
1210 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 4, JULY 1994 

0018-9448/94$04.00 0 1994 IEEE 

In many SPECT and PET tomographic geometries, the m X n 
(m 2 n)  system response (($,,)) is a sparse matrix, i.e., its 
number of nonzero elements is only O(n) as compared to O(n2) 
for the nonsparse case. Note, however, that even when the 
system response matrix is sparse, the matrix A (25) is not 
generally sparse, and it would appear that the recursive algo- 
rithm (IO) of Carollary 1 requires O(n2) memory storage to 
store the n X n matrix A. In the present case, however, we only 
require O(n) memory storage since it is seen that, using (25) in 
(lo), the recursion collapses into a set of p vector recursions 
which only require storing the n parameters of the vector 3, the 
np entries of B ( k ) ,  and the O(n) nonzero entries of the sparse 
matrix ((P,,,)). Because of this feature, we have been able to 
implement this recursive CR bound on relatively large image 
reconstruction problems [13]. 

The rate of convergence of the recursive CR bound algorithm 
is determined by the maximum eigenvalue p ( A )  of A specified 
by (25). For a fixed system matrix ((P,,,)), the magnitude of this 
eigenvalue will depend on the image intensity 3. Assume for 
simplicity that with probability 1 any emitted gamma ray is 
detected at some detector, i.e., ZY=’, Pdlb = 1 for all b. Since 
trace(& = where are the eigenvalues of A, 
using (25) it is seen that the maximum eigenvalue p ( A )  must 
satisfy 

n 

.. . 
j =  1 

A consequence of the inequality (Ei  Prli 8,)’ s Ci 0, Zi e iPl i  0, is 

1 1 
- trace(A) I 1 - -. 
n (27) 

where equality OCCUTS if P,li is independent of i. On the other 
hand, as the intensity 3 concentrates an increasing proportion 
1 - E of its mass on a single pixel k,, e.g., 

we obtain ( l / n )  trace (A) = 1 - l/n + O( €1. Thus for this case 
we have, from (26), 1 - l/n + O ( E )  I p(A)  < 1. Since the 
number of pixels n is typically very large, this implies that the 
asymptotic convergence rate of the recursive algorithm will 
suffer for image intensities which approach that of an ideal point 
source, at least for this particular choice of splitting matrix F,. 

V. CONCLUSION AND FUTURE WORK 
We have given a recursive algorithm which can be used to 

compute submatrices of the CR lower bound F;’ on unbiased 
multidimensional parameter estimation error covariance. The 
algorithm successively approximates the inverse Fisher informa- 
tion matrix F; l via a monotonically convergent splitting matrix 
iteration. We have also given a statistical methodology for select- 
ing an appropriate splitting matrix F which involves application 
of a data processing theorem to a complete-data-incomplete- 
data formulation of the estimation problem. We are developing 
analogous recursive algorithms to compute matrix CR-type 

bounds for constrained and biased estimation, such as those 
developed in 1141, [151. 
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Bounds on Achievable Convergence Rates 
of Parameter Estimators via Universal Coding 

Neri Merhav 

Abstract-Lower bounds on achievable convergence rates of parameter 
estimators towards the trne parameter are derived via universal coding 
considerations. It is shown that for a parametric class of finite-alphabet 
information sources, if there exists a universal lossless code whose 
redundancy decays sufficiently rapidly, then it induces a limitation on 
the fastest achievable convergence rate of any parameter estimator, at 
any value of the true parameter, with a possible exception of a vanish- 
ingly small subset of parameter values. A specific choke of a universal 
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code yields a slightly different version of this result which extends easily 
to the continuous case. 

ZndL1: Trrnrr-Parameter estimation, Bayesian estimation, loner 
bounds, universal lossless coding. 

I. INTRODUC~ON 
There are essentially three approaches to the formulation of 

lower bounds in estimation theory. The Bayesian approach treats 
the unknown parameter as a random variable with a given prior 
probability density function (pdf) and sets a lower bound on the 
mean-square error (MSE) averaged with respect to (w.r.t.) this 
pdf. Well-known Bayesian bounds are those of Van Trees [ll, 
Bhattacharyya [2], Bobrovsky and Zakai [31, Bellini and Tartara 
[4], Chazan et al. [51, and Weiss and Weinstein [61. The funda- 
mental weakness of the Bayesian approach is that averaging 
over the parameter space precludes the possibility of providing 
any local (or pointwise) information on achievable estimation 
accuracy at a certain point of the true parameter. 

