A Compact 60-GHz Tapered Slot Antenna Printed on LCP Substrate for WPAN Applications

Lev Pazin and Yehuda Leviatan, Fellow, IEEE

Abstract—We describe a compact endfire 60-GHz tapered slot antenna (TSA), which is printed on a low-permittivity liquid crystal polymer (LCP) substrate. The antenna features a novel wideband collinear microstrip-to-slot transition, which is of smaller size compared to other transitions. This antenna can be integrated with a RF module for use in future wireless personal area network (WPAN) applications. Such an antenna can be used both as an individual radiator as well as an element of antenna array. The antenna also features a fork-shaped metallic carrier, which gives it good rigidity. In addition, the antenna features a metallic reflector, which increases its directive gain. Numerical simulations show that the operating frequency band of the antenna is from 53.3 to 69.6 GHz (greater than 25% bandwidth) and that the directive gain of the antenna within its operating frequency range 57–66 GHz is between 6.8 and 9.9 dB.

Index Terms—Liquid crystal polymer (LCP), microstrip-to-slot transition, RF module, tapered slot antenna (TSA), wireless personal area network (WPAN).

I. INTRODUCTION

The developments of new wireless communication systems in the microwave and millimeter-wave bands have spurred the design of new types of compact, wideband, efficient, and low-cost antennas and antenna arrays. Among these, antennas manufactured by printed circuit technology have been considered because they are compact and low-cost. In these antennas, the choice of the substrate material may greatly affect the antenna efficiency. Recently, a liquid crystal polymer (LCP) substrate was used for integrated RF and millimeter-wave functions and modules [1] as well as for high-performance and low-cost microwave and millimeter-wave transmission lines and printed antenna substrates [2]. Printed on such a substrate, a few novel antennas have been suggested. These include a double-exponentially tapered slot antenna (TSA) for ultrawideband (3.1–10.6 GHz) communication [3], a printed monopole antenna operating in a extremely wide bandwidth (0.435–14.52 GHz) [4], wideband 60-GHz annular slot antennas [5], and narrowband rectangular patch antennas operating in the 59–61 GHz frequency range [6]. Another 60-GHz antenna, of the linearly tapered slot type, with a wider bandwidth (5.6 GHz around 62 GHz) has also been recently proposed [7].

In this letter, a compact broadband endfire 60-GHz TSA printed on thin LCP substrate is proposed and simulated by use of the commercial CST Microwave Studio software. The antenna features a concise collinear-stub microstrip-to-slot transition between the microstrip feed line and the tapered slot. This transition provides a relatively wide frequency bandwidth. The transition is compact and has low insertion loss. In addition, the antenna features a metallic fork-shaped carrier, which gives the antenna good rigidity, and a metallic reflector, which increases its directive gain. The reflector also serves to reduce possible effects of other parts of the RF module on the antenna. The operating frequency range of the antenna covers the frequency ranges of 57–64, 59–62, 62–63, and 65–66 GHz allocated for high-speed data rate wireless communications in various countries [8], [9]. Such an antenna also offers wide-angle radiation in both the horizontal and elevation planes and can therefore be used as a laptop RF module antenna for wireless personal area network (WPAN) applications, where such a radiation pattern is desired [9]. This wide-angle feature of the antenna makes it also attractive for use as an element of a scanning array in WPAN RF modules.

II. ANTENNA STRUCTURE

The geometry of the proposed TSA is shown in Fig. 1. It is assumed to consist of a tapered slot radiating element formed by etching away metal from one side (ground plane side) of a 9.2 × 4.5 mm² rectangle-shaped Rogers ULTRALAM 3850 circuit material with 0.1-mm-thick LCP substrate ($\varepsilon_r = 2.9$, $\tan\delta = 0.0025$) plated on both sides with 0.018-mm-thick copper layers. The slot consists of three sections: 1) a short tapered slot section, with a tapered part of length L_0 and a constant-width part of length L_w and width w; 2) a narrow-width feeding slot of length l and width s; and 3) a shorted-end tuning slot-stub section of length L_s and width w_s.

