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Motivation

What is sentiment analysis?

@ Sentiment analysis aims to determine the attiutde of a writer
or speaker on some topic.

@ Multi-level sentiment analysis is important.

@ Different needs for different applications.
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Motivation
Different Needs for Different Applications

Product Review Summarization

@ Sentence or phrase level polarity classification.

Question Ansering System

@ Paragraph level sentiment classification

Document Type Analysis
@ Document level sentiment classification
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Example

This is the first Mp3 player that | have used ...
... After only a few weeks, it started

having trouble with the earphone connection ... I won’t
be buying another.

Mp3 player review from Amazon.com

@ Negative review with positive and negative sentences.
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Example

@ Why not make a separat esystem for each level of granularity?

My 11 year old daughter has also been using it and it is a
lot harder than it looks.

@ Positive review with a single negative sentence.
o Fitness Equipment: Hard — Good Workout

@ “Hard” sentiment can only be determined in context.
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Structured Model

Y (d): discrete set of sentiment labels at document level
{pos, neg}

Y (s): discrete set of sentiment labels at sentence level e.g.,
{pos,neu,neg}

@ Input document contains sentences s = si,...,5,

o Must produce sentiment labels for the document, y? € Y (d)

Each sentence is labeled y* = y;,...,y;, where y? € Y (s) V
1<i<n
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Structured Model

@ Deinfe y as the joint labeling of the document and sentences
y=(y9y") = (%, y5)
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Figure: Sentence and document level model.
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Structured Model

@ Structured linear classifiers [Collins(2002)] are used to score
the document

score (y,s) = score ((yd,ys> ,s)
= score ((y",yf,---,yﬁ) ,S)
: d
= Zscore ((y ,y,-s_l,...,y,-s> ,s)
i=2
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Inference as Sequential Labeling

@ Each clique score is a linear combination of features and their
weights.

score ((ydy_yis—lﬁ“"-yis) 75) :Wf (<yd’yl.5_1,...,y,-s> 75)

e f is a high dimensional feature representation fo the clique.
@ w is a corresponding weight vector.

@ s is the input vector of sentences.
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Inference as Sequential Labeling

@ The inference problem is to find the higest scoreing for the
labeling y for an input s

argmax {score(y,s)}
y

o If the label y9 is fixed, then inference in the model from Figure
1 reduces to the sequential case.

@ Search space is only over the sentence labels y?, whose
graphical structure forms a chain.

o Given y9, the sentiment labels for s can be solved using the
Viterbi algorithm
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Inference as Sequential Labeling

Input: s=si,...,5,

1. y=null

2. for each y9 € Y (d)

3 y® = argmaxys score ((y9,y%) ,s)
4.y =@%y)

5. if score (y/,s> > score(y,s) or y = null
6 y=y

7. return 'y

o Line 3 is solved using the Viterbi algorithm for a fixed y?.
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Feature Space

o Feature space for each clique is f ((y?,yf 1,...,yf).s).
o Each sentence s; is represented by a set of binary predicates
P (si).

e Can contain any predicate.
e Here includes all unigram, bigram, and trigrams in s;.
o Obtained using an automatic classifier.

Example predicates in P(s)

a:DT_great:JJ product:NN
a:DT _great:JJ *:NN
a:DT_*:JJ_ product:NN
*:DT _great:JJ product:NN
a:DT_*JJ *NN
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Feature Space

o Each predicate, p, is conjoined with the label information to
contruct a binary feature.

Example Features

e Given Y (s) = {subj,obj} and Y (d) = {pos, neg}

1 ifpeP(si)
and yisfl = Ob./
fi) ((yd,y,-s_l’---,yf) ,S) = and y? = subj
and y? = neg
0 otherwise
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@ Weights w are trained using the MIRA learning algorithm
[Crammer and Singer(2003)].

o Inference based online large-margin learning technique.
o Relies only on inference to learn the weight vector.
e Has been shown to provide state-fo-the-art accuracy.
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Training

Training data: T = {(yt,st)}tT:1
1. w®=0;i=0

2. forn:1..N
3. for t:1..N
4. w1 = arg miny: w*—w(’)H

s.t. score(yy,st) — score (y',s >1L yt,y/> relative

to w*Vy € € C Y, where || = k

5. return w(VxT)

@ Weight w is updated in line 4 through quadratic programming.
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Beyond Two-Level Models

o Longer documents may benefit from document, paragraph,
and sentence level analysis.
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Figure: An extension to the model from Figure 1 incorporates paragraph
level analysis.
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@ Corpus of 600 online product reviews

e Duplicates discarded.
o Insufficent text discarded.
e Spam discarded.

@ Three different typse of products reviewed

o Car seats for children.
e Fitness equipment.
o MP3 players.
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@ Reviews labeled by online customers Y (d) = {pos, neg}

e Every sentence anotated Y (s) = {pos, neu, neg}.

Sentence Stats Document Stats
Pos | Neg [ Neu | Tot || Pos | Neg | Tot
Car 472 443 264 | 1179 || 98 80 | 178
Fit | 568 635 371 | 1574 | 92 97 | 189
MP3 | 485 464 214 | 1163 || 98 89 | 187
Tot | 1525 1542 849 | 3916 || 288 266 | 554
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@ Three baseline systems were created

Document-Classifier is a classifier that learns to predict the
document label only.

Sentence-Classifier is a classifier that leans to predict sentence
labels in isolation of one another, i.e., without
recard for the document or neighbor sentences.

Sentence-Structured is a sentence classifier that uses a
sequential chain model to learn and classify
sentences. It is essentially Figure 1 without the
top level document node.
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Sentence Accuracy Document Accuracy
Car \ Fit \ MP3 | Total | Car \ Fit \ MP3 | Total
Doc - - - - 72.8 80.1 87.2 | 80.3

Sent 548 56.8 494 | 53.1 - - - -
Sent-Str | 60.5 61.4 55.7 | 58.8 - - - -
Jo-Str | 635 65.2 60.1 | 62.6 || 81.5 81.9 85.0 | 82.8

St—Dc | 60.5 614 55.7 | 58.8 || 75.9 80.7 86.1 | 8l.1
Dc—St | 59.7 61.0 583 | 59.5 || 72.8 80.1 87.2 | 80.3




Experiments

Results Results

Summary

@ Investigated the use of a globa structured model that learns to
predict sentiment on different levels of granularity.

@ Experiments show that this model obtains higher accuracy
than classifiers trained in isolation as well as cascaded sytems
that pass information from one level to another at test time.

o Further Work

o Extend models for partially labeled data
o Use of relative positions of phrases and cues, e.g., “in
conclusion” or “to summarize"
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