In the non-Bayesh approach, on the other hand, one sets a 
local bound on the MSE at any given value of the true parame- 
ter. Under this category, we find the lower bounds of Cramer 
and Rao [71-[121, Bhattacharyya [21, Chapman and Robbins [13], 
Fraser and Guttman [14], Barankin 1151, and Kiefer [16]. The 
main drawback of this class of bounds is that they are normally 
subject to certain limitations on the class of permissible estima- 
tors, in particular, the class of unbiased estimators. This restric- 
tion is posed primarily to eliminate uninteresting trivialities like 
an estimator that is set to a !ked parameter value Bo, indepen- 
dently of the observations. This is definitely a very poor estima- 
tor, but it yields perfect estimation when the true parameter is 
indeed e,,, and hence when included in the class of allowed 
estimators, no nontrivial lower bound can hold simultaneously 
for any estimator at euey point. It should be pointed out that 
some of the above-mentioned non-Bayesian bounds have exten- 
sions that include possibly biased estimators, but these extended 
bounds depend on the bias function which, in turn, depends on 
the particular estimator being selected. 

One way to remove trivialities such as the above, without 
restricting the class of estimators and still maintaining locality of 
the bounds, is suggested by the third approach, that is, the 
minimax approach (see, e.g., LeCam [171, Huber [181, Hijek [19], 
Ibragimov and Khas’minsky 1201, Nemirovsb [21l, and Nazin 
[221). Here, one first derives a lower bound to the asymptotic 
estimation error associated with the worst parameter value 
within a neighborhood of radius S > 0 around a given point 8, 
and then let S vanish. In other words, here we find lower 
bounds on quantities like 

where I ( . )  is a given loss function. The idea is that, on one hand, 
for a given S > 0, the bound is still not local (just like a 
Bayesian bound), and hence rules out the poor performance of 
bad estimators like the above trivial estimator e = Bo. But, on 
the other hand, in the second step of the asymptotics, as the 
&neighborhood shrinks, the bound becomes local, and hence 
depends solely on 8. It should be noted, however, that the 
regularity conditions under which the minimax bounds are valid 
and attainable are quite demanding. 

In this correspondence, we point out a possible alternative 
approach to a no?-Bayesian setting. Consider again the above 
trivial estimator 0 = Bo, regardless of the observed data, and 
note that this estimator “performs well” only when the true 

parameter is in a vanishingly small neighborhood of 8,. This 
suggests a formulation of a lower bound on the achievable 
estimation error that is valid for any estimator at  any point, with 
a possible exception of points in a vanishingly small subset of the 
parameter space. 

In [23], a lower bound in this spirit has been developed in the 
context of universal data compression for parametric informa- 
tion sources. Specifically, it has been shown in [23, Theorem l, 
part a] that under some regularity conditions on the parametric 
family of sources {pe, 8 E @I, 8 G Rk, and for every given 
uniquely decipherable lossless coding scheme operating on input 
strings of length n,  the compression ratio cannot approach the 
entropy of the source Po uniformly faster than 0.5kn-’ log n ,  for 
all points 8 E 8, except for a set of points whose volume 
(Lebesgue measure) vanishes as n + w. Interestingly, the proof 
in 1231 is based on the assumption that [Po, 8 E e) is such that 
there exists an fi-consistent estimator e of e, i.e., an estimator 
for which the estimation error decays as fast as n-’’’. At first 
glance, it might seem surprising that the existence of a good 
estimator draws a limitation on the achievable performance of 
universal codes w.r.t. the same class of information sources. The 
intuition behind this tradeoff between estimation performance 
and universal coding redundancy is, however, fairly simple: if a 
good estimator exists, this means that, typically, the likelihood 
function is sufficiently sensitive to small perturbations in the 
parameter value. Because of this sensitivity, even small encoding 
(quantization) errors in the parameter estimate might yield a 
considerable loss in the compression ratio, and hence relatively 
many bits should be allocated to encode the estimate accurately. 
Conversely, if the likelihood function is relatively insensitive to 
8, this is an obstacle for estimation, but advantageous for 
coding. As an extreme example, consider the case where is 
completely independent of 8. Here, 8 is not estimable at all, but 
obviously, there is a coding scheme that is optimal in the sense 
of uniformly attaining the entropy for every e. 

