Journal of Machine Learning Research 3 (2003) 951-991 Submitted 2/02; Published 1/03

Ultraconservative Online Algorithms for Multiclass Problems

Koby Crammer KOBICS@CS.HUJI.AC.IL
Yoram Singer SINGER@CS.HUJI.AC.IL
School of Computer Science & Engineering

Hebrew University, Jerusalem 91904, Israel

Editor: Manfred K. Warmuth

Abstract

In this paper we study a paradigm to generalize online classification algorithms for binary classi-
fication problems to multiclass problems. The particular hypotheses we investigate maintain one
prototype vector per class. Given an input instance, a multiclass hypothesis computes a similarity-
score between each prototype and the input instance and sets the predicted label to be the index
of the prototype achieving the highest similarity. To design and analyze the learning algorithms
in this paper we introduce the notion oltraconservativenessUltraconservative algorithms are
algorithms that update only the prototypes attaining similarity-scores which are higher than the
score of the correct label’s prototype. We start by describing a family of additive ultraconservative
algorithms where each algorithm in the family updates its prototypes by finding a feasible solution
for a set of linear constraints that depend on the instantaneous similarity-scores. We then discuss
a specific online algorithm that seeks a set of prototypes which have a small norm. The resulting
algorithm, which we term MIRA (for Margin Infused Relaxed Algorithm) is ultraconservative as
well. We derive mistake bounds for all the algorithms and provide further analysis of MIRA using a
generalized notion of the margin for multiclass problems. We discuss the form the algorithms take
in the binary case and show that all the algorithms from the first family reduce to the Perceptron
algorithm while MIRA provides a new Perceptron-like algorithm with a margin-dependent learn-
ing rate. We then return to multiclass problems and describe an analogous multiplicative family of
algorithms with corresponding mistake bounds. We end the formal part by deriving and analyz-
ing a multiclass version of Li and Long’'s ROMMA algorithm. We conclude with a discussion of
experimental results that demonstrate the merits of our algorithms.

1. Introduction

In this paper we present a general approach for deriving algorithms for multiclass prediction prob-
lems. In multiclass problems the goal is to assign onk lafbels to each input instance. Many
machine learning problems can be phrased as a multiclass categorization problem. Examples to
such problems include optical character recognition (OCR), text classification, and medical anal-
ysis. There are numerous specialized solutions for multiclass problems for specific models such
as decision trees (Breiman et al., 1984, Quinlan, 1993) and neural networks. Another general ap-
proach is based on reducing a multiclass problem to multiple binary problems using output cod-
ing (Dietterich and Bakiri, 1995, Allwein et al., 2000). An example of a reduction that falls into the
above framework is the “one-against-rest” approach. In one-against-rest a set of binary classifiers
is trained, one classifier for each class. Theclassifier is trained to discriminate between ttie
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class and the rest of the classes. New instances are classified by setting the predicted label to be
the index of the classifier attaining the highest confidence in its prediction. In this paper we present
a unified approach that operates directly on the multiclass problem by imposing constraints on the
updates for the various classes. Thus, our approach is inherently different from methods based on
output coding.

Our framework for analyzing the algorithms is the mistake bound model (Littlestone, 1988). The
algorithms we study work in rounds. On each round the proposed algorithms get a new instance and
output a prediction for the instance. They then receive the correct label and update their predication
rule in case they made a prediction error. The goal of the algorithms is to minimize the number of
mistakes they made compared to the minimal number of errors that an hypothesis, built offline, can
achieve.

The algorithms we consider in this paper maintain one prototype vector for each class. Given
a new instance we compare each prototype to the instance by computing the similarity-score be-
tween the instance and each of the prototypes for the different classes. We then predict the class
which achieves the highest similarity-score. In binary problems, this scheme reduces (under mild
conditions) to a linear discriminator. After the algorithm makes a prediction it receives the correct
label of the input instance and updates the set of prototypes. For a given input instance, the set of
labels that attain similarity-scores higher than the score of correct label is calleddheset The
algorithms we describe share a common feature: they all update only the prototypes from the error
sets and the prototype of the correct label. We call such algorithirsconservativealgorithms.

We start in Section 3 in which we provide a motivation for our framework. We do that by re-
visiting the well known Perceptron algorithm and give a new account of the algorithm using two
prototype vectors, one for each class. We then extend the algorithm to a multiclass setting using
the notion of ultraconservativeness. In Section 4 we further generalize the multiclass version of the
extended Perceptron algorithm and describe a new family of ultraconservative algorithms that we
obtain by replacing the Perceptron’s update with a set of linear equations. We give a few illustrative
examples of specific updates from this family of algorithms. Going back to the Perceptron algo-
rithm, we show that in the binary case all the different updates reduce to the Perceptron algorithm.
We finish Section 4 by deriving a mistake bound that is common to all the additive algorithms in the
family. We analyze both the separable and the non-separable case.

The fact that all algorithms from Section 4 achieve the same mistake bound implies that there
are some undetermined degrees of freedom. We present in Section 5 a new online algorithm that
gives a unique update and is based on a relaxation of the set of linear constraints employed by the
family of algorithms from Section 4. The algorithm is derived by adding an objective function that
incorporates the norm of the new matrix of prototypes and minimizing it subject to a subset of the
linear constraints. Following recent trend, we call the new algorithm MIRA for Margin Infused
Relaxed Algorithm. We analyze MIRA and give a mistake bound related to the instantaneous mar-
gin of individual examples. This analysis leads to modification of MIRA which incorporates the
margin into the update rule. We describe a simple and efficient fixed-point algorithm that efficiently
computes a single update of MIRA and prove its convergence. Both MIRA and of the additive
algorithms from Section 4 can be combined with kernels techniques and voting methods.

In Section 6 we derive an analogous ultraconservative familywaitiplicative algorithms for
multiclass problems. Here we describe two variants of multiplicative algorithms. The two vari-
ants differ in the way they normalize the set of prototypes. As in the additive case, we analyze
both variants in the mistake bound model. Analogously to the additive family of algorithms, the
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multiplicative family of algorithms reduces to Winnow (Littlestone, 1988) in the binary case. In
Section 7 we combine the ultraconservative approach with Li and Long’s (2002) algorithm to derive
a multiclass version of it.

In Section 8 we discuss experiments with synthetic data and real datasets that compare the
additive algorithms. Our experiments indicate that MIRA outperforms the other algorithms at the
expense of updating its hypothesis frequently. The algorithms presented in this paper underscore
a general framework for deriving ultraconservative multiclass algorithms. This framework can be
used in combination with other online techniques. To conclude, we outline some of our current
research directions.

