is also a large deviations event,

and hence the above bound continues to be valid. Here, by setting A = 0, we get an ordinary

exponential decay:

Pr{Ωy(d) ≥ 1}
·
≤ e−n[ln 2−R−h2(δ)]. (432)

26We emphasize the use of the Chernoff bound, as opposed to the method of types, since the method of
types would introduce the factor of the number of type classes, which is in this case (enR + 1).

27This requires a slightly different lower bound to the binary divergence.
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After having prepared these results, let us get back to the evaluation of the moments of Ωy(d).

Once again, we separate between the two ranges of δ. For δ < δGV (R) or δ > 1 − δGV (R),

we have the following:

E{[Ωy(d)]1/β} ·
= 01/β · Pr{Ωy(d) = 0} + en·0/β · Pr{1 ≤ Ωy(d) ≤ enǫ}

+ double–exponentially small terms

·
= en·0/β · Pr{Ωy(d) ≥ 1}
·
= e−n[ln 2−R−h2(δ)] (433)

Thus, in this range, E{[Ωy(d)]1/β} ·
= e−n[ln 2−R−h2(δ)] independently of β. On the other hand

in the range δGV (R) < δ < 1 − δGV (R),

E{[Ωy(d)]1/β} ·
= (en[R+h2(δ)−ln 2])1/β×

Pr{en[R+h2(δ)−ln 2−ǫ] ≤ Ωy(d) ≤ en[R+h2(δ)−ln 2+ǫ]}+

+ double–exponentially small terms

·
= en[R+h2(δ)−ln 2]/β (434)

since the probability Pr{en[R+h2(δ)−ln 2−ǫ] ≤ Ωy(d) ≤ en[R+h2(δ)−ln 2+ǫ]} tends to unity double–

exponentially rapidly. So to summarize, we have shown that the moment of Ωy(d) undergoes

a phase transition, as it behaves as follows:

E{[Ωy(d)]1/β} ·
=

{

en[R+h2(δ)−ln 2] δ < δGV (R) or δ > 1 − δGV (R)
en[R+h2(δ)−ln 2]/β δGV (R) < δ < 1 − δGV (R)

Finally, on substituting these moments back into the expression of P̄c, and taking the

limit β → ∞, we eventually get:

lim
β→∞

E







[

∑

x∈C
P β(y|x)

]1/β






·
= e−nFg (435)

where Fg is the free energy of the glassy phase, i.e.,

Fg = δGV (R) ln
1

p
+ (1 − δGV (R)) ln

1

1 − p
(436)
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and so, we obtain a very simple relation between the exponent of P̄c and the free energy of

the glassy phase:

P̄c
·
=

1

M

∑

y

e−nFg

= exp{n(ln 2 − R− Fg)}

= exp{n[ln 2 − R + δGV (R) ln p+ (1 − δGV (R)) ln(1 − p)]}

= exp{n[h2(δGV (R)) + δGV (R) ln p+ (1 − δGV (R)) ln(1 − p)]}

= e−nD(δGV (R)‖p) (437)

The last expression has an intuitive interpretation. It answers the following question: what

is the probability that the channel would flip less than nδGV (R) bits although p > δGV (R)?

This is exactly the relevant question for correct decoding in the glassy phase, because in

that phase, there is a “belt” of codewords “surrounding” y at radius nδGV (R) – these are

the codewords that dominate the partition function in the glassy phase and there are no

codewords closer to y. The event of correct decoding happens if the channel flips less than

nδGV (R) bits and then x0 is closer to y more than all belt–codewords. Thus, x0 is decoded

correctly.

It is interesting, at this point, to compare the above calculation to the bound obtained

using Jensen’s inequality. There we have

E

[

∑

x∈C
P β(y|x)

]1/β

≤
[

E
∑

x∈C
P β(y|x)

]1/β

=
[

enREP β(y|x)
]1/β

= enR/β





∑

x∈{0,1}n

2−n
n
∏

i=1

P β(yi|xi)





1/β

= enR/β

[

n
∏

i=1

1
∑

xi=0

(

1

2
P β(yi|xi)

)

]1/β

= enR/β

[

n
∏

i=1

(

1

2
pβ +

1

2
(1 − p)β

)

]1/β
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= enR/β
[

1

2
pβ +

1

2
(1 − p)β

]n/β

, (438)

which, after taking the limit β → ∞, becomes [max{p, 1 − p}]n = enmax{ln p,ln(1−p)}. The

exponential term max{ln p, ln(1 − p)} should be compared to the weighted average of ln p

and ln(1 − p), with weights δGV (R) and 1 − δGV (R) that we obtained before, and so, the

difference is quite clear.

One can also derive an upper bound on the error probability at R < C. The partition

function Z(β|y) plays a role there too according to Gallager’s classical bounds. We will not

delve now into it, but we only comment that in that case, the calculation is performed in

the paramagnetic regime rather than the glassy regime that we have seen in the calculation

of P̄c. The basic technique, however, is essentially the same.

We will now demonstrate the usefulness of this technique of assessing moments of distance

enumerators in a certain problem of decoding with an erasure option. Consider the BSC

with a crossover probability p < 1/2, which is unknown and one employs a universal detector

that operates according to the following decision rule: Select the message m if

e−nβĥ(xm⊕y)

∑

m′ 6=m e
−nβĥ(xm′⊕y)

≥ enT (439)

where β > 0 is an inverse temperature parameter and ĥ(x ⊕ y) is the binary entropy

pertaining to the relative number of 1’s in the vector resulting from bit–by–bit XOR of x

and y, namely, the binary entropy function computed at the normalized Hamming distance

between x and y. If no message m satisfies (439), then an erasure is declared.

We have no optimality claims regarding this decision rule, but arguably, it is a reasonable

decision rule (and hence there is motivation to analyze its performance): It is a universal

version of the optimum decision rule:

Decide m if
P (y|xm)

∑

m′ 6=m P (y|xm′)
≥ enT and erase otherwise. (440)

The minimization of ĥ(xm ⊕ y) among all code-vectors {xm}, namely, the minimum con-

ditional entropy decoder is a well–known universal decoding rule in the ordinary decoding
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regime, without erasures, which in the simple case of the BSC, is equivalent to the maximum

mutual information (MMI) decoder [16] and to the generalized likelihood ratio test (GLRT)

decoder, which jointly maximizes the likelihood over both the message and the unknown

parameter.

Here, we adapt the minimum conditional entropy decoder to the structure proposed by

the optimum decoder with erasures, where the (unknown) likelihood of each codeword xm is

basically replaced by its maximum e−nĥ(xm⊕y), but with an additional degree of freedom of

scaling the exponent by β. The parameter β controls the relative importance of the codeword

with the second highest score. For example, when β → ∞,28 only the first and the second

highest scores count in the decision, whereas if β → 0, the differences between the scores of

all codewords are washed out.

