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Overview



Overview

• Electronic text is being produced at a vast 
and unprecedented scale all over the world

• Most languages are currently beyond the 
reach of NLP due to several factors

• Languages exhibit significant variation in the 
underlying linguistic structures



Overview

• This diversity in structure of languages can 
be harnessed to our advantage

• The authors utilize what is referred to as a 
multilingual learning framework

• This framework is based on the hypothesis 
that cross-lingual variations in linguistic 
structure correspond to variations in 
ambiguity



Variations in Ambiguity

• “I ate pasta with cheese”

• Was pasta eaten with a cheese based utensil?

• Or, was pasta eaten that had cheese on it?

• “What can he do?” - “מה הוא יכול לעשות”



Overview

• One of the goals was scalability in languages

• Unsupervised multilingual learning applied 
to the following tasks: 

• Morphological segmentation

• Part-of-speech tagging

• Parsing



Part-of-Speech Tagging



Part-of-speech Tagging

• Automatically determine the part-of-speech 
(noun, verb, adjective, etc.) of each word in 
the given context of a sentence

• A word with ambiguity in one language may 
correspond to an unambiguous word in 
another language



The Model

• A separate HMM is used for each language

• An additional layer of cross lingual variables 
(superlingual tag) is added

• Standard HMM joint-probability:
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Figure 2. Two stylized examples of superlingual tag values.
Each provides a distribution over parts-of-speech for each
language.

in our terminology a superlingual tag, is present for
each cluster of aligned words across languages. These
superlingual tags exert influence on the part-of-speech
decisions of each word in the associated cluster.

In a standard HMM, we can write the joint probability
of a sequence of words w and part-of-speech tags y as
product of transition and emission probabilities:

P (w,y) =
∏

i

P (yi|yi−1)P (wi|yi)

Under our latent variable model, the probability of
bilingual parallel sentences (w1,w2), bilingual part-
of-speech sequences (y1,y2), and superlingual tags s
is given by:

∏

i

P (si)

∏

j

P
(
y1

j |y1
j−1, sf(j,1)

)
P (w1

j |y1
j )

∏

k

P
(
y2

k|y2
k−1, sf(k,2)

)
P (w2

k|y2
k),

where f(m, n) gives the index of the superlingual tag
associated with word m in language n. Notice that
the part-of-speech tagging decisions of each language
are independent when conditioning on the superlingual
tags s. It is this conditional independence which gives
our model some of its crucial properties. Superlin-
gual variables promote cross-lingual regularities (more
on this below), yet word order, part-of-speech selec-
tion, and even part-of-speech inventory are permitted
to vary arbitrarily across languages. In addition, this
architecture allows our model to scale linearly in the
number of languages: when a language is added to
the mix we simply add new directed edges from the
existing set of superlingual tags for each sentence.

Intuitively, the value of a superlingual tag represents
a particular multilingual context that influences each
language’s part-of-speech selection. Formally, each su-
perlingual value provides a set of multinomial proba-
bility distributions — one for each language’s part-of-
speech inventory. See Figure 2 for two stylized exam-
ples. The first shows a superlingual value which pre-
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Figure 3. Average part-of-speech prediction accuracy as
the number of languages varies (averaged over all subsets
of languages for each size).

dominantly favors nouns across languages, while dis-
playing a slight secondary preference for other parts-
of-speech. The second example shows a more complex
pattern of part-of-speech preferences, with nouns and
verbs almost equally preferred across languages.

Give a superlingual tag s and a previous part-of-speech
yi−1, we define the generative probability of part-of-
speech tag yi as:

P (yi|yi−1, s) =
P (yi|yi−1) · P (yi|s)

Z
,

where the first factor is the language-specific transition
distribution, the second factor is the part-of-speech
distribution provided by the superlingual tag s, and
Z is a normalization constant obtained by summing
over all possible part-of-speech tags. This parameteri-
zation allows a trade-off between language-specific and
cross-lingual cues while avoiding the sparsity of a non-
factored distribution.

