Discriminative training for Automatic Speech Recognition using the Minimum Classification Error framework

Erik McDermott

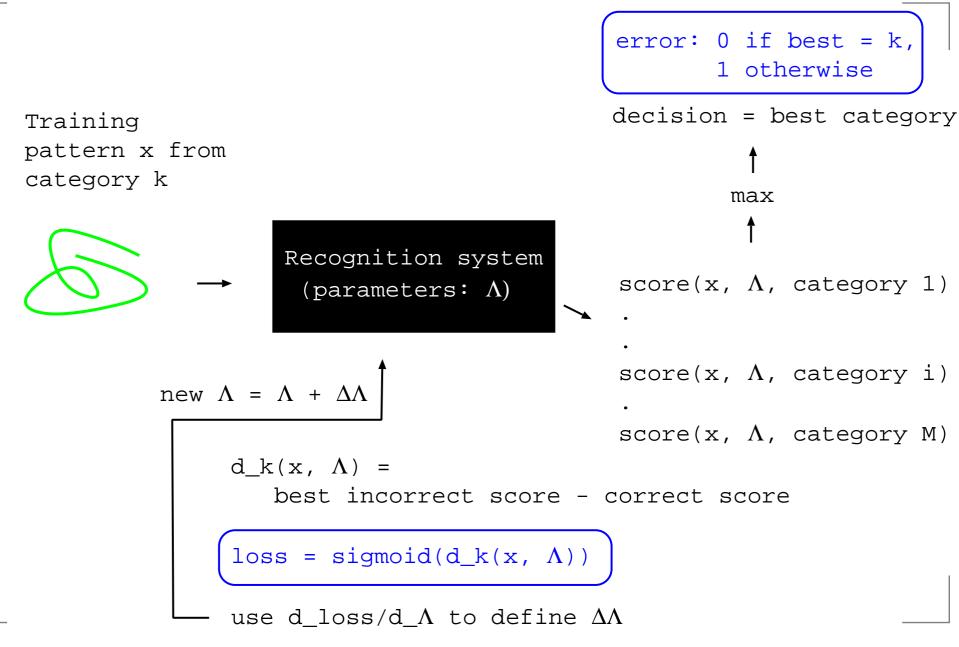
NTT Communication Science Labs

NTT Corporation mcd@cslab.kecl.ntt.co.jp

Motivation & Overview

- Need for discriminative training
 - Overcome modeling limitations
 - Focus on *directly* improving recognition performance
- Overview:
 - MCE fundamentals
 - Smoothed error rate
 - \rightarrow parallel with large margin training
 - MCE vs. Maximum Likelihood results for large-scale speech recognition tasks

MCE training for generic models



Discriminative training for Automatic Speech Recognitionusing the Minimum Classification Error framework – p.3

Searching for the Bayes classifier

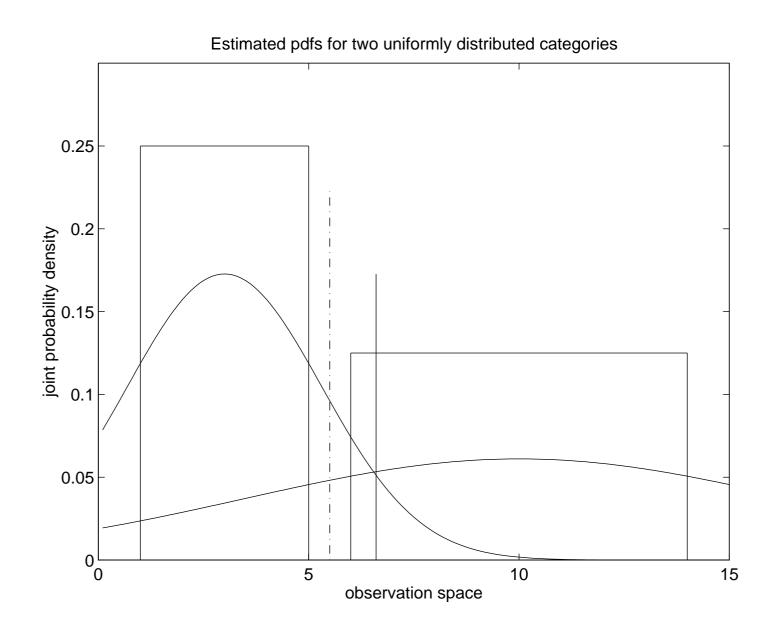
Bayes decision rule:

decide C_i if $P(C_i | \mathbf{x}) > P(C_j | \mathbf{x})$ for all $j \neq i$

In principle, the same optimal error can be attained using discriminant functions:

decide C_i if $g_i(\mathbf{x}, \mathbf{\Lambda}) > g_j(\mathbf{x}, \mathbf{\Lambda})$ for all $j \neq i$

Maximum Likelihood fails to separate!