To demonstrate the advantage of the proposed analysis technique, we will now apply it

in comparison to the traditional approach of using Jensen’s inequality and supplementing

an additional parameter ρ in the bound so as to monitor the loss of tightness due to the

use of Jensen’s inequality (see also [78]). Let us analyze the probability of the event E1

that the transmitted codeword xm does not satisfy (439). We then have the following chain

of inequalities, where the first few steps are common to the two analysis methods to be

compared:

Pr{E1} =
1

M

M
∑

m=1

∑

y

P (y|xm) · 1
{

enT
∑

m′ 6=m e
−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)
≥ 1

}

≤ 1

M

M
∑

m=1

∑

y

P (y|xm) ·
[

enT
∑

m′ 6=m e
−nβĥ(xm′⊕y)

e−nβĥ(xm⊕y)

]s

=
ensT

M

M
∑

m=1

∑

y

P (y|xm) · enβsĥ(xm⊕y)×
[

∑

m′ 6=m
e−nβĥ(xm′⊕y)

]s

. (441)

Considering now the ensemble of codewords drawn independently by fair coin tossing, we

28As β varies it is plausible to let T scale linearly with β.
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have:

Pr{E1} ≤ ensT
∑

y

E
{

P (y|X1) · exp[nβsĥ(X1 ⊕ y)]
}

×

E

{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

∆
= ensT

∑

y

A(y) · B(y) (442)

The computation of A(y) is as follows: Denoting the Hamming weight of a binary sequence

z by w(z), we have:

A(y) =
∑

x

2−n(1 − p)n ·
(

p

1 − p

)w(x⊕y)

exp[nβsĥ(x ⊕ y)]

=

(

1 − p

2

)n
∑

z

exp

[

n

(

w(z) ln
p

1 − p
+ βsĥ(z)

)]

·
=

(

1 − p

2

)n
∑

δ

enh(δ) · exp

[

n

(

βsh(δ) − δ ln
1 − p

p

)]

·
=

(

1 − p

2

)n

exp

[

nmax
δ

(

(1 + βs)h(δ) − δ ln
1 − p

p

)]

.

It is readily seen by ordinary optimization that

max
δ

[

(1 + βs)h(δ) − δ ln
1 − p

p

]

= (1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ln(1 − p) (443)

and so upon substituting back into the the bound on Pr{E1}, we get:

Pr{E1} ≤ exp [n (sT + (1 + βs)×

ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ln 2
)]

·
∑

y

B(y). (444)

It remains then to assess the exponential order of B(y) and this will now be done in two

different ways. The first is Forney’s way [32] of using Jensen’s inequality and introducing

the additional parameter ρ, i.e.,

B(y) = E











[

∑

m>1

exp[−nβĥ(Xm ⊕ y)

]s/ρ




ρ




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≤ E

{(

∑

m>1

exp[−nβsĥ(Xm ⊕ y)/ρ]

)ρ}

0 ≤ s/ρ ≤ 1

≤ enρR
(

E
{

exp[−nβsĥ(Xm ⊕ y)/ρ]
})ρ

, ρ ≤ 1 (445)

where in the second line we have used the following inequality29 for non–negative {ai} and

θ ∈ [0, 1]:
(

∑

i

ai

)θ

≤
∑

i

aθi . (446)

Now,

E
{

exp[−nβsĥ(Xm ⊕ y)/ρ]
}

= 2−n
∑

z

exp[−nβsĥ(z)/ρ]

·
= 2−n

∑

δ

enh(δ) · e−nβsh(δ)/ρ

= exp[n([1 − βs/ρ]+ − 1) ln 2],

where [u]+
∆
= max{u, 0}. Thus, we get

B(y) ≤ exp(n[ρ(R − ln 2) + [ρ− βs]+]), (447)

which when substituted back into the bound on Pr{E1}, yields an exponential rate of

Ẽ1(R, T ) = max
0≤s≤ρ≤1

{(ρ− [ρ− βs]+) ln 2−

−(1 + βs) ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− ρR− sT
}

.

On the other hand, estimating B(y) by the new method, we have:

B(y) = E

{[

∑

m>1

exp[−nβĥ(Xm ⊕ y)]

]s}

= E

{[

∑

δ

Ωy(nδ) exp[−nβh(δ)]
]s}

29To see why this is true, think of pi = ai/(
∑

i ai) as probabilities, and then pθ
i ≥ pi, which implies

∑

i p
θ
i ≥∑i pi = 1. The idea behind the introduction of the new parameter ρ is to monitor the possible loss

of exponential tightness due to the use of Jensen’s inequality. If ρ = 1, there is no loss at all due to Jensen,
but there is maximum loss in the second line of the chain. If ρ = s, it is the other way around. Hopefully,
after optimization over ρ, the overall loss in tightness is minimized.
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·
=
∑

δ

E{Ωs
y(nδ)} · exp(−nβsh(δ))

·
=
∑

δ∈Gc
R

en[R+h(δ)−ln 2] · exp[−nβsh(δ)]+

∑

δ∈GR

ens[R+h(δ)−ln 2] · exp[−nβsh(δ)]

∆
= U + V, (448)

where GR = {δ : δGV (R) ≤ δ ≤ 1−δGV (R)}. Now, U is dominated by the term δ = 0 if βs >

1 and δ = δGV (R) if βs < 1. It is then easy to see that U
·
= exp[−n(ln 2−R)(1− [1−βs]+)].

Similarly, V is dominated by the term δ = 1/2 if β < 1 and δ = δGV (R) if β ≥ 1. Thus,

V
·
= exp[−ns(β[ln 2 − R] − R[1 − β]+)]. Therefore, defining

φ(R, β, s) = min{(ln 2 −R)(1 − [1 − βs]+), s(β[ln 2 − R] − R[1 − β]+)},

the resulting exponent is

Ê1(R, T ) = max
s≥0

{φ(R, β, s) − (1 + βs)×

ln
[

p1/(1+βs) + (1 − p)1/(1+βs)
]

− sT
}

. (449)

Numerical comparisons show that while there are many quadruples (p, β, R, T ) for which

the two exponents coincide, there are also situations where Ê1(R, T ) exceeds Ẽ1(R, T ). To

demonstrate these situations, consider the values p = 0.1, β = 0.5, T = 0.001, and let R

vary in steps of 0.01. Table 1 summarizes numerical values of both exponents, where the

optimizations over ρ and s were conducted by an exhaustive search with a step size of 0.005

in each parameter. In the case of Ê1(R, T ), where s ≥ 0 is not limited to the interval [0, 1]

(since Jensen’s inequality is not used), the numerical search over s was limited to the interval

[0, 5].30

As can be seen (see also Fig. 19), the numerical values of the exponent Ê1(R, T ) are

considerably larger than those of Ẽ1(R, T ) in this example, which means that the analysis

30It is interesting to note that for some values of R, the optimum value s∗ of the parameter s was indeed
larger than 1. For example, at rate R = 0, we have s∗ = 2 in the above search resolution.
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R = 0.00 R = 0.01 R = 0.02 R = 0.03 R = 0.04

Ẽ1(R, T ) 0.1390 0.1290 0.1190 0.1090 0.0990

Ê1(R, T ) 0.2211 0.2027 0.1838 0.1642 0.1441

Table 1: Numerical values of Ẽ1(R, T ) and Ê1(R, T ) as functions of R for p = 0.1, β = 0.5,
and T = 0.001.

technique proposed here, not only simplifies exponential error bounds, but sometimes leads

also to significantly tighter bounds.
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Figure 19: Graphs of Ê1(R, T ) (solid line) and Ẽ1(R, T ) (dashed line) as functions of R for
p = 0.1, T = 0.001 and β = 0.5.

There are other examples where these techniques are used in more involved situations,

and in some of them they yield better performance bounds compared to traditional methods.

These includes analysis of error exponents for interference channels [31], broadcast channels

[55], and exact expressions for error exponents for decoding with erasures [106].

