
Online Passive-Aggressive Algorithms

Koby Crammer Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{kobics,oferd,shais,singer}@cs.huji.ac.il

Abstract
We present a unified view for online classification, regression, and uniclass prob-
lems. This view leads to a single algorithmic framework for the three problems.
We prove worst case loss bounds for various algorithms for both the realizable
case and the non-realizable case. The end result is new algorithms and accom-
panying loss bounds for hinge-loss regression and uniclass. We also get refined
loss bounds for previously studied classification algorithms.

1 Introduction

In this paper we describe and analyze several learning tasks through the same algorithmic
prism. Specifically, we discuss online classification, online regression, and online uniclass
prediction. In all three settings we receive instances in a sequential manner. For concrete-
ness we assume that these instances are vectors in

� n and denote the instance received on
round t by xt. In the classification problem our goal is to find a mapping from the instance
space into the set of labels, {−1, +1}. In the regression problem the mapping is into the re-
als. Our goal in the uniclass problem is to find a center-point in

� n with a small Euclidean
distance to all of the instances.

For clarity, we first describe the classification and regression problems. For classification
and regression we restrict ourselves to mappings based on a weight vector w ∈ � n. The
mapping takes the form f :

� n → �
where f(x) = w · x. After receiving xt we extend

a prediction ŷt using f . For regression the prediction is simply ŷt = f(xt) while for
classification ŷt = sign(f(xt)). After extending the prediction ŷt, we receive the true
outcome yt where yt ∈

�
for regression and yt ∈ {−1, +1} for classification. We then

suffer an instantaneous loss based on the discrepancy between yt and f(xt). The goal
of the online learning algorithm is to make the cumulative loss that we suffer small. The
losses we discuss in this paper depend on a pre-defined insensitivity parameter ε and are
denoted `ε(w; (x, y)). For regression the ε-insensitive loss is,

`ε(w; (x, y)) =

{

0 |y −w · x| ≤ ε
|y −w · x| − ε otherwise , (1)

while for classification the ε-insensitive loss is defined to be,

`ε(w; (x, y)) =

{

0 y(w · x) ≥ ε
ε− y(w · x) otherwise . (2)

As in other online algorithms we update the weight vector w after receiving the feedback
yt. Therefore, we denote by wt the vector used for prediction on round t. We leave the
details on the form this update takes to later sections.

Problem Example (zt) Discrepancy (δ) Update Direction (vt)

Classification (xt, yt) ∈
� n× {-1,+1} −yt(wt · xt) ytxt

Regression (xt, yt) ∈
� n × � |yt −wt · xt| sign(yt −wt · xt) xt

Uniclass (xt, yt) ∈
� n × {1} ‖xt −wt‖ xt−wt

‖xt−wt‖

Table 1: Summary of the settings and parameters employed by the additive PA algorithm
for classification, regression, and uniclass.

The setting for uniclass is slightly different as we only observe a sequence of instances xt’s.
The goal of the uniclass algorithm is to find a center-point w such that all points xt fall
within a radius of ε from w. Since we employ the framework of online learning the vector
w is constructed incrementally. The vector wt therefore plays the role of the instantaneous
center and is adapted after observing each instance xt. If an example xt falls within an
Euclidean distance ε from wt then we suffer no loss. Otherwise, the loss is the distance to
a ball of radius ε centered at wt. Formally, the uniclass loss is,

`ε(wt;xt) =

{

0 ‖xt −wt‖ ≤ ε
‖xt −wt‖ − ε otherwise . (3)

In the next sections we give additive and multiplicative online algorithms for the above
learning problems and prove respective online loss bounds. A common thread of our ap-
proach is a unified view of all three tasks which leads to a single algorithmic framework
with a common analysis.