Related Work A question that is common to humerous online algorithms is how to compromise
the following two demands. On one hand, we want to update the classifier we learn so that it will
better predict the current input instance, in particular if an error occurs when using the current clas-
sifier. On the other hand, we do not want to change the current classifier too radically, especially
if it classifies well most of the previously observed instances. The good old Perceptron algorithm
suggested by Rosenblatt (1958) copes with these two requirements by replacing the classifier with
a linear combination of the current hyperplane and the current instance vector. Although the al-
gorithm uses a simple update rule, it performs well on many synthetic and real-world problems.
The Perceptron algorithm spurred voluminous work which clearly cannot be covered here. For an
overview of numerous additive and multiplicative online algorithms see the paper by Kivinen and
Warmuth (1997). We also would like to note that the a multiclass version of the Perceptron algo-
rithm has already been provided in the widely read and cited book of Duda and Hart (1973). The
multicalss version in the book is called Kesler's construction. We postpone the discussion of the
relation of this construction to our family of online algorithms to Section 4. We now outline more
recent research that is relevant to the work presented in this paper.

Kivinen and Warmuth (1997) presented numerous online algorithms for regression. Their al-
gorithms are based on minimization of an objective function which is a sum of two terms. The
first term is equal to the distance between the new classifier and the current classifier while the
second term is the loss on the current example. The resulting update rule can be viewed as a
gradient-descent method. Although multiclass classification problems are a special case of regres-
sion problems, the algorithms for regression put emphasis on smooth loss functions which might
not be suitable for classification problems.

The idea of seeking a hyperplane of a small norm is a primary goal in support vector ma-
chines (Cortes and Vapnik, 1995, Vapnik, 1998). Note that for SVMs minimizing the norm of the
hyperplane is equivalent to maximizing the margin of the induced linear separator. Algorithms
for constructing support vector machines solve optimization problems with a quadratic objective
function and linear constraints. Anlauf and Biehl (1989) and Friess, Cristianini, and Campbell
(1998) suggested an alternative approach which minimizes the objective function in a gradient-
decent method. The minimization can be performed by going over the sample sequentially. Algo-
rithms with a similar approach include the Sequential Minimization Optimization (SMO) algorithm
introduced by Platt (1998). SMO works on rounds, on each round it chooses two examples of the
sample and minimizes the objective function by modifying variables relevant only to these two ex-
amples. While these algorithms share some similarities with the algorithmic approaches described
in this paper, they were all designed for batch problems and were not analyzed in the mistake bound
model.
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Another approach to the problem of designing an update rule which results in a linear classifier
of a small norm was suggested by Li and Long (2002). The algorithm Li and Long proposed,
called ROMMA, tackles the problem by finding a hyperplane with a minimal norm under two linear
constraints. The first constraint is presented so that the new classifier will classify well previous
examples, while the second rule demands that the hyperplane will classify correctly the current
new instance. Solving this minimization problem leads to an additive update rule with adaptive
coefficients.

Grove, Littlestone, and Schuurmans (2001) introduced a general framework of quasi-additive
binary algorithms, which contain the Perceptron and Winnow as special cases. Gentile (2001) pro-
posed an extension to a subset of the quasi-additive algorithms, which uses an additive conservative
update rule with decreasing learning rates.

All of the work described above is designed to solve binary classification problems. These
binary classifiers can be used in a multiclass setting by reducing them to multiple binary problems
using output coding such as one-against-rest. Mesterharm (1999) suggested a multiclass online
algorithm which combines results from a set of sub-experts. Using this algorithm Mesterharm
derives a Winnow-like algorithm and provides a corresponding mistake bound. The multiclass
algorithm of Mesterharm is closely related to the multiplicative family of algorithms we present in
Section 6, though our family of multiplicative algorithms is more general.

The algorithms presented in this paper are reminiscent of some of the widely used methods for
constructing classifiers in multiclass problems. As mentioned above, a popular approach for solving
classification problems with many classes is to learn a set of binary classifiers where each classi-
fier is designed to separate one class from the rest of classes. If we use the Perceptron algorithm
to learn the binary classifiers, we need to maintain and update one vector for each possible class.
This approach shares the same form of hypothesis as the algorithms presented in this paper, which
maintain one prototype per class. Nonetheless, there is one major difference between the ultracon-
servative algorithms we present and the one-against-rest approach. In one-against-rest we update
and change each of the classifisxdependentlyof the others. In fact we can construct them one
after the other by re-running over the data. In contrast, ultraconservative algorithms update all the
prototypes in tandem thus updating one prototype has a global effect on the other prototypes. There
are situations in which there is an error due to some classes, but not all the respective prototypes
should be updated. Put another way, we might perform milder changes to the set of classifiers by
changing them together with the prototypes so as to achieve the same goal. As a result we get better
mistake bounds and empirically better algorithms.

2. Preliminaries

The focus of this paper is online algorithms for multiclass prediction problems. We observe a
sequencext,yt), ..., (X,y),... of instance-label pairs. Each instandds in R" and each label
belongs to a finite st of sizek. We assume without loss of generality that= {1,2,... ,k}. A
multiclass classifiers a functionH (x) that maps instances froRl" into one of the possible labels

in Y . In this paper we focus on classifiers of the fokhix) = argmaX_,{M; -x}, whereM is a

k x n matrix over the reals anbll, € R" denotes theth row of M. We call the inner product d¥i,

with the instance, thesimilarity-scorefor classr. Thus, the classifiers we consider in this paper set
the label of an instance to be the index of the rowbfvhich achieves the highest similarity-score.
The margin ofH on xis the difference between the similarity-score of the correct lglzald the
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maximum among the similarity-scores of the rest of the rowslofFormally, the margin thati
achieves orix,y) is, B B
My - Xx—max{M; -x} .
r#y

Thelp norm of a vectou'= (uy,...,u) in R is

], = (i_lzwui\pf .

norm of the vector we get by concatenating the rowA othat is,
1Al = [I(As,- Al »

where forp = 2 the norm is known as the Frobenius norm. Similarly, we define the vector-scalar-
product of two matriceé\ andB to be,

A.BZZA_,.B;.

Finally, & j denotes Kronecker's delta function, thatds; = 1 if i = j and; j = 0 otherwise.

The framework that we use in this paper is the mistake bound model for online learning. The
algorithms we consider work in rounds. On rounain online learning algorithm gets an instance
X. Givenx, the learning algorithm outputs a predictigh,= argmax{M; - X}. It then receives
the correct label! and updates its classification rule by modifying the maktlix We say that the
algorithm made a (multiclass) prediction errofif£yt. Our goal is to make as few prediction errors
as possible. When the algorithm makes a prediction error there might be more than oneMow of
achieving a score higher than the score of the row corresponding to the correct label. We define the
error-setfor (X,y) using a matrixM to be the index of all the rows iM which achieve such high
scores. Formally, the error-set for a matkixon an instance-label paix,y) is,

E={r#y:M-x>M,-X}.

Many online algorithms update their prediction rule only on rounds on which they made a
prediction error. Such algorithms are callszhservative We now give a definition that extends the
notion of conservativeness to multiclass settings.