Beside error exponents, these techniques were used successfully in problems of signal

estimation [79] and parameter estimation [77], where threshold effects in the estimation

problems were induced by phase transitions in the analogous physical systems.
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7 Extensions of the REM

In this chapter, we introduce a few extensions of the REM. The first extension, discussed in

Section 7.1, incorporates an external magnetic field. In the realm of coded communication,

the analogue of a magnetic field turns out to be related to possible non–uniformity in the

probability distribution of the input messages, namely, it corresponds to joint source–channel

coding. In Section 7.2, we discuss the generalized REM (GREM), which introduces corre-

lations between the energies of the various configurations in an hierarchical structure. This

will help us to gain some insights on the behavior certain structures of hierarchical codes.

It should be pointed out that the GREM was extended and studied in probability theory

under the name of “Ruelle probability cascades,” first by Ruelle and then by Bolthausen

and Sznitman (see, e.g., [1] and references therein). Finally, in Section 7.3, this hierarchical

structure of the GREM will be pushed to the extreme of the largest possible depth, lead-

ing to another customary model of disordered system, called directed polymer in a random

medium (DPRM), which has an intimate relation to tree coding. The DPRM was already

used earlier in other information–theoretic studies, such as [81, Appendix B].

7.1 REM Under Magnetic Field and Source–Channel Coding

We begin with the physics background of extending the analysis of the REM so as to include

an external magnetic field.

7.1.1 Magnetic Properties of the REM

Earlier, we studied the REM in the absence of an external magnetic field. The Gaussian

randomly drawn energies that we discussed were a caricature of the interaction energies in

the p–spin glass model for an extremely large level of disorder, in the absence of a magnetic

field.

As said, we now expand the analysis of the REM so as to incorporate also an external

magnetic field B. This will turn out to be relevant to a more general communication setting,
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namely, that of joint source–channel coding, where as we shall see, the possible skewedness

of the probability distribution of the source (when it is not symmetric) plays a role that is

analogous to that of a magnetic field.

The Hamiltonian in the presence of the magnetic field is

E(s) = −B
N
∑

i=1

si + EI(s) (450)

where EI(s) stands for the interaction energy, previously modeled to be N (0, 1
2
nJ2) according

to the REM. Thus, the partition function is now

Z(β,B) =
∑

s

e−βE(s)

=
∑

s

e−βEI (s)+βB
PN

i=1 si

=
∑

s

e−βEI (s)+nβBm(s)

=
∑

m





∑

s: m(s)=m

e−βEI(s)



 · e+NβBm

∆
=
∑

m

Z0(β,m) · e+NβBm (451)

where we have introduced the notation m(s) = 1
N

∑

i si and where Z0(β,m) is defined to

be the expression in the square brackets in the second to the last line.31 Now, observe

that Z0(β,m) is just like the partition function of the REM without magnetic field, except

that it has a smaller number of configurations – only those with magnetization m, namely,

about exp{Nh2((1 + m)/2)} configurations. Thus, the analysis of Z0(β,m) is precisely the

same as in the REM except that every occurrence of the term ln 2 should be replaced by

h2((1 +m)/2). Accordingly,

Z0(β,m)
·
= eNψ(β,m) (452)

31Note that the relation between Z0(β,m) to Z(β,B) is similar to the relation between Ω(E) of the
microcanonical ensemble to Z(β) of the canonical one (a Legendre relation in the log domain): we are
replacing the fixed magnetization m, which is an extensive quantity, by an intensive variable B that controls
its average.

174



with

ψ(β,m) = max
|ǫ|≤J

√
h2((1+m)/2)

[

h2

(

1 +m

2

)

−
( ǫ

J

)2

− βǫ

]

=







h2

(

1+m
2

)

+ β2J2

4
β ≤ βm

∆
= 2

J

√

h2

(

1+m
2

)

βJ
√

h2

(

1+m
2

)

β > βm

and from the above relation between Z and Z0, we readily have the Legendre relation

φ(β,B) = max
m

[ψ(β,m) + βmB]. (453)

For small β (high temperature), the maximizing (dominant)m is attained with zero–derivative:

∂

∂m

[

h2

(

1 +m

2

)

+
β2J2

4
+ βmB

]

= 0 (454)

that is
1

2
ln

1 −m

1 +m
+ βB = 0 (455)

which yields

m∗ = mp(β,B)
∆
= tanh(βB) (456)

which is exactly the paramagnetic characteristic of magnetization vs. magnetic field (like that

of i.i.d. spins), hence the name “paramagnetic phase.” Thus, on substituting m∗ = tanh(βB)

back into the expression of φ, we get:

φ(β,B) = h2

(

1 + tanh(βB)

2

)

+
β2J2

4
+ βB tanh(βB). (457)

This solution is valid as long as the condition

β ≤ βm∗ =
2

J

√

h2

(

1 + tanh(βB)

2

)

(458)

holds, or equivalently, the condition

β2J2

4
≤ h2

(

1 + tanh(βB)

2

)

. (459)

Now, let us denote by βc(B) the solution β to the equation:

β2J2

4
= h2

(

1 + tanh(βB)

2

)

. (460)
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As can be seen from the graphical illustration (Fig. 20), βc(B) is a decreasing function and

hence Tc(B)
∆
= 1/βc(B) is increasing. Thus, the phase transition temperature is increasing

with |B| (see Fig. 21). Below β = βc(B), we are in the glassy phase, where φ is given by:

ln 2

β

y = β2J2

4

B = 0

βc(0)βc(B2) βc(B1)

y = h2

“

1+tanh(βB1)
2

”

B2 > B1

y = h2

“

1+tanh(βB2)
2

”

Figure 20: Graphical presentation of the solution βc(B) to the equation 1
4β

2J2 = h2((1 +
tanh(βB))/2) for various values of B.

paramagnetic

glassy

B

T

Tc(0) = J

2
√

ln 2

Figure 21: Phase diagram in the B–T plane.

φ(β,B) = max
m

[

βJ

√

h2

(

1 +m

2

)

+ βmB

]

= β · max
m

[

J

√

h2

(

1 +m

2

)

+mB

]

(461)

thus, the maximizing m does not depend on β, only on B. On the other hand, it should be
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the same solution that we get on the boundary β = βc(B), and so, it must be:

m∗ = mg(B)
∆
= tanh(Bβc(B)). (462)

Thus, in summary

φ(β,B) =











h2

(

1+mp(β,B)
2

)

+ β2J2

4
+ βBmp(β,B) β ≤ βc(B)

βJ

√

h2

(

1+mg(B)
2

)

+ βBmg(B) β > βc(B)

In both phases B → 0 implies m∗ → 0, therefore the REM does not exhibit spontaneous

magnetization, only a glass transition, as described in the previous chapter.

Finally, we mention an important parameter in the physics of magnetic materials – the

weak–field magnetic susceptibility, which is defined as χ
∆
= ∂m∗

∂B
|B=0. It can readily be shown

that in the REM case

χ =

{ 1
T

T ≥ Tc(0)
1

Tc(0)
T < Tc(0)

(463)

The graphical illustration of this function is depicted in Fig. 22. The 1/T behavior for high

temperature is known as Curie’s law. As we heat a magnetic material up, it becomes more

and more difficult to magnetize. The fact that here χ has an upper limit of 1/Tc(0) follows

from the random interactions between spins, which make the magnetization more difficult

too.

χ

1
Tc(0)

Tc(0)
T

Figure 22: Magnetic susceptibility vs. temperature for a typical realization of the REM.
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7.1.2 Relation to Joint Source–Channel Coding

We now relate these derivations to the behavior of joint source–channel coding systems. This

subsection is a summary of the derivations and the results of [68].

Consider again our coded communication system with a few slight modifications (cf.

