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ABSTRACT

We describe a fast and efficient online algorithm for phoneme se-
quence speech recognition. Our method is using a discriminative
training to update the model parameters one utterance at a time. The
algorithm is based on recent advances in confidence-weighted learn-
ing and it maintains one learning rate per feature. The algorithm
is evaluated using the TIMIT database and was found to achieve the
lowest phoneme error rate compared to other discriminative and gen-
erative models with the same expressive power. Additionally, our
algorithm converges in less iterations over the training set compared
with other online methods.

Index Terms— Online learning, confidence weighted, large
margin, discriminative training, speech recognition.

1. INTRODUCTION

Hidden Markov Models (HMMs) have been a primary tool for
building automatic speech recognition (ASR) systems for more than
fifteen years [1]. Their parameters were often estimated to best
model the likelihood of jointly the acoustic signal and underlying
phonemes, aka generative training. Recently (e.g. [2, 3, 4, 5]),
researchers have proposed to use the discriminative approach for
building ASR systems, by either proposing alternative parameter
estimation techniques (e.g. [6]), or also by replacing the joint model
(e.g. [2, 7]) with a conditional model of the phonemes given the
acoustic signal (such as conditional random fields, CRF [2]).

Recently [8, 9] the notion of confidence weighted (CW) on-
line learning was introduced. CW learning explicitly models clas-
sifier weight uncertainty using a multivariate Gaussian distribution
over weight vectors. The learner makes online updates based on
its confidence in the current parameters, making larger changes in
the weights of uncertain features. Empirical evaluation has demon-
strated the advantages of this approach for a number of binary natural
language processing (NLP) problems.

In this paper, we develop and evaluate new confidence-weighted
learning algorithms for ASR. As other online algorithms, our method
process one utterance at a time. However, as opposed to many pre-
vious algorithms, our algorithms maintain one learning rate per fea-
ture, allowing it to focus in the most uncertain features. We found
that our algorithms yields significantly lower phoneme error rate
compared with models with the same number of parameters and con-
verges faster than other online and batch methods.
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2. METHODS

2.1. Problem Setting

In automatic speech recognition, we are given an acoustic repre-
sentation of a speech utterance and wish to predict the sequence of
phonemes spoken. We represent the acoustic signal ~a as a sequence
of feature-vectors ~a = (a1 . . .aT ), where T denotes the length of
the utterance (in appropriate time units) and the features belong to
a finite-dimension vector space at ∈ Rd. Each utterance is a re-
alization of a sequence of phonemes, ~p = (p1 . . . pT ), where each
phoneme belongs to a finite set of possible phonemes p ∈ P of
size |P |. Since different phonemes have different typical lengths,
for example, vowels are often longer than consonants, we often have
consecutive sub-sequences with the same phoneme, i.e. pt = p for
some p ∈ P and t = τ . . . τ + ν for some non-negative integers
τ, ν. Our goal is to build a mapping from signals ~a (for all possible
lengths T ) to the corresponding phoneme ~p, such that ~p capture the
spoken utterance.

2.2. Model and Inference

Our score model is based on a linear score s(~a, ~p;w) for each acous-
tic signal ~a and its corresponding transcription ~p, defined as

s(~a, ~p;w) = w · φ (~a, ~p)

where φ (~a, ~p) ∈ RD is a feature-vector representation of the
acoustic-utterance and phonemic-sequence pair, and w ∈ RD is a
vector of feature weights.

Given the weight vector w and an acoustic input ~a we predict
the sequence of phonemes with the highest score,

f(~a;w) = arg max
~p
s(~a, ~p;w) = arg max

~p
(w · φ (~a, ~p)) , (1)

where we search among all |P |T possible sequences of phonemes
of length T . Even for moderate number of possible phonemes and
relatively short sequences the number of possible sequences is huge
and the search becomes intractable.

We thus restrict the feature function φ(~a, ~p) to be a sum of local
functions, each is only a function of two neighbor phonemes, that is,

φ(~a, ~p) =

T−1∑
t=1

φ(~a, pt, pt+1) . (2)

This restriction over feature functions induces a factorization of the
score function,

s(~a, ~p;w) = w·

{
T−1∑
t=1

φ (~a, pt, pt+1)

}
=

T−1∑
t=1

(w · φ (~a, pt, pt+1)) ,



which can be exploited for an efficient inference using the Viterbi
algorithm in time linear in the length of the sequence T and quadratic
in the number of possible phonemes |P |2.

