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Motivation & Overview

o N

# Need for discriminative training
» Overcome modeling limitations
» Focus on directly improving recognition performance

o Overview:

s MCE fundamentals
s Smoothed error rate
— parallel with large margin training

s MCE vs. Maximum Likelihood results for large-scale
speech recognition tasks

o |
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MCE training for generic models
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Searching for the Bayes classifier

o N

# Bayes decision rule:
decide C; If P(C;i|x) > P(C;|x) forall j # ¢

# In principle, the same optimal error can be attained
using discriminant functions:

decide C; If g;(X,A) > g;(X,A) forall 7 # ¢

o |
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Maximum Likelihood fails to separate!
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MCE Misclassification Measure

-

# The m.m. compares correct and best incorrect
categories:

dp(X1,A) = —g(X{, A) + max g (X1, A)
di(x¥', A) < 0 — correct classification, and
di.(x1', A) > 0 — incorrect classification.

#® Special case of continuous definition (Chou, 1992):

1 T
T — T j(Xl 7A)¢
dk(xl ,A) = gk(xl ,A) + log — ik ed
— J —
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Discriminant function for HMMs

-

# Defined using best Viterbi path ©/:

T T
g; (x1,A) =log P(S;) + Z log Qg g7 + Z log be{ (X¢)
t=1 t=1

» Input: sequence of feature vectors, x! = (x1,...,X7)

|
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String-level HMM discriminant function

o N
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MCE loss function
-

Reflects classification success/failure: T

1
1 4+ e—ade(X1,A)

((dy(x1, A)) =

0 - !
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Overall loss and optimization

f # A practical definition of overall loss is the Average T
Empirical Cost.

M Ng

LA = 303 fixie, A)

kE 1=1

#® E.g.: Quickprop (Fahlman, 1988) can be seen as a
modified Newton’s method:

s use a second order Taylor expansion to model L(A):
1
LA+s)~M(A+s)=L(A)+ VL(A)'s + 5s’fVQL(A)s

s calculate the step size that moves to the minimum of

L the model J
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Empirical Cost

Actual classification error
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Empirical Cost

Smoothed MCE loss function
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MCE & MMI

Unified framework for MCE & MMI (Schlueter, 1998): T

Optimization :
o Gradient-based methods

s Extended Baum-Welch algorithm; see Kanevsky,
1995
— see Macherey et al., Eurospeech 2005 for
application to MCE

MMI (= Cross-entropy) fails to separate:
Gopalakrishnan et al. ICASSP 1988: “Decoder
selection based on cross-entropies”

|
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Minimum Phone/Word Error

f o MPE, MWE (Povey, 2002): T

i S e pA(X,1S)Y P(S)YG(S, Sy)
Zl S (X, ]S)P P(S)Y

o cf. unified framework for MCE & MMI (Schlueter, 1998).

#® See Macherey et al., Eurospeech 2005 for comparison
between MCE, MPE and MMI on Wall Street Journal
task.
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LVQ = an application of MCE!
-

o Actual Decision Boundar
Bayes Decision Boundary o 151 u y
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Gradient along correct & incorrect paths

-
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Defining risk in a new domain

-

Original
P(C)p(X|C) a(x,A)=C2 [patter?l SpaCe]
a(x,\)=C1
a(x,\)=C3
Co

(m = d(x,/\D

X

Transformed
pattern space

P(C)p(m|[C)

|
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Parzen estimation of risk

Estimate of classification risk:
sum of integrals (m>0)
for each Parzen kernel

kernel center c:

Parzen estimate of p(m|C): transformed data point d(x,A)

Sum of kernels centered
on (transformed) data points

0 m = d(x,A\)

|
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WEST-based MCE Training

Flat or Rich transcription CORRECT
Transcription Reference
WEST score & segmentation
/
Speech |, [ WEST decoder} MCE
Sample (SOLON) Training | |

/ J / Filtering

[ Acoustic } [Language model} C ompetitOr
Model
WEST score(s) & segmentation(s)

Full Language Model

or Lattice-derived subset TOP INCORRECT

J
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Flexible transcription model

o N

[..]:SUZUKI/19.21 sil-eps @ .J:NAOMI

m @/ NAOMI
[AA]:eps / -]