Discriminative training for Automatic Speech Recognitionusing the Minimum Classification Error framework - p.5

MCE Misclassification Measure

The m.m. compares correct and best incorrect categories:

$$d_k(\mathbf{x}_1^T, \mathbf{\Lambda}) = -g_k(\mathbf{x}_1^T, \mathbf{\Lambda}) + \max_{j \neq k} g_j(\mathbf{x}_1^T, \mathbf{\Lambda})$$

 $d_k(\mathbf{x}_1^T, \mathbf{\Lambda}) < 0 \rightarrow \text{correct classification, and}$ $d_k(\mathbf{x}_1^T, \mathbf{\Lambda}) \ge 0 \rightarrow \text{incorrect classification.}$

Special case of continuous definition (Chou, 1992):

$$d_k(\mathbf{x}_1^T, \mathbf{\Lambda}) = -g_k(\mathbf{x}_1^T, \mathbf{\Lambda}) + \log\left[\frac{1}{M-1}\sum_{j \neq k} e^{g_j(\mathbf{X}_1^T, \mathbf{\Lambda})\psi}\right]^{\frac{1}{\psi}}$$

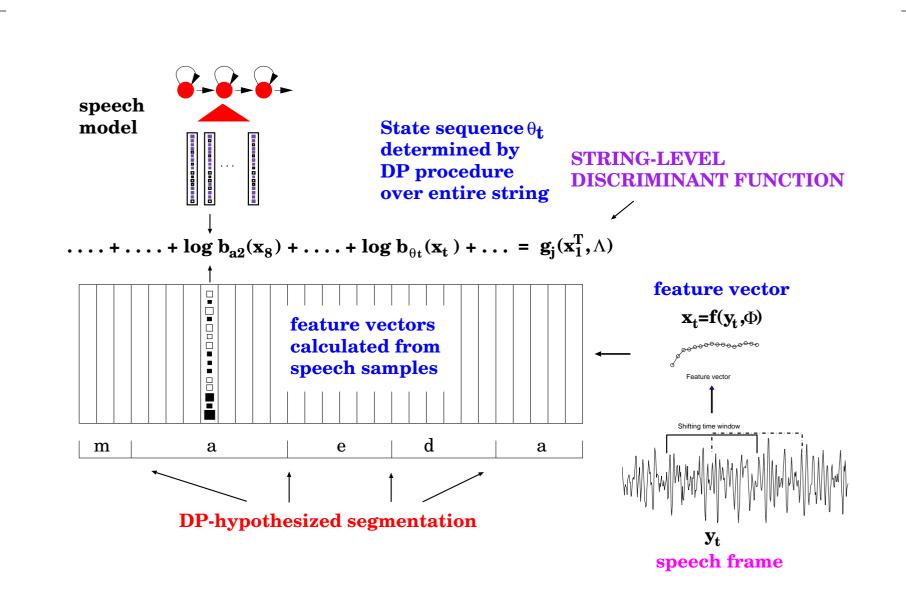
Discriminant function for HMMs

• Defined using best Viterbi path Θ^j :

$$g_j(\mathbf{x}_1^T, \mathbf{\Lambda}) = \log P(S_j) + \sum_{t=1}^T \log a_{\theta_{t-1}^j \theta_t^j} + \sum_{t=1}^T \log b_{\theta_t^j}(\mathbf{x}_t)$$

Input: sequence of feature vectors, $\mathbf{x}_1^T = (\mathbf{x}_1, ..., \mathbf{x}_T)$

