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Abstract

We devise and experiment with a dynamical kernel-basecsysor
tracking hand movements from neural activity. The statenefgystem
corresponds to the hand location, velocity, and accetarativhile the
system’s input are the instantaneous spike rates. Thensgsttate dy-
namics is defined as a combination of a linear mapping frorpteeious
estimated state and a kernel-based mapping tailored for modelingaheur
activities. In contrast to generative models, the actitaystate mapping
is learned using discriminative methods by minimizing aseeiobust
loss function. We use this approach to predict hand trajet@n the
basis of neural activity in motor cortex of behaving monkaeysl find
that the proposed approach is more accurate than both a apgtioach
based on support vector regression and the Kalman filter.

1 Introduction

The paper focuses on the problem of tracking hand movemehish constitute smooth
spatial trajectories, from spike trains of a neural popatatWe do so by devising a dynam-
ical system which employs a tailored kernel for spike trafeng with a linear mapping
corresponding to the states’ dynamics. Consider a situativere a subject performs free
hand movements during a task that requires accurate spddaraprecision. In the lab,
it may be a constrained reaching task while in real life it rbayan every day task such as
eating. We wish to track the hand position given only spikéns from a recorded neural
population. The rationale of such an undertaking is two.félidst, this task can be viewed
as a stem towards the development of a Brain Machine Ine(&lell) which gradually and
rapidly become a possible future solution for the motor olisd patients. Recent studies of
BMIs [13, 3, 10] (being on-line and feedback enabled) shat éirelatively small number
of cortical units can be used to move a cursor or a robot éffegt even without genera-
tion of hand movements and that training of the subjectsavgs the overall success of the
BMIs. Second, an open loop (off-line) movement decoding €&g. [2, 7, 1, 15, 11, 8]),
while inappropriate for BMIs, is computationally less erpwe, easier to implement and
allows repeated analysis thus providing a handle to unaledgtgs of neural computations
in the brain.

Early studies [6] showed that the direction of arm movemsméflected by the population
vector of preferred directions weighted by current firingesa suggesting that intended



movement is encoded in the firing rate which, in turn, is matkd by the angle between a
unit’s preferred direction (PD) and the intended directi®his linear regression approach
is still prevalent and is applied, with some variation of tbarning methods, in closed and
open loop settings. There is relatively little work on theelepment of dedicated nonlinear
methods.

Both movement and neural activity are dynamic and can thexdfe naturally modeled by
dynamical systems. Filtering methods often employ geiveratrobabilistic models such
as the well known Kalman filter [16] or more neurally spe@ati models [2, 1] in which
a cortical unit’s spike count is generated by a probabilitydtion of its underlying firing
rate which is tuned to movement parameters. The movemeinty lbesmooth trajectory,
is modeled as a linear transition with (typically additivauissian) noise. These methods
have the advantage of being aware of the smooth nature ofm@mweand provide models
of what neurons are tuned to. However, the requirement afridegsg a neural population’s
firing probability as a function of movement state is hardatssy without making costly
assumptions. The most prominent is the assumption of titatisndependence of cells
given the movement.

Kernel based methods have been shown to achieve state of thewdts in many applica-
tion domains. Discriminative kernel methods, such as Supgextor Regression (SVR)
forgo the task of modeling neuronal tuning functions. Fenthore, the construction of
kernel induced feature spaces, lends itself to efficientemgntation of distance measures
over spike trains that are better suited to comparing twoalgopulation trajectories than
the Euclidean distance in the original space of spike copetsbins [11, 5]. However,
SVR is a “static” method that does not take into account theamdynamics of the pre-
dicted movement trajectory which imposes a statisticakddpncy between consecutive
examples.

This paper introduces a kernel based regression methoihtt@porates linear dynamics
of the predicted trajectories. In Sec. 2 we formally desetle problem setting. We intro-

duce the movement tracking model and the associated Iggir@imework in Sec. 3. The

resulting learning problem vyields a new kernel for lineandsnical systems. We provide
an efficient calculation of this kernel and describe our dyglice optimization method for
solving the learning problem. The experimental method esented in Sec. 4. Results,
underscoring the merits of our algorithm are provided in.Seand conclusions are given
in Sec. 6.