In order to learn repeated cross-lingual patterns, the
number of superlingual values must be constrained in
some way. Intuitively, we would like to set the number
of values to the number of multilingual part-of-speech
patterns. However, the number of such patterns is not
known a priori and may, in fact, depend on the num-
ber and properties of the languages under question.
Rather than fixing the number of superlingual val-
ues to some arbitrary number, we leave it unbounded.
To encourage sparse cross-lingual regularities we use
a Dirichlet process prior (Ferguson, 1973). Under this
non-parametric prior, the distribution over superlin-
gual values must be highly skewed, such that a small
finite subset receives a lion’s share of the probability
mass. The precise number of realized superlingual val-
ues will be dictated by the data. In practice we find



The Model

• Latent (hidden) variable model: the 
probability of bilingual parallel sentences 
(w1, w2), bilingual part-of-speech sequences 
(y1, y2) and superlingual tags s is given by:
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in our terminology a superlingual tag, is present for
each cluster of aligned words across languages. These
superlingual tags exert influence on the part-of-speech
decisions of each word in the associated cluster.

In a standard HMM, we can write the joint probability
of a sequence of words w and part-of-speech tags y as
product of transition and emission probabilities:

P (w,y) =
∏

i

P (yi|yi−1)P (wi|yi)

Under our latent variable model, the probability of
bilingual parallel sentences (w1,w2), bilingual part-
of-speech sequences (y1,y2), and superlingual tags s
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where f(m, n) gives the index of the superlingual tag
associated with word m in language n. Notice that
the part-of-speech tagging decisions of each language
are independent when conditioning on the superlingual
tags s. It is this conditional independence which gives
our model some of its crucial properties. Superlin-
gual variables promote cross-lingual regularities (more
on this below), yet word order, part-of-speech selec-
tion, and even part-of-speech inventory are permitted
to vary arbitrarily across languages. In addition, this
architecture allows our model to scale linearly in the
number of languages: when a language is added to
the mix we simply add new directed edges from the
existing set of superlingual tags for each sentence.

Intuitively, the value of a superlingual tag represents
a particular multilingual context that influences each
language’s part-of-speech selection. Formally, each su-
perlingual value provides a set of multinomial proba-
bility distributions — one for each language’s part-of-
speech inventory. See Figure 2 for two stylized exam-
ples. The first shows a superlingual value which pre-
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Figure 3. Average part-of-speech prediction accuracy as
the number of languages varies (averaged over all subsets
of languages for each size).

dominantly favors nouns across languages, while dis-
playing a slight secondary preference for other parts-
of-speech. The second example shows a more complex
pattern of part-of-speech preferences, with nouns and
verbs almost equally preferred across languages.

Give a superlingual tag s and a previous part-of-speech
yi−1, we define the generative probability of part-of-
speech tag yi as:

P (yi|yi−1, s) =
P (yi|yi−1) · P (yi|s)

Z
,

where the first factor is the language-specific transition
distribution, the second factor is the part-of-speech
distribution provided by the superlingual tag s, and
Z is a normalization constant obtained by summing
over all possible part-of-speech tags. This parameteri-
zation allows a trade-off between language-specific and
cross-lingual cues while avoiding the sparsity of a non-
factored distribution.

In order to learn repeated cross-lingual patterns, the
number of superlingual values must be constrained in
some way. Intuitively, we would like to set the number
of values to the number of multilingual part-of-speech
patterns. However, the number of such patterns is not
known a priori and may, in fact, depend on the num-
ber and properties of the languages under question.
Rather than fixing the number of superlingual val-
ues to some arbitrary number, we leave it unbounded.
To encourage sparse cross-lingual regularities we use
a Dirichlet process prior (Ferguson, 1973). Under this
non-parametric prior, the distribution over superlin-
gual values must be highly skewed, such that a small
finite subset receives a lion’s share of the probability
mass. The precise number of realized superlingual val-
ues will be dictated by the data. In practice we find



The ModelClimbing the Tower of Babel

ations in ambiguity as a form of naturally occurring
supervision: by jointly modeling multiple languages,
the idiosyncratic ambiguities of each can be wiped out
by information explicit in the others.