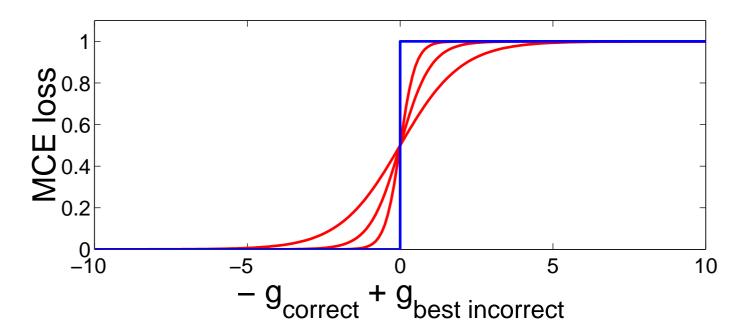
String-level HMM discriminant function



MCE loss function

Reflects classification success/failure:

$$\ell(d_k(\mathbf{x}_1^T, \mathbf{\Lambda})) = \frac{1}{1 + e^{-\alpha d_k(\mathbf{x}_1^T, \mathbf{\Lambda})}}$$



Discriminative training for Automatic Speech Recognitionusing the Minimum Classification Error framework - p.9

Overall loss and optimization

A practical definition of overall loss is the Average Empirical Cost:

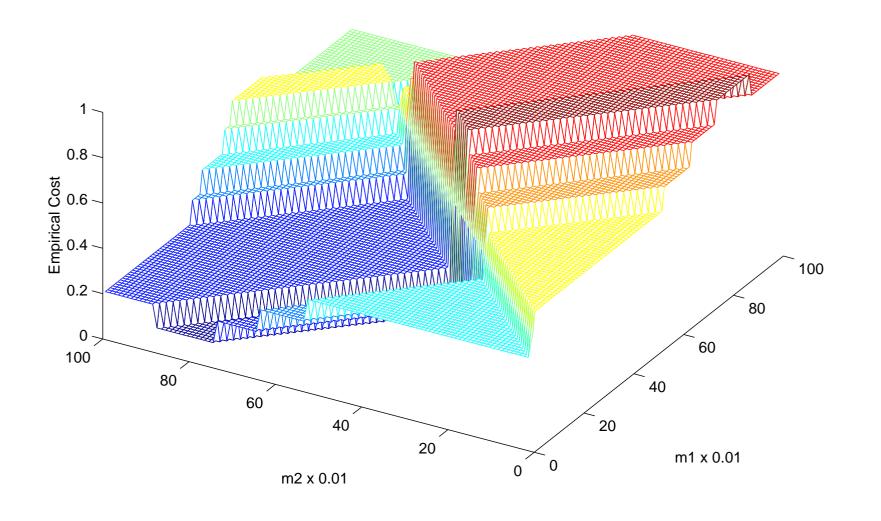
$$L(\mathbf{\Lambda}) = \frac{1}{N} \sum_{k}^{M} \sum_{i=1}^{N_k} \ell_k(\mathbf{X}_{ik}, \mathbf{\Lambda})$$

- E.g.: Quickprop (Fahlman, 1988) can be seen as a modified Newton's method:
 - use a second order Taylor expansion to model $L(\Lambda)$:

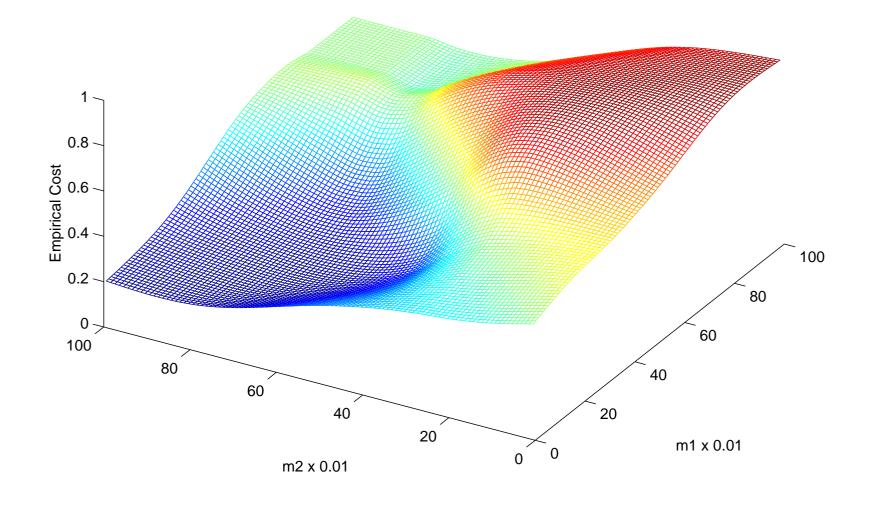
$$L(\mathbf{\Lambda} + s) \approx M(\mathbf{\Lambda} + s) = L(\mathbf{\Lambda}) + \nabla L(\mathbf{\Lambda})^t s + \frac{1}{2} s^t \nabla^2 L(\mathbf{\Lambda}) s$$