The natural question that arises now is: Does this interesting 
phenomenon work in the other way as well, namely, does the 
existence of a good universal code for the class of sources {Po, 
8 E e} induce a limitation on the estimation accuracy of e? As 
we show here, the answer is yes. The primary purpose of this 
work is not necessarily to present a new powerful technique for 
deriving a tight lower bound on the estimation error, but rather 
to point out and to explore this other direction of tradeoff 
between universal coding redundancy and order of convergence 
of estimators. Specifically, we show a simple relation between 
the coding redundancy of the best universal code and the 
achievable estimation precision. Similarly to [23], the lower bound 
on the convergence rate of the estimation error is stated locally 
in the parameter space with a possible exclusion of an exception 
set that shrinks as the sample size grows. The proof of this result 
is dual to that of [231. A specific choice of a universal code leads 
to a more explicit, and in some sense a stronger, statement 
which has a straightforward generalization from the finite- 
alphabet to the continuous-alphabet case. 

It should be stressed, however, that this result provides infor- 
mation merely on the best attainable order of the convergence 
rate, without specifying the leading constant, and further work is 
still needed in this direction. Nevertheless, the required regular- 
ity conditions of our results are considerably weaker than those 
of the local minimax bounds [171-[22]. 

We also demonstrate that a slight refinement in the analysis 
may lead to explicit lower bounds on any moment of the estima- 
tion error (rather than just asymptotic convergence rates), at the 
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expense of a nonshrinking exception set. In this case, there is a 
tradeoff between the level of the lower bound on the estimation 
error and the upper bound on the volume of the exception set. 
The behavior of this tradeoff, although not necessarily tight, 
seems sharper than the one that can be explored from a simple 
Bayesian argument. Several examples of specific estimation 
problems are provided. 

11. RESULTS 
Let x" = (xl, xZ;.-, x,)  be a vector of observations, where 

each component x ,  takes on values in a finite set X whose size 
is 1x1 = X. The set of all n-dimensional observation vectors will 
be denoted X". It is assumed that X" is drawn from a probabilis- 
tic information source with a probability mass function (PMF) 
p,(x"), indexed by a parameter 0 that takes on values in a, set 
6 G R", referred to as the parameter space. An estimQtor 6, = 
fn (xn)  for 8 is a measurable map, independent of 8, from X" to 
0. A length function L,(x") of a lossless block code is a map 
from X" to the positive reals, where L,(x") represents the 
codeword length (in nats) for a source vector x". We shall 
require the length function to be induced from a unique@ 
decipherable code (see, e.g., [24, ch. lo]), i.e., to satisfy the 
Kraft-McMillan inequality 

e-Ln(x") I I .  (1) 
%"EX" 

The nth-order normalized entropy is H , ( B )  
-n-'E, In p,(x"), where E,{ .}  denotes expectation w.r.t. p,,  
and is well known to be a lower bound on the compression ratio 
n - 'E,L,(x") associated with any uniquely decipherable lossless 
code operating on blocks of length n. The difference R,(L,, 0)  
= n-'E,Ln(x") - H J 8 )  is referred to as the redundancy of the 
code L J . )  at 8. A sequence of uniquely decipherable lossless 
codes is called strong& minimax universal w.r.t. the class of 
sources {p , ,  8 E 0) [251 if limn,, RJL, ,  0 )  = 0 uniformly over 
0 E 0, namely, if limn,, sup, E e  RJL,,  e) = 0. 

The following theorem relates the existence of a sequence of 
strongly minimax universal codes w.r.t. {p, ,  0 E,@} to the 
achievable convergence rate of any estimator 8, =,fn(xn), 
namely, to the stochastic order of the estimation error 118, - ell, 
where I( * 11 denotes the Euclidean norm in the k-dimensional 
parameter space. 