Related work: Our work builds on numerous techniques from online learning. Due to the
lack of space we mention here only a handful of related papers. The updates we derive are
based on an optimization problem directly related to the one employed by Support Vector
Machines [11]. Li and Long [10] were among the first to suggest the idea of converting
a batch optimization problem into an online task. Our work borrows ideas from the work
of Warmuth and colleagues [8]. In particular, Gentile and Warmuth [4] generalized and
adapted techniques from [8] to the hinge loss which is closely related to the losses defined
in Eqs. (1)-(3). Kivinen et al. [7] discussed a general framework for gradient-based online
learning where some of their bounds bare similarities to the bounds presented in this paper.
Our work also generalizes and greatly improves online loss bounds for classification given
in [2]. Finally, we would like to note that similar algorithms have been devised in the
convex optimization community (see [1]). The main difference between these algorithms
and the online algorithms presented in this paper lies in the analysis: while we derive worst
case, finite horizon, loss bounds, the optimization community is mostly concerned with
asymptotic convergence properties.

2 A Unified Loss

The three problems described in the previous section share common algebraic properties
which we explore in this section. The end result is a common algorithmic framework that is
applicable to all three problems and an accompanying analysis (Sec. 3). Let zt = (xt, yt)
denote the instance-target pair received on round t where in the case of uniclass we set
yt = 1 as a placeholder. For a given example zt, let δ(w; zt) denote the discrepancy of
w on zt: for classification we set the discrepancy to be −yt(wt · xt) (the negative of the
margin), for regression it is |yt −wt · xt|, and for uniclass ‖xt −wt‖. Fixing zt we also
view δ(w; zt) as a convex function of w. Let [a]+ denote the step function, that is, [a]+ = a

whenever a > 0 and otherwise it equals zero. Using the discrepancies defined above the
three different losses given in Eqs. (1)-(3) can all be written as `ε(w; z) = [δ(w; z) − ε]+,
where for classification we set ε ← −ε since the discrepancy is defined as the negative of
the margin. While this construction might seem a bit odd for classification, it is very useful
in unifying the three problems. To conclude, the loss in all three problems can be derived
by applying the same hinge loss to different (problem dependent) discrepancies.

3 An Additive Algorithm for the Realizable Case

Equipped with the simple unified notion of loss we describe in this section a single on-
line algorithm that is applicable to all three problems. The algorithm and the analysis we
present in this section assume that there exist a weight vector w

? and an insensitivity pa-
rameter ε? for which the data is perfectly realizable. Namely, we assume that for all t
`ε?(w?; (xt, yt)) = 0 which implies that,

yt(w
? ·xt) ≥ |ε?| (Class.) |yt−w

? ·xt| ≤ ε? (Reg.) ‖xt−w
?‖ ≤ ε? (Unic.) . (4)

A modification of the algorithm for the unrealizable case is given in Sec. 5.

The general method we use for deriving our on-line update rule is to define the new weight
vector wt+1 as the solution to the following projection problem

wt+1 = argmin
w

1

2
‖w−wt‖2 s.t. `ε(w; zt) = 0 , (5)

where ε is an insensitivity parameter. The solution to the above optimization problem
is the projection of wt onto the set of all weight vectors that attain a loss of zero. We
denote this set by S. For the case of classification, S is a half space, S = {w :
−ytw · xt ≤ ε}. For regression S is an ε-hyper-slab, S = {w : |w · xt − yt| ≤ ε}
and for uniclass it is a ball of radius ε centered at xt, S = {w : ‖w − xt‖ ≤ ε}.
In Fig. 2 we illustrate the projection for the three cases. This optimization problem at-
tempts to keep wt+1 as close to wt as possible, while forcing wt+1 to achieve a zero
loss on the most recent example. The resulting algorithm is passive whenever the loss is
zero, that is, wt+1 = wt whenever `ε(wt; zt) = 0. In contrast, on rounds for which
`ε(wt; zt) > 0 we aggressively force wt+1 to satisfy the constraint `ε(wt+1; zt) = 0.

Parameter: Insensitivity: ε
Initialize: Set w1 = 0 (R&C) ; w1 = x0 (U)
For t = 1, 2, . . .

• Get a new instance: zt ∈
� n

• Suffer loss: `ε(wt; zt)
• If `ε(wt; zt) > 0 :

1. Set vt (see Table 1)

2. Set τt = `ε(wt;zt)
‖vt‖2

3. Update: wt+1 = wt + τtvt

Figure 1: The additive PA algorithm.