Fig. 23). Instead of having enR equiprobable messages for channel coding, we are now in

a joint source–channel coding scenario, where the message probabilities are skewed by the

source probability distribution, which may not be symmetric. In particular, we consider

the following: Suppose we have a vector s ∈ {−1,+1}N emitted from a binary memoryless

source with symbol probabilities q = Pr{Si = +1} = 1 − Pr{Si = −1}. The channel is still

a BSC with crossover p. For every N–tuple emitted by the source, the channel conveys n

channel binary symbols, which are the components of a codeword x ∈ {0, 1}n, such that the

ratio θ = n/N , the bandwidth expansion factor, remains fixed. The mapping from s to x

is the encoder. As before, we shall concern ourselves with random codes, namely, for every

s ∈ {−1,+1}N , we randomly select an independent code-vector x(s) ∈ {0, 1}n by fair coin

tossing, as before. Thus, we randomly select 2N code-vectors, each one of length n = Nθ.

As in the case of pure channel coding, we consider the finite–temperature posterior:

encoder decoder
ŝy

P (y|x)
x(s)s

Figure 23: Block diagram of joint source–channel communication system.

Pβ(s|y) =
[P (s)P (y|x(s))]β

Z(β|y)
(464)

with

Z(β|y) =
∑

s

[P (s)P (y|x(s))]β, (465)

corresponding to the finite–temperature decoder:

ŝi = arg max
s=±1

∑

s: si=s

[P (s)P (y|x(s))]β. (466)
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Once again, we separate the contributions of

Zc(β|y) = [P (s0)P (y|x(s0))]
β, (467)

s0 being the true source message, and

Ze(β|y) =
∑

s 6=s0

[P (s)P (y|x(s))]β . (468)

As we shall see quite shortly, Ze behaves like the REM in a magnetic field given by

B =
1

2
ln

q

1 − q
. (469)

Accordingly, we will henceforth denote Ze(β) also by Ze(β,B), to emphasize the analogy to

the REM in a magnetic field.

To see that Ze(β,B) behaves like the REM in a magnetic field, consider the following:

first, denote by N1(s) the number of +1’s in s, so that the magnetization,

m(s)
∆
=

1

N

[

N
∑

i=1

1{si = +1} −
N
∑

i=1

1{si = −1}
]

, (470)

pertaining to spin configuration s, is given by

m(s) =
2N1(s)

N
− 1. (471)

Equivalently,

N1(s) =
N [1 +m(s)]

2
, (472)

and then

P (s) = qN1(s)(1 − q)N−N1(s)

= (1 − q)N
(

q

1 − q

)N(1+m(s))/2

= [q(1 − q)]N/2
(

q

1 − q

)Nm(s))/2

= [q(1 − q)]N/2eNm(s)B (473)
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where B is defined as above. By the same token, for the binary symmetric channel we have:

P (y|x) = pdH(x,y)(1 − p)n−dH(x,y) = (1 − p)ne−JdH(x,y) (474)

where J = ln 1−p
p

and dH(x,y) is the Hamming distance, as defined earlier. Thus,

Ze(β,B) = [q(1 − q)]Nβ/2×
∑

m





∑

x(s): m(s)=m

e−β ln[1/P (y|x(s))]



 eNβmB

= [q(1 − q)]βN/2(1 − p)nβ×
∑

m





∑

x(s): m(s)=m

e−βJdH(x(s),y)



 eβNmB

∆
= [q(1 − q)]Nβ/2(1 − p)nβ

∑

m

Z0(β,m|y)eβNmB (475)

The resemblance to the REM in a magnetic field is now self–evident. In analogy to the

above analysis of the REM, Z0(β,m) here behaves like in the REM without a magnetic field,

namely, it contains exponentially eNh((1+m)/2) = enh((1+m)/2)/θ terms, with the random energy

levels of the REM being replaced now by random Hamming distances {dH(x(s),y)} that

are induced by the random selection of the code {x(s)}. Using the same considerations as

with the REM in channel coding, we now get:

ψ(β,m)
∆
= lim

n→∞
lnZ0(β,m|y)

n

= max
δm≤δ≤1−δm

[

1

θ
h2

(

1 +m

2

)

+ h2(δ) − ln 2 − βJδ

]

=

{

1
θ
h2

(

1+m
2

)

+ h2(pβ) − ln 2 − βJpβ pβ ≥ δm
−βJδm pβ < δm

(476)

where we have defined

δm
∆
= δGV

(

1

θ
h2

(

1 +m

2

))

(477)

and where again,

pβ =
pβ

pβ + (1 − p)β
. (478)
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The condition pβ ≥ δm is equivalent to

β ≤ β0(m)
∆
=

1

J
ln

1 − δm
δm

. (479)

Finally, back to the full partition function:

φ(β,B) = lim
n→∞

1

N
ln

[

∑

m

Z0(β,m|y)eNβBm

]

= max
m

[θψ(β,m) + βmB]. (480)

For small enough β, the dominant m is the one that maximizes

h2

(

1 +m

2

)

+ βmB,

which is again the paramagnetic magnetization

m∗ = mp(β,B) = tanh(βB). (481)

Thus, in high decoding temperatures, the source vectors {s} that dominate the posterior

Pβ(s|y) behave like a paramagnet under a magnetic field defined by the prior B = 1
2
ln q

1−q .

In the glassy regime, similarly as before, we get:

m∗ = mg(B)
∆
= tanh(Bβc(B)) (482)

where this time, βc(B), the glassy–paramagnetic boundary, is defined as the solution to the

equation

ln 2 − h2(pβ) =
1

θ
h2

(

1 + tanh(βB)

2

)

. (483)

The full details are in [68]. Taking now into account also Zc, we get a phase diagram as

depicted in Fig. 24. Here,

B0
∆
=

1

2
ln

q∗

1 − q∗
(484)

where q∗ is the solution to the equation

h2(q) = θ[ln 2 − h2(p)], (485)

namely, it is the boundary between reliable and unreliable communication.

181



glassy phase

paramagnetic   phase

ferromagnetic phaseferromagnetic phase

T

B

1

T = Tpf (B) T = Tpf (B)

T = Tpg(B)

−B0 +B0

Figure 24: Phase diagram of joint source–channel communication system.

7.2 Generalized REM (GREM) and Hierarchical Coding

In the mid–eighties of the previous century, Derrida extended the REM to the generalized

REM (GREM) [25], [26], which has an hierarchical tree structure to accommodate possible

correlations between energy levels of various configurations (and hence is somewhat closer

to reality). It turns out to have direct relevance to performance analysis of codes with

a parallel hierarchical structure. Hierarchical structured codes are frequently encountered

in many contexts, e.g., tree codes, multi–stage codes for progressive coding and successive

refinement, codes for the degraded broadcast channel, codes with a binning structure (like

in G–P and W–Z coding and coding for the wiretap channel), and so on. The material in

this subsection is based on [70].

We begin from the physics of the GREM. For simplicity, we limit ourselves to two stages,

but the discussion and the results extend to any fixed, finite number of stages. The GREM

is defined by a few parameters: (i) a number 0 < R1 < ln 2 and R2 = ln 2 − R1. (ii) a

number 0 < a1 < 1 and a2 = 1 − a1. Given these parameters, we now partition the set of

2N configurations into eNR1 groups, each having eNR2 configurations.32 The easiest way to

describe it is with a tree (see Fig. 25), each leaf of which represents one spin configuration.