 calculate the step size that moves to the minimum of the model

Actual classification error



Smoothed MCE loss function



MCE & MMI

Unified framework for MCE & MMI (Schlueter, 1998):

$$\mathcal{F}(\mathbf{\Lambda}) = \frac{1}{R} \sum_{r=1}^{R} f\left(\log \frac{p_{\mathbf{\Lambda}}(X_r | S_r)^{\psi} P(S_r)^{\psi}}{\sum_{S \in \mathcal{M}_r} p_{\mathbf{\lambda}}(X_r | S)^{\psi} P(S)^{\psi}}\right)$$

- Optimization :
 - Gradient-based methods
 - Extended Baum-Welch algorithm; see Kanevsky, 1995

 \rightarrow see Macherey et al., Eurospeech 2005 for application to MCE

MMI (= Cross-entropy) fails to separate: Gopalakrishnan et al. ICASSP 1988: "Decoder selection based on cross-entropies"

Minimum Phone/Word Error

MPE, MWE (Povey, 2002):

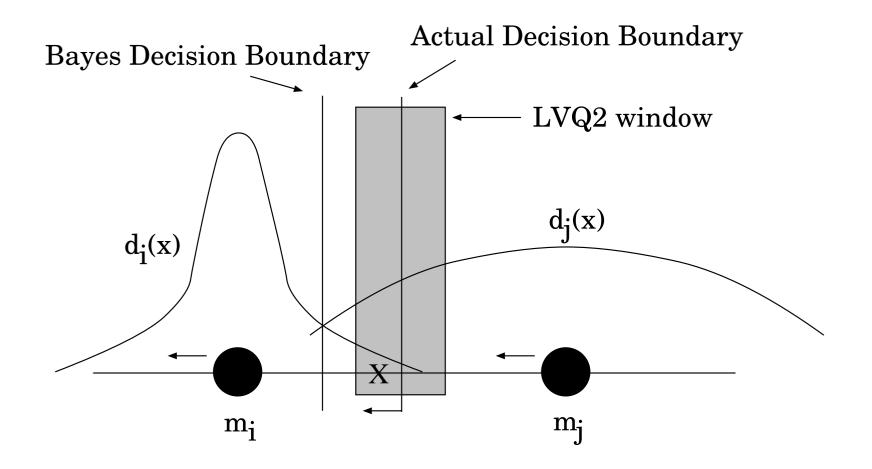
$$\mathcal{F}(\mathbf{\Lambda}) = \frac{1}{R} \sum_{r=1}^{R} \log \frac{\sum_{S} p_{\mathbf{\Lambda}}(X_r | S)^{\psi} P(S)^{\psi} \mathcal{G}(S, S_r)}{\sum_{S} p_{\mathbf{\lambda}}(X_r | S)^{\psi} P(S)^{\psi}}$$

cf. unified framework for MCE & MMI (Schlueter, 1998):

$$\mathcal{F}(\mathbf{\Lambda}) = \frac{1}{R} \sum_{r=1}^{R} f\left(\log \frac{p_{\mathbf{\Lambda}}(X_r | S_r)^{\psi} P(S_r)^{\psi}}{\sum_{S \in \mathcal{M}_r} p_{\mathbf{\lambda}}(X_r | S)^{\psi} P(S)^{\psi}}\right)$$