Theorem 1: Let LJ.1 be a length function of a uniquely 
decipherable lossless code such that n -R,(L,,  0)  I k * p,, for 
all large n, every e E 0, and some monotone sequence { p,Jn 
satisfying p,/n 0. Let {An}" be any monotonically nonde- 
creasing positive sequence such that log A, 2 &,, for some 
6 > 1 and all large n.  Then, for any given estimator 8, = f,(x"), 
every positive constant C, all 0 < E I E( S ), and all large n, 

(2) 

for all points 0 E 0, except for points in a set A,(n) G 0 whose 
volume tends to zero as n + m. 

P n  
Pr{xnIIin - eii > ciei 2 E -  - 

The proof appears in the Appendix. 
The sublinear growth rate of p,, implies that the redundancy 

tends to zero as n + m, as one would expect if L,(-) is a 
strongly minimax universal code. Thus, roughly speaking, the 
theorem tells us that if one can find a universal code whose 
redundancy decays uniformly as fast as k - pJn, then no esti- 
mator can converge to the true parameter at a rate that is 
essentially faster than e-Pn, in the sense that the estimation 
error might exceed a threshold that decays slightly faster than 

C . e-'., with a probability that does not vanish too rapidly. This 
is true for all e except for points in a vanishingly small set 
A&). Normally, p,, = 0.5 log n (see, e.g., [231), which implies 
that a convergence rate faster than n- ' I2  cannot be expected, 
i.e., 6-consistency is usually the best one can hope for. How- 
ever, this is not always the case. The advantage of the above 
theorem is that it holds for any universal code. The disadvan- 
tage, besides the fact that it is limited to the finite-alphabet case, 
is that e-pn is the fastest achievable convergence rate in a 
rather weak sense because the probability in (2) is not guaran- 
teed to converge to unity, but merely not to vanish very quickly. 

It turns out that by selecting a specific length function L,(-), 
this problem can be resolved. Specifically, consider the function 

Be 0 

where p,, is chosen independently of x" such that the Kraft 
inequality (1) will be satisfied. It is readily seen that this choice 
of L,(-) satisfies the inequality n . R , ( t , ,  0)  I; k .  pn as well. 
This results in the following form of the above theorem. 

k-' In [Exn SUP, p,(x")] < W. 

Then, for every monotonically nondecrfasing sequence {A,},, 
such that e-@nA, + 00, every estimator 0, = fn(x") ,  every C > 0, 
and every 0 < E < 1, 

L,(x") = -In supp,(x") + k-p , ,  (3) 

Theorem 2: Suppose that p,, 

Pr{xn : A,II~,, - ell > cle] > E (4) 

for all e E 0, except for points in a set A,(n) G 0 whose 
volume tends to zero as n + m. 

The proof appears in the Appendix. 

This is a more explicit formulation than the first theorem, and 
it has the following advantages. First, it avoids the need for 
guessing an efficient universal coding scheme. Second, it re- 
moves the above-mentioned weakness of (2). Finally, it has a 
straightforward extension to the continuous case: the same theo- 
rem holds true if p ,  is a considered a pdf and the summation in 
the definition of p,, is replaced by integration. It is somewhat 
weaker than Theorem 1 in the sense that pn (and hence A,) 
induced by the specific choice made in (3) might not be the best 
one can find when the choice of LJ. )  is free as in Theorem 1. 

appears 
crucial when the parameter space 0 is not bounded: In many 
cases of practical interest with an unbounded Q, pn turns out to 
be infinite (see examples in the next section) which, strictly 
speaking, makes Theorem 2 meaningless. However, by looking at 
any bounded subset 8, of 0, we may again apply Theorem 2 
with a finite pn and conclude that the volume of A,(n) n 0, 
decays with n. In other words, although the overall volume of 
A,(n) may not vanish (or even be infinite) when 0 is un- 
bounded, it appears that A,(n) exhibits a sparseness property 
which, generally speaking, means that in any bounded subregion 
of 0, there is a relatively small "percentage" of exceptional 
points 0 in the sense of violating the theorem. This point will be 
elaborated on in the next section. 

