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ABSTRACT

The need to accurately and efficiently estimate room impulse re-
sponses arises in many acoustic signal processing applications. In
this work, we present a general family of algorithms which contain
the conventional normalized least mean squares (NLMS) algorithm
as a special case. Specific members of this family yield estimates
which are robust both to different noise models and choice of pa-
rameters. We demonstrate the merits of our approach to accurately
estimate sparse room impulse responses in simulations with speech
signals.

1. INTRODUCTION

Many acoustic signal processing systems rely upon the reliable esti-
mation of a linear impulse response. For example, in acoustic echo
cancellation, the goal is to estimate the room impulse response in
order to effectively compensate for echoes and reverberation. The
transfer function of the room is modeled as a linear time-invariant
system with a memory size M , with a true room impulse response
denoted by h ∈ R

M . An acoustic source signal is represented as
a discrete time signal s, whose latest M tap values are given by
si = [si, si−1, . . . , si−M+1]

T . The acoustic system then mea-
sures the signal x, which is given by the convolution of the source
signal s with the room impulse response h corrupted by noise n:
xi =

PM−1

r=0
hrsi−r + ni = h · si + ni. To effectively predict and

cancel any room effects in x, the room impulse response h needs to
be estimated from these observations.

In the machine learning community, similar problems arise in
the context of online prediction problems. In such problems the
learner is exposed to an input vector si and is required to make a
prediction x̂i ∈ R. The learner then receives the correct response
xi and suffers a nonnegative loss �(xi, x̂i), whereby the learner it-
eratively updates his prediction function. Much prior work in ma-
chine learning has focused on linear prediction functions of the form
x̂i = wi · si. In this work, we show how techniques from these
approaches can be applied to the problem of estimating impulse re-
sponses in signal processing. In particular, we demonstrate the utility
of incorporating different divergences and loss functions for robustly
estimating sparse room impulse responses.

This work was supported by the U.S. NSF and ARO.

2. ALGORITHMS

The popular normalized least mean squares (NLMS) algorithm (see
e.g. in [1]) can be viewed as a solution of the following optimization
problem,

wi+1 = arg min
w

1

2
‖w − wi‖

2 + C(xi − w · si)
2, (1)

whose solution is given by:

wi+1 = wi +
1

1

C
+ ‖si‖2

(xi − wi · si)si. (2)

For convenience, we will also refer to the parameter γ = 1/C later
when describing the NLMS algorithm.

We investigate a broad class of algorithms which contain NLMS
as special case. In particular, we consider update rules of the form:

wi+1 = arg min
w

DF (w ‖wi ) + C�(xi, w · si), (3)

where DF is a divergence, � is a loss function and C > 0. The
new estimate wi+1 thus optimizes two opposing terms. The first
term tries to keep the new estimate wi+1 as close as possible to the
current estimate wi. The second term focuses solely on the loss
achieved by the estimate on the latest portion of the signal. The
constant C encapsulates the tradeoff between these two terms. In
the following, we further investigate specific choices for both the
divergence DF and the loss function �.

The algorithmic framework of Eq. (3) has previously been ana-
lyzed for several different loss functions and divergences. For exam-
ple, [2] presents a general framework for classification and regres-
sion, in which the algorithms optimize an epsilon-insensitive loss
function with Euclidian distance to measure divergence. In other
work, a squared loss function has been used in conjunction with p-
norm divergences [3].

2.1. Bregman Divergences

A Bregman divergence is defined via a strictly convex function F :
X → R on a closed convex set X ⊆ R

n. A Bregman function F
needs to satisfy a set of specific constraints [4]. We further impose
that F is continuously differentiable on all points ofXint (the interior
of X ) which is assumed to be nonempty. The Bregman divergence
that is associated with F , applied to w ∈ X and h ∈ Xint is then
defined to be

DF (w ‖h )
def
= F (w) − F (h) −∇F (h) · (w − h). (4)
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DF measures the difference between two functions evaluated at w.
The first is the function F itself and the second is the first-order
Taylor expansion of F derived at h. Note that DF (· ‖· ) is convex
in its first argument since F is a convex function. The divergences
we employ are defined via a single scalar convex function f such
that F (w) =

Pn

l=1
f([w]l), where [w]l is the l-th coordinate of w.

The resulting Bregman divergence between w and h is then given
by: DF (w ‖h ) =

Pn

l=1
Df ([w]l‖[h]l) .

In this paper we focus on two commonly used divergences. The
first is when X ⊂ R

n and f(w) = (1/2) w2 so that DF becomes
the squared distance between w and h,

DF (w ‖h ) =
1

2
‖w − h‖2.