Recently [8, 9], the framework of online confidence weighted
(CW) learning for binary classification was introduced. CW learn-
ing captures the notion of confidence in a linear classifier by main-
taining a Gaussian distribution over the weights with mean µ ∈ RD

and covariance matrix Σ ∈ RD×D . The values µk and Σk,k, respec-
tively, encode the learner’s knowledge and confidence in the weight
associated with feature k: the smaller Σk,k, the more confidence the
learner has in the mean weight value µk. Covariance terms Σk,r

capture interactions between weights.
Conceptually, given an acoustic input ~a, a Gibbs classifier draws

a weight vector w ∼ N (µ,Σ) and predicts the label according to
(1). In practice, however, it can be easier to simply use the averaged
weight vector µ = E [w] and use the covariance information only to
estimate the parameters of µ and not for prediction.

2.3. Learning

We work in the online framework, where learning is performed in
rounds or iterations. On each round the learner receives an acoustic
input of an utterance ~ai and makes a prediction ~̂pi according to (1)
using its current parameters. It then receives the true phoneme se-
quence ~pi and suffers a loss `

(
~pi, ~̂pi

)
. In our context the loss func-

tion is either the number of erroneous frames, |{t : p̂i,t 6= pi,t}| or
the Levenshtein edit distance between the correct sequence and the
predicted one, called phoneme error. (Where pi,t is the phoneme in
the tth location in the ith sequence.) The learner uses the current
pair (~ai, ~pi) to modify its prediction rule. Its goal is to minimize the

cumulative loss,
∑

t `
(
~pi, ~̂pi

)
.

To complete the description of our algorithm, it remains to show
how we modify the parameters µi and Σi given the ith pair (~ai, ~pi)
to obtain µi+1 and Σi+1. We set µi+1 and Σi+1 to be the solution
of the following objective function,

O (µ,Σ)=DKL (N (µ,Σ)‖N (µi,Σi))+
L2

i + δ>i Σδi

2C
(3)

where
δi = φ (~ai, ~pi)− φ

(
~ai, ~̂pi

)
, (4)

is the difference between the feature vector of the correct phoneme
sequence and the feature vector of the predicted phone sequence.
Since δi ∈ RD and Σi ∈ RD×D the quantity δ>i Σδi is a scalar
value equals the variance of the score difference of the correct and
predicted phone sequences. We also define,

Li = Li (µ, δi) = max
{

0, `
(
~pi, ~̂pi

)
− µ · δi

}
. (5)

In words, Li is a function of the mean parameters µ and the vector
δi. It equals to the large-margin hinge loss [10] suffered when com-
paring the score of the correct phoneme sequence and the predicted
phoneme sequence. If µi ·φ (~ai, ~pi) < µi ·φ

(
~ai, ~̂pi

)
+ `
(
~pi, ~̂pi

)
thenLi is proportional to the difference `

(
~pi, ~̂pi

)
+µi ·φ (~ai, ~pi)−

µi · φ
(
~ai, ~̂pi

)
, and otherwise Li = 0.

The constant C > 0 is a tradeoff parameter used to balance be-
tween three desires. First, we want the modified set of parameters
to be as close as possible to the current set of parameters, since the
current parameters captures all of present knowledge from previous

examples. Second, we want to reduce the uncertainty about our pre-
diction. Third, we want the new set of parameters to do well on
the current example. In particular, we use the predicted sequence of
phonemes ~̂pi = arg max~p µi ·φ (~ai, ~pi) and modify the parameters
µi only if the score of the correct phoneme sequence ~pi is not greater
than the score of the predicted sequence ~̂pi by a difference of at least
`
(
~pi, ~̂pi

)
, that is if,

µi · φ (~ai, ~pi) < µi · φ
(
~ai, ~̂pi

)
+ `
(
~pi, ~̂pi

)
. (6)

In other words, we not only want the score of the correct phoneme
sequence to be the highest, but we also want that the difference be-
tween the score of the correct phoneme sequence and the (second)
best phoneme sequence to be proportional the loss suffered when
predicting the later instead of the former. The higher the value of the
loss, the higher the gap we enforce.

To solve the optimization problem of (3) we note that it is convex
in both µ and Σ and it is a sum of terms, each is a function of either
µ or Σ (but not both), including the first term - the KL divergence.
We thus first compute the derivative of (3), set it to zero and solve
for µ to obtain,

µi+1 ← µi + Li βi Σiδi , (7)

where

βi ←
1

δ>i Σiδi + C
. (8)

Note that Li and βi are scalars, and their product is the global ef-
fective learning rate. The product of the matrix Σi and the vector δi

give the effective direction of the update, which can be thought of as
individual learning rate per features (see also Sec. 2.4).

