
ONLINE DISCRIMINATIVE LEARNING OF PHONEME RECOGNITION
VIA COLLECTIONS OF GENERALIZED LINEAR MODELS

Koby Crammer

Dept. of Electrical Engineering,
The Technion - Israel Institute of Technology

Haifa 32000, Israel
koby@ee.technion.ac.il

Daniel D. Lee

Dept. of Electrical and Systems Engineering
University of Pennsylvania

Philadelphia, PA 19104, USA
ddlee@seas.upenn.edu

ABSTRACT
We describe a new online discriminative learning algorithm that ef-
ficiently and effectively recognizes phonemes in a speech sequence.
The method builds upon recent work in online learning of a col-
lection of generalized linear models using second order statistics of
the model weight vectors. Evaluation on the TIMIT database shows
that the algorithm achieves state-of-the-art phoneme recognition er-
ror rates compared to many other generative and discriminative mod-
els with the same expressive power.

1. INTRODUCTION

Automatic speech recognition (ASR) systems output a phonetic tran-
scription of a given acoustic input utterance. For these systems, there
is a large body of work using generalized linear models, either ex-
plicitly or implicitly (e.g. HMMs). Online learning algorithms are
simple, fast, and require less memory compared to batch learning al-
gorithms. Recent work has shown that they can also perform nearly
as well as batch algorithms, making them quite attractive for large
scale learning problems. In this work, we propose to use a collec-
tion of generalized linear models and train them simultaneously in an
online manner. We represent this collection using the mean and co-
variance matrix of the underlying weight vectors and propose novel
filtering-like learning algorithms with efficient regularization.

Learning models and techniques are commonly divided into two
generic categories: generative and discriminative. For more than a
decade most ASR systems were based on the framework of Hid-
den Markov Models (HMMs), which models the joint distribution
of the acoustic signal and phonemes by factorizing it as a prior over
the phonemes ~p and a conditional distribution of the acoustic sig-
nal ~a given the underlying phonemes, Pr [~p, ~a] = Pr [~p] Pr [~a|~p].
Learning parameters for these models is then typically performed by
maximizing the likelihood of the data.

Recently researchers have proposed using discriminative meth-
ods for building ASR systems, either by adapting the generative
framework to optimize an error rate or related quantity (e.g. [1]),
or by methods that replace the joint model with a conditional model
of the phonemes given the acoustic signal [2, 3] . We focus here on
a fully discriminative approach using a general linear model.

Recent work [4] in online learning showed how to guide learn-
ing via parametric information about the distribution of possible
weight vectors. These algorithms are derived from minimizing the
Kullback-Leibler divergence between Gaussian distributed weight
vectors, and differ in the way they incorporate the training data. Em-
pirical evaluation has demonstrated the advantages of this approach
for a number of natural language processing problems [4].

We develop, analyze and evaluate a new learning algorithm for
ASR that models the motions of individual weight vectors across a
distribution of weight vectors. Similar to other online algorithms,
our algorithm considers one acoustic utterance at a time, yet main-
tains a collection of weights rather than a single one. . Learning is
defined as optimizing an appropriate velocity field among the weight
vectors given the input utterance, such that the collective perfor-
mance is improved while maintaining some invariant properties of
the overall collection. Finding such a regularized velocity field re-
sults in a more robust online learning algorithm. We report exper-
imental results showing that our approach yields phoneme recogni-
tion error rates that compare favorably with previous approaches.

2. METHODS
2.1. Problem Setting

In order to predict the sequence of phonemes, the acoustic in-
put signal ~a is represented as a sequence of feature vectors ~a =
(a1 . . . aT), where T denotes the length of the utterance, and the
features are points in a vector space at ∈ Rd. Each utterance is an
acoustic realization of a sequence of phonemes, ~̃p = (p1 . . . pτ),
where each phoneme belongs to a set of possible phonemes p ∈ P ,
|P |. Each phoneme in ~p may correspond to a different number of
consecutive acoustic realizations in ~a. There exists a sequence of
time-indices ts

1 . . . ts
τ (the starting time of each distinct phoneme)

and a sequence te
1 . . . te

τ (the ending time of each distinct phoneme)
such that ts

1 = 1 and te
τ = T , and ts

k = te
k−1 +1 (the acoustic

representation of a phoneme starts immediately after the end of the
acoustic representation of the previous phoneme). For simplicity,
we write the phonetic vector explicitly as ~p = (p1 . . . pT), where pt

is the phoneme corresponding to the acoustic signal at, and which
may contain consecutive sub-sequences with the same phoneme, i.e.
pt = p for some p ∈ P and t = ts

k . . . te
k.