The second divergence we consider is obtained by setting f(w) =
w log(w) − w for nonnegative X = R

n
+. In this case DF is the

relative entropy:

DRE (w‖h) =
nX

l=1

„
[w]l log

„
[w]l
[h]l

«
− [w]l + [h]l

«
.

It has been shown [5] that this divergence yields a sparse regression
estimate w, where most of the components equal zero. This is due
to that fact that the relative entropy is a homogenous divergence,
DRE (aw‖ah) = aDRE (w‖h) for a > 0, leading to solutions
located on the boundaries of the domain R

n
+.

2.2. Loss Functions

We consider the second term in Eq. (3). The squared loss:

�2(xi, x̂i) = (xi − x̂i)
2

is ubiquitously found in many domains such as adaptive filtering [6,
7], linear regression and estimation. This is due mainly to the simple
functional forms that arise from it. In this paper we consider the
absolute loss:

�1(xi, x̂i) = |xi − x̂i|.

The absolute loss is more robust to outliers compared to squared loss,
since it is relatively less sensitive to large errors xi − x̂i.

Thus, we except our system to be robust even when the distribu-
tion of the noise is not Gaussian, and its amplitude level may have
extremely high values. The experiments below demonstrate this phe-
nomena.

2.3. Putting It All Together

We now develop a family of algorithms using the absolute loss func-
tion �(xi, x̂i) = |xi − x̂i| along with two different Bregman diver-
gences. These algorithms are defined via Eq. (3) to yield the follow-
ing optimization problem:

wi+1 = arg min
w

DF (w ‖wi ) + C|xi − w · si|. (5)

Writing the loss function explicitly gives

wi+1 = arg min
w

DF (w ‖wi ) + Cξ + Cξ∗ (6)

s.t. xi − w · si ≥ −ξ

ξ∗ ≥ xi − w · si

ξ, ξ∗ ≥ 0.

Since the objective is strictly convex and the constraints are linear,
there is a unique solution to Eq. (6). To characterize the solution
wi+1, we consider the dual form of Eq. (6):

L(w; α, α∗, β, β∗) = DF (w ‖wi ) + Cξ + Cξ∗ − βξ − β∗ξ∗ (7)

+α[−ξ − xi + w · si] + α∗[−ξ∗ + xi − w · si]

where α, α∗, β, β∗ ≥ 0 are the Lagrange multipliers. Taking the
derivative of L with respect w yields ∇F (w) = ∇F (wi) + (α −
α∗)si, so that

w = (∇F )−1 (∇F (wi) + (α − α∗)si) ,

where ∇F−1 (·) is the component-wise inverse of ∇F (·). From
convexity, this inverse is well-defined since ∇F is strictly mono-
tone. When the Euclidean divergence is used, ∇F (·) is the identity
function and the update is given by a linear combination of wi and
si. In contrast, for the relative entropy divergence, the gradient and
its inverse are given by component-wise log and exp functions, re-
spectively. In this case, the l-th component of w is determined by
the multiplicative form:

[w]l = [wi]l exp ((α − α∗)[si]l) ,

where [w]l is the lth component of w.
Taking derivatives of L with respect to ξ and ξ∗, and because

β, β∗ ≥ 0, the Lagrange parameters are constrained to be 0 ≤
α, α∗ ≤ C. The Karush-Kuhn-Tucker (KKT) conditions [8] give
conditions for optimality in terms of the primal and dual variables:

α [−ξ − xi + w · si] = 0
α∗ [−ξ∗ + xi − w · si] = 0
(C − α)ξ = 0
(C − α∗)ξ∗ = 0

(8)

We first show that the solution can always be chosen such that either
α = 0 or α∗ = 0. Assuming that both α > 0 and α∗ > 0. From
the first KKT condition we get xi − w · si = −ξ ≤ 0 and from the
second KKT condition we get xi − w · si = ξ∗ ≥ 0. Combining
the last two equalities yield xi − w · si = 0. Therefore we get ξ =
ξ∗ = 0. By setting ξ = ξ∗ = 0 in Eq. (7) we get that the Lagrangian
of L is Eq. (7) only a function of the difference α−α∗, and not each
of them independently. As a consequence, we can always set at least
one of the dual parameters to zero, i.e. either α = 0 or α∗ = 0. We
thus define τ = α + α∗ and rewrite the update rule:

w = (∇F )−1 (∇F (wi) + sign(xi − x̂i)τsi) . (9)

A similar argument shows that either ξ = 0 or ξ∗ = 0. If ξ > 0,
then α = C > 0 and α∗ = 0 < C so that ξ∗ = 0. As a consequence
we see that the loss is given by ξ + ξ∗ = |xi − wi+1 · si|.

