Augmented Statistical Models: Exploiting Generative Models in Discriminative Classifiers

Martin Layton & Mark Gales

9 December 2005

Cambridge University Engineering Department

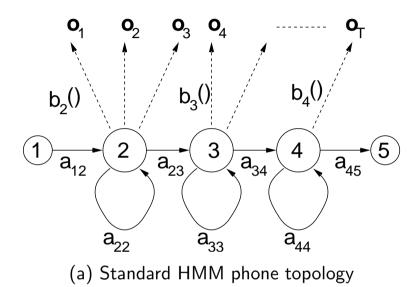
NIPS 2005

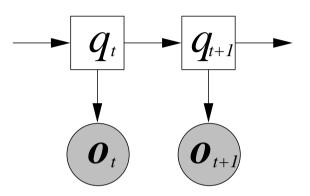
Overview

- Generative models in discriminative classifiers
 - Fisher score-space
 - Generative score-space
- Augmented Statistical Models
 - extension of standard models, e.g. GMMs and HMMs
 - allows additional dependencies to be represented
- Discriminative training
 - maximum margin
 - conditional maximum likelihood
- TIMIT results

Generative Models in Discriminative Classifiers

The Hidden Markov Model





(b) HMM Dynamic Bayesian Network

- Observations conditionally independent of other observations given state.
- States conditionally independent of other states given previous states.
- Poor model of the speech process piecewise constant state-space.

Fisher Score-spaces

- Jaakkola & Haussler (1999)
- Method of incorporating generative models within a discriminative framework
- Define a base generative model $\hat{p}(\boldsymbol{O};\boldsymbol{\lambda})$
 - 1-dimensional log-likelihood
 - not enough information for good classification
- Instead use a score-space $\phi^{\mathrm{F}}(\boldsymbol{O}; \boldsymbol{\lambda})$
 - tangent-space captures essence of generative process

$$\boldsymbol{\phi}^{\mathrm{F}}(\boldsymbol{O};\boldsymbol{\lambda}) = \left[\nabla_{\boldsymbol{\lambda}} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}) \right]$$

- dimensionality of score-space: parameters λ
- suitable for discriminative training (SVMs, etc)
- has been applied to many tasks, e.g. comp. biology and speech recognition

Generative Score-spaces

- Smith & Gales (2002)
- Extension for supervised binary classification tasks
- Define class-conditional base models $\hat{p}(\boldsymbol{O}; \boldsymbol{\lambda}^{(1)})$ and $\hat{p}(\boldsymbol{O}; \boldsymbol{\lambda}^{(2)})$
 - includes log-likelihood ratio to improve discrimination
 - avoids wrap-around (different O's map to the same point in score-space)
- Score-space $\phi^{ ext{LL}}(oldsymbol{O};oldsymbol{\lambda})$

$$\phi^{\text{LL}}(\boldsymbol{O};\boldsymbol{\lambda}) = \begin{bmatrix} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(1)}) - \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(2)}) \\ \nabla_{\boldsymbol{\lambda}^{(1)}} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(1)}) \\ -\nabla_{\boldsymbol{\lambda}^{(2)}} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(2)}) \end{bmatrix}$$

- suitable for discriminative training SVMs
- no probabilistic interpretation
- restricted to binary problems

Augmented Statistical Models

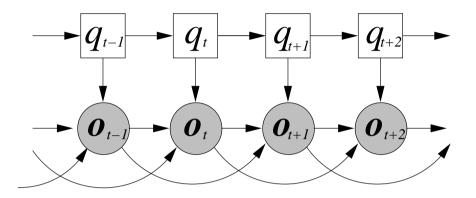
Dependency Modelling

- Speech data is dynamic observations are not of a fixed length
- Dependency modelling essential part of speech recognition