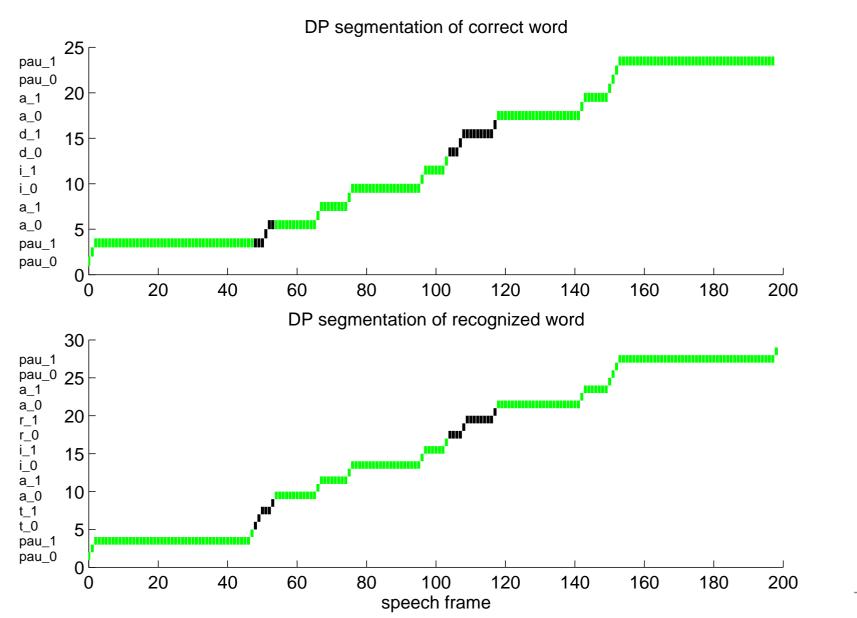
See Macherey et al., Eurospeech 2005 for comparison between MCE, MPE and MMI on Wall Street Journal task.

LVQ = an application of MCE!



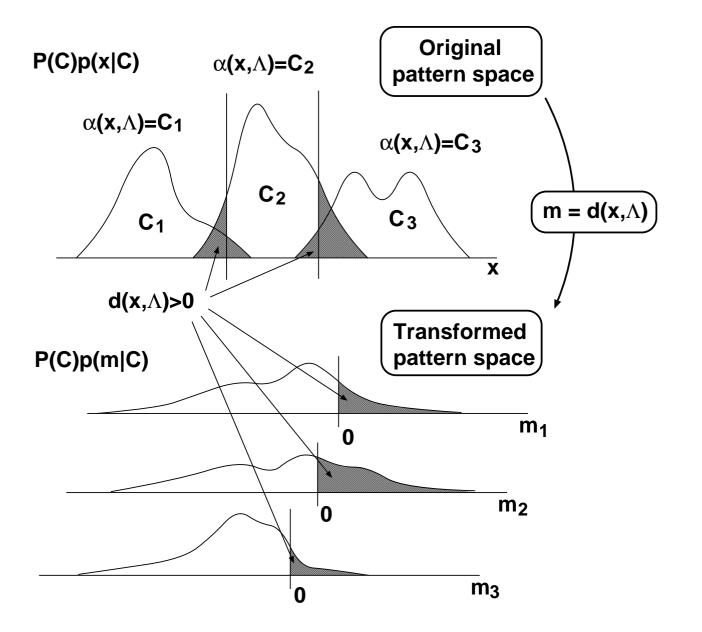
 $\mathbf{m}_i(t+1) = \mathbf{m}_i(t) - \alpha(t)(\mathbf{x}(t) - \mathbf{m}_i(t))$ $\mathbf{m}_j(t+1) = \mathbf{m}_j(t) + \alpha(t)(\mathbf{x}(t) - \mathbf{m}_j(t))$