A learning algorithm builds a mapping from signals ~a (for all
lengths T) to the corresponding phonemes ~p, such that ~p captures
the spoken utterance. Formally, ~̂p denotes a prediction made by the
algorithm for some input ~a. We assume the existence of a loss func-
tion that takes a phoneme prediction and a correct phoneme sequence
(possibly of different lengths) and outputs a non-negative scalar rep-
resentative of the difference between the two, i.e. , ` :P ∗×P ∗→R+

where P ∗=∪T
t=1P

t (all finite-phonemic sequences).

2.2. Model

We build on the structured prediction approach [3] and use models
that score pairs of input acoustic signals ~a and candidate phoneme

sequences ~p. Linear models for scoring are parameterized by a
vector w and defined such that s(~a, ~p; w) = w · φ (~a, ~p) where
φ (~a, ~p) ∈ RD is a feature vector representation of the acoustic-
utterance and phonemic-sequence pair, and w ∈ RD is a vector of
feature weights. Given the weight vector w and an acoustic input ~a
the algorithm outputs the phoneme sequence with the highest score,

f(~a; w)=arg max
~p

s(~a, ~p; w)=arg max
~p

(w · φ (~a, ~p)) , (1)

where the search is over all possible sequences.
The number of possible sequences is exponential with the length

of the sequence T so even if the number of possible phonemes
is not very large, naive search becomes intractable. Therefore,
we constrain the feature function φ(~a, ~p) to decompose over
neighboring time units, so that it depends explicitly upon only
two consecutive phonemes. The feature function is of the form,
φ(~a, ~p) =

PT−1
t=1 φ(~a, pt, pt+1) . This decomposition of the fea-

ture function can be related to the score function: s(~a, ~p; w) =

w ·
nPT−1

t=1 φ (~a, pt, pt+1)
o

=
PT−1

t=1 (w · φ (~a, pt, pt+1)). The
Viterbi algorithm can then be used for efficient inference in time
linear in T and quadratic in the number of possible phonemes |P |2.

The framework of online confidence weighted (CW) learning
was recently introduced [4] for binary classification. We follow CW
modeling and represent the collection of weight vectors using the
first two moments of the distribution: mean vector w ∈ RD and
covariance matrix Σ ∈ RD×D . Prediction is performed by substi-
tuting the value of the mean vector w and the given acoustic input ~a
in (1). Information in the covariance matrix is then used to guide the
learning process, as described in the following section.

2.3. Learning

These algorithms are designed to work in online manner, learning in
rounds (also called iterations). On the i-th round the algorithm re-
ceives an utterance represented with acoustic properties ~ai and out-
puts the best phoneme sequence ~̂pi according to its current model
using the prediction rule of (1). The algorithm then receives the
correct phoneme sequence ~pi and its performance is evaluated us-
ing a local loss function `

“
~pi, ~̂pi

”
. For ASR, two loss functions

are common: the Levenshtein edit distance between the correct se-
quence and the predicted one, called phoneme error (where pi,t is
the phoneme in location t for sequence i), or the number of erro-
neous frames, |{t : p̂i,t 6= pi,t}|. The algorithm then uses the last
input pair, (~ai, ~pi) to update the model. The goal of the algorithm is

to minimize the cumulative loss,
P

t `
“
~pi, ~̂pi

”
.

The only missing component in the description of the algorithm
is the update rule: given the ith input pair (~ai, ~pi), how to modify
the current model wi and Σi to get the next one wi+1 and Σi+1.
We denote by Wi the random variable of weight vectors at round i,
that is we have E [Wi] = wi and Cov [Wi] = Σi. Our algorithms
update the collection using a single linear transformation. Formally,
Wi+1 = AiWi + bi , where the algorithm selects the transforma-
tion Ai and bi. The matrix Ai ∈ RD×D represents stretching and
rotating the distribution, and the vector bi ∈ RD is an overall trans-
lation. For Gaussian distributions a linear transformation keeps the
overall distribution Gaussian [5]. We set the parameters of the linear
transformation Ai and bi to minimize the following,

(Ai, bi) = arg min
A,b

EWi [Ci (AWi + b)] where (2)

Ci (W)=
1

2
(W−Wi)

>Σ−1
i (W−Wi)+C

`
Li (W, δi)

´2
.