Therefore we name the algorithm
passive-aggressive or PA for short. In
the following we show that for the
three problems described above the
solution to the optimization problem
in Eq. (5) yields the following update
rule,

wt+1 = wt + τtvt , (6)

where vt is minus the gradi-
ent of the discrepancy and
τt = `ε(wt; zt)/‖vt‖2. (Note
that although the discrepancy might
not be differentiable everywhere, its
gradient exists whenever the loss is
greater than zero). To see that the update from Eq. (6) is the solution to the problem
defined by Eq. (5), first note that the equality constraint `ε(w; zt) = 0 is equivalent to the
inequality constraint δ(w; zt) ≤ ε. The Lagrangian of the optimization problem is

L(w, τ) =
1

2
‖w−wt‖2 + τ(δ(w; zt)− ε) , (7)

�
��

wt

wt+1

q �
��

wt

wt+1

q �
��

wt

wt+1

q

Figure 2: An illustration of the update: wt+1 is found by projecting the current vector
wt onto the set of vectors attaining a zero loss on zt. This set is a stripe in the case of
regression, half-space for classification, and a sphere for uniclass.

where τ ≥ 0 is a Lagrange multiplier. To find a saddle point of L we first differentiate L
with respect to w and use the fact that vt is minus the gradient of the discrepancy to get
that,

∇w(L) = w −wt + τ∇wδ = 0 ⇒ w = wt + τvt .

To find the value of τ we use the KKT conditions. Hence, whenever τ is positive (as in
the case of non-zero loss), the inequality constraint, δ(w; zt) ≤ ε, becomes an equality.
Simple algebraic manipulations yield that the value τ for which δ(w; zt) = ε for all three
problems is equal to, τt = `ε(w; zt)/‖vt‖2.

A summary of the discrepancy functions and their respective updates is given in Table 1.
The pseudo-code of the additive algorithm for all three settings is given in Fig. 1. Note that
for uniclass the update given by Eq. (6) sets wt+1 to be a convex combination of wt and
xt. To see this we expand wt+1,

wt+1 = wt + τtvt = wt +
(‖wt − xt‖ − ε)

‖wt − xt‖
(xt −wt) = (1− νt)wt + νtxt ,

where νt = (‖wt−xt‖−ε)
‖wt−xt‖

∈ [0, 1].

To conclude the description of the additive PA algorithm, we would like to discuss the
initialization of w1. For classification and regression a reasonable choice for w1 is the zero
vector. However, in the case of uniclass initializing w1 to be the zero vector might incur
large losses if, for instance, all the instances are located far away from the origin. A more
sensible choice for uniclass is to initialize w1 to be one of the examples. For simplicity
of the description we assume that we are provided with an example x0 prior to the run
of the algorithm. This initialization enables us to expand wt+1 and write it as a convex
combination of the examples observed thus far,

wt+1 =

t
∑

s=0

αsxs where αs = νs

t
∏

i=s+1

(1− νi) .

The above representation for the weight vector for uniclass enables to employ kernels [11].
It is also easy to verify that in classification and regression the weight vector lies in the
linear subspace spanned by the instances, therefore we can use kernels for these problems
as well.

4 Analysis

The following theorem provides a unified loss bound for all three settings. After proving
the theorem we discuss a few of its implications.

Theorem 1 Let z1, z2, . . . , zt, . . . be a sequence of examples for one of the problems de-
scribed in Table 1. Assume that there exist w

? and ε? such that `ε?(w?; zt) = 0 for all
t. Then if the additive PA algorithm is run with ε > ε?, the following bound holds for any
T ≥ 1

T
∑

t=1

(`ε(wt; zt))
2

+ 2(ε− ε?)

T
∑

t=1

`ε(wt; zt) ≤ B ‖w? −w1‖2 , (10)

where for classification and regression B is a bound on the squared norm of the instances
(∀t : B ≥ ‖xt‖22) and B = 1 for uniclass.

Proof: Define ∆t = ‖wt −w
?‖2 − ‖wt+1 −w

?‖2. We prove the theorem by bounding
∑T

t=1 ∆t from above and below. First note that
∑T

t=1 ∆t is a telescopic sum and therefore

T
∑

t=1

∆t = ‖w1 −w
?‖2 − ‖wT+1 −w

?‖2 ≤ ‖w1 −w
?‖2 . (11)

This provides an upper bound on
∑

t ∆t. In the following we prove the lower bound

∆t ≥
`ε(wt; zt)

B
(`ε(wt; zt) + 2(ε− ε?)) .