Definition 1 (Ultraconservative) An online multiclass algorithm of the form(k) = arg max{Mr-
x} is ultraconservative if it modifieM only when the error-set E fofx,y) is not empty and the
indices of the rows that are modified are fronuEy}.

Note that our definition implies that an ultraconservative algorithm is also conservative. For
binary problems the two definitions coincide.
3. From Binary to Multiclass

The Perceptron algorithm of Rosenblatt (1958) is a well known online algorithm for binary classi-
fication problems. The algorithm maintains a weight veeta R" that is used for prediction. To
motivate our multiclass algorithms let us now describe the Perceptron algorithm using the notation
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M - x/2
3

Figure 1. A geometrical illustration of the update for a binary problem (left) and a four-class prob-
lem (right) using the extended Perceptron algorithm.

employed in this paper. In our setting the label of each instance belongs to thk 2et Given
an input instance the Perceptron algorithm predicts that its labey is 1 iff w-Xx > 0 and other-
wise it predictsy’= 2. The algorithm modifiess only on rounds with prediction errors and is thus
conservative. On such roundas changed tov+ X if the correct label iy = 1 and tow— X if y= 2.

To implement the Perceptron algorithm using a prototype mafriwith one row (prototype)
per class, we set the first rdw; to w and the second roM; to —w. We now modifyM every time
the algorithm mis-classifies as follows. If the correct label is 1 we replab with M; +x and
M, with My — X. Similarly, we repIaceMl with M; — x andM, with M, + X when the correct label
is 2 andxis misclassified. Thus, the rody is moved toward the misclassified instance/hile
the other row is moved away from Note that this update implies that the total change to the two
prototypes is zero. An illustration of this geometrical interpretation is given on the left-hand side of
Figure 1. It is straightforward to verify that the algorithm is equivalent to the Perceptron algorithm.

We can now use this interpretation and generalize the Perceptron algorithm to multiclass prob-
lems as follows. Fok classes we maintain a matiiz of k rows, one row per class. For each input
instancex, the multiclass generalization of the Perceptron calculates the similarity-score between
the instance and each of tk@rototypes. The predicted labg|,i$ the index of the row (prototype)
of M which achieves the highest score, thatyis; argmax{M; - x}. If § # y the algorithm moves
My towardx by replacmgMy with My+x In addition, the algorithm moves each rdw (r #y)
for which M; - x> My - x away fromx. The indices of these rows constitute the errorisefThe
algorithms presented in this paper, and in particular the multiclass version of the Perceptron algo-
rithm, modify M such that the following property holds: The total change in unitsiafthe rows
of M that are moved away fromis equal to the change My, (in units ofx). Specifically, for the
multiclass Perceptron we replalg with My +Xand for each in E we replaceM, with M, — x/|E|.

A geometric illustration of this update is given in the right-hand side of Figure 1. There are four
classes in the example appearing in the figure. The correct lakés gpt= 1 and sincéM; is not the

most similar vector to, Tt is moved toward. The rowsM, and M3 are also modified by subtracting

x/2 from each one. The last roM4 is not in the error-set smdml X > M4 x and therefore it is

not modified. We defer the analysis of the algorithm to the next section in which we describe and
analyze a family of online multiclass algorithms that also includes this algorithm.
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4. A Family of Additive Multiclass Algorithms

We describe a family of ultraconservative algorithms by using the algorithm of the previous section
as our starting point. The algorithm is ultraconservative and thus uplfatasdy on rounds with
predictions errors. The roMy is changed tdvl, -+ X while for eachr € E we modify M, to M, —
x/|E|. Let us introduce a vector of weights= (13, ...,Tx) and rewrite the update of thri¢h row as
M, 4+ T,X. Thus, forr =y we havet, = 1, forr € E we sett, = —1/|E|, and forr ¢ EU{y}, T,
is zero. The weights were chosen such that the total change of the rowd efhose indices are
from E are equal to the change Iﬁny that is, 1= Ty = — 5 Tr. If we do not impose the condition
that forr € E all thet,’s attain the same value, then the constraints d@comey  cg gy Tr = 0.
This constraint enables us to move the prototypes from the errdt-setay fromx in different
proportions as long as the total change is sum to one. The result is a whole family of multiclass
algorithms. A pseudo-code of the family of algorithms is provided in Figure 2. Note that the
constraints ort are redundant and we could have used less constraints. We make use of this more
elaborate set of constraints in the next section.

Before analyzing the family of algorithms we have just introduced, we give a few examples of
specific schemes to setWe have already described one update above which $ets

1
—E rek
Tr = 1 r = y
0 otherwise.

Since all thet’s for rows in the error-set are equal, we call this threform multiclass update. We
can also be further conservative and modify in additiokljanly one other row itM. A reasonable
choice is to modify the row that achieves the highest similarity-score. That is, weaet

—1 r=argmax{Ms-X}
T = 1 r=y
0 otherwise.

We call this form of updating the max-scoremulticlass update. The two examples aboversédr

r € E to a fixed value, ignoring the actual values of similarity-scores each row achieves. We can
also sef in promotion to the excess in the similarity-score of each row in the error set (with respect
to My). For instance, we can seto be,

M,
T = S 1 Mr XMy "7y
1 r=y,

where[X] . is equal tox if x > 0 and zero otherwise. Note that the above update impliegtha0
forr ¢ EU{y}.

We describe experiments comparing the above updates in Section 8. We proceed to analyze the
family of algorithms.

4.1 Analysis

Before giving the analysis of the algorithms of Figure 2 we prove the following auxiliary lemma.

Lemma 2 For any set{ty,..., Tk} such that,z'r‘:1Tr =0andt, <&yforr=1,... k, theny, 12 <
21, <2.
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Initialize: SetM =0 (M € R®*") .
Loop: Fort=1,2,...,T

e Get a new instance € R".
Predicty® = argmkalx{Mr X
r=
Get a new labey'. 3
e SetE ={r#y :M;-X >My-X}.
If E # 0 updateM by choosing any}, ..., T} that satisfy:

1. i <Oforr #y andty <1.

3.t =0forr ¢ EU{y'}.
4.1, =1.

e Forr =1,2,... kupdate: M; — M, + Tt X .

Output: H(x) = argmax{M; - X}.

Figure 2: A family of additive multiclass algorithms.

Proof Since forr # y the value oft, cannot be positive we have,
k k
T =3l =ty 3 (-0
r=1 r#£y

Using the equali'[yg'r‘:lrr = 0 we get,
[Tl =21y .
Applying Holder’s inequality we get,

k k
S=3 (1) < [Tl [T = 2ty1y < 21y < 2,
r=1 r=1

where for the last two inequalities we used the fact thatQ < 1. [ |

We now give the main theorem of this section.