 $p(\boldsymbol{o}_1,\ldots,\boldsymbol{o}_T;\boldsymbol{\lambda}) = p(\boldsymbol{o}_1;\boldsymbol{\lambda})p(\boldsymbol{o}_2|\boldsymbol{o}_1;\boldsymbol{\lambda})\ldots p(\boldsymbol{o}_T|\boldsymbol{o}_1,\ldots,\boldsymbol{o}_{T-1};\boldsymbol{\lambda})$

- impractical to directly model in this form
- make extensive use of conditional independence
- Two possible forms of conditional independence
 - latent (unobserved) variables
 - observed variables
- Even if given a set of dependencies (form of Bayesian Network)
 - need to determine how dependencies interact

Dependency Modelling



• Commonly use a member (or mixture) of the exponential family

$$p(\boldsymbol{O}; \boldsymbol{\alpha}) = \frac{1}{\tau(\boldsymbol{\alpha})} h(\boldsymbol{O}) \exp\left(\boldsymbol{\alpha}^T \boldsymbol{T}(\boldsymbol{O})\right)$$

 $h({\pmb O})$ is the reference distribution τ is the normalisation term

 $oldsymbol{lpha}$ are the natural parameters $oldsymbol{T}(oldsymbol{O})$ are sufficient statistics

- What is the appropriate form of statistics (T(O))?
 - for diagram above, $m{T}(m{O}) = \sum_{t=1}^{T-2} m{o}_t m{o}_{t+1} m{o}_{t+2}$

Augmented Statistical Models

• Augmented statistical models (related to fibre bundles)

$$p(\boldsymbol{O};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \frac{1}{\tau(\boldsymbol{\lambda},\boldsymbol{\alpha})} \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}) \exp\left(\boldsymbol{\alpha}^{T} \begin{bmatrix} \nabla_{\boldsymbol{\lambda}} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}) \\ \frac{1}{2!} \operatorname{vec} \left(\nabla_{\boldsymbol{\lambda}}^{2} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda})\right) \\ \vdots \\ \frac{1}{\rho!} \operatorname{vec} \left(\nabla_{\boldsymbol{\lambda}}^{\rho} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda})\right) \end{bmatrix}\right)$$

- Two sets of parameters:
 - λ parameters of base distribution ($\hat{p}(\boldsymbol{O}; \boldsymbol{\lambda})$)
 - α natural parameters of local exponential model
- Normalisation term $au(oldsymbol{\lambda}, oldsymbol{lpha})$ ensures valid PDF

$$\int p(\boldsymbol{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) \, \mathrm{d}\boldsymbol{O} = 1; \qquad p(\boldsymbol{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \frac{\bar{p}(\boldsymbol{O}; \boldsymbol{\lambda}, \boldsymbol{\alpha})}{\tau(\boldsymbol{\lambda}, \boldsymbol{\alpha})}$$

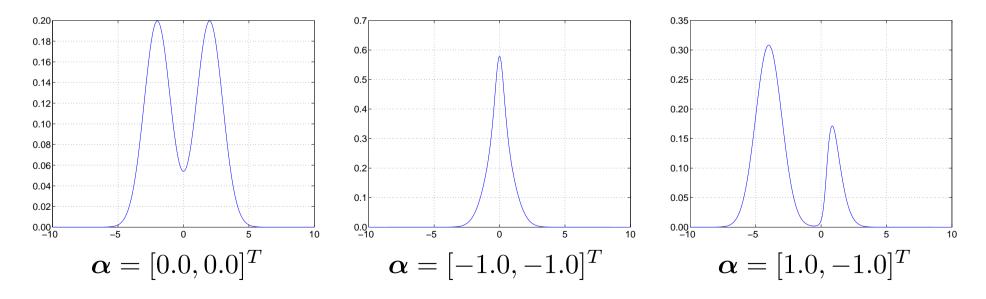
- can be very difficult to estimate

Example: Augmented GMM

• Use a GMM as the base distribution: $\hat{p}(\boldsymbol{o}; \boldsymbol{\lambda}) = \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$

$$p(\boldsymbol{o};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \frac{1}{\tau} \sum_{m=1}^{M} c_m \mathcal{N}(\boldsymbol{o};\boldsymbol{\mu}_m,\boldsymbol{\Sigma}_m) \exp\left(\sum_{n=1}^{M} P(n|\boldsymbol{o};\boldsymbol{\lambda})\boldsymbol{\alpha}_n^T \boldsymbol{\Sigma}_n^{-1}(\boldsymbol{o}-\boldsymbol{\mu}_n)\right)$$