Finally, it should be pointed out that as an alternative to the 
length function (3), another reasonable choice would be L,(x") 
= -In p ( x " )  where p ( x " )  = le d8 a(8)p , (xn) ,  d e )  being 
some prior on e whose support is 0. In this case, the rate 
sequence is given by p,, = k-' sup, E, In [p,(x")/p(x")] 
k-' SUP, D(p,llp). 

The above theorems only tell us what are the achievable 
convergence rates of estimators, but they do not provide explicit 
lower bounds on the estimation error. It turns out, however, that 
a slightly sharper analysis in the proof of Theorem 2 may lead to 

It should be pointed out that the requirement p,, < 
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particular bounds on any moment of the estimation error, at the 
expense that, now, the volume of the exception set will be 
bounded by a constunt, and hence not guaranteed to vanish as n 
grows. The following corollary of Theorem 2 (proved in the 
Appendix) exhibits a tradeoff between the level of the bound 
and the volume of the exception set where this bound does not 
necessarily hold. Again, it has an immediate extension to the 
continuous-alphabet case. 

Corollary I :  Let {p , ,  8 E 8) be such that A, &i 
[C,.,, supoEe p,(~") l ' /~  < m. Then, for every n,  every esti- 
mator On, every s > 0, and every B > 0, 

for all points 8, except for points in a set A,(B) whose volume, 
for every n, is bounded by Vol{A,(B)} I J(k, s) . Bk, where 

This formulation suggests thant, in order to evaluate the per- 
formance of a given estimator 8, = f,(~'') at different points 8, 
one should subdivide 0 in accordance with level sets of the 
estimation error, i.e., A,(B,f,) = (8 : A;E,llf,(x") - ells I BSI), 
where B takes on values from zero to some upper limit B,,, 
and a good estimator is one for which Vol{A,(B, f,)} is as large 
9 possible for euery 0 I B I B,,. In the next section, we will 
examine the maximum likelihood (ML) estimator of the variance 
of a Gaussian random variable from this point of view, and 
compare it to the upper bound on the volume of the exception 
set as given in Corollary 1. 

It'should be pointed out that tradeoffs between error levels 
and volumes of exception sets also can be explored using simple 
Bayesian arguments, but it seems that the resulting bounds are 
weaker than the above, at least for some values of B. Specifi- 
cally, let 8 be a bounded set, and suppose, temporarily, that 8 
takes on values in 0 under a uniform pdf. Let 6, = E(8lx") be 
the optim-al Bayesian estimator in the sense of minimizing 
/e d8  E, II 8, - 811' 0' Vol (@)/A: (i.e., s = 2). We shall as- 
sume that D is-a constant, which is, in fact, the case in many 
situatio;s. Let 8 be any competing estimator, and let AJB) = 9 {e : E,lle, - 811 I B~/A:}. Then 

(7) 

To further overbound the last-expression, let us assume that 6, 
is such that for every 6, E,ll8, - 811' I G'/A; for some con- 
stant G > B. Then, (8) becomes 

0'. Vol (0) I B2 * Vol {A,(B)} + G2 

.[VO~ (8) - V O ~  {A,,(B)}I, (8) 
implying that 

G' - 

G~ - B' 
Vol{A,(B)} I - . Vol(0). (9) 

This upper bound on the volume of the exception set is weaker 
than that of Corollary 1, first because we have limited ourselves 
to estimators with MSE uniformly less than G2/A;, and second, 

the behavior of this bound, at least at extreme values of B, 
cannot reflect the behavior of any existing estimator. In fact, for 
B 0, the right-hand side of (10) tends to a constant, while the 
upper bound in (6) vanishes, as expected. Also, for B + G, a 
singularity point of (10) is approached, and it becomes useless. 
Therefore, the technique presented in Corollary 1 appears more 
powerful than the Bayesian method, at least in the above- 
described simple form. 

111. EXAMPLES 

We now demonstrate the results of the previous section for 
several particular models. 

