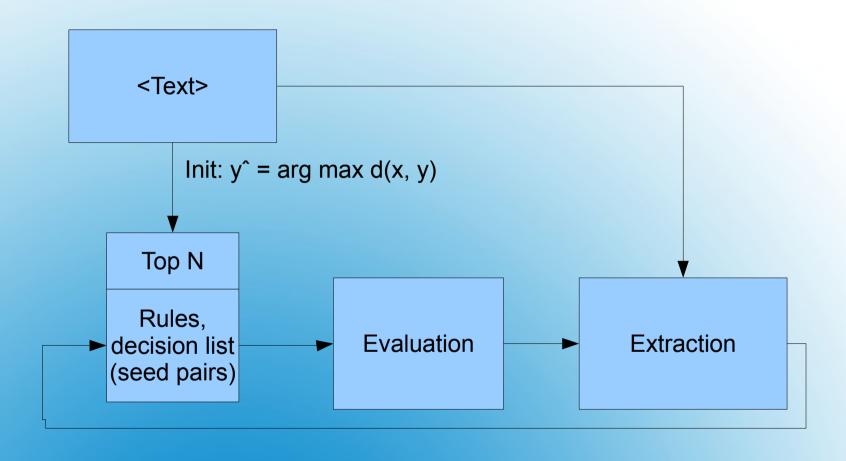
Yuri Osokin

Problem:

Get entity-attribue pairs from the text with lightly human interaction

Solution:

Set of alorithms based on rules extraction and entropy


What for:

Topic specific query search engine optimisation

Lightly-Supervised Attribute Extraction

- Decision List Co-training (next slides)
- Maximum entropy
 - Based on user-provided pairs iterative rule is applied to evaluate the probability of the pair to be good based on features.
- Generic pattern extractors:
 - Learning context specific features from the examples, <attr> of <entity> (height of John),
 <entity> CEO and <attr> (Bill Gates CEO and Chairman)

Methods

Decision List Co-training Classifier

Evaluation:

2 types of features: X1 – context, X2 – context N iterations of self-consistent equations (each of C in [0,1]. In the end maximum of C is choosed as confidence value.

$$C(x_1) = \frac{\sum_{x_2 \in \mathcal{X}_2} \left(\frac{MI(x_1, x_2)}{MI_{\max}} \times C(x_2)\right)}{|\mathcal{X}_2|}$$

$$C(x_2) = \frac{\sum_{x_1 \in \mathcal{X}_1} \left(\frac{MI(x_1, x_2)}{MI_{\max}} \times C(x_1)\right)}{|\mathcal{X}_1|}$$

Extraction:

Top n pairs that match the rules are transformed into rules, and become part of the decision list.

Decision List Co-training Classifier

Complex rules extraction (height precision, not general):

(surrctxt=chairman and && <ATTR> of <COMPANY>)

This is a feature. In experiment we limit the classifier to 3000 features.

Decision List rules (extraction)

- The result is a sorted list of rules (pairs) which could be used to refine sort results
- Post processing stage which is not a part of algorithm is applied. It called re-ranking and will be described futher in slides.

Decision List Results

Final optimisation.

The idea behind this re-ranking is that we should have confidence in an attribute value which is strongly associated with many reliable entities.

$$R(e, a) = c(e, a) \times C(\text{ent} = e) \times C(\text{attr} = a)$$

So the key idea is to make the entity and attribute universal inside the topic.

Re-ranking

Two texts were used: countries and companies.

Relation	Key Seeds	Value Seeds	
(Company, Attribute)	Top 100 Fortune-500 companies	type, headquarters, chairman, ceo, products, revenue, operating income, net income, employees, subsidiaries, website, headquarter	
(Country, Attribute)	191 UN member countries.	capital, largest city, official language, president, area, population, gdp, currency	

Table 2: (Company, Attribute) and (Country, Attribute) seeds used in the experiments.

(a) (c	Company, ${\scriptstyle \it L}$	4ttr)
--------	---------------------------------	-------

System	Precision				
	@10	@20	@50	@100	
$PT_+ + R$	100%	85%	70%	70%	
ME + R	60%	65%	72%	47%	
SE + R	90%	75%	56%	40%	

(b) (Country, Attr)

System	Precision			
	@10	@20	@50	@100
$PT_+ + R$	40%	65%	64%	58%
ME + R	80%	75%	80%	77%
SE + R	80%	90%	88%	82%

Table 3: Non-seed attribute precision at various ranks.

Experimental evaluation