The antenna is assumed to be fed by a microstrip line formed on the other side (feed side) of the substrate. The feed system consists of three segments: 1) a conventional 50-Ω feed line segment (0.25 mm strip width); 2) a matching segment of length L_b and width w, and 3) an open-end tuning microstrip-stub segment of length L_m and width w_m. The microstrip-to-slot transition between the input microstrip feed system and slot radiating system thus consists of a slot-stub section and microstrip-stub segment that are laid collinearly, partially overlapping each other. This microstrip-to-slot transition, which to the best of the
considered a feeding slot of width $s = 0.2$ mm and a linearly tapered slot of length $l_s = 4$ mm and aperture of width $w = 2.5$ mm. The initial topology and dimensions of the microstrip-to-slot transition were chosen in accordance with [12], where the theory of slotline transitions is described. Specifically, the microstrip and slot lines were set to cross each other at a right angle while the microstrip extended about one-quarter of a microstrip wavelength beyond the slot, and, similarly, the slot extended about one-quarter of a the slotline wavelength beyond the microstrip. To assess the wideband nature this preliminary antenna, we studied the antenna $|S_{11}|$ as a function of frequency in the 57–66 GHz operating frequency range. The study clearly revealed that the matching of the antenna to the 50-Ω impedance of the microstrip feed line in this frequency range was far from being satisfactory. To render the matching more wideband, the topology of Fig. 1 was adopted, and the dimensions l_s, l_{uu}, and w, as well as dimensions of the transition stubs $l_p, w_b, l_m,$ and w_m, were modified.

A further improvement of the antenna input matching was achieved after bending the slot-stub section by 90$^\circ$, resulting in a new microstrip-to-slot transition topology, where the microstrip and slot stub section are laid collinearly, partially overlapping each other, as shown in Fig. 1. In the second stage, the antenna with the dimensions found during the first stage was considered with a fork-shaped metallic carrier 9.2 mm long, 4.5 mm wide, and 1 mm high, which is connected to the antenna ground plane and surrounds the slot-transition system. The dimensions of both stubs were slightly modified to maintain the matching close to that achieved earlier. A negligible modification of some of the antenna dimensions was needed in the third stage, when a square reflector of 10 x 10 mm2 in size was connected to the carrier. The resulting dimensions of the slot and transition were found to be $l_s = 3.4$ mm, $l_{uu} = 1.9$ mm, $w = 2.35$ mm, $l = 1.5$ mm, $s = 0.16$ mm, $l_s = 0.67$ mm, $w_s = 0.23$ mm, $l_p = 0.8$ mm, $w_b = 0.2$ mm, $l_m = 0.6$ mm, $w_m = 0.15$ mm, and $t = 0.04$ mm. It should be pointed out that the area occupied by the proposed collinear microstrip-to-slot transition is actually very small. In fact, it is twice less than the area occupied by the transition used in [7].

IV. SIMULATION AND MEASUREMENT RESULTS

The matching and radiation characteristics of the antenna were simulated using CST Microwave Studio. From the plot of the simulation results, shown in Fig. 2, it can be seen that the operating frequency band of the antenna, where $|S_{11}| \leq -10$ dB, is from 53.3 up to 69.8 GHz (greater than 25% bandwidth). It is particularly noteworthy that the antenna is exhibiting an even better impedance matching ($|S_{11}| \leq -15$ dB) in the 57–66 GHz frequency range allocated for WPAN applications.

The simulated radiation patterns of the antenna in the xy (E) and in the yz (H) planes are shown in Fig. 3 for the dominant component (E_φ) of the radiated electric field. As can be deduced from the graphs, the antenna 3-dB beamwidth in the E-plane is varying in the 57–66 GHz frequency range between 35$^\circ$ and 89$^\circ$, while in the H-plane it is varying between 58$^\circ$ and 72$^\circ$. Also, the front-to-back ratio of the radiation is ranging between 17 and 22 dB. Other simulation results we obtained indicate that the antenna’s directive gain in this frequency range authors’ knowledge is novel and compact and facilitates a bandwidth of operation wider than that required for WPAN applications.