Let xl;--, x, be independent copies of a zero-mean Gaussian 
random variable with variance 8 = U' E [a, b] 8 to be esti- 
mated. It is easy to check that if a > 0 and b < m, then A,, 
grows proportionally to 6, as expected. However, if either 
a = 0 or b = m, then p,, and hence also A,,, is infinite. This 
means that there is no nontrivial limitation on the convergence 
rate of estimators outside a vanishingly small exception set. We 
next demonstrate that when 0 = [ l  - E , W )  one can indeed 
construct an estimator whose convergence rate is arbitrare fast 
in a subset A&) of 8 whose Lebesgue measure is infinite. The 
following example is in the same spirit as that of [27, p. 405, Ex. 
1.11. Let g(x") = n-lg;-lx; denote the empirical variance, and 
define an estimator 8, as follows; If Ig(x") - j l  for 
some positive integer j, then set 8, = j; otherwise, 8, = g(x"). 
Now, suppose that 8 belongs to the interval Zj = [ j  - &,, j + 5,l 
for some integer j ,  where { &,}, is an arbitrarily rapidly vanish- 
ing sequence. Since Ig(x") - 81 decays at a rate n-'I2, then it 
can be shown that for any 0 E Z,, the probability that Ig(x") - j l  
- c n-'l4 is very high for large n provided that 6, decays faster 
than n-'/:. Thus, for every 8 E Z,, the estimation error associ- 
ated with 8, is less than 6, with high probability. It follows that, 
by taking a sufficiently fast decaying sequence 16,,},> 1, one can 
arbitrarily accelerate the convergence rate of 8, for every 8 in 
A,(n) U;==,Z,, which, in turn, has an infinite Lebesgue mea- 
sure for all n. Note, also, that, here, A&) exhibits the sparse- 
ness property that has been discussed in the previous section. 

Consider next the class of 7th-order Markov sources with 
alphabet of size X. Here, the parameter vector 8 consists of the 
k = X'(X - 1) transition probabilities from states defined by 
strings of length 1 to the next letter. It is well known (see, e.g., 
[26D that there exists a universal code whose redundancy is 
uniformly less than X'(X - 1)log n/(2n) up to higher order 
terms. This implies that A, can be chosen as any sequence that 
grows slightly faster than d/'. In other words, here, nP1/' is 
the fastest achievable convergence rate in the sense of Theorem 
2. This convergence rate is typical in many problems of practical 
interest. 

Note: To demonstrate Corollary 1, consider the subclass of 
Bernoulli sources, where 8 denotes F'r{xi = 1) = 1 - Prtx = 

O}.  It is easy to verify (using Stirling's formula) that A, I JG. 
Thus, Corollary 1 (with K = 1 and s = 2) tells us that E,(@ - 
8)' 2 2B2/.rrn for all 8 outside a set whose Lebesgue measure 
does not exceed 6 6 B .  On the other hand, the-estimation of 8 
by the relative frequency of "1"'s results in E,(@ - 8)' = Nl  - 
e ) /n ,  which is smaller than 2Bz/7rn along two subintervals 
whose total length is 1 - d-, which in turn is consid- 
erably smaller than 6 6 B .  (We believe that this gap should be 
attributed primarily to the fact that further work is needed to 
tighten the bound, and not to the suboptimality of the empirical 
relative frequency as an estimator of 6.) 
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APPENDIX 
Proof of Theorem 1: The proof is, in some sense, dual to 

that of [23, Theorem 1, part a)]. For a given 8 and a given 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

where Aa -Exn E x ~ ( a ) p a ( x " )  In pa(x")  and the last inequality 
follows from Jensen's inequality and the nonnegativity of the 
Kullback-Leibler informational divergence between two proba- 
bility measures (see also [231). Let A J n )  denote the set of 
points e for which P,(B) 2 1 - Epn/n. For O E A&), we can 
overestimate Aa as follows. Since p , / n  + 0, then for all large 
n, 

Pn 
+ E - h -  

n E P n  

I 2 p , , ~  In X Elkpn. (AS) 

Thus, combining (A.4) and (AS), we find that for every 0 E A,(n), 

k p,, 2 n R,(L,,  e )  

which implies that 

(A.7) 