The sequence hinge-loss is given by

Li (W, δi) = max
n

0, `
“
~pi, ~̂pi

”
−W · δi

o
(3)

where δi = φ (~ai, ~pi)− φ
“
~ai, ~̂pi

”
, (4)

which is the difference between the correct phoneme sequence fea-
ture vector and the predicted phoneme sequence feature vector.

Thus, Li is a function of the mean parameters w and the vec-
tor δi. It equals the large-margin hinge loss suffered when com-
paring the score of the correct phoneme sequence and the predicted
phoneme sequence. If wi ·φ (~ai, ~pi) < wi ·φ

“
~ai, ~̂pi

”
+`

“
~pi, ~̂pi

”
thenLi is proportional to the difference `

“
~pi, ~̂pi

”
+wi ·φ (~ai, ~pi)−

wi · φ
“
~ai, ~̂pi

”
; and otherwise Li = 0.

The constant C > 0 is a parameter which controls the balance
between two objectives. The first objective is for the weight vec-
tors to be as close as possible to the current set, since the current
set contains information retained from previous training examples.
However, we also want the new set of parameters to do well on the
current example. In particular, we use the predicted sequence of
phonemes ~̂pi = arg max~p wi ·φ (~ai, ~pi) and modify the parameters
wi only if the score of the correct phoneme sequence ~pi is not greater
than the score of the predicted sequence ~̂pi by a difference of at least
`

“
~pi, ~̂pi

”
, that is if wi ·φ (~ai, ~pi) < wi ·φ

“
~ai, ~̂pi

”
+`

“
~pi, ~̂pi

”
.In

other words, we not only want the score of the correct phoneme se-
quence to be the highest, but we also want the difference between the
score of the correct phoneme sequence and the second best phoneme
sequence to be proportional to the loss suffered when predicting the
latter instead of the former.

We analytically compute the expectation of the first term of
Ci (W) using the derivatives of the second term to bound the expec-
tation of Ci (W) and write the following bound on the objective of
(2) explicitly,

1

2
(w −wi)

> Σ−1
i (w −wi) + C ·

`
Li (w, δi)

´2
+ (5)

1

2
Tr

“
(A− I)>Σ−1

i (A− I)Σi

”
+ Cδ>i AΣiA

>δi . (6)

Note that the second term of (6) measures the variance in prediction
after the update. Thus, the algorithm also implicitly reduces this un-
certainty in the prediction. As we are interested in wi+1 and Σi+1,
we perform a change of variables in the optimization. The updated
variables are: A (as before) and w, the mean of the modified collec-
tion. The relation between b and w is w = Awi + b.

The last optimization problem decomposes over w and A, the
first line depends only on w while the second only on A. Clearly it
is convex in both variables, and we compute the derivative of (5), set
it to zero and solve for w to obtain,

wi+1 ← wi +
Li (wi, δi)

βi
Σiδi , βi = δ>i Σiδi + 1/C . (7)

Before solving for A we note that the actual dimension D of all
quantities involved is quite large, and thus it is not feasible to use a
full matrix A (or Σ). Therefore, we employ only diagonal matrices.
We now list three algorithmic variants of the update.

DIAG: Solving (6) exactly for diagonal matrices A and Σi

we get an update rule for the rth diagonal element, (Ai)r,r =

1/
“
1 + Cδ2

i,r (Σi)r,r

”
, thus

(Σi+1)r,r = (Σi)r,r/
“
1 + Cδ2

i,r (Σi)r,r

”2

. (8)

Input: training data {(~ai, ~pi)}mi=1 and parameter C > 0

Initialize: w1 = 0 ∈ RD , Σ1 = I ∈ RD×D

For i = 1, . . . , m

1. Compute best phoneme sequence
~̂pi = arg max~p (w · φ (~ai, ~pi))

2. If `
“
~pi, ~̂pi

”
> 0 update (otherwise set wi+1 ← wi and Σi+1 ←

Σi) :

• Update wi+1 using (7).
• Equations used to compute βi and update Σi+1,

Method Computing βi Updating Σi+1

DIAG (7) (8)
APPROX (7) (10)
MATCH (11) (10)

Output: Averaged weight vector 1
m

Pm
i wi+1 ; matrix Σm+1.