The solution for τ exhibits serveral distinct regimes. Like NLMS,
if xi = wi · si there is no loss and no update will be required:
wi+1 = wi. In this case τ = α = α∗ = 0. When both 0 <
α, α∗ < C, then 0 < τ < C. In this case ξ = ξ∗ = 0 and so
|xi − wi+1 · si| = 0. In other words, there is no loss on the cur-
rent measurement after the update is performed. On the other hand,
consider the situation when τ = C, i.e. either α = C or α∗ = C,
and so either ξ > 0 or ξ∗ > 0. Then |xi − wi+1 · si| > 0, and the
loss on the current measurement is non-zero even after wi+1 is up-
dated. The resulting update is then analogous to stochastic-gradient
algorithms with a fixed learning rate C.

For Euclidean distance, the solution can be expressed analyti-
cally as:

τ = α + α∗ = min

j
|xi − x̂i|

‖si‖2
, C

ff
, (10)
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where α = 0 if xi − x̂i < 0, and α∗ = 0 if xi − x̂i > 0. For more
general divergences, there may not be a closed form solution to the
optimal τ . In that case, a binary search algortihm on the interval
[0, C] may be used to find an approximate solution up to tolerance
level δ in time proportional to log2(C/δ).

2.4. Averaging

One common procedure is to use the latest wi to estimate the true
room impulse response. Other alternatives were described and ana-
lyzed in [9]. In this more general formulation, the estimate of h at
time i is a function of all the previous vectors w1 . . . wi. In partic-
ular, one option is to use a filtered average of this sequence rather
than just its last element. A theoretical analysis shows that with
i.i.d. assumptions over the input sequence, the average estimate,
ŵi = 1

i

Pi

j=1
wi , is optimal, in the sense that with high proba-

bility the loss suffered over new sequences will be small. This last
equation can easily be computed recursively, with a time complexity
proportional to the length M . For room impulse response estima-
tion, i.i.d. assumptions do not necessarily hold since si and si−1 are
statistically dependent. However, the noise is i.i.d. and if the SNR is
low, then the data is approximately i.i.d. In the next section we show
how averaging may be used to improve the room impulse response
estimation.

3. EXPERIMENTS

We demonstrate the utility of the algorithmic approach described
above for echo cancellation. In acoustic echo cancellation, adaptive
filtering is typically used to estimate the transfer function between
a speaker and a microphone present in a room. The adaptive filter
estimates the combination of the speaker and microphone character-
istics along with the room impulse response. To apply the algorithm
to this problem, we assume that the speaker and microphone char-
acteristics are already known, and only the unknown and possibly
changing room impulse response needs to be estimated.

In our simulations, an 18 second segment of 291,200 samples
of human speech sampled at 16 kHz is used as the source signal,
concatenated for long time convergence estimates. The room is sim-
ulated by a room impulse response h that is computed from a source
image model [10]. The speech source signal is convolved with this
room impulse response and corrupted with noise to generate the tar-
get signal x. The sparse nature of the impulse response motivates
the use of divergences in algorithms that can robustly estimate the
underlying h.

We investigated three different i.i.d. noise models at four dif-
ferent signal-to-noise ratios (SNR): 0,−20, −40,−60 dB. The first
noise model which we will refer to as Normal is i.i.d. Gaussian
noise with zero mean and different variances corresponding to the
SNR ratio. The second noise model is a Sparse noise model gen-
erated from a binary random variable analogous to a heads/tails coin
flip at each discrete time step. If the result is heads, an i.i.d. Gaus-
sian noise is then added to the measurement as in the Normal noise
model. Otherwise, no noise is added. In other words, the signal
is corrupted by additive Gaussian noise for only a fraction of the
time steps, and this fraction was varied between 5–50%. The last
noise model is generated by corrupting the signal with Uniform
distributed noise with various mean values.

We evaluated three algorithms: the conventional normalized least
mean square (NLMS) algorithm with γ = 1 and two adaptive filters
based on the absolute loss. The first adaptive filter called Eu1 uses

the Euclidean distance and the second called RE1 uses the Relative-
Entropy. All three algorithms were evaluated using the latest wi

estimate (last), as well as an averaged estimate ŵi (average) as
described in Sec. 2.4.