Theorem 3 Let (x1,y),...,(X",y") be an input sequence for any multiclass algorithm from the
family described in Figure 2 wheré e R"and y € {1,2,...,k}. Denote by R= max ||X|. Assume
that there is a matrixM* of a unit vector-norm,||M*|| = 1, that classifies the entire sequence
correctly with margin
= min{M}; - X —maxM; - X} > 0.
Y tl { W r;éytx r }>

Then, the number of mistakes that the algorithm makes is at most
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Proof Assume that an error occurred when classifyingttheexampleX, y!) using the matrixM .
Denote byM/ the updated matrix after rourtdThat is, forr = 1,2,...,kwe haveM; =M, + 1t X,

To prove the theorem we bourjd ||3 from above and below. First, we derive a lower bound on
|M |2 by bounding the term,

=

7

S
ZM;‘-Mr =
r=

=i

(M +T0X)

_‘
=~ |l
R

=

M+ 5T (M -X) (1)

_‘
Il
al

We further develop the second term of Equation (1) using the second constraint of the algorithm
(K.t =0). Substitutingty: = — ¥, T we get,

o (Mx) = ;ytrﬁ(w-%)w(ﬂ;‘v%)
= ;ytrtr(nﬁ:.%)—%ﬁr(l\ﬁ;.%)
= ;yt(—ﬁ)(l\ﬁ;—m:)-%. 2)

Using the assumption thal* classifies each instance with a margin of at lgeand thatty = 1
(fourth constraint) we obtain,

> (M X) > ; (—t)y=Thy=v. 3)
T rZ£yt
Combining Equation (1) and Equation (3) we get,
MM > SME-M,+y.
Z r r Z r r
Thus, if the algorithm maden mistakes inT rounds then the matrikl satisfies,

S MM >y (4)

T

Using the vector-norm definition and applying the Cauchy-Schwartz inequality we get,

k _ k _
IM*[PIm 2 = <ZHMF‘H2> (Z”MrH2>
r=1 r=1

> (Mj-Mp+...4+M;-M,)°

K 2
- <Z -Mr> : ®)
r=1

Plugging Equation (4) into Equation (5) and using the assumptiorMtias of a unit vector-norm
we get the following lower bound,
IM 2> mPy? . (6)

=
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Next, we bound the vector-norm df from above. As before, assume that an error occurred when
classifying the exampléxt,y!) using the matrixM and denote by’ the matrix after the update.
Then,

IMIP=S M2 = 5 M+t
T IMCP+25 T (My %) + 3 ]2
= IMP2Y T (M%) + [R]2 (11)2. @)

r

We further develop the second term using the second constraint of the algorithm and analogously to
Equation (2) we get,

ZﬂM}m = %@ﬂMWMMJ%.

SincexX" was misclassified we need to consider the following two cases. The first case is when the
labelr was not the source of the error, thai(My — M) X > 0. Then, using the third constraint

(r¢ EU{y'} =1 = 0) we get thatt! = 0 and thus(—T!) (My —M,) - X = 0. The second case

is when one of the sources of error was the labeln that casgMy — M;) - X < 0. Using the

first constraint of the algorithm we know thgt < 0 and thus(—tt) (My — M) - X < 0. Finally,
summing over alf we get,

3T (M -X) <0. (8)
r
Plugging Equation (8) into Equation (7) we get,
M2 < M+ X7 (1)

r

Using the bound x| < Rand Lemma 2 we obtain,

M2 < M2+ 2|R)Z. 9)

Thus, if the algorithm maden mistakes inl rounds, the matrit satisfies,
IM[Z < 2m|R|>. (10)
Combining Equation (6) and Equation (10), we have that,
My < M7 < 2m||R|I?,

and therefore, ,

m< 2% . (12)
[ |

We would like to note that the bound of the above theorem reduces to the Perceptron’s mistake
bound in the binary cas&k & 2). To conclude this section we analyze the non-separable case by
generalizing Theorem 2 of Freund and Schapire (1999) to a multiclass setting. The proof technique
follows the proof outline of Freund and Schapire and is given in Appendix A.
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Initialize: SetM # 0 M € R®*",
Loop: Fort=1,2,...,T

Get a new instance.”

Predicty® = argmax{M; - X'}.

Get a new labeyt.

Find T that solves the following optimization problem:

mine 33, M + 1 X3
subjectto: (1) T, <&y forr=1,....k
(2) 374 =0

e Update :M; — M, + Tt x for r=1,2,... k.
Output: H(X) = argmax{M; - X}.

Figure 3: The Margin Infused Relaxed Algorithm (MIRA).

Theorem 4 Let (x1,y),...,(X",y") be an input sequence for any multiclass algorithm from the
family described in Figure 2, whel¢ e R"and y € {1,2,...,k}. Denote by R= max ||X||. LetM*
be a prototype matrix of a unit vector-norfiM *|| = 1, and fix someg > 0. Define,

t_ v — Vi
d —max{o,y [Myt X rrTRtXMr Rﬂ},

and denote by B= 5 ;(d")2. Then the number of mistakes the algorithm makes is at most
(R+D)?

2 V7

4.2 The Relation to Kesler's Construction

Before turning to a more complex multiclass version, we would like to discuss the relation of the
family of updates described in this section to Kesler's construction (Duda and Hart, 1973). Kesler’s
construction is attributed to Carl Kesler and was described by Nilsson (1965). The construction re-
duces a multiclass classification problem to a binary problem by expanding each inst&Adetin

an instancek"&-1) By unravelling Kesler's expansion the resulting update in the original space
amounts to a succession of amaxupdate. Specifically, the update due to Kesler is ultraconser-
vative as it modifies only the prototypes whose indices constitute the error set. Given an example
(X',¥') Kesler's update rule cycles through the labglg y* and if My - X' > M;t - it applies the
max-update to the prototypes indexeandy*. Therefore, the family of online algorithms presented
thus far is a generalization of Kesler’s construction in terms of the form of the specific update.

5. A Norm-Optimized Multiclass Algorithm

In the previous section we have described a family of algorithms where each algorithm of the family
achieves the same mistake bound given by Theorem 3 and Theorem 4. This variety of equivalent
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algorithms suggests that there are some degrees of freedom that we might be able to exploit. In this
section we describe an online algorithm that chooses a feasible westaeh that the vector-norm
of the matrixM will be as small as possible.

To derive the new algorithm we omit the forth constraigt¢ 1) and thus allow more flexibility
in choosingt', or smaller changes in the prototype matrix. Previous bounds provide motivation for
the algorithms in this section. We choose a vectorhich minimizes the vector-norm of the new
matrix M subject to the first two constraints only. As we show in the sequel, the solution of the
optimization problem automatically satisfies the third constraint. The algorithm attempts to update
the matrixM on eachround regardless of whether there was a prediction error or not. We show
below that the algorithm is ultraconservative and tiius the zero vector ik is correctly classified
(and no update takes place). Following the trend paved by Li and Long (2002) and Gentile (2001),
we term our algorithm MIRA for Margin Infused Relaxed Algorithm. The algorithm is described in
Figure 3.