Fig. 1. DIAG, APPROX and MATCH updates for online ASR learning.

The denominator of (8) is always greater than zero and thus equation
8 is well-defined. Also note that the diagonal elements of Σi goes to
zero with i. Intuitively, the more examples the algorithms processes,
the lower its uncertainty about the correct value of w is.

APPROX: We solve (6) exactly for full matrices and then take
only the diagonal part. As we shall see below, the performance of
this approximated update is competitive with other algorithms. For
this update, Ai =I −Σiδiδ

>
i C/

`
1 + CδiΣiδ

>
i

´
. Substituting the

last equation in the inverse term Σ−1
i+1 =

`
AΣiA

>´−1
we get,

Σ−1
i+1 =

“
AΣiA

>
”−1

=Σ−1
i +

“
2C+C2δ>i Σiδi

”
δiδ

>
i . (9)

We use Woodbury’s identity to compute the updated covariance,

Σi+1 = Σi − Σiδiδ
>
i Σi

C2δiΣiδ
>
i + 2C

(1 + Cδ>i Σiδi)2
. (10)

Finally, we extract the diagonal part of the last matrix, which is
equivalent to replacing Σiδiδ

>
i Σi with its diagonal part.

MATCH: The last two updates were based upon previous
work [5] for binary prediction but applied here more generally to
temporal sequences. The third update rule is motivated from a desire
to provide a novel theoretical analysis for the algorithm, by replacing
βi from (7) with

βi =
“
(1 + Cδ>i Σiδi)

2
”

/
“
C2δiΣiδ

>
i + 2C

”
, (11)

which is the inverse coefficient of Σiδiδ
>
i Σi in (10) above.

Pseudocode of the algorithm appears in Fig. 1. The algorithm
returns an average of all the weight vectors wi computed during
the runtime of the algorithm. Empirically, the average weight-vector
performs better than a single weight vector (including the last one
wm+1), and it can also be justified from a theoretically point of view.

3. ANALYSIS

As mentioned above, the MATCH update is derived by analyzing the
mistake bound in the worst case setting. We start with the following
lemma, that extends Lemma 3 of [4] both for sequential algorithms
and variable learning rate. The proof is omitted due to lack of space.

Lemma 1 Let χi = δ>i Σiδi, and γi = 1/
`
2C + C2χi

´
. Then,

for every round i for which an update occurs, the following two

equalities hold for all vectors u ∈ RD ,

u>Σ−1
i wi = u>Σ−1

i−1wi−1 + u>δi/γi

w>
i Σ−1

i wi = w>
i−1Σ

−1
i−1wi−1 +

`
χi + γi − L2

i γi

´
/ (γi (χi + γi))

We now state the main theorem of the analysis.

Theorem 2 Denote by R = supi ‖δi‖. For any weight u ∈ Rd,
the cumulative loss suffered by the algorithm is upper bounded by

X
i

`
“
~pi, ~̂pi

”
≤

r
2 + CR2

4C

q
u>Σ−1

m+1u
q

log
`
det

`
Σ−1

m+1

´´
+

`
1 + CR2/2

´ X
i

L (u, δi) .

In other words, the cumulative loss suffered by the algorithm is
bounded by the cumulative (hinge) loss of any fixed-weight vector
multiplied by a factor greater than one, plus an additional term,q

2+CR2

4C

q
u>Σ−1

m+1u
q

log
`
det

`
Σ−1

m+1

´´
that is sub-linear in

the number of utterances m, O
`
‖u‖
√

m log m
´
. The proof is

omitted due to lack of space. This theorem provides a first bound
on the mistakes made by the MATCH algorithm, that is a variant of
previous algorithms [5] for which analysis was not included.

