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Abstract

We outline a structured speech model, as a special and perhaps extreme
form of probabilistic generative modeling. The model is equipped with
long-contextual-span capabilities that are missing in the HMM approach.
Compact (and physically meaningful) parameterization of the model is
made possible by the continuity constraint in the hidden vocal tract reso-
nance (VTR) domain. The target-directed VTR dynamics jointly charac-
terize coarticulation and incomplete articulation (reduction). Preliminary
evaluation results are presented on the standard TIMIT phonetic recog-
nition task, showing the best result in this task reported in the literature
without using many heterogeneous classifier combinations. The pros and
cons of our structured generative modeling approach, in comparison with
the structured discriminative classification approach, are discussed.

1 Introduction

Despite significant progress in automatic speech recognition (ASR) technology based on
hidden Markov modeling (HMM), some fundamental and practical limitations in the tech-
nology have hindered its widespread use. Many leading researchers in the field understand
the fragile nature of the current ASR system design, and have advocated new, serious re-
search needed to overcome the basic limitations of the current, HMM-based ASR technol-
ogy (e.g., [1, 8, 3, 4, 10, 12]).

The strengths of the HMM for ASR are well known, so are its weaknesses [11, 9, 10, 5].
Two major research directions are currently being pursued in the ASR research community
to overcome these weaknesses. One of them is the structured classification approach where
global speech feature dependency is embedded in the direct discriminative learning and its
potential success will be heavily dependent on the success of “feature engineering” yet to
be demonstrated. Research along this direction has been summarized in the recent paper
[10]. The other direction, as is the focus in this paper (as well as in other recent publications
such as [1]), overcomes the same weak feature dependency and correlation problem asso-
ciated with the HMM from a different perspective. In our approach, we directly construct
a detailed probabilistic generative model that embeds the underlying structured speech dy-
namics not captured by the HMM. Such hidden dynamics provide long-span contextual
dependency, but due to the powerful constraints in speech production, compact parame-
terization is achieved that successfully eliminates the contextual enumeration/clustering
procedure in the HMM approach.



2 Dynamic Speech Modeling — Literature Overview

As a linguistic and physical abstraction, human speech generation can be functionally rep-
resented at four distinctive but correlated levels of dynamics — phonological level, “task”
level, articulatory level, and acoustic level. Many different types of computational dynamic
models for speech generation in the literature that will be presented in this section will be
organized in view of these functional levels of the dynamics. To make this overview most
relevant to our specific HTM implementation, we will classify the models into two main
categories. In the first category are the models focusing on the lowest, acoustic level of
dynamics (which is also the most peripheral level for human or computer speech percep-
tion). This class of models is often called the stochastic segment models as are well known
through the earlier review paper [9]. The second category consists of what is called the
hidden dynamic model where the task dynamic and articulatory dynamic levels are func-
tionally grouped into a single level. In contrast to the acoustic-dynamic model which repre-
sents coarticulation at the surface, observational level, the hidden dynamic model explores
a deeper, unobserved (hence “hidden”) level of the speech dynamic structure that regulates
coarticulation and phonetic reduction.

A comprehensive review including sub-classifications of the major types of probabilistic
generative models within each of these two categories will be presented.

3 Hidden Trajectory Modeling with Target Filtering and Nonlinear
Cepstral Prediction

As a special type of the hidden dynamic model, the HTM presented in this section is a
structured generative model, from the top level of phonetic specification to the bottom
level of acoustic observations via the intermediate level of (non-recursive) FIR-based tar-
get filtering that generates hidden VTR trajectories. This section is devoted to mathematical
formulation of the HTM as a probabilistic generative model. Four key aspects of mathemat-
ical formulation and model parameterization to be presented are: 1) Generating stochastic
hidden VTR trajectories from the VTR target sequence; 2) Generating acoustic observa-
tion data (cepstra); 3) Linearizing cepstral prediction function; and 4) Computing acoustic
likelihood by marginalizing over VTR uncertainty.

The parametric form of stochastic target filtering is

z(k) = hs(k) ∗ t(k) =
k+D∑

τ=k−D

cγγ
|k−τ |
s(τ) ts(τ), (1)

where hs(k) is the impulse response function of a non-causal FIR filter, and cγ is the
normalization constant that ensures target undershooting for fast speech and avoids tar-
get overshooting. The segmental input target (random) vector values ts(τ) typically takes
not only those associated with the current home segment, but also those associated with
other segments in the speech utterance, with exponentially decaying weights characterized
by segment-dependent vector γs(τ). The latter case happens when the time τ in (1) goes
beyond the home segment’s boundaries; i.e., when the segment s(τ) occupied at time τ
switches from the home segment to adjacent segments.