The multilingual formulation presents great promise,
but also poses novel technical challenges. One such
challenge is the discovery of shared cross-lingual struc-
ture while allowing significant language-specific id-
iosyncrasies. To allow an effective balance, our models
explain parallel sentences as a combination of multi-
lingual and language specific latent variables in a hi-
erarchical Bayesian framework. Even so, the scope of
the shared explanatory mechanism is often unknown:
some sets of languages exhibit a much larger degree
of shared structure than other. For example, parallel
phrases in related language pairs like Hebrew and Ara-
bic tend to mirror each other in morphological struc-
ture much more than unrelated language pairs (such as
English and Hebrew). To account for this variability in
shared structure, we employ non-parametric statistical
methods which allow for a flexible number of shared
variables, as dictated by the languages and data at
hand.

Finally, we set scalability in the number of languages
as one of our design goals. Massively multilingual
data-sets exist (e.g. the Bible, which has been trans-
lated into over 1,000 languages) and an ideal multilin-
gual learning technique would scale gracefully in the
number of languages. For the task of part-of-speech
tagging, we developed a model and learning algorithm
that scale linearly in the number of languages in terms
of both time and space complexity.

We have applied unsupervised multilingual learning to
the fundamental NLP tasks of morphological segmen-
tation (Snyder & Barzilay, 2008a;b), part-of-speech
tagging (Snyder et al., 2008; 2009b; Naseem et al.,
2009), and parsing (Snyder et al., 2009a). We have
focused on the use of parallel corpora (texts that have
been written in one language and translated into other
languages). We treat each parallel corpus as a com-
putational Rosetta Stone which can help expose the
latent structure of each language present. We assume
the existence of such a corpus at training time with
no human annotations. We do however, assume that
reasonably accurate sentence- and word-level align-
ments have been induced using standard NLP tools
(Och & Ney, 2003). At test time, we apply our mod-
els to monolingual data in each language. For all
three tasks, multilingual learners consistently outper-
form their monolingual counterparts by a large mar-
gin. Remarkably, in the case of part-of-speech tagging,
we found that model accuracy continues to increase as

I love fish J’ adore les poisson

ani ohev dagim Mujhe machchli pasand hai

I

s2 s3s1

Figure 1. Part-of-speech graphical model structure for ex-
ample sentence. In this instance, we have three superlin-
gual tags: one for the cluster of words corresponding to
English “I”, one for the cluster of words corresponding to
English “love”, and one for the cluster of words correspond-
ing to English “fish.”

more languages are added to the mix. We believe these
results point towards a future of ubiquitous and accu-
rate text processing tools for hundreds of the world’s
languages which lack annotated resources.

In the sections that follow we sketch the multilingual
models that we have developed for three classical NLP
tasks: Part-of-speech tagging (Section 2), morphologi-
cal segmentation (Section 3), and parsing (Section 4).
In section 5 we describe a model for the decipherment
of lost languages.

2. Part-of-speech Tagging

The goal of part-of-speech tagging is to automatically
determine the part-of-speech (noun, verb, adjective,
etc) of each word in the context of a given sentence.
For example, the word “can” in English may func-
tion as an auxiliary verb, a noun, or a regular verb.
However, many other languages express these differ-
ent senses with three distinct lexemes. Thus, at the
lexical level, a word with part-of-speech ambiguity in
one language may correspond to an unambiguous word
in the other language. Languages also differ in their
patterns of structural part-of-speech ambiguity. For
example, the presence of a definite article (e.g. the) in
English greatly reduces the ambiguity of the succeed-
ing tag. In languages without definite articles, how-
ever, this explicit structural information is absent.

We first describe the structure of our model. We posit
a separate Hidden Markov Model (HMM) (Merialdo,
1994) for each language, with an additional layer of la-
tent cross-lingual variables. See Figure 1 for a graph-
ical model depiction. A single cross-lingual variable,
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Figure 2. Two stylized examples of superlingual tag values.
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language.

in our terminology a superlingual tag, is present for
each cluster of aligned words across languages. These
superlingual tags exert influence on the part-of-speech
decisions of each word in the associated cluster.

