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In recent years, many algorithms have been proposed for discriminative classification of
data. Popular examples are support vector machines (SVMs) [1] and conditional random
fields (CRFs) [2]. These techniques make extensive use of fixed-dimensional mappings
from the observation-space to a (often high-dimensional) feature-space. Unfortunately,
for applications with variable-length sequences of observations – text processing, speech
recognition and computational biology – it is not clear how these mappings should be
defined.

For variable-length sequences, it is usual to estimate class-conditional latent-variable gen-
erative models, such as Gaussian mixture models (GMMs) and hidden Markov models
(HMMs). Bayes’ rule is then used to calculate the posterior probability of the class labels.
This allows missing data and variable-length sequences to be handled in a simple yet ro-
bust manner. However, for many tasks, the independence and conditional-independence
assumptions associated with standard latent-variable models are not correct and may de-
grade classification performance.

In [3], Jaakkola and Haussler proposed the Fisher score-space as a powerful method of
incorporating the benefits of generative models within standard discriminative training al-
gorithms for unsupervised learning. First a base (generative) model, p̂(O; λ), is estimated
from the training examples using maximum likelihood (ML) or maximum mutual infor-
mation (MMI) estimation. Next, the generative process is captured in a fixed-dimensional
feature-vector using the tangent-space of the base model,

φF(O; λ) =
[

∇λln p̂(O; λ)
]

(1)

This is then used as the feature-space for training a classifier on small amounts of labelled
training data.

Later, Smith and Gales [4] presented an extension for supervised binary classification
tasks: generative score-spaces. Instead of a single base model, class-conditional base
models p̂(O; λ(1)) and p̂(O; λ(2)) are used, allowing problems such as wrap-around to
be avoided [4]. To improve discrimination the log-likelihood ratio of the base models is
also included. The resulting score-space is given by1,

φLL(O; λ) =





ln p̂(O; λ(1)) − ln p̂(O; λ(2))
∇λ(1) ln p̂(O; λ(1))

−∇λ(2) ln p̂(O; λ(2))



 (2)

1The Fisher score-space is a special case of (2) where base model parameters are constrained to
be equal.



where λ = {λ(1), λ(2)}. Since both Fisher and generative score-spaces are distance-
based techniques, a score-space metric must be defined. An appropriate, maximally non-
committal metric, is given by the Fisher information matrix [3, 4].

Augmented Models

In the previous section, both Fisher and generative score-spaces were viewed as a method of
mapping variable-length sequences of observations into a fixed-dimensional feature-space
suitable for classification. Alternatively, these features can be used as sufficient statistics,
T (O; λ), for a statistical model. One such model is the augmented statistical model2 [6,7],

p(O; λ, α) =
1

τ(λ, α)
exp

(

αT T (O; λ)
)

(3)

α are augmented parameters and τ(λ, α) is the normalisation term (an expectation over
observation sequences). The sufficient statistics are given by the vector form of base model
derivatives of orders 0 through ρ [6, 8].

T (O; λ) =











ln p̂(O; λ)
∇λ ln p̂(O; λ)

...
1
ρ! vec(∇ρ

λ
ln p̂(O; λ))











(4)

Although it may seem strange to embed a generative model within another statistical model,
this is a perfectly valid operation since the generative model is used only to generate suffi-
cient statistics. Compared to arbitrary statistics (such as o and o2), statistics from genera-
tive models are advantageous since they are tuned to match the distribution of the data, thus
providing a better representation of the underlying source [3]. It is interesting to constrast
the nature of dependencies incorporating in augmented models to those of the base model.
Since no new statistics are introduced (only new functions of the base model statistics), in-
dependence assumptions of the base model are retained. This is not the case, however, for
conditional independence assumptions. In particular, derivatives of latent-variable models
are a function of the posterior probabilities of the latent states. Since these are dependent
on all observations and all latent states, conditional independence is broken.

Unfortunately, with this additional modelling power, augmented models can be difficult to
train since the normalisation term often has no closed-form solution. This typically makes
ML and MMI estimation of augmented parameters infeasible. Instead a two-stage training
algorithm may be used. First, the optimal base model parameters, λ̃, are estimated using
standard ML or MMI training. This fixes the values of the sufficient statistics, yielding the
optimisation,

α̃ = argmax
α

n
∑

i=1

F(yi, T (Oi; λ̃); α) (5)

where F(·) is the objective function. Augmented parameters can then be trained using
one of two discriminative techniques: maximum margin (MM) or conditional maximum
likelihood (CML) estimation. Although neither have closed-form solutions, they are both
convex and so have unique global solutions. The resulting models have half their parame-
ters trained generatively (λ) and half trained discriminatively (α).

Note that it is also possible to optimise the base model parameters using MM and CML [8].
However, this breaks the convexity of the objective function (by allow the statistics to vary)
resulting in a highly complex objective function with many local maxima. Further details
of this process are given in [8].

2Augmented models also have an elegant interpretation in terms of a ρ-th order Taylor series
expansion [5, 6] about distributions of the base model [6, 7].