Now, for each branch in this tree, we randomly draw an independent random variable, which

32Later, we will see that in the analogy to hierarchical codes, R1 and R2 will have the meaning of coding
rates at two stages of a two–stage code.
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will be referred to as an energy component: First, for every branch outgoing from the root,

we randomly draw ǫi ∼ N (0, a1NJ
2/2), 1 ≤ i ≤ eNR1 . Then, for each branch 1 ≤ j ≤ eNR2 ,

emanating from node no. i, 1 ≤ i ≤ eNR1 , we randomly draw ǫi,j ∼ N (0, a2NJ
2/2). Finally,

we define the energy associated with each configuration, or equivalently, each leaf indexed

by (i, j), as Ei,j = ǫi + ǫi,j , 1 ≤ i ≤ eNR1 , 1 ≤ j ≤ eNR2 .

ǫM1

ǫ2,M2

ǫ2ǫ1

ǫM1,1

R1 +R2 = ln 2

a1 + a2 = 1

ǫi ∼ N (0, nJ2a1/2)

ǫi,j ∼ N (0, nJ2a2/2)

Ei,j = ǫi + ǫi,j

ǫM1,M2

M2 = enR2 leaves M2 = enR2 leaves

M1 = enR1branches

ǫ1,1 ǫ1,M2 ǫ2,1

M2 = enR2 leaves

Figure 25: The GREM with K = 2 stages.

Obviously, the marginal pdf of each Ei,j is N (0, NJ2/2), just like in the ordinary REM.

However, unlike in the ordinary REM, here the configurational energies {Ei,j} are correlated:

Every two leaves with a common parent node i have an energy component ǫi in common and

hence their total energies are correlated.

An extension of the GREM to K stages is parametrized by
∑K

ℓ=1Rℓ = ln 2 and
∑K

ℓ=1 aℓ =

1, where one first divides the entirety of 2n configurations into eNR1 groups, then each such

group is subdivided into enR2 subgroups, and so on. For each branch of generation no.

ℓ, an independent energy component is drawn according to N (0, aℓNJ
2/2) and the total

energy pertaining to each configuration, or a leaf, is the sum of energy components along

the path from the root to that leaf. An extreme case of the GREM is where K = N , which

is referred to as the directed polymer on a tree or a directed polymer in a random medium.

We will it later in Subsection 7.3, although it has a different asymptotic regime than the

GREM, because in the GREM, K is assumed fixed while N grows without bound in the

thermodynamic limit.
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Returning back to the case of K = 2 stages, the analysis of the GREM is conceptually

a simple extension of that of the REM: First, we ask ourselves what is the typical number

of branches emanating from the root whose first–generation energy component, ǫi, is about

ǫ? The answer is very similar to that of the REM: Since we have eNR1 independent trials

of an experiment for which the probability of a single success is exponentially e−ǫ
2/(NJ2a1),

then for a typical realization:

Ω1(ǫ) ≈
{

0 |ǫ| > NJ
√
a1R1

exp
{

N
[

R1 − 1
a1

(

ǫ
NJ

)2
]}

|ǫ| < NJ
√
a1R1

(486)

Next, we ask ourselves what is the typical number Ω2(E) of configurations with total en-

ergy about E? Obviously, each such configuration should have a first–generation energy

component ǫ and second–generation energy component E − ǫ, for some ǫ. Thus,

Ω2(ǫ) ≈
∫ +NJ

√
a1R1

−NJ√a1R1

dǫΩ1(ǫ) · exp

{

N

[

R2 −
1

a2

(

E − ǫ

NJ

)2
]}

. (487)

It is important to understand here the following point: Here, we no longer zero–out the

factor

exp

{

N

[

R2 −
1

a2

(

E − ǫ

NJ

)2
]}

(488)

when the expression in the square brackets at the exponent becomes negative, as we did in

the first stage and in the REM. The reason is simple: Given ǫ, we are conducting Ω1(ǫ) ·eNR1

independent trials of an experiment whose success rate is

exp

{

−N
a2

(

E − ǫ

NJ

)2
}

. (489)

Thus, whatever counts is whether the entire integrand has a positive exponent or not.

Consider next the entropy. The entropy behaves as follows:

Σ(E) = lim
N→∞

ln Ω2(E)

N
=

{

Σ0(E) Σ0(E) ≥ 0
−∞ Σ0(E) < 0

(490)

where Σ0(E) is the exponential rate of the above integral, which after applying the Laplace

method, is shown to be:

Σ0(E) = max
|ǫ|≤+NJ

√
a1R1

[

R1 −
1

a1

( ǫ

NJ

)2

+R2 −
1

a2

(

E − ǫ

NJ

)2
]

.
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How does the function Σ(E) behave?

It turns out that to answer this question, we will have to distinguish between two cases:

(i) R1/a1 < R2/a2 and (ii) R1/a1 ≥ R2/a2.
33 First, observe that Σ0(E) is an even function,

i.e., it depends on E only via |E|, and it is monotonically non–increasing in |E|. Solving the

optimization problem pertaining to Σ0, we readily find:

Σ0(E) =

{

ln 2 −
(

E
NJ

)2 |E| ≤ E1

R2 − 1
a2

(

E
NJ

−√
a1R1

)2 |E| > E1

where E1
∆
= NJ

√

R1/a1. This is a phase transition due to the fact that the maximizing ǫ

becomes an edge-point of its allowed interval. Imagine now that we gradually increase |E|
from zero upward. Now the question is what is encountered first: The energy level Ê, where

Σ(E) jumps to −∞, or E1 where this phase transition happens? In other words, is Ê < E1

or Ê > E1? In the former case, the phase transition at E1 will not be apparent because

Σ(E) jumps to −∞ before, and that’s it. In this case, according to the first line of Σ0(E),

ln 2 − (E/NJ)2 vanishes at Ê = NJ
√

ln 2 and we get:

Σ(E) =

{

ln 2 −
(

E
NJ

)2 |E| ≤ Ê

−∞ |E| > Ê
(491)

exactly like in the ordinary REM. It follows then that in this case, φ(β) which is the Legendre

transform of Σ(E) will also be like in the ordinary REM, that is:

φ(β) =

{

ln 2 + β2J2

4
β ≤ β0

∆
= 2

J

√
ln 2

βJ
√

ln 2 β > β0

(492)

As said, the condition for this is:

NJ
√

ln 2 ≡ Ê ≤ E1 ≡ NJ

√

R1

a1
(493)

or, equivalently,
R1

a1
≥ ln 2. (494)

33Accordingly, in coding, this will mean a distinction between two cases of the relative coding rates at the
two stages.
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On the other hand, in the opposite case, Ê > E1, the phase transition at E1 is apparent,

and so, there are now two phase transitions:

Σ(E) =











ln 2 −
(

E
NJ

)2 |E| ≤ E1

R2 − 1
a2

(

E
NJ

−√
a1R1

)2
E1 < |E| ≤ Ê

−∞ |E| > Ê

(495)

and accordingly:

φ(β) =















ln 2 + β2J2

4
β ≤ β1

∆
= 2

J

√

R1

a1

βJ
√
a1R1 +R2 + a2β2J2

4
β1 ≤ β < β2

∆
= 2

J

√

R2

a2

βJ(
√
a1R1 +

√
a2R2) β ≥ β2

(496)

The first line is a purely paramagnetic phase. In the second line, the first–generation branches

are glassy (there is a subexponential number of dominant ones) but the second–generation

is still paramagnetic. In the third line, both generations are glassy, i.e., a subexponen-

tial number of dominant first–level branches, each followed by a subexponential number

of second–level ones, thus a total of a subexponential number of dominant configurations

overall.