In a standard HMM, we can write the joint probability
of a sequence of words w and part-of-speech tags y as
product of transition and emission probabilities:

P (w,y) =
∏

i

P (yi|yi−1)P (wi|yi)

Under our latent variable model, the probability of
bilingual parallel sentences (w1,w2), bilingual part-
of-speech sequences (y1,y2), and superlingual tags s
is given by:

∏

i

P (si)

∏

j

P
(
y1

j |y1
j−1, sf(j,1)

)
P (w1

j |y1
j )

∏

k

P
(
y2

k|y2
k−1, sf(k,2)

)
P (w2

k|y2
k),

where f(m, n) gives the index of the superlingual tag
associated with word m in language n. Notice that
the part-of-speech tagging decisions of each language
are independent when conditioning on the superlingual
tags s. It is this conditional independence which gives
our model some of its crucial properties. Superlin-
gual variables promote cross-lingual regularities (more
on this below), yet word order, part-of-speech selec-
tion, and even part-of-speech inventory are permitted
to vary arbitrarily across languages. In addition, this
architecture allows our model to scale linearly in the
number of languages: when a language is added to
the mix we simply add new directed edges from the
existing set of superlingual tags for each sentence.

Intuitively, the value of a superlingual tag represents
a particular multilingual context that influences each
language’s part-of-speech selection. Formally, each su-
perlingual value provides a set of multinomial proba-
bility distributions — one for each language’s part-of-
speech inventory. See Figure 2 for two stylized exam-
ples. The first shows a superlingual value which pre-
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Figure 3. Average part-of-speech prediction accuracy as
the number of languages varies (averaged over all subsets
of languages for each size).

dominantly favors nouns across languages, while dis-
playing a slight secondary preference for other parts-
of-speech. The second example shows a more complex
pattern of part-of-speech preferences, with nouns and
verbs almost equally preferred across languages.

Give a superlingual tag s and a previous part-of-speech
yi−1, we define the generative probability of part-of-
speech tag yi as:

P (yi|yi−1, s) =
P (yi|yi−1) · P (yi|s)

Z
,

where the first factor is the language-specific transition
distribution, the second factor is the part-of-speech
distribution provided by the superlingual tag s, and
Z is a normalization constant obtained by summing
over all possible part-of-speech tags. This parameteri-
zation allows a trade-off between language-specific and
cross-lingual cues while avoiding the sparsity of a non-
factored distribution.

In order to learn repeated cross-lingual patterns, the
number of superlingual values must be constrained in
some way. Intuitively, we would like to set the number
of values to the number of multilingual part-of-speech
patterns. However, the number of such patterns is not
known a priori and may, in fact, depend on the num-
ber and properties of the languages under question.
Rather than fixing the number of superlingual val-
ues to some arbitrary number, we leave it unbounded.
To encourage sparse cross-lingual regularities we use
a Dirichlet process prior (Ferguson, 1973). Under this
non-parametric prior, the distribution over superlin-
gual values must be highly skewed, such that a small
finite subset receives a lion’s share of the probability
mass. The precise number of realized superlingual val-
ues will be dictated by the data. In practice we find
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• Formally, each superlingual value provides a 
set of multinomial probability distributions, 
one for each language’s part-of-speech 
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in our terminology a superlingual tag, is present for
each cluster of aligned words across languages. These
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In a standard HMM, we can write the joint probability
of a sequence of words w and part-of-speech tags y as
product of transition and emission probabilities:

P (w,y) =
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where f(m, n) gives the index of the superlingual tag
associated with word m in language n. Notice that
the part-of-speech tagging decisions of each language
are independent when conditioning on the superlingual
tags s. It is this conditional independence which gives
our model some of its crucial properties. Superlin-
gual variables promote cross-lingual regularities (more
on this below), yet word order, part-of-speech selec-
tion, and even part-of-speech inventory are permitted
to vary arbitrarily across languages. In addition, this
architecture allows our model to scale linearly in the
number of languages: when a language is added to
the mix we simply add new directed edges from the
existing set of superlingual tags for each sentence.