Before investigating the properties of the algorithm, we rewrite the optimization problem that
MIRA solves on each round in a more convenient form. Omitting the example tritlexobjective
function becomes,

1 — 1 — — 1
EZHMr"‘Tr)?“z = éZHMrHZ"‘zTr(Mr')z)+§zrr2”ﬂ|2 .
T T T T

Omitting 3 3, M, ||2 which is constant, the quadratic optimization problem becomes,

. 1 k k
min Q1) =AY 7+ Y BT (12)
t 2 r=1 r=1
subjectto:vr 1, <oy and 3,1, =0
where,
A= (X%, (13)
and _

SinceQ is a quadratic function, and thus strictly convex, and the constraints are linear, the problem
has a unique solution.

We now show that MIRA automatically satisfies the third constraint of the family of algorithms
from Section 4, which implies that it is ultraconservative. We first prove the following auxiliary
lemma.

Lemma5 LetT be the optimal solution of the constrained optimization problem given by Equa-
tion (12) for an instance-label paix,y). For each r#y such that B < B, thent, = 0.

Proof Assume by contradiction that there is a vectawhich minimizes the objective function of
Equation (12) and for some# y we have that botiBs < By andts < 0. Note that this implies that
Ty > 0. Define a new vectar as follows,

0 r=s
=4 Ty+Ts =y
T otherwise.
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It is easy to verify that two linear constraints of MIRA are still satisfiedrhySincet” andt differ
only at theirs andy components we get,

QT) QD) = AT +TY+ B+ T8,

1
-~ [EA(TSZ +1,%) + TsBs+ TyBy] :

Expandingt’ we get,

QT) Q@ = ZATH T+ (4108,

1
- |:§A(T52 +1,%) + TsBs+ TyBy]

From the fact thats < 0 and the assumptio(Bs < By) we get that the right term is less than or
equal to zero. Also, sincaty > 0 we get that the left term is less then zero. We therefore get that
Q (") —Q (1) < 0, which contradicts the assumption thias a solution of Equation (12). [ |

The lemma implies that if a label is not a source of error, then th¢h prototype,M;, is not
updated aftefx,y) has been observed. In other words, the solution of Equation (12) satisfies that
T, =0 for allr # y with (M, - X < My - X).

Corollary 6 MIRA is ultraconservative.

Proof Let(x,y) be a new example fed to the algorithm. Andiée the coefficients found by the al-
gorithm. From Lemma 5 we get that for each labelhose scoréM; -x) is not larger than the score
of the correct Iabe@l\ﬁy-i) its corresponding valug is setto zero. This implies that only the indices
which belong to the sdE U {y} = {r #y: M, -x> My -x} U{y} may be updated. Furthermore, if
the algorithm predicts correctly that the labeljsve get thaE = 0 andt, = 0 for allr #y. In this
casety is set to zero due to the constrafytt, = Ty + ¥, ,,Tr = 0. HenceT = 0 and the algorithm
does not modifyM on (x,y). Thus, the conditions required for ultraconservativeness are satilified.

In Section 5.3 we give a detailed analysis of MIRA that incorporates the margin achieved on
each example, and can be used to derive a mistake bound. Let us first show that the cumulative
[1-norm of the coefficients® is bounded.

Theorem 7 Let(xt,y!),...,(XT,y") be an input sequence to MIRA whefe R"and y € {1,2,...,k}.
Let R=max ||X|| and assume that there is a prototype makix of a unit vector-norm||M*|| = 1,
which classifies the entire sequence correctly with matvgiﬂmint{l\ﬁ;;t X — ma M;‘ X1 >0,
LetT be the coefficients that MIRA finds fof, y*). Then, the following bound holds,

T — RZ
T, <4— .
2Tl =4

The proof employs the technique used in the proof of Theorem 3. The proof is given for complete-
ness in Appendix A.
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5.1 Characteristics of the Solution

Let us now further examine the characteristics of the solution obtained by MIRA. In a recent pa-
per (Crammer and Singer, 2000) we investigated a related setting that uses error correcting output
codes for multiclass problems. Using these results, it is simple to show that the optinagua-

tion (12) is given by

Tr = min{6" — %,6”} , (15)

whereA = ||X]|2 and B, = M - X is the similarity-score ofx,y) for labelr, as defined by Equa-
tion (13) and Equation (14), respectively. The optimal va@tiés uniquely defined by the equality
constrainty, T, = 0 of Equation (12) and satisfies,

k
. By
min{®" — —,d8,,} =0.

2w

The valueb* can be found by a binary search (Crammer and Singer, 2000) or iteratively by solving
a fixed point equation (Crammer and Singer, 2001).

We now can view MIRA in the following alternative light. Assume that the instamcg) was
misclassified by MIRA and s& = {r #y : M, -x> My -X} # 0. The similarity-score for label of
the updated matrix on the current instarxds,

Plugging Equation (15) into Equation (16) we get that the similarity-score for clasghe current
instance is,
min{A6*, B, +Ady,} .

Sincet, < dy,, the maximal similarity score the updated matrix can attaix B, + Ady. Thus,

the similarity-score for classafter the update is either a constant that is common to all claA8gs,

or the largest similarity-score the clasgan attainB; + Ad;y. The constanfA8* places an upper
bound on the similarity-score for all classes after the update. This bound is tight, that is at least one
similarity-score value is equal #&09*.

5.2 Using MIRA for Binary Classification Problems

In this section we discuss MIRA in the special case in which there are only two possible labels.
First, note that any algorithm that belongs to the family of algorithms from Figure 2 reduces to the
Perceptron algorithm in the the binary case. We now further analyze MIRA, assuming that the labels
are drawn from the sgte {—1,+1}. In this case the first row dfl corresponds to the labgk +1

and the second row to the labek —1. We now derive the equations for the cgse +1. The case

y = —1 is derived similarly by replacing the indices 1 and 2 in all the equations. The constraints of
MIRA reduce toty < 1,1, <0 andt; + 12 = 0. Thus, if the algorithm is initialized with a matrix

M such thaM; + Mz = 0, this property is conserved along its execution. Therefore, we can replace
the matrixM with a single vectow such thatM; = w andM, = —w. The objective function of
Equation (12) now becomes,

Q = JIR12 (454 13) + (W Jyts +y(~ -T2
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Initialize: Setw # 0.
Loop: Fort=21,2,.... T

Get a new instance.”

Predicty® = sign(w- X).

Get a new labeyt € {—1,+1}.
et o [ Y WX .

Definet' = G( KT ) where:

0 X 0
G(x)=¢ x 0< x <1
1 1< x

e Update:w — w+tty' Xt
Output : H(x) = sign(w- X).

Figure 4: Binary MIRA.

We now omit the label index and identifywith t; and—t with 1, to get the following optimization
problem,

min Q= [X]**+2y(W- Xt (17)

subjectto: OK1<1.

