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Abstract

Segmentation of sequences is an important modeling primitive with sev-
eral applications. Training and inference of segmentation models in-
volves dynamic programming computations that in the worst case can be
cubic in the length of a sequence. In contrast, typical sequence labeling
models require linear time.
We propose an alternative graphical model for efficient sharing of po-
tentials across overlapping segments. We then design message passing
algorithms that are significantly faster than the original cubic algorithms.
When segmentation models are posed as large margin structured classifi-
cation tasks, our algorithm directly impact the computation of marginals
for exponentiated gradient training algorithms [1] and modes for cutting
plane algorithms [7].

1 Introduction

Segmentation of sequences is an important primitive in several tasks including, Named
entity recognition, information extraction, part of speech tagging, shallow parsing, pitch
accent prediction, and, protein/gene finding. Given an input sequencex1 : : : xn, the goal
in segmentation is to find all segments that belong to a set of entitiesY . In the basic form,
the set of segments are non-overlapping and cover a continuous subset of tokens. In the
general case, the segments are allowed to be both overlapping and dis-continuous [4].

Traditionally, applications such as Named Entity Recognition (NER) or Information Ex-
traction (IE) that are naturally segmentation problems were approximated as sequential
labeling problems where each tokenxi in the token is assigned a labelyi from a set of
labelsY , or a label from an expanded set B-C-E-U. However, when extraction is not a
stand-alone problem but has to interoperate with other tasks like match of extracted enti-
ties with existing database of structured entities [3], it is more accurate and convenient to
directly model the extraction of segments. Also, in extraction tasks that involve segments
that are discontinuous as in [2, 4], the discontinuity gives rise to segments that cannot be
handled via traditional chain models.

2 Graphical models for segmentation

Given an input sequencex = x1 : : : xn, a segmentations of x consists of a sequence of
variable length segmentss = hs1; : : : ; spi where each segmentsj = htj ; uj ; yji consists



of a start positiontj , anend positionuj , and alabel yj 2 Y . Conceptually, a segment
means that the tagyj is given to allxi’s betweeni = tj andi = uj , inclusive. We consider
the case of contiguous, disjoint segments which implies thattj+1 = uj + 1. The label of
a segment depends on thex properties around the segment position and the label of the
segment prior to it. Often, for limiting computation requirements, the maximum length of
a segment is restricted to a pre-defined constantL.

We express segmentations as graphical models by expanding the label set so that for each
labely in Y we create four labelsyB ; yE ; yC ; yU indicating that the label is assigned to a
position marking respectively the beginning of a segment, end of a segment, continuation
of a segment, and, a single word segment. The graphical model for segmentation consists
of two kinds of cliques:

� segment cliquescij formed by fully connecting all contiguous nodes fromyi to yj
— these are meant to denote a segment fromi to j and thus all nodes are required
to have the base labely appropriately specialized toyB ; yE ; yC ; yU .� transition cliques between adjacent nodesi; i+1 to capture the dependence of the
label of a segment starting ati + 1 on the label of the segment ending at positioni.

This yields a graph with cliques of sizeL where computing exact marginals and modes
could be intractable. For example, if we do not restrict the maximum segment length, we
get a complete graph over alln nodes. However, the restricted choice of labels that can
be assigned to a clique and the special form of the cliques, enables us to design a message
passing algorithm that runs inO(nL2) time as follows:

Let �i0i denote potentials over segment cliques spanning from nodei0 to i and�i denote
the potentials over transition edges fromi � 1 to i. The forward message from a nodei is
computed as

�i(y) = � Pmax(i�L;1)�i0�iPy02Y �i0�1(y0)�0i(y0; y)�i0i(y) if i > 01 if i = 0: (1)

where L = maximum segment length and we use the shortcut�i0i(y) to denote�i0i(yB ; yC ; : : : yC ; yE). The O(nL2) complexity comes about due to potentials over
lengthL cliques.

Similarly, the backward messages�i from nodei to i � 1 can be computed and these can
be used to find the marginal for a segment cliquei0i as:

�i0i(y) = �i(y)�i+1(y)Z(x)
whereZ(x) =Py �n(y).
The forward messages need to be passed only along transition cliques and this enables the
algorithm to run in time that is polynomial in the size of the graph. Other examples of
graphical models where restrictions on labels assignments has been exploited for tractable
message passing are Associative Markov Networks (AMN) [6]. The segmentation model is
different from an AMN in two ways: the clique structure is more regular, and, the potential
structure is richer because of dissociative potentials in transition cliques. The message
passing algorithm is optimal for arbitrary size ofY whereas AMNs yield optimal answers
only for binary label sets.