EETO]:eps @ [...]:SUZUKI/19.21

# Define desired output as a set of strings, rather than a
single string.

#® Regular grammar model, represented as WFST.
#® Use for MCE training:

s Correct string S, — correct string set, K
» Decoder finds best string within set I (with score

L and segmentation) J

Discriminative training for Automatic Speech Recognitionusing theMinimum Classification Error framework — p.20



Telephone Based Name Recognition
- -

(McDermott et al., ICASSP 2000, 2005)

# Task: telephone-based, speaker independent, open
vocabulary name recognition

#® Approx. 22,000 family & given names modeled

# Database:
s > 35,000 training utterances (> 39 hours of audio)

# Evaluated:
1. ML / Viterbi Training vs. MCE training

2. Use of lattice-derived WFSTs to speed up training
3. “Strict” vs. “Flexible” transcription WFSTSs

o |
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ML vs. MCE performance

MLE / Viterbi training

281 MCE / Triphone Loop

MCE / LM Lattice

| | |
0 0.5 1 1.5 2 2.5 3
# Gaussians x 10"

24

Efficient use of parameters via MCE training

|
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MCE for JUPITER/SUMMIT system

o N

# Few MCE results for large, real-world tasks
[McDermott, ICASSP 2000]
(but MMI results for SWITCHBOARD [Woodland,
2002]).

# McDermott & Hazen, ICASSP 2004: evaluated
application of MCE to MIT’s online weather information
system, JUPITER, based on SUMMIT recognition
system

# Basic finding: for fixed real-time factor of 1.0, small
models trained with MCE yielded a 20 % relative
reduction in word error on in-vocab test set.

o |
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ML vs. MCE experiments on JUPITER
- 2 -
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# MCE training of large/small models: 41777 gaussian
pdfs (MCE-75) vs. 15245 gaussian pdfs (MCE-15);
comparison with corresponding ML models.
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Corpus of Spontaneous Japanese

# Task: lecture speech transcription (Kawahara, 2003) T

s > 180,000 training utterances (=~ 230 hours of audio)
s = 84,000,000 training vectors of 39 dimensions.

» 10 test speeches (= 2 hours of audio)

#® Le Roux & McDermott, Eurospeech 2005

s Evaluated different optimization methods
(Quickprop, Rprop, BFGS, Probabilistic Descent)

# More Recent work:
» MCE training with 68K unigram WFEST (no lattices)

s MCE training with 100K trigram WFST
s Testing using 100K trigram LM

-

L ® Relative Word Error Rate reduction =~ 9-12 %

|
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Course of training - 100k words

88 . .
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Recent CSJ results - 1
-

# MCE training with 68k unigram
# Testing with 30k word trigram
# Evaluate use of different HMM topologies

# States # Gssns ML-v30k MCE-v30k

2000 16 23.4 22.3
2000 32 22.4 21.0
3000 8 24.1 22.5
3000 16 23.1 20.8
4000 16 22.8 20.8

o |
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Recent CSJ results - 2

o N

# Same as before, but test with 100k word trigram

# States # Gssns ML-v100k MCE-v100k

2000 16 23.0 21.1
2000 32 21.7 20.5
3000 8 - 21.1
3000 16 22.4 20.5
4000 16 22.1 20.1

o |
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Recent CSJ results - 3
-

# Now train with 100k trigram LM
Note: training and testing LMs are now matched

# States # Gaussians ML-v100k MCE-v100k

2000 16 23.0 20.2
3000 16 22.4 20.5
4000 16 22.1 20.0

o |

Discriminative training for Automatic Speech Recognitionusing theMinimum Classification Error framework — p.29



MCE for TIMIT phone classification
-
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Sensitivity to Quickprop learning rate?
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Summary

o N

# MCE incorporates classification performance itself into
a differentiable functional form.

s By directly attacking the problem of interest,
parameters are used efficiently.

# Large gains in performance and model compactness on
challenging speech recognition tasks.
s Telephone-based name recognition
s MIT JUPITER weather information

» Corpus of Spontaneous Japanese lecture speech
transcription

o |
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