It is easy to verify that the solution of this problem is given by,

y(vV-@>
r:G(— , (18)
X112
where
0 X 0
G(x)=¢ x 0< x <1
1 1< x

Clearly, the binary version of MIRA is conservative sinc« s classified correctly(yﬁ‘)’qv"’? > 0)
thenwis not modified. Furthermore, the coefficians equal to the absolute value of the normalized
marginy(w- x)/||X]|?, as long as this normalized margin is smaller than one. The bound on the norm
ensures that a new example does not change the prediction wetctoradically, even if the margin

is a large negative number. The algorithm is described in Figure 4. Note that the algorithm is very
similar to the Perceptron algorithm. The only difference between binary MIRA and the Perceptron

is the function used for determining the valuetofor the Perceptron we use the function

0 x<0
S(X)_{ 1 0<x

instead ofG(x). One interesting question that comes to mind is whether we can use other functions
of the normalized margin to derive other online algorithms with corresponding mistake bounds. We
leave this for future research.
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5.3 Margin Analysis of MIRA

In this section we further analyze MIRA by relating its mistake bound to the instantaneous margin
of the individual examples. Note that since MIRA was derived from the family of algorithms in
Figure 2 by dropping the fourth constraint. Therefore, Theorem 3 and 4 do no hold and we thus
need to derive an alternative analysis. The margin analysis we present in this section sheds some
more light on the source of difficulty in achieving a mistake bound for MIRA. Our analysis here also
leads to an alternative version of MIRA that incorporates the margin into the quadratic optimization
problem that we need to solve on each round. Our starting point is Theorem 7. We first give a lower
bound oty on each round. If MIRA made a mistake pny), then we know that max, B, — By >

0, whereB; = M, - x (see Equation (14)). Therefore, we can bound the minimal valug by a

function of the (negative) margimy — max ., B;.

Lemma 8 Let T be the optimal solution of the constrained optimization problem given by Equa-
tion (12) for an instance-label paifx,y) with A< R?. Assume that the margin,B- max .y By is
bounded from above by, where0 < B < 2R2. Thenty is at least3/(2R?).

Proof Assume by contradiction that the solution of the quadratic problem of Equation (12) satisfies
Ty < B/(2R?). Note thatt, > 0 since max., B, — B, > B > 0. Let us definé = B/(2R?) —1, > 0
and lets= argmax B, (ties are broken arbitrarily). Define a new vectbas follows,

Ts—A r=s
=< Ty+A r=y
T otherwise.

The vectort’ satisfies the constraints of the quadratic optimization problem betgusg/ (2R?) <
1. Sincet’ andt differ only at theirs andy components we get,

QU)-Q() = %A(Tg,z + ng) +TyBy + TBs
— BA(TY2 +16%) +1yBy + TSBS] .
Substitutingt’ we get,
Q@) ~Q@) = ATy +A7+ (ts— A7 +By(ty+4) + Bu(Ts— )
— EA(ry2 +1%) + 1By + TSBS]

= A[A(ty—Ts)+AA+By—Bg .

Using the second constraint of MIR& , T, = 0) we get that]|t]|; = 2ty and thusty — Ts < 21y,
Hence,

Q) -Q(M) < A(A2ty+4)+By—By) .
Substitutingty + A = B/(2R?) and using the assumption thgt< B/(2R?) we get,

Q-0 < o8-8
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SinceBs — By > B for (X,y) we get,

Q®)-Q® < &(f-P)
- DR

Finally, sinceA = ||X]|> < R? andBA > 0 we obtain that,

Q(T)-Q(M=o0.

Now, eitherQ () = Q (1), which contradicts the uniqueness of the solutiorQ ¢t') < Q (1) which
implies thatt is not the optimal value and again we reach a contradiction. |

We would like to note that for the above lemmait- 2R? thenty = 1 regardless of the margin
achieved. We are now ready to prove the main result of this section.

Theorem 9 Let(xt,y1),..., (XT,y") be an input sequence to MIRA whete R"and y € {1,2,...,k}.
Denote by R= max ||x‘|| and assume that there is a prototype matvix of a unit vector—norm
|IM*||2 =1, which classifies the entire sequence correctly with ma[girmlnt{Myt X —max_y M; -
X'} > 0. Denote by pthe number of rounds for whichyB- max . B, < —B, for somed < B < 2R?.
Then the following bound holds,

4— .
- OBy

Proof The proof is a simple application of Theorem 7 and Lemma 8. Using the second constraint
of MIRA (3,1 = 0) and Theorem 7 we get that,

T ‘ RZ
w<2—. (19)
2 =2y
From Lemma 8 we know that whenever maxB; — By: > 3 then 1< %r;‘ and therefore,
T 2R 2
ng < zl—ryt (20)

Combining Equation (19) and Equation (20) we obtain the required bound,

R2 T R2 R2 R4
<2— <2— 2
N S2p 3 T S2p2 S4gg

Note that Theorem 9 still does not provide a mistake bound for MIRA since in the lifiiteD
the bound diverges. Note also that foe= 2R? the bound reduces to the bounds of Theorem 3 and
Theorem 7. The source of the difficulty in obtaining a mistake bound is rounds on which MIRA
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achieves a small negative margin and thus makes small chandes @n such roundsy can be
arbitrarily small and we cannot translate the boun({prb into a mistake bound. This implies that
MIRA is not robust to small changes in the input instances. We therefore describe now a simple
modification to MIRA for which we can prove a mistake bound and, as we later see, performs well
empirically.

The modified MIRA aggressively updat® on every round for which the margin is smaller
than some predefined value denoted agaifi.bjhis technique is by no means new, see for instance
the paper of Li and Long (2002). The result is a mixed algorithm which is both aggressive and ul-
traconservative. On one hand, the algorithm updiskeghenever a minimal margin is not achieved,
including rounds on whickix,y) is classified correctly but with a small margin. On the other hand,
on each update df! only the rows whose corresponding similarity-scores are mistakenly too high
are updated. We now describe how to modify MIRA along these lines.

To achieve a minimal margin of at leg8t< 2R? we modify the optimization problem given
by Equation (12). A minimal margin o is achieved if for allr we requirel\ﬁy-i— M, - X >
B or, alternatively,(My-x—B) — (M, -x) > 0. Thus, if we replacd, with B, — 3, M will be
updated whenever the margin is smaller tBaliVe thus let MIRA solve for each examp(e,y) the
following constrained optimization problem,

_ 1. k ) k -
min Q)= éAglrr +ng&r
subjectto:vr 1, <oy and 3,1, =0

where : A=A=||X]? ; |§r=Br—B5y,r=Mr'>?—55y,r :

To get a mistake bound for this modified version of MIRA we apply Theorem 9 almost verbatim
by replacingB; with By in the theorem. Note that B, — max ., B; < —B thenBy — B —max..y By <
—B and henceBy — max By < 0. Therefore, for any 6 3 < 2R? we get that the number of
mistakes of the modified algorithm is equalrnig which is bounded by R*/By?. This gives the
following corollary.

