
Second, a wire-shaped material is considered for two dif-
ferent media cases. The SDDI technique is also employed in
the calculation of the spectral-domain integral Green’s func-
tion. The RTBC and 24 triangular bases are used to evaluate
the currents on a dielectric object in air and layered media.
The results of the two cases are compared in Figure 4. It is
shown that the material reduces the magnitude of surface

vŽ .currents, and the current of the layered media case is
Ž .smaller than that of the air case ] . The inhomogeneity of

the media and the occurrence of polarization current in the
dielectric body may decrease the electric surface current.

Third, the RCSs of a dielectric wire in air and layered
media are computed, and their results are illustrated in
Figure 5. By comparison, the values evaluated by the present

Figure 4 Comparison of currents on a dielectric wire in air and
Ž .layered media. Interpolated values nonlayered: ] , interpolated val-

vŽ .ues layered media:

Figure 5 Comparison of RCS for dielectric wires in air and layered
Ž . w x Žmedia. Present method nonlayered: ] , method in 1 nonlayered:

v. Ž .l , present method layered media:

TABLE 1 Computational Times from the Surface Integration,
(Exact Integration, and Present Method Dielectric Wire in

)Layered Media

Surface Exact Present
Ž . Ž . Ž .Integral s Integral s Technique s

Computational time 1022 939 498

w xmethod in the air case and those in 1 show good agreement.
The layered media case gives smaller values of RCS due to
the decreased surface current.

Finally, numerical efficiency is presented in Table 1 by
comparing the computational time required by the surface
integration, the exact spectral integration, and the present

w xtechnique based on 2]3 . It reveals that the present tech-
nique saves the computational time by about 47% compared
with the exact integral approach.

IV. CONCLUSION

Ž .The resistive tube boundary condition RTBC and the
Ž .spline-type divided-difference interpolation SDDI are

adopted to investigate the scattering characteristics of EM
waves by a dielectric wire-shaped object in layered media.
Multiple integrals can be reduced to line integrals by the
former, and the complex-variable integration of Green’s func-
tions can be efficiently evaluated by the latter. The combina-
tion of these two approaches saves the overall computational
time in the MM application in the layered media problem.
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ABSTRACT: In this paper, we present a new approach to a method-of-
moments matrix sparsification which facilitates an efficient solution to
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problems in¨ol̈ ing scattering from surface irregularities. In this ap-
proach, we use local cosine basis functions. These local cosine functions
are selected from a library of orthonormal bases constructed by means of
a tree structure comprising folding operations and discrete cosine trans-
forms. The selection is effected in an adaptï e manner. Q 2000 John
Wiley & Sons, Inc. Microwave Opt Technol Lett 24: 292]295, 2000.
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1. INTRODUCTION

Local cosine basis functions have already been used for
matrix sparsification in the impedance matrix localization

Ž . w xmethod IML 1 . However, only smooth surfaces, for which
fixed decomposition usually suffices, have been considered.
Here, we consider scatterers with surface irregularities, such
as pits or protrusions, where a fixed decomposition might not
render the matrix sparse. To obtain a sparse matrix, we apply
an adaptive best basis search procedure. The search is ef-

w xfected by a top-down best basis algorithm 2 . Starting with
basis functions extending over the entire structure and pos-
sessing high resolution in the spatial-frequency domain, we
proceed with basis functions that gradually become more
localized in the space domain, but have less resolution in the
spatial-frequency domain. In the search for the best basis, a
node of the tree is decomposed into its offspring nodes if it
renders the associated block of the matrix sparser. The best
basis search ends when no better decomposition is obtained
or at a predetermined level.