4. EMPIRICAL EVALUATION

The performance of the above algorithms was evaluated using the
TIMIT corpus. We used a standard partition [1] of the corpus into
a training set of 3, 696 utterances, test set of 400 utterances, and
validation set of 192 utterances. We mapped the 61 phonemes of
TIMIT into a subset of size 48. We used the pre-processing pro-
cedure of [1] and generated representations with 39 Mel-frequency
coefficients together with their first and second derivatives.

Setting: We used two types of feature mapping. In the first
set of experiments we followed [6] and set φ(~a, ~p) either to be
φn(~at, p) (node features) for all t = 1 . . . T and some phoneme p
or φe(pt, pt+1) (edge features) for all t = 1 . . . T − 1. The first
type captures the relation between a possible phoneme and the cor-
responding acoustic input (equivalent to the emission probabilities
of HMMs). The second type captures the dependency between two
adjacent phonemes, (and is analogous to the transition probabilities
in HMMs. In particular, for the first type we used functions of the
39 acoustic features, and for the second type we used a single fixed
feature. In the second set of experiments we used all the features
from the previous experiment, and also added correlations between
the 39 acoustic features at time t and the acoustic features at time
t−1 and t+1, yielding an additional 2 · 392 = 3, 042 features.

Two metrics were used for algorithm evaluation [1]: phoneme
error rate, computed using the Levenshtein distance, and the frame
error rate, which is the fraction of misclassified frames. The former
better reflects the ultimate goal of speech recognition. We followed
a common practice and mapped the 48 states into 39 categories.

Three variants of the algorithm were evaluated: DIAG, APPROX
and MATCH. All algorithms were run and averaged for 20 epochs
with 3 different values for the parameter C. For each algorithm we
picked the best value of C and epoch using the validation set and re-
port the results on the test set. We also quote the results of other sys-
tems and methods, including two HMM systems [3, 1] (with a single
out state setting), a kernel-based recognizer trained with a PA algo-
rithm [3] denoted by KSBSC, and a PA that uses simpler features [6].
Online [1] and batch LM-HMM [7] large-margin training of HMMs,

Frame Phone
Method Error Rate Error Rate
HMM (1 mixture component)[1] 39.9 42.0
CSS (1 mixture component)[1] 28.3 33.5
PA[6] 30.0 33.4
DROP[6] 29.2 31.1
DIAG 32.9 43.7
APPROX 29.4 30.0
MATCH 29.2 29.7
HMM[3] 35.1 40.9
Online LM-HMM (8 mixtures)[1] 25.0 30.2
Batch LM-HMM (8 mixtures)[7] - 28.2
KSBSC[3] - 45.1
PAC-Bayes 1-frame[8] 27.7 30.2
CRFs (9-frames MLP)[9] - 29.3
PAC-Bayes 9-frames[8] 26.5 28.6
DIAG 3-frames-context 32.3 45.4
APPROX 3-frames-context 27.8 27.9
MATCH 3-frames-context 28.0 28.0

Table 1. Frame error rates and phone error rates for few existing methods
compared with our proposed three methods, grouped according to the amount
of information present in the feature representations.

a recently proposed PAC-Bayes 1-frame [8], and DROP [6], which
is most similar to our algorithm.

Results: Our main findings are summarized in Table 1. The
first column shows the frame error rate and the second column the
phone error rate. The first block of 4 rows summarizes previous
results of algorithms that use a representation equivalent to HMM
with a single mixture component. CD-HMMs trained with an online
method [1] have the smallest frame error rate, and DROP has a sig-
nificantly lower phoneme error rate compared to all other methods.

The next block of 3 rows summaries the performance of our
three proposed algorithms. Surprisingly, the DIAG update performs
worse, the APPROX update is better, and MATCH, the version with
the theoretical guarantee, performs the best. Comparing to previ-
ous methods with the same expressive power (first block), we see
that CD-HMMs has the lowest frame error rate, although MATCH
(and DROP [6]) are almost comparable. Furthermore, the phone er-
ror rate of the MATCH algorithm (29.7) is the best, and even better
than the performance of CD-HMMS with eight mixture components
(30.2) [1], although it maintains and updates much less parameters.