Now, there is a small technical question: what is it that guarantees that β1 < β2 whenever

R1/a1 < ln 2? We now argue that these two inequalities are, in fact, equivalent. In [12], the

following inequality is proved for two positive vectors (a1, . . . , ak) and (b1, . . . , bk):

min
i

ai
bi

≤
∑k

i=1 ai
∑k

i=1 bi
≤ max

i

ai
bi
. (497)

Thus,

min
i∈{1,2}

Ri

ai
≤ R1 +R2

a1 + a2

≤ max
i∈{1,2}

Ri

ai
, (498)

but in the middle expression the numerator is R1 + R2 = ln 2 and the denominator is

a1 + a2 = 1, thus it is exactly ln 2. In other words, ln 2 is always in between R1/a1 and

R2/a2. So R1/a1 < ln 2 iff R1/a1 < R2/a2, which is the case where β1 < β2. To summarize

our findings thus far, we have the following:
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Case A: R1/a1 < R2/a2 – two phase transitions:

φ(β) =







ln 2 + β2J2

4
β ≤ β1

βJ
√
a1R1 +R2 + a2β2J2

4
β1 ≤ β < β2

βJ(
√
a1R1 +

√
a2R2) β ≥ β2

(499)

Case B: R1/a1 ≥ R2/a2 – one phase transition, like in the REM:

φ(β) =

{

ln 2 + β2J2

4
β ≤ β0

βJ
√

ln 2 β > β0

(500)

We now move on to our coding problem, this time, it is about source coding with a fidelity

criterion. For simplicity, we assume a binary symmetric source (BSS) and the Hamming

distortion measure. Consider the following hierarchical structure of a code: Given a block

length n, we break it into two segments of lengths n1 and n2 = n−n1. For the first segment,

we randomly select (by fair coin tossing) a codebook Ĉ = {x̂i, 1 ≤ i ≤ en1R1}. For the second

segment, we do the following: For each 1 ≤ i ≤ en1R1 , we randomly select (again, by fair

coin tossing) a codebook C̃i = {x̃i,j , 1 ≤ j ≤ en2R2}. Now, given a source vector x ∈ {0, 1}n,
segmentized as (x′,x′′), the encoder seeks a pair (i, j), 1 ≤ i ≤ en1R1, 1 ≤ j ≤ en2R2 ,

such that d(x′, x̂i) + d(x′′, x̃i,j) is minimum, and then transmits i using n1R1 nats and j

– using n2R2 nats, thus a total of (n1R1 + n2R2) nats, which means an average rate of

R = λR1 +(1−λ)R2 nats per symbol, where λ = n1/n. Now, there are a few questions that

naturally arise:

What is the motivation for codes of this structure? The decoder has a reduced delay. It can

decode the first n1 symbols after having received the first n1R1 nats, and does not have to

wait until the entire transmission of length (n1R1 +n2R2) has been received. Extending this

idea to K even segments of length n/K, the decoding delay is reduced from n to n/K. In

the limit of K = n, in which case it is a tree code, the decoder is actually delayless.

What is the relation to the GREM? The hierarchical structure of the code is that of a tree,

exactly like the GREM. The role of the energy components at each branch is now played

by the segmental distortions d(x′, x̂i) and d(x′′, x̃i,j). The parameters R1 and R2 here are

similar to those of the GREM.
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Given an overall rate R, suppose we have the freedom to choose λ, R1 and R2, such that

R = λR1 + (1 − λ)R2, are some choice better than others in some sense? This is exactly

what we are going to figure out next.

As for the performance criterion, here, we choose to examine performance in terms of the

characteristic function of the overall distortion,

E[exp{−s · distortion}].

This is, of course, a much more informative figure of merit than the average distortion, be-

cause in principle, it gives information on the entire probability distribution of the distortion.

In particular, it generates all the moments of the distortion by taking derivatives at s = 0,

and it is useful in deriving Chernoff bounds on probabilities of large deviations events con-

cerning the distortion. More formally, we make the following definitions: Given a code C
(any block code, not necessarily of the class we defined), and a source vector x, we define

∆(x) = min
x̂∈C

d(x, x̂), (501)

and we will be interested in the exponential rate of

Ψ(s)
∆
= E{exp[−s∆(X)]}. (502)

This quantity can be easily related to the “partition function”:

Z(β|x)
∆
=
∑

x̂∈C

e−βd(x,x̂). (503)

In particular,

E{exp[−s∆(X)]} = lim
θ→∞

E
{

[Z(s · θ|X)]1/θ
}

. (504)

Thus, to analyze the characteristic function of the distortion, we have to assess (non-integer)

moments of the partition function.

Let us first see what happens with ordinary random block codes, without any structure.

This calculation is very similar the one we did earlier in the context of channel coding:

E
{

[Z(s · θ|X)]1/θ
}

= E















∑

x̂∈C

e−sθd(x,x̂)





1/θ









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= E







[

n
∑

d=0

Ω(d)e−sθd
]1/θ







·
=

n
∑

d=0

E
{

[Ω(d)]1/θ
}

· e−sd (505)

where, as we have already shown in the previous chapter that

E
{

[Ω(d)]1/θ
}

·
=

{

en[R+h2(δ)−ln 2] δ ≤ δGV (R) or δ ≥ 1 − δGV (R)
en[R+h2(δ)−ln 2]/θ δGV (R) ≤ δ ≤ 1 − δGV (R)

Note that δGV (R) is exactly the distortion–rate function of the BSS w.r.t. the Hamming

distortion. By substituting the expression of E{[Ω(d)]1/θ} back into that of E{[Z(s·θ|X)]1/θ}
and carrying out the maximization pertaining to the dominant contribution, we eventually

obtain:

Ψ(s)
·
= e−nu(s,R) (506)

where

u(s, R) = ln 2 −R− max
δ≤δGV (R)

[h2(δ) − sδ]

=

{

sδGV (R) s ≤ sR
v(s, R) s > sR

(507)

with

sR
∆
= ln

[

1 − δGV (R)

δGV (R)

]

(508)

and

v(s, R)
∆
= ln 2 −R + s− ln(1 + es). (509)

The function u(s, R) is depicted qualitatively in Fig. 26.

Let us now move on to the hierarchical codes. The analogy with the GREM is fairly clear.

Given x, there are about Ω1(δ1)
·
= en1[R1+h2(δ1)−ln 2] first–segment codewords {x̂i} in Ĉ at

distance n1δ1 from the first segment x′ of x, provided that R1+h2(δ1)−ln 2 > 0 and Ω1(δ1) =

0 otherwise. For each such first–segment codeword, there are about en2[R2+h2(δ2)−ln 2] second–

segment codewords {x̃i,j} at distance n2δ2 from the second segment x′′ of x. Therefore, for
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sR
s

slope δ(R)

ln 2 −R

u(s,R)

Figure 26: Qualitative graph of the function u(s,R) as a function of s for fixed R.