2 Problem Setting

Our training set containg: trials. Each trial (typically indexed bior ) consists of a pair
of movement and neural recordings, designated ¥/, 0’}. Y = {yi i:id is a time

series of movement state values arfde R? is the movement state vector at timén
trial 7. We are interested in reconstructing position, howeverb#iter modelingy; may
be a vector of position, velocity and acceleration (as isctee in Sec. 4). This trajectory is

observed during model learning and is the inference ta@ét= {ot}éf is a time series
of neural spike counts ans} € R? is a vector of spike counts fromcortical units at time
t. We wish to learn a function = f (Oj.,) thatis a good estimate (in a sense formalized

in the sequel) of the movement. Thus, f is a causal filtering method.

We confine ourselves to a causal setting since we plan to dpplgroposed method in a
closed loop scenario where real-time output is requirece Jdrtition into separate trajecto-
ries is a natural one in a setting where a session is dividedmany trials, each consisting
of one attempt at accomplishing the basic task (such asirepoiovements to displayed
targets). In tasks that involve no hitting of objects, hara/ements are typically smooth.



End point movement in small time steps is loosely approxéthats having constant ac-
celeration. On the other hand, neural spike counts (whiehtygically measured in bins
of 50 — 100ms) vary greatly from one time step to the next. In summary, aalgs to
devise a dynamic mapping from sequences of neural act\étieling at a given time to the
instantaneous hand movement characterization (locat@agity, and acceleration).

3 Movement Tracking Algorithm

Our regression method is defined as follows: given a s@ies R?*'<~< of observations
and, possibly, an initial statg,, the predicted trajectorf € R**ten js,

2z = Az, 1+ Wo (o) ,tena>t>0, 1)

wherezy = yo, A € R™? is a matrix describing linear movement dynamics and
W e R%7is a weight matrix. ¢ (o,) is a feature vector of the observed spike trains
at timet and is later replaced by a kernel operator (in the dual foathoh to follow).
Thus, the state transition is a linear transformation ofgifevious state with the addition
of a non-linear effect of the observation.

Note that unfolding the recursion in Eq. (1) yiettds= A’y + >, _, (A" *We (o)) .
Assuming thatA describes stable dynamics (the real parts of the eigersvalud are les
than 1), then the current prediction depends, in an exp@igndecaying manner, on the
previous observations. We further assume thés fixed and wish to learW (we describe
our choice ofA in Sec. 4). In additiong, may also encompass a series of previous spike
counts in a window ending at timgas is the case in Sec. 4). Also, note that this model (in
its non-kernelized version) has an algebraic form whicliriglar to the Kalman filter (to
which we compare our results later).

Primal Learning Problem: The optimization problem presented here is identical to the
standard SVR learning problem (see, for example [12]) witheixception that! is defined

as in Eqg. (1) while in standard SVR; = W¢ (o) (i.e. without the linear dynamics).
Given a training set of fully observed triafsy?, 0’} ™" | we define the learning problem
to be

m tqend d
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i=1 t=1 s=1
Where|W||? = Dab (W)Zb (is the Forbenius norm). The second term is a sum of training

errors (in all trials, times and movement dimensioris)|. is thee insensitive loss and is
defined agv|. = max {0, |[v| — e}. The first term is a regularization term that promotes
small weights and: is a fixed constant providing a tradeoff between the regradion
term and the training error. Note that to compensate foedsffit units and scales of the
movement dimensions one could either define a differgrindc, for each dimension of
the movement or, conversely, scale #i& movement dimension. The tracking method,
combined with the optimization specified here, defines thepete algorithm. We name
this method the Discriminative Dynamic Tracker or DDT in gho

A Dual Solution: The derivation of the dual of the learning problem defined in &)

is rather mundane (e.g. [12]) and is thus omitted. Brieflyrem@ace the-loss with pairs
of slack variables. We then write a Lagrangian of the prinrabfem and replace! with

its (less-standard) definition. We then differentiate thgiangian with respect to the slack
variables an@V and obtain a dual optimization problem. We present the duilljgroblem

in a top-down manner, starting with the general form andlfiimig with a kernel definition.
The form of the dual is

1

max —j (a* —a)'G(a*—a)+ (a* — a

T
a,a* )

y—(a+a) e

sit. a,a* €0, ] . 3



Note that the above expression conforms to the dual form &.3¥t/ equal the size of the
movement spacel], multiplied by the total number of time steps in all the tiag trajecto-
ries.a, a* € R’ are vectors of Lagrange multiplierg,e R’ is a column concatenation of