Finally, we also compute the derivative of (3) with respect to Σ,
set it to zero and solve for Σ to obtain,

Σ−1
i+1 = Σ−1

i +
δiδ
>
i

C
. (9)

Using the Woodbury [11] identity we can also rewrite the update for
Σ in non-inverted form:

Σi+1 = Σi − βi

(
Σiδiδ

>
i Σi

)
, (10)

where βi was defined above in (8). We note in passing that both the
update of Σ (10) and the update of its inverse (9) are modified by
adding an (rank-one) outer-product symmetric matrix, and thus the
covariance parameters remains both symmetric and positive semi-
definite. In the former case we add a quantity proportional to the
outer-product of Σiδi with itself, and in the later case, the outer
product of δi with itself.

To conclude, the algorithm maintains a pair of a vector µi and
a matrix Σi. On the ith iteration it receives an pair of acoustic rep-
resentation and a corresponding phoneme sequence (~ai, ~pi). It uses
the mean parameters to make a prediction ~̂pi = f (~ai,µi) (1) and

suffers loss `
(
~pi, ~̂pi

)
. If the difference between the score of the

correct sequence ~pi and the predicted phoneme-sequence ~̂pi is not
greater than the loss it updates the mean parameters using (7),(8).
Otherwise the mean parameters are not modified, that is µi+1 = µi.
It updates the covariance matrix using either (9) or (10),(8). We ini-
tialize µ1 = 0 and Σ = I ∈ RD×D (identity matrix).



Frame Phone Ins. Del. Sub.
Error Rate Error Rate

HMM[6] 39.3 42.0 - - -
HMM[7] - 40.9 3.6 10.5 26.8
KSBSC[7] - 45.1 5.9 10.8 28.4
CSS[6] 28.3 33.5 - - -
PA 30.0 33.4 6.3 6.1 18.8
DROP 29.2 31.1 4.2 7.5 18.1
PROJECT 30.0 31.7 4.5 7.4 18.3

Table 1. Frame error rates, phone error rates, insertions, deletions
and substitutions on the TIMIT test set for seven methods: two dif-
ferent HMMs models (taken from [6, 7]), three single learning-rate
learning methods (two reported in [6, 7] and PA) and the two meth-
ods described in this paper.

2.4. Diagonalization

The above derivation yields a full covariance matrix, since it is a sum
of rank-one matrices. For the purpose of ASR full matrices are not
practical since the the number of features the function φ employ (its
dimension) is in the order of hundreds. We thus restrict ourself to
diagonal matrices in one of two ways. One option is to update Σi+1

directly using (10) and then drop all the non-diagonal elements. We
refer to this method as drop. A second option is to compute the
inverse of the covariance Σ−1

i+1 using (9), then drop its non-diagonal
elements and compute the inverse of the resulting diagonal matrix.
We refer to this method as project since it is equivalent to a pro-
jection of the full matrix onto the set of diagonal matrices using the
KL divergence. Below we report the results for both updates.

2.5. Averaging

Given a set of N pairs {(~ai, ~pi)}N1 , we iterate over its elements
(possibly M epochs) and employ the update rule on each pair. One
common procedure to evaluate the algorithm is using the latest pa-
rametersµNM to classify unseen utterances (test set). Other alterna-
tives were described and analyzed in [12]. In particular, one option is
to use the average of µ1 . . .µMN rather than just its last element. A
theoretical analysis shows that with i.i.d. assumptions over the data,
the average estimate is optimal, in the sense that, with high proba-
bility the loss suffered over new speech utterances will be small.

3. EXPERIMENTS

We evaluate the performance of our proposed methods using the
TIMIT [13] speech corpus. We followed standard partition [6] of
the corpus into a training, test and validation set of 3, 696, 400
and 192 utterances respectively (1.1M ,120K,57K frames). We
followed previous processing of the data [6] and computed a 39-
dimensional Mel-frequency cepstrum coefficients with their first and
second derivatives. We mapped TIMIT set of 61 phonemes into 48.

The features φ(~a, ~p) (see (2)) are of one of two types. Either
φn(~at, p) (node features) for all t = 1 . . . T and some phoneme
p or φe(pt, pt+1) (edge features) for all t = 1 . . . T − 1. The first
type captures the relation between a possible phoneme and the corre-
sponding acoustic input, and intuitively is the equivalent of the emis-
sion probabilities of HMMs. The second type capture the depen-
dency between two adjacent phonemes and intuitively is the equiv-
alent of the transition probabilities in HMMs. In particular, for the
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Fig. 1. Frame error rate against iteration for three algorithms.

first type we used the 39 acoustic features, their square and the prod-
ucts of all unordered pairs. For the second type we used a single
fixed feature.