Let N, denote the maximum number of disjoint spheres S,,(fl)  
g {e' : 110' - ell I C/A,} with centers at AJn), and let C, 
denote the center set. By the Kraft inequality and by (A.8), we 
have 

(A.8) 

which implies that 

Finally, note that by doubling the radius of each sphere &(e), 
we get a cover of A J n )  (see also [23]). Thus, the volume of 
A,(n) is overbounded as follows: 

(A.lO) 

where V, = 2rk/'/(kr(k/2)) is the volume of the k-dimen- 
sional unit sphere. The rightmost side of (A.ll)  tends to zero 
provided that A,, grows faster than eLpn for, say, 5 = 1 + 2 ~ ' .  
This completes the proof of Theorem 1. 

Proof of Theorem 2: The proof is very similar to that of 
Theorem 1, although it appears significantly simpler due to the 
specific choice of a length function. It also generalizes easily to 
the continuous alphabet case, just by replacing summations with 
integrals. Let X,(O) and PJe) be defined as in the proof of 
Theorem 1, and let us redefine Q,,(O) as 

Q , ( O )  g e-kp- sup p a ( x " ) .  (A . l l )  

Let A,(n) be the set of points 8 such that PJO) 2 1 - E .  Let 
N, and C, be as in the proof of Theorem 1 [but w.r.t. the 
present definition of A&)]. Then, by the definition of p,,, 

1 2 Q,(O) 2 PJO) 2 ePkpnN, (1 - E ) ,  

X E X " ( 9 )  9 e @  

O E  C, B E  c, 
(A.12) 

implying that N,, I (1 - €)-'ekp.. Now, similarly to (A.lO), 

Vol {A , (n ) )  I v, (~c) , ( I  - E ) - '  [ - TIk, (A.13) 

which again vanishes if A, grows faster than epn. 
Proof of Corollary I: Let pn be as in Theorem 2, and let 

A, = epn, namely, A, is as defined in Corollary 1. By repeating 
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the same steps as in the proof of Theorem 2, and by Markov’s 
inequality, we find that for every nonexceptional 0, 

or, equivalently, Eell6,, - 011” 2 CSE/AS,, which agrees with (5) if 
C and E are chosen such that CSE = B“. On the other hand, the 
volume of the exception set [now denoted A,@)] when A, = e f i n  

is overbounded similarly to (A.13) by Vol{A,(B)} 5 Vk2k.  
Ck/(l - E). By minimizing the latter expression subject to the 
constraint CSE = B“, the desired result is obtained. 
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Bounds on Approximate Steepest Descent for 
Likelihood MaKimieatiop in Exponential Families 

Nicolb Cesa-Bianchi, Anders Krogh, 
and Manfred K. Warmuth 

Abstract-h approximate steepest descent strategy converging, in 
families of reg0l.r exponential densities, to maximmm ULelihOod esti- 
mates of density hmcths  is desrrlbed. These density estimates are also 
obtained @ an appliat/41D of tbe Priadple of ”MI relative entropy 
subject to empirical constraints. Wt prove tight bounds on the increase 
of the laeJiLruhood at each i t e m  of oar strategy for families of 
exponential densities whose log-densities are ~ p ~ e d  by a set of bounded 
basis ihnetlons. 

Zndcx Tenns-Exponential famllieq minimum relative entropy estima- 
tion, steepest descent. 

I. INTRODUC~~N 
Consider the following problem: Given a random sample 

x1;*., x, drawn independently from a distribution P with den- 
sity p, find the maximum likelihood estimate in a family of 
regular exponential densities. This problem of density estimation 
is also known as minimization of relative entropy (Kulback- 
Leibler divergence) subject to empirical constraints (see, e.g., [l], 
[2]). In this work we describe an approximate steepest descent 
strategy’ converging to the MLE in exponential families of 
densities whose log-densities are linear combinations of a set of 
bounded basis functions. We show tight lower and upper bounds 
on the increase of the log-likelihood function (or, equivalently, 
decrease of the relative entropy) at each iteration, as a function 
of the norm of the gradient. 

Let ( X , 9 )  be a measurable space. In the following, all 
densities on ( X , 9 ’ )  are understood with respect to a finite 
dominating measure v. We recall the definition of the relative 
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