2. MOMENT-MATRIX SPARSIFICATION USING ADAPTIVE
LOCAL COSINE TRANSFORM

In many scattering problems, the moment matrix is often a
dense matrix due to strong interactions between the basis and
testing functions. To attain a sparse matrix and reduce the
computational effort, we search for a set of basis and testing
functions that will give rise to no more than just a few mutual
interactions, and thereby render the number of significant
matrix elements small. The sparsification of the original mo-
ment matrix is attained by a basis transformation that is
readily effected by matrix multiplication. In the previously
used fixed decomposition matrix sparsification process, the
local cosine basis is selected and retained fixed throughout

w xthe solution 1 . In the adaptive case, we consider a whole
library of local cosine bases, and search for the best among
them to make the impedance matrix sparse. Hence, the
adaptive scheme would naturally yield a sparser matrix.

Ž .The adaptive local cosine transform ALCT modifies the
original moment-matrix constructed using standard pulse ex-
pansion functions into a new one based on smooth localized

Ž .cosine SLC expansion functions. The SLC functions used
are cosine functions of different frequencies multiplied by
smooth window functions of different widths. In the best
basis selection procedure, the moment matrix is computed for
a large number of SLC bases, each comprising functions of
various resolutions, and the basis that renders the impedance
matrix most sparse is picked up. The key point is that this
computation is done in a hierarchical tree format. This en-
ables us to calculate the cost function at each decomposition
level, and compare it with the cost functions of the previous
and following levels. The cost function measure we use is the
number of nonzero matrix elements remaining after setting
to zero all of the matrix elements whose magnitude falls
below a predefined threshold.

The best basis search is easily implemented using the fast
Ž .cosine transform and an auxiliary operator F folding and its

U Ž . w xadjoint F unfolding 2 . The SLC functions associated with
w xa given interval I s a, b are obtained by first truncating and

confining half-frequency cosine functions to that interval, and
in turn applying the unfolding operator FU to the resultant
functions at each of the interval’s end points. We have

2
U UŽ . Ž . Ž . Ž Ž . < <. Ž .f l s F a F b 1 cos p j l y a r I . 1(j, I w a , b x < <I

Here, j denotes the spatial frequency. The unfolding opera-
tor applied to the truncated cosine functions yields cosine
functions that are multiplied by a smooth window function

w xextending over a larger interval a y e, b q e , where e is a
length parameter defining the region of action of the opera-
tor.

The expansion of a given function f in terms of these
Ž . Ž .basis functions is expressed as f l s Ýc f l , in whichn n

Ž .n s n j, I is a combined index that defines a frequency j at
an interval I of the considered decomposition. The computa-

² Ž . Ž .:tion of the coefficients c s f l , f l is very fast since wen n
can interchange the operation of the unfolding operator FU

used in the construction of the SLC functions f and insteadn
apply the folding operator F to the considered function f.
The calculation of the coefficients c then amounts to apply-n
ing the folding operator F to f at each of the itnerval’s end

Ž .points a and b and cosine transforming the result. We have

2
Ž Ž . < <. Ž . Ž . Ž . Ž .c s 1 cos p j l y a r I , F a F b f l . 2(n w a , b x¦ ;< <I

If the space is divided into equal interval, the basis functions
are called ‘‘fixed size.’’ However, we can obtain a more
efficient solution if the division is performed using different
intervals, as in the case of the adaptive decomposition.

3. IMPLEMENTATION

Step 1: Specify the ALCT parameters. Those include the
initial basis, the decay level of the window function, the
radius of action defining the extent of the spillover
of the window function outside the interval, and the
threshold level.

Step 2: Decompose nodes of the tree, thereby dividing
their associated intervals into two.

Step 3: Compute the associated matrices by means of the
discrete cosine transform.

Step 4: Evaluate the cost function, and check whether or
not the division has produced sparser matrices.

Step 5: Check if there is further possible decomposition.
Step 6: Store the final sequence of decomposition, and

apply it to the incident wave.
Step 7: Solve the sparse matrix system.
Step 8: Apply the inverse sequence to the resulting coef-

ficients to obtain the current represented in the origi-
nal basis function.

4. NUMERICAL RESULTS

The solution is carried out using the electric field integral
Ž .equation for the problem of a TM relative to the z-axis

plane wave of unit magnetic field incident on a strip with a
crack, as shown in Figure 1. The crack is positioned 12.5l left
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