Gradient along correct & incorrect paths

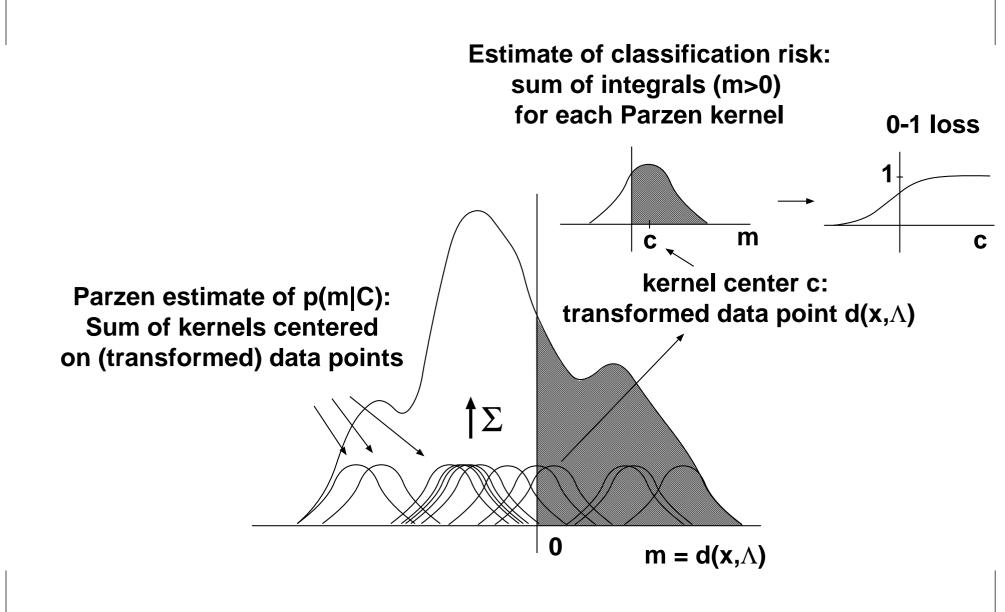


Discriminative training for Automatic Speech Recognitionusing the Minimum Classification Error framework - p.16

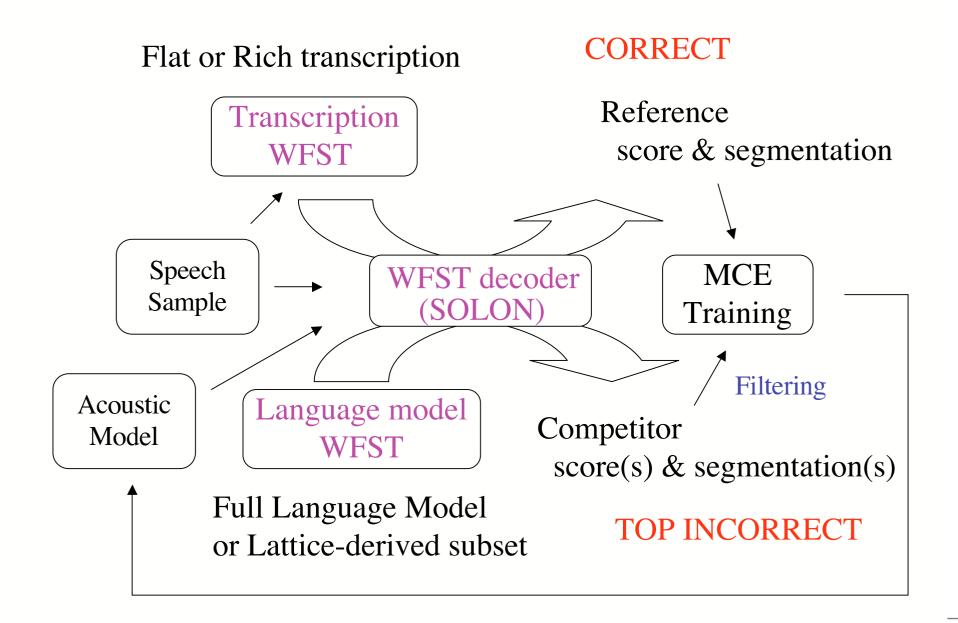
Defining risk in a new domain



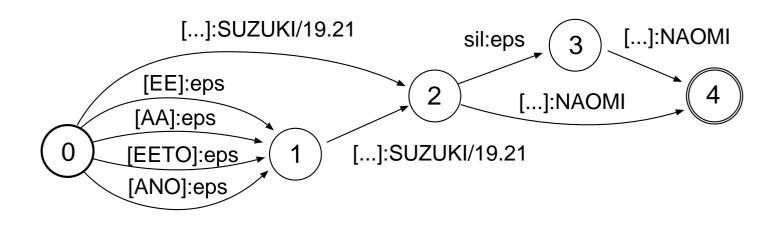
Parzen estimation of risk



WFST-based MCE Training



Flexible transcription model



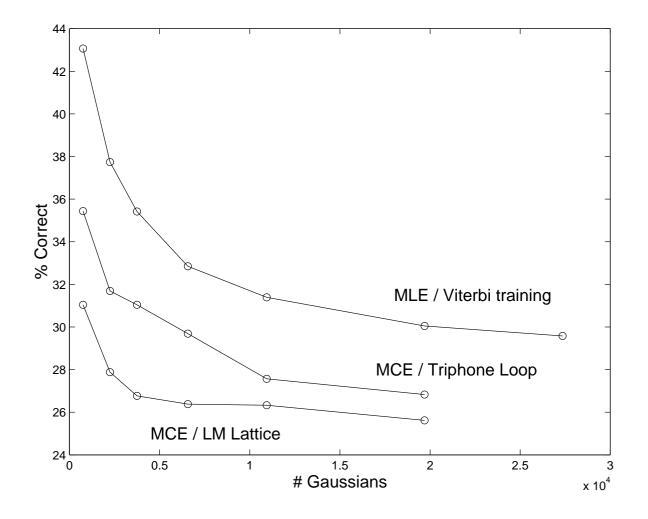
- Define desired output as a set of strings, rather than a single string.
- Regular grammar model, represented as WFST.
- Use for MCE training:
 - Correct string $S_k \rightarrow$ correct string set, \mathcal{K}
 - Decoder finds best string within set \mathcal{K} (with score and segmentation)