We use the closed form solution for NLMS and Eu1 and a bi-
nary search with a tolerance level δ = 10−10 for RE1 . The first
two algorithms are initialized with zero coefficients w1 = 0 and the
RE1 algorithm with a uniform vector where all the components equal
10−3. The C parameter used in Eu1 and RE1 is set using a previ-
ous analysis of similar classification algorithms [11]. This analysis
indicates that the value of the parameter should be above and close
to 1/R2, where R is the radius of the ball that contains all the signal
segments of length M , so that R = maxi ‖si‖p. We use the first
125 ms of the signal to estimate C. For the Eu1 algorithm we set
p = 2 and get C = 10−3, and for the RE1 algorithm set p = 1 and
get C = 10−2.

The results are summarized in Fig. 1, which contains eight plots.
The four columns show the results for the SNR levels: −60dB (left),
−40,−20, 0dB (right). The top row summarizes the results for the
Normal noise model and the bottom for the Sparse model where
only 5% of the features are contaminated with noise. The normalized
misalignment of the filter estimates:

E = log10

„
‖w − h‖2

2

‖h‖2
2

«
, (11)

is used to evaluate the error of the estimated room impulse response.
Each of the eight plots shows the resulting error from the different
algorithms: NLMS, Eu1 and RE1 where each can be used with only
the current estimate (last) and the averaged estimate (averaged).

We first focus on the performance of the algorithms with no av-
eraging. At low noise levels all algorithms recover the room impulse
response with a satisfactory misalignment of less then −30dB. The
NLMS and Eu1 achieve even smaller misalignment of about −45dB
when the noise level is very small (−60dB). However, the situation is
completely different at higher noise levels. In this case, NLMS is not
able to recover the room impulse response. Furthermore, the accu-
racy of its estimates suffers from high variability. On the other hand,
algorithms which employ the absolute loss do much more favorably.
At noise level of −0dB the Eu1 recovers the impulse response at
a level of −8dB and the RE1 at a level better than −13dB for the
Normal noise model, and −19dB for Eu1 and −25dB for RE1 for
the Sparse model.

We see that for very low noise levels, the averaged estimation is
worse than the last estimation. The gap ranges from about −3dB for
the RE1 algorithm to about −20dB for NLMS. As the noise level
increases this gap reduces. At a noise level of −20dB the averaged
estimation is better for NLMS by at least 3dB, and competitive with
the two other algorithms. In all cases, the averaged estimate is robust
as indicated by the low variance in the estimation error. These results
agree with the intuition that averaging should improve results if the
input vectors are i.i.d. as in the high noise regime.

We verify the method of choosing the C parameter described
above by enumerating over a wide range of C values. Surprisingly
our method for choosing C is quite accurate as the best values are
indeed close to the values obtained from theoretical arguments. For
Eu1 the estimate favors low noise levels. At high noise levels, lower
values of C yield the best performance. The situation is reversed for
the RE1 algorithm. Values of C = 10−2 obtained by theory is best
for high levels of noise, and larger values of C are better for low
noise levels.

We evaluated NLMS by setting the value of γ = 1/C = 10+3

as obtained by theory. This value improves the performance of the
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Fig. 1. Simulations with four noise levels (columns) and two noise models: Normal (top) and Sparse Normal (bottom). Six algorithms are
compared: NLMS (circle), Eu1 (triangle) and RE1 (square) with instantaneous estimation wi (solid line) and averaged estimation ŵi (dashed
line). The x-axis represents the sample index and the y-axis the normalized misalignment.

algorithm for high values of noise, but significantly deteriorates for
low noise levels. Examining the best value of γ for each noise level,
we observed that it ranges over almost five orders of magnitude 100

to 10−4. This range is much smaller and is only about one order
of magnitude for Eu1 and RE1. These algorithms seem to be more
invariant to the noise level, and depend more on the characteristic
radius R of the signal. In contrast, NLMS is much more sensitive to
fine tuning this parameter according to the noise level.

Finally, in the case of sparse noise, NLMS performed signifi-
cantly worse than the two other absolute-loss algorithms. The gap in
performance is at least 10dB for normalized misalignment.

4. CONCLUSION

We presented an algorithm for adaptive filtering based on ideas bor-
rowed from the machine learning approach to regression. Our sys-
tem contains three main components : alternative divergence func-
tion to measure the difference between two impulse response vectors
(relative entropy vs. Euclidian), robust loss function (absolute loss
vs. Euclidian) and averaging. The experimental results indicate the
usefulness of the approach, especially for high noise levels with out-
liers. Currently, we are investigating other choices for the Bregman
divergence and the loss functions which will perform even better in
these acoustic signal processing tasks.
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