Maximum Margin Estimation

A common discriminative training criterion when dealing with high-dimensional feature-
spaces is maximum margin (MM) estimation. One popular implementation is the sup-
port vector machine (SVM) [1]. Unfortunately, SVMs are inherently binary classifiers and
so are normally restricted to binary classification tasks. Given two augmented models,
p(O; λ(1), α(1)) and p(O; λ(2), α(2)), the decision boundary that minimises the probabil-
ity of error is given by Bayes’ decision rule,

P (ω1|O)

P (ω2|O)
=

P (ω1)τ(λ(2), α(2))p̄(O; λ(1), α(1))

P (ω2)τ(λ(1), α(1))p̄(O; λ(2), α(2))

ω1
>
<
ω2

1 (6)

where P (ω1) and P (ω2) are class priors and p̄(O; λ(ω), α(ω)) denotes an unnormalised
augmented model. Taking the natural logarithm of both sides and rearranging yields [7],

〈

w, φLL(O; λ)
〉

+ b

ω1
>
<
ω2

0 ; w =





1
α(1)

α(2)



 ; b = ln

[

P (ω1)τ(λ(2), α(2))

P (ω2)τ(λ(1), α(1))

]

(7)

It is clear from equation (7) that this represents a linear hyperplane3 in the generative score-
space φLL(O; λ). Maximum margin estimation of this hyperplane yields a discriminatively
trained decision boundary suitable for classification. In addition, under some minor con-
straints (see [7]), values of α can be extracted from w, yielding an augmented model with
maximum margin estimated augmented parameters α.

Conditional Maximum Likelihood

In the previous section, MM estimation of augmented parameters was discussed for binary
classification tasks. Alternatively, when multiclass classification is required, conditional
augmented (C-Aug) models can be defined. Instead of modelling observation likelihoods,
these directly model the posterior probability of the class labels, ω,

P (ω|O; λ, α)=
1

Z(λ, α)
exp

(

αT T (ω, O; λ)
)

(8)

where λ = {λ(ω)}, α = {α(ω)}, ∀ω ∈ Ω (the set of all class labels), and Z(λ, α) is
the normalisation term4. Sufficient statistics are similar to those for generative augmented
models and are given by, Tω′(ω, O; λ) =

{

δω=ω′T (O; λ)
}

ω∈Ω
.

Although C-Aug models appear similar to the generative augmented models discussed in
(3), they are in reality very different (the normalisation term is calculated as the expectation
over the class labels). In particular, since the number of classes is typically small, Z(λ, α)
can be calculated explicitly making direct training of model parameters possible. One such
(discriminative) training criterion is conditional maximum likelihood (CML). For training
examples Oi with labels yi ∈ Ω, i ∈ {1, . . . , n}, the values of λ and α that maximise the
conditional likelihood of the class labels are given by,

{λ̃, α̃} = argmax
λ,α

n
∑

i=1

ln P (yi|Oi; λ, α) (9)

Although this has no closed-form solution, it is a convex problem with a single global so-
lution. Optimisation is therefore a simple matter of selecting an appropriate algorithm and
waiting for convergence. In this paper, stochastic gradient descent is used. It is impor-
tant to note that although the conditional distribution is always valid, the generative model
associated with it (by Bayes’ rule) may not be.

3Due to the definition of the bias b, there is some interaction between the base statistical model
parameters λ and the augmented parameters α.

4For clarity, the normalisation term is denoted Z(·) instead of τ (·) to emphasise that the expecta-
tion is calculated over the classes instead of over the observation sequences.



Experimental Results
Preliminary results are presented for the TIMIT phone classification task. Base mod-
els (HMMs) with three hidden states and either ten or twenty mixture-components were
trained. C-Aug feature-spaces were then constructed using derivatives of the base models
with respect to the means, variances and component-priors. Neither feature whitening nor
language models were used.

Classifier Criterion Components
λ α 10 20

HMM ML – 29.4 27.3
C-Aug ML CML 25.6 –
HMM MMI – 25.3 24.8
C-Aug MMI CML 24.1 –

Table 1: Classification error (%) on the TIMIT core test set

As shown in Table 1, baseline ML estimated HMMs yield an error rate of 29.4%. Increasing
the number of parameters (by adding components) yields a performance gain of 1.9%.
However, if instead, parameters are added using the augmented model framework (with
ML statistics), improved gains of 3.8% are achieved. Similar results are achieved for MMI
estimation and statistics.

These results demonstrate how the additional flexibilty of augmented models allows them
to outperform standard HMM baselines. However, despite good performance, there is evi-
dence that the CML criterion caused overtraining: the 10-component C-Aug (MMI) model
had a training error of 16.8%. It is therefore expected that performance will improve with
regularisation. Additionally, in these experiments the state segmentation of examples was
fixed by the base model; research is needed to evaluate segment optimisation techniques.

Conclusion
In this paper, augmented models are proposed as a powerful form of statistical model that
combine the benefits of generative and discriminative techniques. In particular, discrimi-
nate models are trained using statistics derived from generative models. A two-stage op-
timisation process allows augmented parameters to be estimated according to a convex
objective function yielding a unique global solution. In preliminary experiments, the re-
sulting half generative (λ), half discriminative (α) C-Aug models outperformed both ML
and MMI trained HMMs.
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