δ = λδ1 + (1 − λ)δ2,

Ω2(δ) =

1−δGV (R1)
∑

δ1=δGV (R1)

en1[R1+h2(δ1)−ln 2] · en2[R2+h2((δ−λδ1)/(1−λ))−ln 2]

·
= exp

{

n · max
δ1∈[δGV (R1),1−δGV (R1)]

×
[

R + λh2(δ1) + (1 − λ)h2

(

δ − λδ1
1 − λ

)]}

(510)

In analogy to the analysis of the GREM, here too, there is a distinction between two cases:

R1 ≥ R ≥ R2 and R1 < R < R2. In the first case, the behavior is just like in the REM:

Σ(δ) =

{

R + h2(δ) − ln 2 δ ∈ [δGV (R), 1 − δGV (R)]
−∞ elsewhere

(511)

and then, of course, φ(β) = −u(β,R) behaves exactly like that of a general random code, in

spite of the hierarchical structure. In the other case, we have two phase transitions:

φ(β,R) =







−v(β,R) β < β(R1)
−λβδGV (R1) − (1 − λ)v(β,R2) β(R1) < β < β(R2)
−β[λδGV (R1) + (1 − λ)δGV (R2)] β > β(R2)

The last line is the purely glassy phase and this is the relevant phase because of the limit

θ → 0 that we take in order to calculate Ψ(s). Note that at this phase the slope is λδGV (R1)+

(1−λ)δGV (R2) which means that code behaves as if the two segments were coded separately,

which is worse that δGV (R) due to convexity arguments. Let us see this more concretely

on the characteristic function: This time, it will prove convenient to define Ω(d1, d2) as an
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enumerator of codewords whose distance is d1 at the first segment and d2 – on the second

one. Now,

E
{

Z1/θ(s · θ)
}

= E







[

n
∑

d1=0

n
∑

d2=0

Ω(d1, d2) · e−sθ(d1+d2)

]1/θ






·
=

n
∑

d1=0

n
∑

d2=0

E
{

Ω1/θ(d1, d2)
}

· e−s(d1+d2). (512)

Here, we should distinguish between four types of terms depending on whether or not δ1 ∈
[δGV (R1), 1 − δGV (R1)] and whether or not δ2 ∈ [δGV (R2), 1 − δGV (R2)]. In each one of

these combinations, the behavior is different (the details are in [70]). The final results are

as follows:

For R1 < R2,

lim
n→∞

[

−1

n
ln E exp{−s∆(X)}

]

= λu(s, R1) + (1 − λ)u(s, R2) (513)

which means the behavior of two independent, decoupled codes for the two segments, which

is bad, of course.

For R1 ≥ R2,

lim
n→∞

[

−1

n
ln E exp{−s∆(X)}

]

= u(s, R) ∀s ≤ s0 (514)

where s0 is some positive constant. This means that the code behaves like an unstructured

code (with delay) for all s up to a certain s0 and the reduced decoding delay is obtained for

free. Note that the domain of small s is relevant for moments of the distortion. For R1 = R2,

s0 is unlimited. Thus, the conclusion is that if we must work at different rates, it is better

to use the higher rate first. A more elaborate discussion can be found in [70].

7.3 Directed Polymers in a Random Medium and Tree Codes

Finally, we discuss a related model that we mentioned earlier, which can be thought of as

an extreme case of the GREM with K = N . This is the directed polymer in a random

medium (DPRM): Consider a Cayley tree, namely, a full balanced tree with branching ratio
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d and depth n (cf. Fig. 27, where d = 2 and N = 3). Let us index the branches by a pair

of integers (i, j), where 1 ≤ i ≤ N describes the generation (with i = 1 corresponding to

the d branches that emanate from the root), and 0 ≤ j ≤ di − 1 enumerates the branches

of the i–th generation, say, from left to right (again, see Fig. 27). For each branch (i, j),

1 ≤ j ≤ di, 1 ≤ i ≤ N , we randomly draw an independent random variable εi,j according

to a fixed probability function q(ε) (i.e., a probability mass function in the discrete case, or

probability density function in the continuous case). As explained earlier, the asymptotic

regime here is different from that of the GREM: In the GREM we had a fixed number of

stages K that did not grow with N and exponentially many branches emanating from each

internal node. Here, we have K = N and a fixed number d of branches outgoing from each

note.

30 1 2 4 65 7

0 1

0 1 2 3

Figure 27: A Cayley tree with branching factor d = 2 and depth N = 3.

A walk w, from the root of the tree to one of its leaves, is described by a finite sequence

{(i, ji)}Ni=1, where 0 ≤ j1 ≤ d − 1 and dji ≤ ji+1 ≤ dji + d − 1, i = 1, 2, . . . , (N − 1).34

For a given realization of the random variables {εi,j : i = 1, 2, . . . , N, j = 0, 1, . . . , di − 1},
we define the Hamiltonian associated with w as E(w) =

∑N
i=1 εi,ji, and then the partition

34In fact, for a given N , the number jN alone dictates the entire walk.
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function as:

ZN(β) =
∑

w

exp{−βE(w)}. (515)

It turns out that this model is exactly solvable (in many ways) and one can show (see e.g.,

[9]) that it admits a glassy phase transition:

φ(β) = lim
N→∞

lnZN(β)

n
=

{

φ0(β) β < βc
φ0(βc) β ≥ βc

almost surely (516)

where

φ0(β)
∆
=

ln[d · Ee−βρ(ǫ)]
β

(517)

and βc is the value of β that minimizes φ0(β).

In analogy to the hierarchical codes inspired by the GREM, consider now an ensemble of

tree codes for encoding source n–tuples, x = (x1, . . . , xn), which is defined as follows: Given

a coding rate R (in nats/source–symbol), which is assumed to be the natural logarithm of

some positive integer d, and given a probability distribution on the reproduction alphabet,

q = {q(y), y ∈ Y}, let us draw d = eR independent copies of Y under q, and denote them

by Y1, Y2, . . . , Yd. We shall refer to the randomly chosen set, C1 = {Y1, Y2, . . . , Yd}, as our

‘codebook’ for the first source symbol, X1. Next, for each 1 ≤ j1 ≤ d, we randomly select

another such codebook under q, C2,j1 = {Yj1,1, Yj1,2, . . . , Yj1,d}, for the second symbol, X2.

Then, for each 1 ≤ j1 ≤ d and 1 ≤ j2 ≤ d, we again draw under q yet another codebook

C3,j1,j2 = {Yj1,j2,1, Yj1,j2,2, . . . , Yj1,j2,d}, for X3, and so on. In general, for each t ≤ n, we

randomly draw dt−1 codebooks under q, which are indexed by (j1, j2, . . . , jt−1), 1 ≤ jk ≤ d,

1 ≤ k ≤ t− 1.

Once the above described random code selection process is complete, the resulting set of

codebooks {C1, Ct,j1,...,jt−1, 2 ≤ t ≤ n, 1 ≤ jk ≤ d, 1 ≤ k ≤ t − 1} is revealed to both the

encoder and decoder, and the encoding–decoding system works as follows:

• Encoding: Given a source n–tuple Xn, find a vector of indices (j∗1 , j
∗
2 , . . . , j

∗
n) that

minimizes the overall distortion
∑n

t=1 ρ(Xt, Yj1,...,jt). Represent each component j∗t

(based on j∗t−1) by R = ln d nats (that is, log2 d bits), thus a total of nR nats.
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• Decoding: At each time t (1 ≤ t ≤ n), after having decoded (j∗1 , . . . , j
∗
t ), output the

reproduction symbol Yj∗1 ,...,j∗t .

In order to analyze the rate–distortion performance of this ensemble of codes, we now

make the following assumption:

The random coding distribution q is such that the distribution of the random variable ρ(x, Y )

is the same for all x ∈ X .

It turns out that this assumption is fulfilled quite often – it is the case whenever the

random coding distribution together with distortion function exhibit a sufficiently high de-

gree of symmetry. For example, if q is the uniform distribution over Y and the rows of the

distortion matrix {ρ(x, y)} are permutations of each other, which is in turn the case, for

example, when X = Y is a group and ρ(x, y) = γ(x − y) is a difference distortion function

w.r.t. the group difference operation. Somewhat more generally, this assumption still holds

when the different rows of the distortion matrix are formed by permutations of each other

subject to the following rule: ρ(x, y) can be swapped with ρ(x, y′) provided that q(y′) = q(y).