The parametric form for the observation cepstral data generation is

o(k) = F [z(k)] + µrs(k)
+ vs(k),

where the observation “noise” vs(k) ∼ N (vs;0,Σrs(k)
). The each component of the



vector-valued nonlinear mapping function above is

Fj(k) =
2

j

P∑

p=1

e−πj
bp(k)

fs cos(2πj
fp(k)

fs

), (2)

where fs is the sampling frequency, P is the highest VTR order, and j is the cepstral order.

4 Phonetic Recognition Experiments

We have carried out phonetic recognition experiments to evaluate the HTM. The experi-
ments are based on the standard phonetic recognition task on the core test set of TIMIT
as described in [6]. Overall, the lattice-based HTM system (75.07% accuracy) gives 13%
fewer errors than our HMM system implemented by HTK. (71.43% accuracy). This per-
formance is also better than any other HMM systems in other labs worldwide on the same
task as summarized in [6].

Table 1: TIMIT phonetic recognition performance comparisons between an HMM system
and three versions of the HTM system. HTM-1: N-best rescoring with HTM scores only;
HTM-2: N-best rescoring with weighted HTM, HMM, and LM (Language Model) scores;
HTM-3: Lattice-constrained A* search with weighted HTM, HMM, and LM scores. Iden-
tical acoustic features (frequency-warped LPC cepstra) are used.

Acc % Corr % Sub % Del % Ins %
HMM 71.43 73.64 17.14 9.22 2.21

HTM-1 74.31 77.76 16.23 6.01 3.45
HTM-2 74.59 77.73 15.61 6.65 3.14
HTM-3 75.07 78.28 15.94 5.78 3.20

5 Summary and Discussion

Modeling dynamic structure of speech is a novel paradigm in speech recognition research
within the generative modeling framework, and it offers a potential to overcome limita-
tions of the current hidden Markov modeling approach. Analogous to structured language
model where syntactic structure is exploited to represent long-distance relationships among
words [2], the structured speech model described in this paper makes use of the dynamic
structure in the hidden VTR space to characterize long-span contextual influence among
phonetic units. An general overview is provided on hierarchically classified types of dy-
namic speech models in the literature. A detailed account is then given for a specific model
type, HTM, and we outline model construction and the parameter estimation algorithms in
this extended abstract. In the full paper, we show how the use of resonance target para-
meters and their temporal filtering enables joint modeling of long-span coarticulation and
phonetic reduction effects that the conventional HMM is unable to achieve. Experiments on
phonetic recognition evaluation demonstrate superior recognizer performance over a mod-
ern HMM-based system. Error analysis shows that the greatest performance gain occurs
within the sonorant speech class.

In the recently proposed structured classification approach [10, 7], the deficiency of the
HMM is overcome by direct discriminative learning, replacing the need for a probabilistic
generative model by the assumption that the conditional class distribution is an exponential
one on flexibly selected “features”. Since the conditioning is made on the feature sequence
and the “features” can be designed with long-contextual-span properties, the conditional in-
dependence assumption made in HMM can be conceptually removed — provided that right



“features” can be designed. In contrast, the structured speech modeling approach presented
in this paper generalizes the HMM by embedding long-contextual-span properties directly
into the generative model’s structure. Compared with structured discriminative classifica-
tion approach, our generative modeling technique enables easier incorporation of scientific
principles governing speech coarticulation, speaker/environment variation, phonetic reduc-
tion, and pronunciation variation. Systematic knowledge accumulated spectrogram reading
can also be applied to generative models in a conceptually clean manner, as we have done
in our HTM where target-guided formant/VTR transition forms the basis of the model
structure. Generative models also have added advantages for conceptually straightforward
model/feature/results analysis, for verification/evaluation of assumptions, and for diagnosis
of model implementation. On the other hand, generative models may suffer from the pos-
sibility of focusing on non-essential aspects of the speech process when the sole purpose is
discrimination. Such “redundant” work may be avoided in the discriminative classification
framework. Further, in addition to the difficulty of using non-homogeneous features, the
implementation constraints of complex generative models may force model simplification
that leads to performance degradation. How to combine the advantages of the structured
discriminative classification framework and the structured probabilistic generative model-
ing framework for advancing the current ASR technology is an important future research
direction.
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