To prove the above bound, note that we do not modify wt if `ε(wt; zt) = 0. Therefore,
the above inequality trivially holds when `ε(wt; zt) = 0 and thus we can restrict ourselves
to the rounds on which the discrepancy was larger than ε which implies that `ε(wt; zt) =
δ(wt; zt)− ε. Let t be such a round and expand wt+1,

∆t = ‖wt −w
?‖2 − ‖wt+1 −w

?‖2

= ‖wt −w
?‖2 − ‖wt + τtvt −w

?‖2

= ‖wt −w
?‖2 −

(

τ2
t ‖vt‖2 + 2τt(vt · (wt −w

?)) + ‖wt −w
?‖2

)

= −τ2
t ‖vt‖2 + 2τtvt · (w? −wt) . (12)

We now use the fact that−vt is a gradient of the convex function δ(w; zt) at wt. Therefore,
for any w ∈ � n the following inequality holds:

δ(w; zt)− δ(wt; zt) ≥ (−vt) · (w −wt) .

Specifically, for w = w
? we get

vt · (w? −wt) ≥ δ(wt; zt)− δ(w?; zt) = δ(wt; zt)− ε + ε− δ(w?; zt) . (13)

Recall that δ(wt; zt)− ε = `ε(wt; zt) and that ε? ≥ δ(w?; zt). Therefore,

(δ(wt; zt)− ε) + (ε− δ(w?; zt)) ≥ `ε(wt; zt) + (ε− ε?) . (14)

Combining Eqs. (12-14) we get

∆t ≥ −τ2
t ‖vt‖2 + 2τt (`ε(wt; zt) + (ε− ε?))

= τt

(

−τt‖vt‖2 + 2`ε(wt; zt) + 2(ε− ε?)
)

. (15)

Plugging τt = `ε(wt; zt)/‖vt‖2 into Eq. (15) we get

∆t ≥
`ε(wt; zt)

‖vt‖2
(`ε(wt; zt) + 2(ε− ε?)) .

For uniclass ‖vt‖2 is always equal to 1 by construction and for classification and regression
we have ‖vt‖2 = ‖xt‖2 ≤ B which gives,

∆t ≥
`ε(wt; zt)

B
(`ε(wt; zt) + 2(ε− ε?)) .

Comparing the above lower bound with the upper bound in Eq. (11) we get

T
∑

t=1

(`ε(wt; zt))
2

+

T
∑

t=1

2(ε− ε?)`ε(wt; zt) ≤ B‖w? −w1‖2 .

This concludes the proof.

Let us now discuss the implications of Thm. 1. First, recall that for classification and re-
gression w1 is the zero vector. Thus, the loss bound reduces to B‖w?‖2. This form of
bound is common to online algorithms for classification such as ROMMA [10]. However,
here we are bounding the hinge-loss simultaneously for both regression and classification.
Due to our initialization, we get that for uniclass ‖w? − w1‖2 ≤ (ε?)2 and the bound is
translation invariant – clearly a desired property for the uniclass problem. It is straightfor-
ward to derive a mistake bound from the loss bound of Thm. 1 in the case of classification.
First note that the theorem implies that,

∑

t (`ε(wt; zt))
2 ≤ B‖w?‖2. Second, whenever

there is a classification error we have that (`ε(wt; zt))
2 ≥ (ε)2. Therefore, the number of

classification errors is bound above by B‖w?‖2/ε2. For classification however the bound
has one degree of freedom as we can scale w

? and thus ε accordingly. If we get rid of
this degree of freedom by choosing the optimal value for ε and setting the norm of w

? to 1
we obtain the mistake bound of the Perceptron algorithm. We also like to note that the PA
algorithm is the same as the MIRA algorithm [2] for binary problems. However, the loss
bound from Thm. 1 is much more refined than the bound in [2].

We would like to note that the online loss bound can be used to derive a simple progress
bound for a batch setting. The bound is achieved by cycling through the training set mul-
tiple times and calling the online algorithm consecutively. This cycling is guaranteed to
decrease the loss of the entire training set like O(1/

√
k) where k is the number of epochs.