• Simple two component one-dimensional example:



Augmented Model Dependencies

- If the base distribution is a latent-variable model GMM,HMM,...
 - Sufficient statistics contain a first-order differential

$$\nabla_{\boldsymbol{\mu}_{jm}} \ln \hat{p}(\boldsymbol{O}; \boldsymbol{\lambda}) = \sum_{t=1}^{T} P(\boldsymbol{\theta}_{t} = \{s_{j}, m\} | \boldsymbol{O}; \boldsymbol{\lambda}) \boldsymbol{\Sigma}_{jm}^{-1}(\boldsymbol{O}_{t} - \boldsymbol{\mu}_{jm})$$

- depends on a posterior
- compact representation of effects of all observations
- Augmented models of this form:
 - retain independence assumptions of the base model
 - remove conditional independence assumptions of the base model...
 ... since the local exponential model depends on a posterior
- For HMM base models,
 - observations are dependent on all observations and all latent states
 - higher-order derivatives create increasingly powerful models

Discriminative Training

Maximum Margin Estimation

- Consider the simplified two-class problem
- Bayes' decision rule (consider λ fixed)

$$\frac{P(\omega_1|\boldsymbol{O})}{P(\omega_2|\boldsymbol{O})} = \frac{P(\omega_1) \tau(\boldsymbol{\lambda}^{(2)}, \boldsymbol{\alpha}^{(2)}) \bar{p}(\boldsymbol{O}; \boldsymbol{\lambda}^{(1)}, \boldsymbol{\alpha}^{(1)})}{P(\omega_2) \tau(\boldsymbol{\lambda}^{(1)}, \boldsymbol{\alpha}^{(1)}) \bar{p}(\boldsymbol{O}; \boldsymbol{\lambda}^{(2)}, \boldsymbol{\alpha}^{(2)})} \overset{\omega_1}{\underset{\omega_2}{\overset{<}{\overset{\sim}{\overset{\sim}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}{\overset{\sim}}{\overset{\sim}}}}} 1$$

– class priors $P(\omega_1)$ and $P(\omega_2)$

• Can be rewritten as a linear decision boundary in a generative score-space,

$$\frac{1}{T} \ln \left(\frac{\bar{p}(\boldsymbol{O}; \boldsymbol{\lambda}^{(1)}, \boldsymbol{\alpha}^{(1)})}{\bar{p}(\boldsymbol{O}; \boldsymbol{\lambda}^{(2)}, \boldsymbol{\alpha}^{(2)})} \right) + \frac{1}{T} \ln \left(\frac{P(\omega_1) \tau(\boldsymbol{\lambda}^{(2)}, \boldsymbol{\alpha}^{(2)})}{P(\omega_2) \tau(\boldsymbol{\lambda}^{(1)}, \boldsymbol{\alpha}^{(1)})} \right) \overset{\omega_1}{\underset{\omega_2}{\overset{\leq}{\underset{\omega_2}{\overset{\leq}{\underset{\omega_2}{\overset{\sim}{\underset{\omega_2}{\underset{\omega_2}{\overset{\sim}{\underset{\omega_2}{\overset{\sim}{\underset{\omega_2}{\overset{\simeq}{\underset{\omega_2}{\overset{\sim}{\underset{\omega_2}{\overset{\sim}{\underset{\omega_2}{\underset{\omega_2}{\overset{\simeq}{\underset{\omega_2}{\underset{\omega_2}{\underset{\omega_2}{\overset{\sim}{\underset{\omega_2}{\underset{\omega_2}{\underset{\omega_2}{\overset{\sim}{\underset{\omega_2}{\atop\ldots_2}{\underset{\omega_2}{\underset{\omega_2}{\underset{\omega_2}{\underset{\omega_2}{\underset{\omega_2}{\underset{\omega_2}{\atop\ldots_{\omega_2}{\underset{\ldots_2}{\underset{\ldots_2}{\underset{\omega_2}{\underset{\ldots_2}{\underset{\ldots_2}{\underset{\ldots_2}{\underset{\ldots_2}{\underset{\ldots_2}{\underset{\ldots_{\ldots_2}{\underset{\ldots_{\ldots_{\ldots_2}{\underset{\ldots_{\ldots_{\ldots_2}{\underset{\ldots_{\ldots_{\ldots_{\ldots_{\ldots_{\ldots_{\ldots_{\ldots_{\ldots_{\ldots_{\ldots$$