T
T
all the training set movement trajectori%@r%)T--- (y;% ) } e=le,....e)T e R

andg € R’ is a Gram matrix¢Z denotes transposition). One obvious difference be-
tween our setting and the standard SVR lies within the sizkeofectors and Gram matrix.
In addition, a major difference is the definition gf We defineG here in a hierarchical
manner. Let, j € {1,...,m} be trajectory (trial) indexes; is built from blocks indexed

by G%, which are in turn made from basic blocks, indexed[bﬁi as follows
GU ... GIm Ko o Ky,

agml ... @gmm K”

fi

end

ij
Kti tJ
end end

where blockG* refers to a pair of trialsi(andj). Finally Each basic bIocI«Kg refersto a

pair of time steps andq in trajectories and; respectivelyz?  ,, t{,n 4 are the time lengths
of trials i and;j. Basic blocks are defined as

t q
K =2 > (A7) ki (ar)" @
r=1s=1
wherek!d, = k (o!,07) is a (freely chosen) basic kernel between the two neuralroase
tionso’. ando’ at timesr ands in trials i and; respectively. For an explanation of kernel
operators we refer the reader to [14] and mention that thedkeperator can be viewed
as computingp (o%) - ¢ (o?) whereg is a fixed mapping to some inner product space.
The choice of kernel (being the choice of feature space)atsfle modeling decision that
specifies how similarities between neural patterns are uneds The resulting dual form
of the tracker isz; = >, o, Gy, Whereg, is the Gram matrix row of the new example.

It is therefore clear from Eq. (4) that the linear dynamicrelegeristics of DDT results in
a Gram matrix whose entries depend on previous observatidhis dependency is ex-
ponentially decaying as the time difference between evierttse trajectories grow. Note
that solution of the dual optimization problem in Eq. (3) dancalculated by any stan-
dard quadratic programming optimization tool. Also, ndiattdirect calculation o is
inefficient. We describe an efficient method in the sequel.

Efficient Calculation of the Gram Matrix ~ Simple, straight-forward calculation of the
Gram matrix is time consuming. To illustrate this, supposehetrial is of lengtht?  , = n,
then calculation of each basic block would také:?) summation steps. We now describe
a procedure based on dynamic-programming method for @dloglithe Gram matrix in a
constant number of operations for each basic block.

Omitting the indexing over trials to ease notation, we atergsted in calculating the basic
block K,. First, defineB;, = >_;_, kx,A'%. the basic blockK,, can be recursively
calculated in three different ways:

1

Ky = Kt(qfl)AT + By (5)
Kiy = AKg 1)+ (Bg)" 6)
Ky = AK(t—l)(q—l)AT + (Bqt)T +Biyg — kg - (7)
Thus, by adding Eq. (5) to Eq. (6) and subtracting Eq. (7) ve ge
Kig = AKqo1)+Kiq-nAT = AK 1)) AT + kgl -

B, (and the entailed summation) is eliminated in exchange 2@ dynamic program with
initial ConditionS:K11 = k111 s Klq = Kl(q_l)AT +k’1qI s K = AK(t—l)l +kt1[.



Table 1: MeanR?, MAE. & MSE (across datasets, folds, hands and directions) for each algorith

R? MAE. MSE
Algorithm pos. | vel. | accl. | pos.| vel. | accl. | pos.| vel. | accl.
Kalman filter | 0.64| 0.58| 0.30 | 0.40| 0.15| 0.37 | 0.78 | 0.27 | 1.16
DDT-linear 0.59| 0.49| 0.17 | 0.63| 0.41| 058 | 0.97| 0.50| 1.23
SVR-Spikernel| 0.61| 0.64 | 0.37 | 0.44| 0.14| 0.34 | 0.76 | 0.20 | 0.98
DDT-Spikernal| 0.73 | 0.67 | 0.40 | 0.37| 0.14| 0.34 | 0.50| 0.16 | 0.91
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Figure 1: Correlation coefficientsR?, of predicted and observed hand positions) comparisons of
the DDT-Spikernel versus the Kalman filter (left), DDT-linear (center) &VR-Spikernel (right).
Each data point is th&? values obtained by the DDT-Spikernel and by another method in one fold
of one of the datasets for one of the two axes of movement (circle fespaad one of the hands
(filled/non-filled). Results above the diagonals are cases were the PB@&Sel outperformes.

