IET Microwaves, Antennas & Propagation

Research Article

Quality factor and absorption bandwidth of electrically small lossy structures

ISSN 1751-8725 Received on 30th April 2019 Revised 14th August 2019 Accepted on 12th September 2019 E-First on 31st October 2019 doi: 10.1049/iet-map.2019.0324 www.ietdl.org

Ofer Markish¹, Yehuda Leviatan¹

¹Department of Electrical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel E-mail: leviatan@ee.technion.ac.il

Abstract: A new quality factor (Q_{abs}) characterising power absorption by electrically small structures ranging from antennas to lossy objects is defined. In analogy to the radiation quality factor (Q_{rad}), which is evaluated using the antenna radiated fields in transmitting mode, Q_{abs} is evaluated using the fields scattered by the absorbing structure. Similar to the known relationship between the antenna matching bandwidth (B_{match}) and Q_{rad} , it is rigorously shown that for an electrically small lossless receiving antenna Q_{abs} is inversely proportional to the absorption bandwidth (B_{abs}) of the antenna. Based on a circuit model, it is then conjectured that the same B_{abs} - Q_{abs} relation is also valid in the cases of electrically small lossy antennas and objects that do not have terminals. Numerical examples are shown to demonstrate the validity of the presented B_{abs} - Q_{abs} relation.