– no need to explicitly calculate $au(m{\lambda}^{(1)},m{lpha}^{(1)})$ or $au(m{\lambda}^{(2)},m{lpha}^{(2)})$

• Note: restrictions on α 's required to ensure a valid PDF

Maximum Margin Estimation (cont.)

• First-order Generative score-space given by

$$\phi^{\text{LL}}(\boldsymbol{O};\boldsymbol{\lambda}) = \frac{1}{T} \begin{bmatrix} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(1)}) - \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(2)}) \\ \nabla_{\boldsymbol{\lambda}^{(1)}} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(1)}) \\ -\nabla_{\boldsymbol{\lambda}^{(2)}} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}^{(2)}) \end{bmatrix}$$

- independent of augmented parameters α
- Linear decision boundary specified by

$$\boldsymbol{w}^{T} = \left[\begin{array}{ccc} 1 & \boldsymbol{\alpha}^{(1)}^{T} & \boldsymbol{\alpha}^{(2)}^{T} \end{array} \right]^{T}$$

- only a function of the exponential model parameters α
- Bias calculated as a by-product of training depends on both lpha and λ
- Potentially many parameters to estimate:
 - maximum margin estimation (MME) good choice SVM training

Conditional Augmented Models

- Often impossible to calculate normalisation term for generative augmented models
 - restricted to binary tasks
 - cannot use direct training
- Instead, consider conditional augmented models

$$p(\boldsymbol{\omega}_{j}|\boldsymbol{O};\boldsymbol{\lambda},\boldsymbol{\alpha}) = \frac{1}{Z(\boldsymbol{\lambda},\boldsymbol{\alpha})} \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}) \exp\left(\boldsymbol{\alpha}^{T} \begin{bmatrix} \nabla_{\boldsymbol{\lambda}} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda}) \\ \frac{1}{2!} \operatorname{vec} \left(\nabla_{\boldsymbol{\lambda}}^{2} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda})\right) \\ \vdots \\ \frac{1}{\rho!} \operatorname{vec} \left(\nabla_{\boldsymbol{\lambda}}^{\rho} \ln \hat{p}(\boldsymbol{O};\boldsymbol{\lambda})\right) \end{bmatrix}\right)$$

- directly model decision surfaces between classes
- normalisation calculated as expectation over classes easy to calculate

Conditional Maximum Likelihood Estimation

• Maximum likelihood of conditional model

$$\{\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\alpha}}\} = \operatorname*{argmax}_{\boldsymbol{\lambda}, \boldsymbol{\alpha}} \sum_{i=1}^{n} \ln P(y_i | \boldsymbol{O}_i; \boldsymbol{\lambda}, \boldsymbol{\alpha})$$

- O_i are training examples; y_i are class labels
- No closed-form solution
- Use stochastic gradient descent
 - use noisy estimates of conditional log-likelihood gradient

$$\nabla_{\boldsymbol{\alpha}} \ln P(y_i | \boldsymbol{O}_i; \boldsymbol{\lambda}, \boldsymbol{\alpha}) = \boldsymbol{T}(y_i, \boldsymbol{O}_i; \boldsymbol{\lambda}) - \sum_{\omega \in \Omega} p(\omega | \boldsymbol{O}_i; \boldsymbol{\lambda}, \boldsymbol{\alpha}) \boldsymbol{T}(\omega, \boldsymbol{O}_i; \boldsymbol{\lambda})$$