For a given x and a given realization of the set of codebooks, define the partition function

in analogy to that of the DPRM:

Zn(β) =
∑

w

exp{−β
n
∑

t=1

ρ(xt, Yj1,...,jt)}, (518)

where the summation extends over all dn possible walks, w = (j1, . . . , jn), along the Cayley

tree. Clearly, considering our symmetry assumption, this falls exactly under the umbrella

of the DPRM, with the distortions {ρ(xt, Yj1,...,jt)} playing the role of the branch energies

{εi.j}. Therefore, 1
nβ

lnZn(β) converges almost surely, as n grows without bound, to φ(β),

now defined as

φ(β) =

{

φ0(β) β ≤ βc
φ0(βc) β > βc

(519)

where now

φ0(β)
∆
=

ln[d · E{e−βρ(x,Y )}]
β
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=
ln[eR · E{e−βρ(x,Y )}]

β

=
R + ln[E{e−βρ(x,Y )}]

β
,

Thus, for every (x1, x2, . . .), the distortion is given by

lim sup
n→∞

1

n

n
∑

t=1

ρ(xt, Yj∗1 ,...,j∗t )
∆
= lim sup

n→∞

1

n
min
w

[

n
∑

t=1

ρ(xt, Yj1,...,jt)

]

= lim sup
n→∞

lim sup
ℓ→∞

[

− lnZn(βℓ)

nβℓ

]

≤ lim sup
ℓ→∞

lim sup
n→∞

[

− lnZn(βℓ)

nβℓ

]

a.s.
= − lim inf

ℓ→∞
φ(βℓ)

= −φ0(βc)

= max
β≥0

[

− ln[E{e−βρ(x,Y )}] +R

β

]

= D(R),

where: (i) {βℓ}ℓ≥1 is an arbitrary sequence tending to infinity, (ii) the almost–sure equality

in the above mentioned paper, and (iii) the justification of the inequality can be found in

[74]. The last equation is easily obtained (see [74]) by inverting the function R(D) in its

Legendre representation

R(D) = −min
β≥0

min
q

{

βD +
∑

x∈X
p(x) ln

[

∑

y∈Y
q(y)e−βρ(x,y)

]}

. (520)

Thus, the ensemble of tree codes achieves R(D) almost surely. This strengthens well known

coding theorems for tree codes, which make assertions on the achievability of D(R) in ex-

pectation only [19],[27],[35],[47],[48].
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8 Summary and Outlook

In these lecture notes, we have focused on relationships and analogies between general prin-

ciples, as well as mathematical formalisms, that are common to both information theory and

statistical physics. The emphasis was not merely on the analogies themselves, which may be

interesting on their own right, but more importantly, also on new insights and analysis tools

that the physical perspectives may contribute to problems in information theory.

We have seen quite a few examples for these insights and tools along the paper. To name

a few: (i) The physical point of view on the rate–distortion function in Section 3.2, has lead

to the MMSE representation, which sets the stage for the derivation of new bounds. (ii)

Gibbs’ inequality, which is used in physics to obtain bounds on free energies of complicated

systems, may be used in information theory as well, and we have seen the example of the

HMM (Subsection 3.3.1). (iii) The dynamical version of the second law was shown to be

related to the generalized data processing theorems of Ziv and Zakai and to lead to an

even more general data processing theorem (Section 3.4). (iv) The REM and its extensions

has been proved useful to inspire a new alternative analysis technique for the derivation of

error exponents in ensembles of channel codes, characteristic functions of distortion in source

coding, and more (Chapters 6 and 7). It appears then that whatever the field of statistical

mechanics can offer to us, in terms of ideas and tools, goes beyond the application of the

replica method, which has been the main tool borrowed from statistical mechanics until now,

in order to analyze the performance of large communication systems.35

We have made an attempt to explore a fairly wide spectrum of aspects of the parallelism

and the analogy between the two fields, but as we emphasized already in the Introduction,

this is merely a very small fraction of the many existing meeting points between them, and

there was no attempt to provide a full comprehensive coverage. This was just a drop in

the ocean. It is strongly believed that many additional ideas, insights and analysis tools in

35Of course, other statistical–mechanical tools have also been used, and this includes the cavity method,
the Bethe–Peierls approximation, series expansions, duality, and others, but still, the replica method has
been, by far, the most popular tool that is borrowed from statistical mechanics.
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physics are still waiting to find their ways to penetrate into the world of information theory

and to help us develop new concepts and techniques for facing the many existing challenges

in our field.

It is also believed that the reverse direction, of generating a flow of ideas from information

theory to physics, should be at least as fascinating and fruitful. This direction, however,

may naturally belong more to the courtyard of physicists with background in information

theory than to that of information theorists with background in physics. Indeed, quite many

physicists have been active on this front. At the time of writing these lines, however, the

author of this paper has not been involved in this line of work, at least not yet.
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[117] A. M. Tulino and S. Verdú, “Random matrix theory and wireless communications,”

Foundations and Trends in Communications and Information Theory, vol. 1, issue 1,

2004.

[118] J. J. M. Varbaarschot and M. R. Zirnbauer, “Critique of the replica trick,” J. Phys.

A: Math. Gen., vol. 17, pp. 1093–1109, 1985.

[119] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding,

McGraw–Hill, 1979.

[120] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families, and

variational inference,” Foundations and Trends in Machine Learning, vol. 1, nos. 1–2,

2008.

208



[121] E. Weinstein and A. J. Weiss, “Lower bounds on the mean square estimation error,”

Proc. of the IEEE, vol. 73, no. 9, pp. 1433–1434, September 1985.

[122] A. J. Weiss, Fundamental Bounds in Parameter Estimation, Ph.D. dissertation, Tel

Aviv University, Tel Aviv, Israel, June 1985.

[123] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, John

Wiley & Sons, 1965. Reissued by Waveland Press, 1990.

[124] A. D. Wyner, “On the probability of buffer overflow under an arbitrary bounded input-

output distribution,” SIAM Journal on Applied Mathematics, vol. 27, no. 4, pp. 544–

570, December 1974.

[125] C. N. Yang and T. D. Lee, “Statistical theory of equations of state and phase transi-

tions. I. Theory of condensation,” Physical Review, vol. 87, no. 3, pp. 404–409, August

1952.

[126] J. S. Yedidia, “Quenched disorder: understanding glasses using a variational principle

and the replica method,” lectures delivered at the Santa Fe Summer School on Complex

Systems, June 15–19, 1992.

[127] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free energy approximations

and generalized belief propagation algorithms,” IEEE Trans. Inform. Theory, vol. 51,

no. 7, pp. 2282–2312, July 2005.

[128] R. W. Yeung, A First Course in Information Theory, Kluwer Academic/Plenum Pub-

lishers, New York, 2002. See also R. W. Yeung, Information Theory and Network Coding,

Springer, 2008.

[129] M. Zakai and J. Ziv, “A generalization of the rate-distortion theory and applications,”

in: Information Theory New Trends and Open Problems, edited by G. Longo, Springer-

Verlag, 1975, pp. 87–123.

209



[130] M. R. Zirnbauer, “Another critique of the replica trick,” arXiv:cond-mat/9903338v1

[cond-mat.mes-hall] 22 Mar 1999.

[131] J. Ziv and M. Zakai, “On functionals satisfying a data–processing theorem,” IEEE

Trans. Inform. Theory , vol. IT–19, no. 3, pp. 275–283, May 1973.

210