Moreover, it is possible to show that in the case of classification ‖wt+1‖ ≤ 2‖w?‖ for
t > 0. This implies that the PA algorithm is guaranteed to find a separating hyperplane
whose margin is at least a half of the best margin achievable by a batch algorithm.

5 A Modification for the Unrealizable Case

We now describe an algorithm for the case where the data is unrealizable. The algorithm
employs two parameters. The first is the insensitivity parameter ε which defines the loss
function as in the realizable case. However, in this case we do not assume that there exists
w

? that achieves zero ε-loss over the sequence. Rather, we measure the loss of the online
algorithm relative to the loss of any vector w

?. The second parameter, γ > 0, is a clipping
parameter. Before describing the effect of this parameter we define the update step for the
unrealizable case. As in the realizable case, the algorithm is conservative, that is if the ε-
loss over example zt is zero then wt+1 = wt. In case the loss is positive the update rule is
wt+1 = wt + τtvt. The update direction vt is the same as in the realizable case. However,
the scale factor τt is clipped by γ. That is, τt = min{γ, `ε(wt; zt)}/‖vt‖2. The following
theorem provides a bound on the cumulative loss of our online algorithm relative to the
loss of any fixed weight vector w

?.

Theorem 2 Let z1 = (x1, y1), z2 = (x2, y2), . . . , zt = (xt, yt), . . . be a sequence of
examples. Let w

? ∈ � n be any vector. Then if the PA algorithm for the unrealizable case
is run with ε, and with γ > 0, the following bound holds for any T ≥ 1

T
∑

t=1

`ε+γ(wt; zt) ≤ 2

T
∑

t=1

`ε(w
?; zt) +

B‖w? −w1‖2
γ

,

where B is as defined in Thm. 1.

Proof: The proof technique is similar to the proof of Thm. 1. We define ∆t = ‖wt −
w

?‖2 − ‖wt+1 −w
?‖2. We upper bound

∑

t ∆t by ‖w1 −w
?‖2. We expand wt+1 and

get the lower bound,

∆t ≥ τt

(

−τt‖vt‖2 + 2vt · (w? −wt)
)

. (17)

We use the fact that −vt is a gradient to get

vt · (w? −wt) ≥ δ(wt; zt)− δ(w?; zt) = δ(wt; zt)− ε + ε− δ(w?; zt) .

Since we make progress only if δ(wt; zt) ≥ ε, we get that δ(wt; zt) − ε = `ε(wt; zt). In
addition, we use the fact that `ε(a) ≥ a − ε for any a and therefore −(δ(w?; zt) − ε) ≥
−`ε(w

?; zt). Therefore we get,

∆t ≥ τt

(

−τt‖vt‖2 + 2 (`ε(wt; zt)− `ε(w
?; zt))

)

. (18)

We assign the value τt = min{γ, `ε(wt; zt)}/‖vt‖2 in Eq. (18) and use the simple fact
that `ε(wt; zt) ≥ min{γ, `ε(wt; zt)} to get the lower bound

∆t ≥
min{γ, `ε(wt; zt)}

‖vt‖2
(`ε(wt; zt)− 2`ε(w

?; zt)) .

Combining the above bound with the upper bound for
∑

t ∆t, and with the bound ‖vt‖2 ≤
B yields

B‖w1 −w
?‖2 ≥

T
∑

t=1

min{γ, `ε(wt; zt)} (`ε(wt; zt)− 2`ε(w
?; zt)) . (19)

Now note that since min{γ, `ε(wt; zt)} ≤ γ we have

−min{γ, `ε(wt; zt)}`ε(w
?; zt) ≥ −γ`ε(w

?; zt) . (20)

In addition,
min{γ, `ε(wt; zt)}`ε(wt; zt) ≥ γ`ε+γ(wt; zt) , (21)

for all t, since if `ε(wt; zt) ≤ γ then the right-hand side of Eq. (21) is zero and if
`ε(wt; zt) ≥ γ we use the fact the loss is monotonically decreasing with respect to the
insensitivity parameter. Combining Eq. (20) and Eq. (21) with Eq. (19) gives,

T
∑

t=1

`ε+γ(wt; zt) ≤ 2

T
∑

t=1

`ε(w
?; zt) +

B‖w1 −w
?‖2

γ
.