In addition, the antenna is assumed to feature a metallic fork-shaped carrier, which gives the antenna good rigidity and serves as a base for mounting the metallic reflector as well as a means for connecting the antenna to the RF module (not shown in Fig. 1). As mentioned earlier, not only can the reflector improve the antenna directive gain, but it also can reduce possible effects of other parts of the RF module on the antenna.

III. ANTENNA DESIGN

The design of the proposed antenna was carried out in three stages by use of the commercial CST Microwave Studio software. In the first stage, the antenna was considered without the carrier and reflector. The initial topology and dimensions of the slot were chosen like those of the compact linear-tapered slot antenna (LTSA) described in [11]. Specifically, we

Fig. 1. Geometry of the proposed antenna: (a) isometric view; (b) radiating element; (c) microstrip-to-slot transition.
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 9, 2010

Fig. 2. Matching characteristics of the proposed antenna: measured (solid) and simulated (dashed).

Fig. 3. Simulated radiated field (E_x component) of the proposed antenna in xy plane (solid line) and yz plane (dashed line) at (a) 57, (b) 60, (c) 63, and (d) 66 GHz.

Fig. 4. Photograph of the measurement setup showing the proposed antenna connected to UTF. An enlarged photograph of the radiating element (from both sides) and the carrier are shown in the insert.

is varying between 6.8 and 9.9 dB. Also obtained from the simulation results is the antenna’s radiation efficiency (the ratio between the radiated power and the sum of this radiated power plus the surface mode power) throughout this frequency range is nearly 96%, while its total efficiency, which is the product of its impedance-mismatch loss ($1 - |S_{11}|^2$) and radiation efficiency, is nearly 94%.

The model of the simulated antenna, excluding the reflector, was fabricated, and its matching characteristics were measured. A photograph of the measurement setup comprising an Anritsu 3680 V Universal Test Fixture (UTF), accommodating the antenna under test, and an Agilent Technologies E8361A Vector Network Analyzer (VNA) is shown in Fig. 4. The antenna was held in place between the spring-loaded jaws on the back side of the UTF’s fixed connector block, with the antenna’s microstrip feed line pressed against the backwardly protruding tip of the center conductor of the connector. In this way, the wall of the fixed block also served as the reflector for the antenna. The front side of the fixed connector block was connected through its V-type RF connector to the VNA via coaxial cable. Clearly, the measurement setup was fully calibrated before the measurements. The calibration was effected by a line–reflect–match (LRM) method. The measured results of S_{11} are plotted, for comparison purposes, alongside the simulation results in Fig. 2. The measured results are in good agreement with the simulated results, showing that the operation band of the actual antenna is even slightly wider. The level of S_{11} is slightly greater, but nevertheless under -10 dB throughout. To evaluate the total efficiency of the fabricated antenna, we consider the actual values of the antenna’s S_{11} and assume that its radiation efficiency throughout the 57–66 GHz frequency band differs only very little from that obtained via simulations. The total efficiency thus evaluated was found to be greater than 85% throughout the required frequency band.

V. CONCLUSION

A compact endfire 60-GHz tapered slot antenna, which is printed on a low-permittivity LCP substrate has been proposed.
The antenna features a novel wideband collinear microstrip-to-slot transition, which is of smaller size compared to other transitions. The antenna also features a fork-shaped metallic carrier, which gives it good rigidity, and a metallic reflector, which increases its directive gain. The antenna can be a simpler to manufacture and less pricey substitute for 60-GHz tapered slot antennas printed on multilayer LTCC substrate [10]. It can be used both as an individual radiator as well as an element of antenna array and readily integrated with a RF module for use in future WPAN applications.

REFERENCES