Intuitively, the value of a superlingual tag represents
a particular multilingual context that influences each
language’s part-of-speech selection. Formally, each su-
perlingual value provides a set of multinomial proba-
bility distributions — one for each language’s part-of-
speech inventory. See Figure 2 for two stylized exam-
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dominantly favors nouns across languages, while dis-
playing a slight secondary preference for other parts-
of-speech. The second example shows a more complex
pattern of part-of-speech preferences, with nouns and
verbs almost equally preferred across languages.

Give a superlingual tag s and a previous part-of-speech
yi−1, we define the generative probability of part-of-
speech tag yi as:

P (yi|yi−1, s) =
P (yi|yi−1) · P (yi|s)

Z
,

where the first factor is the language-specific transition
distribution, the second factor is the part-of-speech
distribution provided by the superlingual tag s, and
Z is a normalization constant obtained by summing
over all possible part-of-speech tags. This parameteri-
zation allows a trade-off between language-specific and
cross-lingual cues while avoiding the sparsity of a non-
factored distribution.

In order to learn repeated cross-lingual patterns, the
number of superlingual values must be constrained in
some way. Intuitively, we would like to set the number
of values to the number of multilingual part-of-speech
patterns. However, the number of such patterns is not
known a priori and may, in fact, depend on the num-
ber and properties of the languages under question.
Rather than fixing the number of superlingual val-
ues to some arbitrary number, we leave it unbounded.
To encourage sparse cross-lingual regularities we use
a Dirichlet process prior (Ferguson, 1973). Under this
non-parametric prior, the distribution over superlin-
gual values must be highly skewed, such that a small
finite subset receives a lion’s share of the probability
mass. The precise number of realized superlingual val-
ues will be dictated by the data. In practice we find



Superlingual Tags

• The number of superlingual values is left 
unbounded

• To encourage sparse cross-lingual 
regularities a Dirichlet process prior is used

• The actual number of superlingual values is 
dictated by the data (11 for a pair of 
languages, 17 for eight languages)



Evaluation

• The model is evaluated on a parallel corpus 
of eight languages

• Inference performed using Markov Chain 
Monte Carlo sampling

• Test is performed on held out monolingual 
data for each language



Evaluation

• The algorithm was run over all of the 255 
subsets of the eight languages in the corpus

• The average change in performance as the 
number of languages increases was 
examined

• In the monolingual scenario, the model 
reduces to a Bayesian HMM (Goldwater & 
Griffiths, 2007)



Results

• With complete part-of-speech dictionary:

• 91.1% average accuracy (monolingual)

• 95% accuracy (multilingual)

• With partial part-of-speech dictionary:

• 74.8% accuracy (monolingual)

• 82.8% accuracy (multilingual)



Tag Accuracy
Climbing the Tower of Babel

Superlingual value “2” 

Noun Verb Determiner

English

French

Hindi

0.9 0.1 0.0

0.8 0.1 0.1

1.0 0.0 0.0

Noun Verb Determiner

English

French

Hindi

0.5 0.4 0.1

0.4 0.6 0.0

0.5 0.5 0.0

Superlingual value “5” 

Figure 2. Two stylized examples of superlingual tag values.
Each provides a distribution over parts-of-speech for each
language.

in our terminology a superlingual tag, is present for
each cluster of aligned words across languages. These
superlingual tags exert influence on the part-of-speech
decisions of each word in the associated cluster.

