ITERATIVE SELECTION OF EXPANSION FUNCTIONS FROM AN OVERCOMPLETE DICTIONARY OF WAVELET PACKETS FOR IMPEDANCE MATRIX COMPRESSION

Y. Shifman and Y. Leviatan
Department of Electrical Engineering
Technion-Israel Institute of Technology
Haifa 32000, Israel

Abstract—The paper further develops the recently introduced idea of compressing the impedance matrix by an iterative selection of expansion functions. The improved algorithm uses an overcomplete dictionary comprising bases whose inherent properties match some features of the given scattering problem. Thus, the overcomplete dictionary offers a variety of expansion functions from which a solution-oriented spanning set for the unknown current is extracted. The number of iterations in the proposed algorithm is suppressed by selecting more than one expansion function at each iteration. This latter section is facilitated by a matching pursuit process. It is shown that the compression ratio of the resultant compressed impedance matrix is superior to the one achieved by the ordinary iterative matrix compression algorithm.

1. INTRODUCTION

Recently, wavelet expansions have been employed in method of moments solutions of integral equations [1–5]. The conventional approach to the solution of these equations [1], is to describe the operator, which is a convolution integral of the unknown quantity with the Green’s function, in a wavelet basis. Using wavelet functions both as basis and testing-functions results in a highly localized diagonally-dominant impedance matrix, since the fields due to the wavelet basis functions are in many cases nearly orthogonal to the functions themselves. Such a matrix can then undergo a thresholding operation which renders it sparse. However, when the typical dimension of the scatterer is of several wavelengths, wavelet functions characterized by low spatial frequencies might strongly interact with each other, and thereby generate non-negligible blocks of elements.