Suggested Optimization Method. One possible way to solve the optimization problem
(essentially, a modification of the method described in 4]diassification) is to sequen-
tially solve a reduced problem with respect to a single qaistat a time. Define:

> (o — ;) Gij —ui| — 3 (o — ) Gy — s

J -

min
a;,of€l0,c]
e e

Theny; is the amount of-insensitive error that can be corrected for examigdg keeping
all a§-2¢ constant and changingz(.*). Optimality is reached by iteratively choosing the

d;

example with the largesy; and changing itmg*) within the [0, ¢] limits to minimize the
error for this example.

4 Experimental Setting

The data used in this work was recorded from the primary motwtex of a Rhesus
(Macaca Mulatta) monkey ("4.5 kg). The monkey sat in a damkndber, and up to 8
electrodes were introduced into MI area of each hemisphEhe. electrode signals were
amplified, filtered and sorted. The data used in this repostmeaorded on 8 different days
and includes hand positions, sampled at 500Hz, spike tifr&@agle units (isolated by sig-
nal fit to a series of windows) and of multi units (detectiontbseshold crossing) sampled
at 1ms precision. The monkey used two planar-movement manipalandontrol 2 cur-
sors on the screen to perform a center-out reaching task tdatbegan when the monkey
centered both cursors on a central circle. Either cursolddoun green, indicating the hand
to be used in the trial. Then, one of eight targets appeageigignal’), the center circle
disappeared and the monkey had to move and reach the targeetee liquid reward. The
number of multi-unit channels ranged from 5 to 15, the nundfesingle units was 20-27
and the average total was 34 units per dataset. The averdgerafe per channel was 8.2
spikes/sec. More information on the recordings can be fonif@].
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Figure 2: Comparison ofR>-performance between algorithms. Each algorithm is represented by a
vertex. The weight of an edge between two algorithms is the fraction ofitestsich the algorithm

on top achieves highek? score than the other. A bold edge indicates a fraction higher 35&h
Graphs from left to right are for position, velocity, and acceleratiopeetvely.

The results that we present here refer to prediction of imateeous hand movements during
the period from 'Go Signal’ to 'Target Reach’ times of bothnda in successful trials.
Note that some of the trials required movement of the leftdhahile keeping the right
hand steady and vise versa. Therefore, although we coesiderly movement periods
of the trials, we had to predict both movement and non-mowerfee each hand. The
cumulative time length of all the datasets was about 67 ragutSince the correlation
between the movements of the two hands tend to zero - we peddicovement for each

hand separately, choosing the movement space {o,bev,, vy, a, ay]T for each of the
hands (preliminary results using orly, y, v, vy]T were less accurate).

We preprocessed the spike trains into spike counts in amgnaindows ofLl00m.s (choice
of window size is based on previous experience [11]). Haruition, velocity and acceler-
ation were calculated using the 500Hz recordings. Bothespdunts and hand movement
were then sampled at stepsi@dms (preliminary results with step siz&@ms were negli-
gibly different for all algorithms). A labeled examp{eyi, oj@} for timet in trial ¢ consisted
of the previousl0 bins of population spike counts and the state, 6B aector for the left
or right hand. Two such consecutive examples would than haiwee bins of spike count
overlap. For example, the number of cortical urjt the first dataset was$3 (27 single
and 16 multiple) and the total length of all the trials that were dise that dataset is 529
seconds. Hence in that session there are 5290 consecudivipbes where each isid x 10
matrix of spike counts along with twéD vectors of end point movement.

In order to run our algorithm we had to choose base kernedg, parametersA andc (and

0, to be introduced below). We used the Spikernel [11], a Ketasigned to be used with
spike rate patterns, and the simple dot product (i.e. liregnession). Kernel parmeters and
c were chosen (and subsequently held fixed) by 5 fold crosdatidin over half of the first
dataset only. We compared DDT with the Spikernel and witHitiear kernel to standard
SVR using the Spikernel and the Kalman filter. We also obthinacking results using
both DDT and SVR with the standard exponential kernel. Theselts were slightly less
accurate on average than with the Spikernel and are therefoitted here. The Kalman
filter was learned assuming the standard state space mpdet Ay,—1 +7n , o, =
Hy.+¢, wheren, € are white Gaussian noise with appropriate correlationicesg) such as
in [16]. y belonged to the san@d state space as described earlier. To ease the comparison
- the same matrixA that was learned for the Kalman filter was used in our algorith
(though we show that it is not optimal for DDT), multiplied byscaling parameté. This
parameter was selected to produce Ipesition results on the training set. The selected
value is0.8.