- $\Omega = \{\omega_1, \ldots, \}$ is the set of all class labels
- $T(y_i, O_i; \lambda)$ are the augmented model sufficient statistics
- optimisation is convex

TIMIT Results

TIMIT

- Phone classification task
- Training
 - 462 speakers: 3,696 sentances
 - 48 possible phones (classes)
- Testing
 - 24 speakers: 192 sentances
 - 48 phones mapped to a 39-class set for scoring purposes
- Data encoded using standard features: MFCC_0_D_A
 - 3 emitting state HMMs with 10 or 20 mixture components
 - first-order score-space: means, variances and component priors

ΤΙΜΙΤ

Classifier	Criterion		Components	
	λ	α	10	20
HMM	ML	—	29.4	27.3
C-Aug	ML	CML	25.6	—
HMM	MMI	—	25.3	24.8
C-Aug	MMI	CML	24.1	—

- Conditional augmented models outperform HMMs
 - given a base model, it is better to augment it instead of increasing the number of mixture components
- Maximum-margin outperforms Conditional MLE (results not shown)
 - restricted to binary tasks
 - partly due to CML overtraining regularisation required

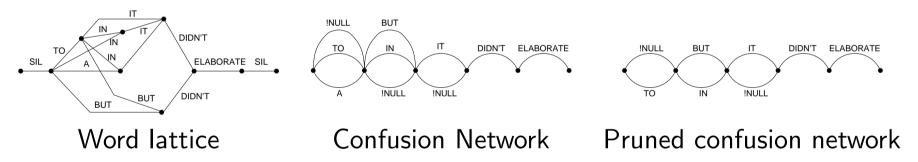
Summary

- Augmented statistical models
 - allow complex dependencies to be added in a systematic fashion
 - breaks conditional independence assumptions of base model
 - simple to train using MM or CML estimation
- Preliminary results positive
 - outperform ML and MMI HMMs with similar numbers of parameters
 - CML optimisation is simple and easy to extend...
- Current work
 - Regularisation of CML
 - Updates of base model λ
 - Recognition

Extra Slides

Binary Classifiers and LVCSR

- Many classifiers (e.g. SVMs) are inherently binary:
 - speech recognition has a vast number of possible classes
 - how to map to a simple binary problem?
- Use pruned confusion networks (Venkataramani et al ASRU 2003):



- use standard HMM decoder to generate word lattice
- generate confusion networks (CN) from word lattice
 - gives posterior for each arc being correct;
- prune CN to a maximum of two arcs (based on posteriors).

8-Fold Cross-Validation LVCSR Results

Word Pair	Classifier	Training		WER
(Examples/class)		Base (λ)	Aug $(lpha)$	(%)
CAN/CAN'T (3761)	НММ	ML	—	11.0
		MMI		10.4
(3701)	A-HMM	ML	MM	9.5
KNOW/NO (4475)	НММ	ML	—	27.7
		MMI	—	27.1
(++13)	A-HMM	ML	MM	23.8

- A-HMM outperforms both ML and MMI HMM
 - also outperforms using "equivalent" number of parameters
 - difficult to split dependency modelling gains from change in training criterion

Evaluation Data LVCSR Results

• Baseline performance using Viterbi and Confusion Network decoding

Decoding	trigram LM	
Viterbi	30.8	
Confusion Network	30.1	

• Rescore word-pairs using 3-state/4-component A-HMM+ β CN

SVM Rescoring	#corrected/#pairs	% corrected
10 SVMs	56/1250	4.5%

- only 1.6% of 76157 hypothesised words rescored more SVMs required!
- More suitable to smaller tasks, e.g. digit recognition in low SNR conditions