In a standard HMM, we can write the joint probability
of a sequence of words w and part-of-speech tags y as
product of transition and emission probabilities:

P (w,y) =
∏

i

P (yi|yi−1)P (wi|yi)

Under our latent variable model, the probability of
bilingual parallel sentences (w1,w2), bilingual part-
of-speech sequences (y1,y2), and superlingual tags s
is given by:

∏

i

P (si)

∏

j

P
(
y1

j |y1
j−1, sf(j,1)

)
P (w1

j |y1
j )

∏

k

P
(
y2

k|y2
k−1, sf(k,2)

)
P (w2

k|y2
k),

where f(m, n) gives the index of the superlingual tag
associated with word m in language n. Notice that
the part-of-speech tagging decisions of each language
are independent when conditioning on the superlingual
tags s. It is this conditional independence which gives
our model some of its crucial properties. Superlin-
gual variables promote cross-lingual regularities (more
on this below), yet word order, part-of-speech selec-
tion, and even part-of-speech inventory are permitted
to vary arbitrarily across languages. In addition, this
architecture allows our model to scale linearly in the
number of languages: when a language is added to
the mix we simply add new directed edges from the
existing set of superlingual tags for each sentence.

Intuitively, the value of a superlingual tag represents
a particular multilingual context that influences each
language’s part-of-speech selection. Formally, each su-
perlingual value provides a set of multinomial proba-
bility distributions — one for each language’s part-of-
speech inventory. See Figure 2 for two stylized exam-
ples. The first shows a superlingual value which pre-
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Figure 3. Average part-of-speech prediction accuracy as
the number of languages varies (averaged over all subsets
of languages for each size).

dominantly favors nouns across languages, while dis-
playing a slight secondary preference for other parts-
of-speech. The second example shows a more complex
pattern of part-of-speech preferences, with nouns and
verbs almost equally preferred across languages.

Give a superlingual tag s and a previous part-of-speech
yi−1, we define the generative probability of part-of-
speech tag yi as:

P (yi|yi−1, s) =
P (yi|yi−1) · P (yi|s)

Z
,

where the first factor is the language-specific transition
distribution, the second factor is the part-of-speech
distribution provided by the superlingual tag s, and
Z is a normalization constant obtained by summing
over all possible part-of-speech tags. This parameteri-
zation allows a trade-off between language-specific and
cross-lingual cues while avoiding the sparsity of a non-
factored distribution.

In order to learn repeated cross-lingual patterns, the
number of superlingual values must be constrained in
some way. Intuitively, we would like to set the number
of values to the number of multilingual part-of-speech
patterns. However, the number of such patterns is not
known a priori and may, in fact, depend on the num-
ber and properties of the languages under question.
Rather than fixing the number of superlingual val-
ues to some arbitrary number, we leave it unbounded.
To encourage sparse cross-lingual regularities we use
a Dirichlet process prior (Ferguson, 1973). Under this
non-parametric prior, the distribution over superlin-
gual values must be highly skewed, such that a small
finite subset receives a lion’s share of the probability
mass. The precise number of realized superlingual val-
ues will be dictated by the data. In practice we find



Lost Language 
Decipherment



Ugaritic

List of Ugaritic gods 13th Century BC



Lost Languages

• Previous work relies on the availability of 
parallel texts

• No parallel texts are available with lost 
languages

• Instead, this method relies on knowledge of 
similar languages



The Method

• The input consists of texts in a lost 
language, and corpus of non-parallel data in 
a known related language

• Common manual methods involve studying 
word and letter frequency 

• Morphological analysis plays a key part in 
the process, frequent suffix/prefix 
occurances can be particularly helpful



The Method

• These intuitions are captured as a 
generative Bayesian model

• The model caries out implicit 
morphological analysis of the lost language 
utilizing the known morphological structure 
of the related language



Decipherment Model
Climbing the Tower of Babel

G0

GstemGprefix

stem

Gsuffix

stem

word

ustem

hstem hsuffix

uprefix

hprefix

usuffix

Figure 7. Plate diagram of the decipherment model. The
base distribution G0 defines probabilities over string-pairs
based solely on character-level correspondences. The
morpheme-pair distributions Gstem, Gprefix, Gsuffix di-
rectly assign probabilities to highly frequent morpheme
pairs. Each stem pair provides a separate distribution over
prefix and suffix pairs.

relative to a theoretical upper bound.