Corollary 10 Let(x,y!),...,(XT,y") be an input sequence to the aggressive version of MIRA with
margin 0 < B < 2R?, wherex € R" and ¥ < {1,2,...,k}. Denote by R= max ||| and assume
that there is a prototype matrid * of a unit vector-norm||M*||> = 1, which classifies the entire se-
quence correctly with margip= min{My, X —max_y: M -X'} > 0. Then, the number of mistakes
the algorithm makes is bounded above by,

R*

4W.

Note that the bound is a decreasing functiof8BofThis means that the more aggressive we are
by requiring a minimal margin the smaller the bound on the number of mistakes the aggressively
modified MIRA makes. However, this also implies that the algorithm will updatenore often
and the solution will be less sparse. We conclude this section with the binary version of the ag-
gressive algorithm. As in the multiclass setting, we replace the non-aggressive version given by
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Initialize:
e Fixn>0.
version 1 version 2
e SetM} =1 o SetM}; = &

Loop:t=12,...,T

e Getanew instankcé ER".
Predicty® = argmalx{Mﬁ X,
r=
Geta new labey*. 3
o SetE={r#y ‘M-X>M X}
If E # 0 updateM' :
— Choose any},...,T} subject to :
1L <&yforr=1...k

2. 5441 =0
3.t =0forr ¢ EU{y'}.
4.1, =1.
version 1 - version 2 -
— Define :Z{ = 3 M{ &1 — Define :Z' = y; M} &N
— Update :M{;* erMitJe”T}’4 — Update :M{{* — M} et

Output: H(X) = argmax{MS+1.x}.

Figure 5: A family of multiclass multiplicative algorithms.

Equation (17) with the corresponding aggressive version and get,

min  Q = X%+ [2y(W- %) — BT

subjectto: OK1<1 .

Analogously to Equation (18) the solution of the problem is given by,

y(W-X) -3
1=G <—WZZ> .

All the algorithms presented so far can be straightforwardly combined with kernel methods (Vap-
nik, 1998). Assume that we have determined a matriky learning the coefficients',...,T" from
a sequencg(xt,yl),...,(XT,y")}. Formally, therth row of M is,

_ T
t=

To useM for classifying new instances we compute the similarity-score of an instaforeclassr
by multiplying x with therth row of M and get,

rx=3 1 (XX . (21)
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As in many additive online algorithms, the value of the similarity-score is a linear combination of
inner-products of the forni - x). We therefore can replace the inner-product in Equation (21) (and
also in the algorithms outlined in Figure 2 and Figure 3) with a general inner-product k&rnel

that satisfies Mercer’s conditions (Vapnik, 1998). We now obtain algorithms that work in a high
dimensional space. It is also simple to incorporate voting schemes (Helmbold and Warmuth, 1995,
Freund and Schapire, 1999) into the above algorithms.

Before proceeding to multiplicative algorithms, let us summarize the the results we have pre-
sented so far. We started with the Perceptron algorithm and extended it to multiclass problems. By
replacing the specific update of the extended Perceptron algorithm with a relaxed set of linear con-
strains we obtained a whole family of ultraconservative additive algorithms. We derived a mistake
bound that is common to all the algorithms in the family. We then added a constraint on the norm
of the coefficients used in each update to obtain MIRA. By incorporating minimal margin require-
ments into MIRA we get a more robust algorithm. Finally, we closed the circle by analyzing MIRA
for binary problems. The result is a Perceptron-like update with a margin dependent learning rate.

6. A Family of Multiplicative Multiclass Algorithms

We now derive a family of ultraconservative multiplicative algorithms for the multiclass setting in an
analogous way to the additive family of algorithms. We give the pseudo code for the multiplicative
family in Figure 5. Note that two slightly different version are described. The difference in the
versions is due to the different normalization #r. In the first version we normalizel after each
update such that the norm of each of its rows is 1, while in the second version the vector-mdrm of
is fixed to 1. The mistake bounds of the the two versions are similar as the next theorem shows.

Theorem 11 Let(xt,y1), ..., (XT,y") be an input sequence for either the first or the second version
of the multiclass algorithm from Figure 5, whexec R" and y € {1,2,... ,k}. Assume also that
forallt |X|.» < 1. Assume that there is a matit* such that eithef{M7|y = 1forr =1,... k

(first version) or||M*||, = 1 (second version) and that the input sequence is classified correctly with
marginy = min {My X —max ¢t M; - X} > 0. Then there is somg > 0 for which the number of

mistakes that the algorithm makes is,

o(@) ,

for the first version, and
0 (Iog(n) + Iog(k))
yz M

for the second version.

To compare the bounds of the two versions we need to examine the value of the minimal margin.
The first version normalizes each row separately while the second normalizes the concatenation of
the rows to 1. In the first version we therefore have that fot,d)M;||; = 1 and thus, using our
definition of vector-norms we havgM *||; = k. Thus, if we scale the margin in the second version
so that/[M*||; = k, the mistake bound becomes

0 (kz log(n) ; log(k)> ’
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Initialize: SetM®=0.
Loop: Fort=21,2,..., T

e Getanew instankcmt ERM.
Predicty’ = argma&x{Mf, X1
r=
Get a new labey*. B
SetE' = {r #y :Mp-X > My - X},
If E! £ 0 updateM! (otherwiseM!™ = M) :
e Choose any!,..., T which satisfy the constraints:
1Lt <gyforr=1,... .k
2. 5441 =0
3.t =0forr ¢ E'U{y}.
4.1y =1.

e SetM!*1to be the solution of:

min 3(IM |13 _
subjectto: (1) Kt (M,-X) >1 (22)
(2)M-M'> M3

Output: H(X) = argmax{M+1.x}.

Figure 6: A multiclass version of ROMMA.

which is larger than the mistake bound of the first version by an additive factéiagd(k)/y?. We

prove the theorem for the first version. The proof for the second version is slightly simpler and
follows the same line of proof. Since the proof of both versions are fairly mundane, the proof is
deferred to Appendix A.

7. A Family of Relaxed Maximum Margin Algorithms

In this section we describe an analyze Li and Long’s (2002) Relaxed Online Maximum Margin
Algorithm (ROMMA) with our ultraconservative framework. The result is a third family of ultra-
conservative algorithms. We start with a review of the underlying ideas that motivated ROMMA
and then present our related family of multiclass algorithms.