The third block of 5 rows summaries the performance of other
algorithms that use more complex features over a single frame. The
HMM [3] uses left-to-right HMM of 5 emitting states with 40 diago-
nal Gaussians. Online and Batch LM-HMM use eight mixture com-
ponents, and both KSBSC and PAC-Bayes 1-frame employ a kernel.
Indeed, most of the methods reported in this block achieve lower
frame error rate (Online HM-HMM) or lower phone error rate (Batch
HM-HMM) than methods presented in the previous two blocks.

The 4th and 5th blocks show the results with methods that also
use the acoustic features of neighbor frames. The 4th block quotes
results from previous methods that use the features of 9 frames. The
PAC-Bayes 9-frame achieves the best performance, which is only
slightly worse than Batch LM-HMM with 8 mixtures. Finally, the
performance of our algorithms using the second set of features with
larger context (only 3 frames), are reported in the 5th block. Unlike
results with a single frame, here APPROX outperforms MATCH. Eval-
uated using the more meaningful phone error rate, both MATCH and
APPROX achieve the best performance compared to all algorithms.

One possible perspective that differentiates between methods
appears in Fig. 2. The left panel shows the cumulative distribution
of the number of phone-segments per utterance. The three lines cor-
respond to the distributions according to the true test data prediction

20 30 40 50 60 70
0

50

100

150

No. of segments

N
o.

 o
f u

tte
rn

ec
es

True
drop
APPROX

20 30 40 50 60 70
−5

0

5

10

15

Max no. of segments

D
iff

. n
o.

 o
f u

tte
rn

ec
es

drop
APPROX

Fig. 2. Left: cumulative distribution of number of phone segments per ut-
terance for the true distribution of data, and as predicted by DROP[6] and
APPROX. Right: the difference between the distributions of DROP and the
true labels, and APPROX and the true labels. See text.

using DROP [6] and APPROX. Each point shows the total number
of utterances with segments less or equal to the corresponding value
on the x-axis. For example, there are 53 utterances with 30 or less
segments in the test data, yet there are such 65 utterances when pre-
dicting with DROP and 48 when predicting with APPROX. From
the panel we observe that the line corresponding to DROP is always
higher than the line of the true distribution, which indicates that the
distribution of DROP is biased towards predictions with shorter seg-
mentations. On the other hand, the line corresponding to APPROX
better tracks the true distribution. These observations are empha-
sized in the right panel of Fig. 2 in which we plot the difference
between each of the lines corresponding to DROP and APPROX and
the true labels. That is, the y = 0 axis corresponds to the distribution
of the test set. Clearly, the DROP methods are biased towards shorter
predictions, whereas the APPROX method better tracks the true dis-
tribution, and the maximal difference between the two cumulative
distributions is only 7 (as opposed to 18 for DROP).

These results indicate the possibility of training ASR models
using simpler and more efficient online learning algorithms, without
sacrificing performance. We are currently working to extend theo-
retical guarantees across the various algorithms, and to evaluate their
performance on larger speech databases.

5. REFERENCES

[1] C.C. Cheng, F. Sha, and L. Saul, “A fast online algorithm
for large margin training of continuous-density hidden markov
models,” in INTERSPEECH, 2009.

[2] A. Gunawardana, M. Mahajan, A. Acero, and J.C. Platt, “Hid-
den conditional random fields for phone classification,” in IN-
TERSPEECH, 2005.

[3] J. Keshet, S. Shalev-Shwartz, S. Bengio, Y. Singer, and
D. Chazan, “Discriminative kernel-based phoneme sequence
recognition,” in INTERSPEECH, 2006.

[4] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regulariza-
tion of weight vectors,” in NIPS 23, 2009.

[5] K. Crammer and Daniel D. Lee, “Learning via gaussian herd-
ing,” in NIPS, 2010.

[6] K. Crammer, “Efficient online learning with individual learning-
rates for phoneme sequence reco.,” in ICASSP, 2010.

[7] F. Sha and L. Saul, “Comparison of large margin training to
other discriminative methods for phonetic recognition by hidden
markov models,” in ICASSP, 2007.

[8] J. Keshet, D. McAllester, and T. Hazan, “Pac-bayesian approach
for minimization of phoneme error rate,” in ICASSP, 2011.

[9] Jeremy Morris and Eric Fosler-Lussier, “Conditional random
fields for integrating local discriminative classifiers,” IEEE
Tran. On Audio Speech and Lang. Proc., vol. 16, 2008.