The figures that we show in Sec. 5 are of test results in 5 falddscwalidation on the rest
of the data. Each of the 8 remaining datasets was dividedbificdds. 4/5 were used for
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Figure 3: Effect of  on R?, MAE. ,MSE Figure 4: Sample of tracking with the DDT-
and number of support vectors. Spikernel and the SVR-Spikernel.

training (with the parameters obtained previously and #reaining 1/5 as test set). This
process was repeated 5 times for each hand. Altogether wehiad 5¢1ds X 2hands= 80
folds.

5 Results

We begin by showing average results across all datasets, fthnds and X/Y directions for
the four algorithms that are compared. Table. 1 shows mearel@ton Coefficients 2,
between recorded and predicted movement values), Mdagrensitive Absolute Errors
(MAE.) and Mean Square Errors (MSH}? is a standard performance measure, MAE
the error minimized by DDT (subject to the regularizatiomigand MSE is minimized by
the Kalman filter. Under all the above measures the DDT-$pédeoutperforms the rest
with the SVR-Spikernel and the Kalman Filter alternatingé@tond place.

To understand whether the performance differences aristitatly significant we look at
the distribution of position (X and Y)R? values at each of the separate tests (160 alto-
gether). Figure 1 shows scatter plots ®f results for position predictions. Each plot
compares the DDT-Spikernel (on the Y axis) with one of theepthree algorithms (on the

X axes). Itis clear that although there are large differarineccuracy across the different
datasets, the algorithm pairs achieve similar successthvittDDT-Spikernel achieving a
betterR? score in almost all cases.

To summarize the significance &f differences we computed the number of tests in which
one algorithm achieved a high&? value than another algorithm (for all pairs, in each of
the position, velocity and acceleration categories). Hseilts of this tournament between
the algorithms are presented in Figure 2 as winning pergestaThe graphs produce a
ranking of the algorithms and the percentages are the signifes of the ranking between
pairs. The DDT-Spikernel is significantly better then thgtiia tracking position.

The matrixA in use is not optimal for our algorithm. The choiceficdcales its effect. When

6 = 0 we get the standard SVR algorithm (without state dynamits)llustrate the effect
of # we present in Figure 3 the mean (over 5 folds, X/Y directiod hand)R? results on
the first dataset as a function@flt is clear that the value chosen to minimize position error
is not optimal for minimizing velocity and acceleration@s. Another important effect of
0 is the number of the support patterns in the learned modekhaifrops considerably
(by about one third) when the effect of the dynamics is inee€la This means that more
training points fall strictly within thes-tube in training, suggesting that the kernel which
tacitly results from the dynamical model is better suitetf@ problem. Lastly, we show a
sample of test tracking results for the DDT-Spikernel andRSSpikernel in Figure 4. Note
that the acceleration values are not smooth and are, therééast aided by the dynamics of
the model. However, adding acceleration to the model ingsatkie prediction of position.



6 Conclusion

We described and reported experiments with a dynamicaésyshat combines a linear
state mapping with a nonlinear observation-to-state mmppimhe estimation of the sys-
tem’s parameters is transformed to a dual representatidlyiefds a novel kernel for tem-
poral modelling. When a linear kernel is used, the DDT systesidsimilar form to the
Kalman filter as — oo. However, the system’s parameters are set so as to minifméze t
regularizedz-insensitivel; loss between state trajectories. DDT also bares simil&oity
SVR, which employs the same loss yet without the state dycean@ur experiments indi-
cate that by combining a kernel-induced feature spaceaiisgte dynamics, and using a
robust loss we are able to leverage the trajectory predi@@zuracy and outperform com-
mon approaches. Our next step toward an accurate brainingeaiciterface for predicting
hand movements is the development of a learning procedutbdstate dynamic mapping
A and further developments of neurally motivated and compgmesentations.
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