3 Efficient graphical models

WhenL � n, the segmentation algorithm becomes cubic inn and this is a problem for
practical settings. Also, the above model is restricted to full segment potentials. Ideally,



we would like to allow potentials to be defined over subset of the full segment cliques, so
that several segments can share the same potential. Thus, we allow potentials of the form�i;i+2(yB ; yC ; yC) so that these can be shared over all segments that start at positioni
and end after positioni + 2. A special case of this is when cliques are of size no greater
than 2 and this gives rise to the popular NER Markov model based on B-C-E-U labels.
We generalize these models to where potentials can be defined over arbitrary subsequences
of x provided they are associated with segment consistent labels. This gives rise to three
additional kinds of cliques:

� �0i0:>i which denotes potentials shared over all segments starting ati0 but ending
anywhere afteri.� �0<i0:i which denotes potentials shared over all segments ending ati but starting
anywhere beforei0.� �0<i0:>i which denotes potentials shared over all segments ending afteri and start-
ing beforei0.

We designed a message passing algorithm that can run in time that is proportional toO(nm2) wherem is the largest subsequence over which potentials are defined and not nec-
essarily the largest length of a sequence. Thus, for sequence labeling tasks wherem = 2,
this will reduce to the standardO(n) forward-backward algorithm, even through it can po-
tentially output segments much larger than 2. We generalize this to the case of an arbitrary
set of cliques. We show how to directly compute marginals over the smaller potentials
instead of summing over segment-level potentials which can be very large.

The main challenge in designing an efficient algorithm is that potentials could overlap in
arbitrary ways and we cannot afford to pass messages only along transition edges. A key
insight we exploit is that for segments longer thanm, a set of inter-segment messages can
be combined over a decomposable set of potentials. We show how this is done for forward
messages. Equation 1 in matrix notation and with noL restriction becomes:�i =Xi0�i(�i0�1�i0) � �i0:i
where the symbol “*” denotes element-wise multiplication of vectors of the same size.
In the rest of the paper, we will drop the use “*” to reduce clutter and assume it to be
implicitly present when two vectors of the same length abut. Let�i0:i denote the product
of all potentials applicable to segmenti0i, this will include all potentials of the form�0uv
where eitheru = i0 or u = <j for all j > i0 andv = i or v = >j for all j < i. Similarly,
let �i0:>i denote product of all potentials applicable to segments where the start boundary
is equal toi0 and end boundary anywhere afteri. �i0:i = �i0:>i�1�i0:(>i�1!i) where�i0:(>i�1!i) includes all potentials of the form�0r:i wherer = i0 or r = <j for j > i0�i0:(>i�1!i) is the same for alli0 � i � m since any feature with end boundary tied to
positioni cannot have its start boundary at any value less thani�m.

Let��i = �i�1�i
�i =

X
i0�i�m ��i0�i0:>i�1�i�m:(>i�1!i) +

X
i�m<i0�i��i0�i0:i

= ��i�m:>i�1�i�m:(>i�1!i) +
X

i�m<i0�i��i0�i0:i (2)

where��i�m:>i�1 denote the sum over all possible segmentations where the last seg-
ment’s start boundary is� i � m and the end boundary is open-ended ati � 1. We can
compute this term recursively as follows:

��i�m+1:>i =

(
��i�m:>i�1�i�m:(>i�1!>i) +��i�m+1�i�m+1:>i if i � m

�0:>m�1 if i = m� 1

0 otherwise



�i0:i is computed incrementally from�i0+1:i through data structures that can efficiently
find all potentials that become invalid and valid with the change of the start offset by one.

Thus, by maintaining an additional set ofn forward terms denoting��i�m+1:>i we are
able to compute�i by summing over onlym instead ofi� 1 terms.

The computation of the most likely segmentation involves two dynamic programming
equations similar to the two equations for�i and��i�m+1:>i above. The computation
of traditional beta terms can be done using a similar backward run.

The two forward and two backward messages can be combined to compute the marginals
for various potentials. We show an example for computing marginals�<s:e for potentials
of the form�0<s:e without explicitly summing over all segments with start position less
thans.
�<s:e = Pi0�s

��
i0�i0:e�eZ(x)

We can simplify this computation so as to not require summing overs terms as follows:

�<s:e = 1Z(x)
8><
>:

�<(s�1):e +��s�1�s�1:e�e if e� s < m; s > 0�e�<s:>e�1�s:(>e�1!e) if e� s = m; s > 0 (see Eq : 2)�0:e�e if s = 0
not needed if e� s > m

In the above equation, the�s:e values are only computed for the case wheree�s � m. This
explains why for the second equation wheree�s = m, we could not recurse on�<(s�1):e.
Overall, this enables us to compute all marginals inO(nm2) time without imposing any
hard limit on the length of the segment. Also, for shared potentials, the computation is
done only once instead of repeatedly for each overlapping segment it is associated with.

Concluding remarks Our experiments on the impact of the improved message passing
algorithm for various training algorithms, including the exponentiated gradient algorithm
for max-margin classification and LBFGS algorithm for Semi-CRFs [5] show that we ob-
tain a factor of three to ten reduction in running time. This makes the running time for
segmentation comparable to the running time for sequence labeling while allowing the
flexibility to exploit a more powerful and flexible set of feature potentials. Further, our
message passing algorithm could lend insights into simplifying other graphical models.
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