5. Lost Language Decipherment

The models discussed in the previous three sections
all assumed the existence of multilingual parallel text.
For traditional NLP tasks this is a reasonable assump-
tion, as parallel texts are readily available for many of
the world’s languages. In contrast, our present work
focuses on the decipherment of lost languages, where
parallel texts are not available.

Several lost languages have been manually deciphered
by humans in the last two centuries. In each case,
the decipherment has been considered a major intel-
lectual breakthrough, often the culmination of decades
of scholarly efforts. So far, computers have played lit-
tle role in this enterprise, even for recently deciphered
languages. Skeptics argue that computers do not have
the “logic and intuition” required to unravel the mys-
teries of ancient scripts.2 We aim to demonstrate that
at least some of this logic and intuition can be suc-
cessfully captured by computational models.

Our definition of the computational decipherment task
closely follows the setup typically faced by human de-
cipherers (Robinson, 2002). Our input consists of texts
in a lost language and a corpus of non-parallel data in
a known related language. The decipherment itself in-
volves two related sub-tasks: (i) finding the mapping
between alphabets of the known and lost languages,

2“Successful archaeological decipherment has turned out
to require a synthesis of logic and intuition . . . that comput-
ers do not (and presumably cannot) possess.” A. Robin-
son, “Lost Languages: The Enigma of the World’s Unde-
ciphered Scripts” (2002)

and (ii) translating words in the lost language into
corresponding cognates of the known language.

While there is no single formula that human decipher-
ers have employed, manual efforts have focused on sev-
eral guiding principles. A common starting point is
to compare letter and word frequencies between the
lost and known languages. In the presence of cog-
nates the correct mapping between the languages will
reveal similarities in frequency, both at the character
and lexical level. In addition, morphological analy-
sis plays a crucial role here, as highly frequent prefix
and suffix correspondences can be particularly reveal-
ing. In fact, these three strands of analysis (charac-
ter frequency, morphology, and lexical frequency) are
intertwined throughout the human decipherment pro-
cess. Partial knowledge of each drives discovery in the
others.

We capture these intuitions in a generative Bayesian
model. This model assumes that each word in the lost
language is composed of morphemes which were gener-
ated with latent counterparts in the known language.
We model bilingual morpheme pairs as arising through
a series of Dirichlet processes. This allows us to as-
sign probabilities based both on character-level corre-
spondences (using a character-edit base distribution)
as well as higher-level morpheme correspondences. In
addition, our model carries out an implicit morpholog-
ical analysis of the lost language, utilizing the known
morphological structure of the related language. This
model structure allows us to capture the interplay be-
tween the character- and morpheme-level correspon-
dences that humans have used in the manual decipher-
ment process. See figure 7 for a graphical overview of
the model.

We have applied our decipherment model to a corpus
of Ugaritic, an ancient Semitic language discovered in
1928 and manually deciphered four years later, using
knowledge of Hebrew, a related language. As input to
our model, we use the corpus of Ugaritic texts (con-
sisting of 7,386 unique word forms) along with a He-
brew lexicon extracted from the Hebrew Bible. Our
model yield an almost perfect decipherment of the
Ugaritic alphabetic symbols. In addition, over half
of the Ugaritic word forms with Hebrew cognates are
correctly deciphered into their Hebrew counterparts.

6. Conclusions and Future Work

In Sections 2, 3, and 4, we described our application of
multilingual learning to three traditional NLP tasks.
In all cases, we assumed unannotated parallel text
at training time and applied the resulting models to



Results
• Decipherment model applied to a corpus of 

Ugaritic text with 7,386 unique word forms

• A Hebrew lexicon is also used, which was 
extracted from the Hebrew Tanakh

• The model yields almost perfect 
decipherment of the alphabetic symbols

• Over half of the Ugaritic word forms with 
cognates in Hebrew were correctly 
identified



Hebrew - Ugaritic



Conclusion



Conclusion

• Authors applied multilingual learning to 
traditional NLP tasks, with unannotated 
parallel texts

• Multilingual language models performed 
better than their monolingual counterparts

• This is a realistic scenario for many of the 
world’s languages



Questions?