Telephone Based Name Recognition

(McDermott et al., ICASSP 2000, 2005)

- Task: telephone-based, speaker independent, open vocabulary name recognition
- Approx. 22,000 family & given names modeled
- Database:
 - > 35,000 training utterances (> 39 hours of audio)
- Evaluated:
 - 1. ML / Viterbi Training vs. MCE training
 - 2. Use of lattice-derived WFSTs to speed up training
 - 3. "Strict" vs. "Flexible" transcription WFSTs

ML vs. MCE performance



- Efficient use of parameters via MCE training
- Huge gains in system compactness

MCE for JUPITER/SUMMIT system

- Few MCE results for large, real-world tasks [McDermott, ICASSP 2000] (but MMI results for SWITCHBOARD [Woodland, 2002]).
- McDermott & Hazen, ICASSP 2004: evaluated application of MCE to MIT's online weather information system, JUPITER, based on SUMMIT recognition system
- Basic finding: for fixed real-time factor of 1.0, small models trained with MCE yielded a 20 % relative reduction in word error on in-vocab test set.

ML vs. MCE experiments on JUPITER

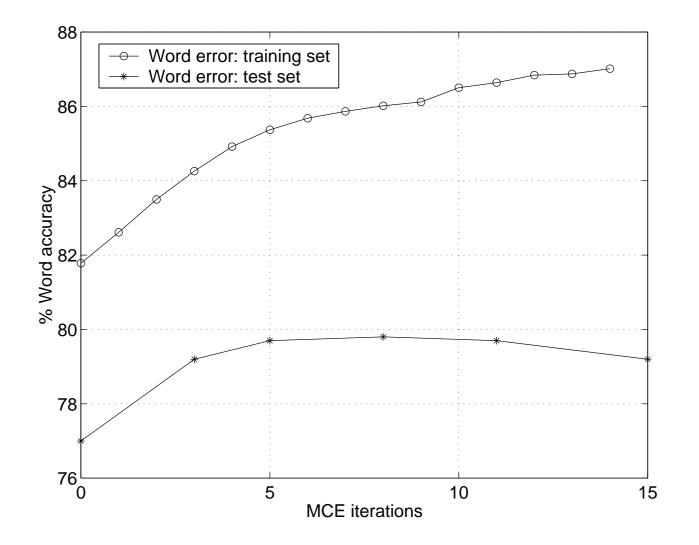


MCE training of large/small models: 41777 gaussian pdfs (MCE-75) vs. 15245 gaussian pdfs (MCE-15); comparison with corresponding ML models.

Corpus of Spontaneous Japanese

- Task: lecture speech transcription (Kawahara, 2003)
 - > 180,000 training utterances (\approx 230 hours of audio)
 - ightarrow ightarrow 84,000,000 training vectors of 39 dimensions.
 - 10 test speeches (\approx 2 hours of audio)
- Le Roux & McDermott, Eurospeech 2005
 - Evaluated different optimization methods (Quickprop, Rprop, BFGS, Probabilistic Descent)
- More Recent work:
 - MCE training with 68K unigram WFST (no lattices)
 - MCE training with 100K trigram WFST
 - Testing using 100K trigram LM
- Relative Word Error Rate reduction \approx 9-12 %

Course of training - 100k words



Optimization via Rprop

Recent CSJ results - 1

- MCE training with 68k unigram
- Testing with 30k word trigram
- Evaluate use of different HMM topologies

# States	# Gssns	ML-v30k	MCE-v30k
2000	16	23.4	22.3
2000	32	22.4	21.0
3000	8	24.1	22.5
3000	16	23.1	20.8
4000	16	22.8	20.8