6 Extensions

There are numerous potential extensions to our approach. For instance, if all the compo-
nents of the instances are non-negative we can derive a multiplicative version of the PA
algorithm. The multiplicative PA algorithm maintains a weight vector wt ∈ � n where
� n = {x : x ∈ � n

+,
∑n

j=1 xj = 1}. The multiplicative update of wt is,

wt+1,j = (1/Zt) wt,je
τtvt,j ,

where vt is the same as the one used in the additive algorithm (Table 1), τt now becomes
4`ε(wt; zt)/‖vt‖2

∞

for regression and classification and `ε(wt; zt)/(8‖vt‖2
∞

) for uniclass
and Zt =

∑n

j=1 wt,je
τtvt,j is a normalization factor. For the multiplicative PA we can

prove the following loss bound.

Theorem 3 Let z1, z2, . . . , zt = (xt, yt), . . . be a sequence of examples such that xt,j ≥ 0
for all t. Let DRE (w‖w′) =

∑

j wj log(wj/w′
j) denote the relative entropy between w and

w
′. Assume that there exist w

? and ε? such that `ε?(w?; zt) = 0 for all t. Then when the
multiplicative version of the PA algorithm is run with ε > ε?, the following bound holds for
any T ≥ 1,

T
∑

t=1

(`ε(wt; zt))
2 + 2(ε− ε?)

T
∑

t=1

`ε(wt; zt) ≤
1

2
B DRE (w?‖w1) ,

where for classification and regression B is a bound on the square of the infinity norm of
the instances (∀t : B ≥ ‖xt‖2

∞

) and B = 16 for uniclass.

The proof of the theorem is rather technical and uses the proof technique of Thm. 1 in
conjunction with inequalities on the logarithm of Zt (see for instance [5, 8, 6]).

An interesting question is whether the unified view of classification, regression, and
uniclass can be exported and used with other algorithms for classification such as
ROMMA [10] and ALMA [3]. Another, rather general direction for possible extension
surfaces when replacing the Euclidean distance between wt+1 and wt with other distances
and divergences such as the Bregman divergence. The resulting optimization problem may
be solved via Bregman projections. In this case it might be possible to derive general loss
bounds, see for example [9]. Last, we would like to note we are currently exploring gen-
eralizations of our framework to other decision tasks such as distance-learning [12] and
online convex programming [13].

References
[1] Y. Censor and S.A. Zenios. Parallel Optimization: Theory, Algorithms, and Applica-

tions. Oxford University Press, New York, NY, USA, 1997.
[2] K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass prob-

lems. Jornal of Machine Learning Research, 3:951–991, 2003.
[3] C. Gentile. A new approximate maximal margin classification algorithm. Journal of

Machine Learning Research, 2:213–242, 2001.
[4] C. Gentile and M. Warmuth. Linear hinge loss and average margin. In Advances in

Neural Information Processing Systems 10, 1998.
[5] D. P. Helmbold, R. E. Schapire, Y. Singer, and M. K. Warmuth. A comparison of new

and old algorithms for a mixture estimation problem. In Proceedings of the Eighth
Annual Conference on Computational Learning Theory, pages 69–78, 1995.

[6] J. Kivinen, D.P Helmbold, and M. Warmuth. Relative loss bounds for single neurons.
IEEE Transactions on Neural Networks, 10(6):1291–1304, 1999.

[7] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. In
Advances in Neural Information Processing Systems 14. MIT Press, 2002.

[8] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Information and Computation, 132(1):1–64, January 1997.

[9] J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression
problems. Journal of Machine Learning, 45(3):301–329, July 2001.

[10] Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine
Learning, 46(1–3):361–387, 2002.

[11] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[12] E. Xing, A.Y. Ng, M. Jordan, and S. Russel. Distance metric learning, with applica-

tion to clustering with side-information. In Advances in Neural Information Process-
ing Systems 15, 2003.

[13] M. Zinkevich. Online convex programming and generalized infinitesimal gradient as-
cent. In Proceedings of the Twentieth International Conference on Machine Learning,
2003.