We evaluated three algorithms, drop and project described
above and the passive-aggressive algorithm [14, 7] (PA) which we
describe now. The algorithm is an online algorithm that maintains a
weight vector w ∈ RD and uses the same prediction function as in
(1). To update its parameters it first computes the phoneme-sequence
with the highest score ~̂pi and setswi+1 to bewi + αiδi (defined in
(4)) where

αi = min

C, max
{

0, `
(
~pi, ~̂pi

)
−wi · δi

}
‖δi‖2

 ,

(see [14, sec. 8] and [7, sec. 3] for details). The PA algorithm
in conjunction with our choice of features is denoted by PA (as op-
posed to the PA algorithm employed with kernels mentioned below).
All algorithms used averaging and were run for 100 epochs with 8
different values for the parameter C. For each algorithm we picked
the best value of C and epoch using the validation set and report the
results on the test set. We also quote the results of two HMM sys-
tems taken from [7] and [6] (single state which corresponds to out
setting), the Kernel-based recognizer trained with a PA algorithm [7]
denoted by the initials of the authors KSBSC, and CD-HMM [6] de-
noted similarly by CSS.

Following [6] we evaluated the algorithms using two metrics:
the frame error rate, which is the fraction of misclassified frames,
and the phoneme error rate, computed using the Levenshtein dis-
tance. The later reflects better our ultimate goal of speech recogni-
tion. In both cases we followed a common practice [15] and mapped
the 48 states into 39 categories.

Table 1 summaries our results. The first column shows the frame
error rate and the second the phone error rate which is the sum of the
fraction of insertions (Ins.), deletions (Del.) and substitutions (Sub.)
as computed by the Levenshtein distance. The results show that the
CD-HMMs trained with an online method have the smallest frame
error rate, although drop is not far beyond. However, drop and
project have a significantly lower phoneme error rate compared
to all other methods. Furthermore, the phone error rate of the drop
algorithm is even better than the performance of CD-HMMS with
two mixture components, although for prediction it uses much less
parameters.

Interestingly, HMM has the lowest insertion rate of 3.6 while
drop is not far beyond with a value of 4.2, and PA has the lowest
deletions rate of 6.1 compared with 7.4 of drop. However, drop
compensate these gaps with a relatively low substitution rate of 18.1.
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(b) Deletion
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Fig. 2. The three components of the Levenshtein distance over the test set against the number of iterations for three algorithms: PA, DROP
and PROJECT. The marker indicates the best iteration using the frame error rate on the development set.

Fig. 1 shows the frame error rate of three algorithms against the
number of iterations. We observe that drop and project achieves
their best performance after about 10 iterations, while PA did not
converge even after 100 iterations. Similar phenomena was reported
by [6, Figure. 3].

To better understand the performance of the algorithms for
phoneme sequence classification we plot in Fig. 2 insertion, deletion
and substitution rate the of three algorithms against the number of
iterations. The marker indicates the iteration chosen according the
frame error rate on the validation data. Interestingly, both the inser-
tion rate and substitution rate decrease with more epochs over the
training data, while the deletion rate increases with more epochs.
Furthermore, for project all three measures seems to converge
after about 10 epochs. Also as dropmakes more passes it continues
to reduce the insertion error rate for the cost of further increasing
deletion error rate. Finally, PA converges both for insertion and
deletion after about 10 epochs, yet its substitution error does not
seems to have a monotone behaviour. We are still in investigating
the cause of these observations.

Finally (not shown), we found empirically that project was
more sensitive to the value of the parameter C, compared to drop
and PA, which showed a close to constant performance across large
range of values.

4. DISCUSSION

Our choice of model, trained either by drop, project or PA, uses
the same information as a single mixture component CD-HMM.
All use a single parameter to model phoneme transition and first
and second order functions of the 39-MFCC coefficients to model
observation-phoneme relation. Still, the difference in performance
between all training methods is remarkable. Standard discriminative
online methods (which uses a single learning rate) obtain lower error
rates than traditional methods which optimize the likelihood and are
faster to train. Per-feature learning rate methods perform even better
in terms of phoneme error rate and converge even faster. We plan to
lift our methods to train models equivalent to HMMs with more than
one mixture when modeling each phoneme.
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