Recent CSJ results - 2

Same as before, but test with 100k word trigram

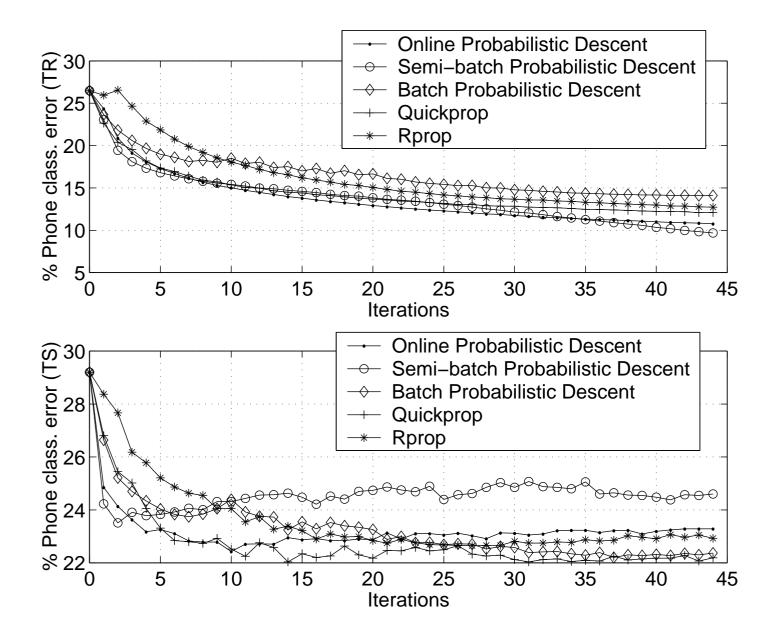
# States	# Gssns	ML-v100k	MCE-v100k
2000	16	23.0	21.1
2000	32	21.7	20.5
3000	8	-	21.1
3000	16	22.4	20.5
4000	16	22.1	20.1

Recent CSJ results - 3

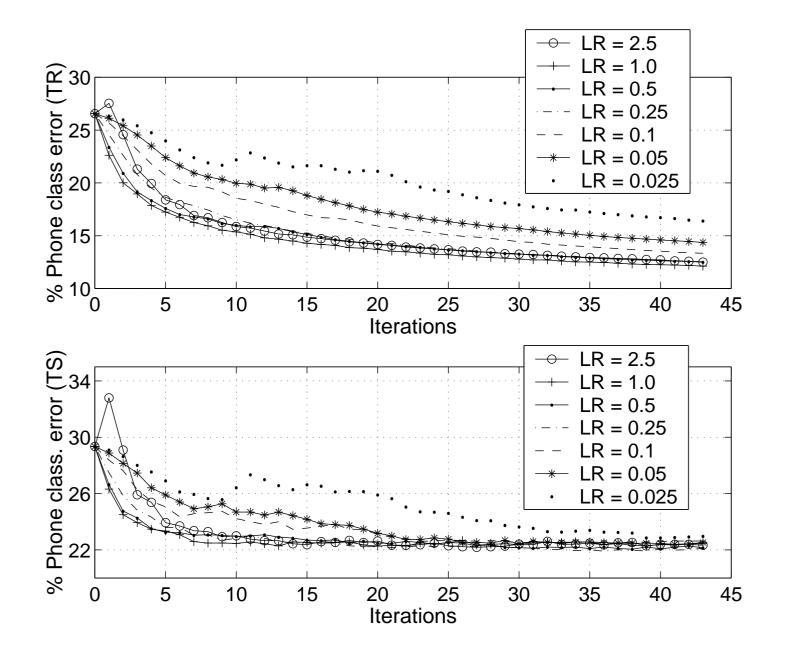
Now train with 100k trigram LM Note: training and testing LMs are now matched

# States	# Gaussians	ML-v100k	MCE-v100k
2000	16	23.0	20.2
3000	16	22.4	20.5
4000	16	22.1	20.0

MCE for TIMIT phone classification



Sensitivity to Quickprop learning rate?



Summary

- MCE incorporates classification performance itself into a differentiable functional form.
 - By directly attacking the problem of interest, parameters are used efficiently.
- Large gains in performance and model compactness on challenging speech recognition tasks.
 - Telephone-based name recognition
 - MIT JUPITER weather information
 - Corpus of Spontaneous Japanese lecture speech transcription