ROMMA (Li and Long, 2002) is an elegant online algorithm that employs a hyperplane which
is updated after each prediction error, hence denated R". On roundt ROMMA is fed with
an instanced and its prediction is set to sigw' - X'). In case of a prediction erroy (W - X) < 0,
ROMMA algorithm updates the weight vectof as follows. The new weight vectev ¥t is chosen
such that it is the vectow which attains the minimal norm subject to the following two linear
constraints. The first constraint(w-X) > 1, requires that the prediction of the weight vector after
the updatew™?, onx'is correct and its is at least 1, namegf(w**1-x) > 1. The second constraint,
w-W > |WH|?, imposes, rather tacitly, that the new vecidr classifies accurately tharevious
examples. Li and Long showed that the half-spése: w-w > |W |} contains the sub-space
NiZ1{y'(W-X) > 1}. Hence, the second constraint can be viewed as an approximation to the set of
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constraintsy' (X -w) > 1 fori =1,...,t — 1. ROMMA is a conservative algorithm — on rounds it
predicts correctly it does not not modify the weight vector and simplyset=w.

We now describe how to construct an ultraconservative family based on ROMMA. As before,
the ROMMA-based algorithms maintain a prototype malix Given a new instance, any algo-
rithm in the family sets the predicted label to be the index of the prototype Kowhich attains
the highest similarity-score (X) = argmaX_, {M! - X}. The prototype matrix is updates only on
rounds on which a prediction error was made. In such cases the new prototype Miatris set
to be the matriXM with minimal vector-norm under the following two linear constraints. First, we
require that the new prototype-matrix classifies the instaho®rrectly with a margin of at least
one, that isMy - X — M, - X' > 1 for r ## y*. Thesek — 1 linear constrains replace the first con-
straint of ROMMA. Second, we want the new prototype-matrix to classify accurately the previous
examples, thus, similarly to the second constraint of ROMMA we impose a second linear constraint
M -M! > ||[M!||?, where the vector inner-product between two matrices is as defined in Section 2.

The result of the generalized version is a multi-class algorithm which finds a prototype matrix
of a minimal norm subject tk linear constraints in total. However, the algorithm is not necessarily
ultraconservative and it is there is no simple solution to this constrained minimization problem.
We therefore further approximate the constrained optimization problem by replacing ttke-fitst
linear constraintd/y: - X — M, - X > 1 forr # y*, with asinglelinear constraint as follows. We pick
a set of(k— 1) negative coefficients},..., T} (excludingrg,t) which sum to—1 and define the linear
constraint to be, B B

3 () (M X W %) 2 3 (111,
7y 7y

This constraint is a convex combination of the ab&vel linear constraints. To further simplify
the last constraint we also defil{y} = 1 and rewrite the left hand side of the inequality,

;(—Ttr) (Myt K- Mr )_(t) =
= 5 (%) (Mye -5 + R (M, -X)

7Y A
= (My-X) Y (1) + > 1 (Mre-X)
r#y r#y

= Ty (My-X)+ 5 o (Mr-X)
7y
= Su(M-X).
r

Finally, to ensure that the solution yields an ultraconservative update we impose another constraint
on the coefficients. We again define the error s&, = {r #y* : M;-X > My, -X}, to be the set of
indices of the rows itM which achieve similarity-scores that are higher than the score of the correct
labely*. We now set! to be zero for ¢ E' U {y'}.

The family of multiclass algorithms based on ROMMA, which we call MC-ROMMA, is de-
scribed in Figure 6. We now turn to prove a mistake bound for this family by generalizing the proof
techniques of Li and Long to multiclass setting. In order to prove the mistake-bound we need a
couple of technical lemmas which are given below. The proofs of the lemmas generalizes the proof
of the original ROMMA algorithm and are deferred to Appendix A. We then prove in Theorem 15
that MC-ROMMA is indeed ultraconservative.
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Lemma 12 Let(x',y1),...,(XT,y") be a separable input sequence for MC-ROMMA, wheeR"
and y € {1,2,...,k}. If MC-ROMMA made a prediction error on the t'th examgl # 0) then
ST (MELR) = 1

Lemma 13 Let(x%,y!),...,(XT,y") be a separable input sequence for MC-ROMMA whéreR"
and y € {1,2,... k}. If MC-ROMMA makes a prediction error on the t'th exampig +# 0) for
t > 1thenM™*1. Mt = ||MY||2,

We are now ready to state and prove the mistake bound for MC-ROMMA.

Theorem 14 Let (x,y1),...,(X7,y") be an input sequence for MC-ROMMA whefec R" and
¥t €{1,2,...,k}. Denote by R= max ||X||. Assume that there is a mati* which classifies the
entire sequence correctly with a margin of at least orte= 1,..., T,r £y : M5 K—MFXE > 1

Then, the number of mistakes that MC-ROMMA makes is at 2R88M *||2.

Proof First, sinceM* separates the data with a unit margin we have MhatM! > |[M!||? for t =
1,...,T. Second, sinc1'+1 attains the minimal norm in the corresponding optimization problem,
we have||[M*|| > |[MY|| for all t. Also, sinceM! = 0 we can combine Lemma 12 with the proof of
Lemma 13 and get th&t? = &', i.e.

— Xt
R
Computing the vector-norm ofl > we get,
1
Finally, by applying Lemma 2 and the assumption fRat ||X|| we get,

1 1
M2 = s >
[RI5o(th2 = 2R

IM2)|? =

We show below that for atl > 1 whenever a prediction error occurred thignt 1|2 > MY +-
1/(2R?). This implies that if MC-ROMMA maden mistakes on the sequence of instances and la-
bels then|[MT+2|2 > |[M1||24+m/(2R2) = m/(2R?). Since||[MT+1||2 < ||[M*||? then,m < 2||M*||?R?,
which would complete the proof and therefore, it remains to showj|t&t?||2 > [[M!||2+1/(2R?)
for any round > 1 on which MC-ROMMA made a prediction error.

To show that the bound on the growth of the ndvtht with respect to the norm ofit we exam-
ine the distance(M!, A') between the matrik® and the set of hyperplangé={M : 5,1t (M, - X) =1}
which was defined in the proof of Lemma 13. We now use the assumption ttét #seample was
misclassified §, ¢ (M, - X) < 0) and Lemma 2 to get,

toaty ‘Zthr(Mr';(r)_l‘
A = R
1
> -
T
1

973



CRAMMER AND SINGER

Also, since the new matrik'*1 is in the setA! then the distance betwedh! andMt+1 is at least
as big as the distance betwedh andA!, that is,

d(Mt, MY > d(ME, A . (24)
Combining Equations (23) and (24) we get,

1
t+1 M2 >
M M2 s - (25)

We now expand the norffiM 1|2,
||Mt+1||2 — H(Mt+1_Mt)+MtH2
— HMt+l o Mt||2-|- HMtHZ o Z(MtJrl_ Mt) . Mt
HMtJrl_ Mt”2+ HMtHZ_ 2(Mt+1' Mt _ ”Mt”Z)
Using Lemma 13 we know tha**1. M* — |[M!||? = 0 and thus,
ML = MU= M2 M2 (26)
Combining Equations (25) and (26) we get,

1
2R2’
which completes the proof. |

IMEEH2 > (M2 +

Finally, we conclude this section by showing that MC-ROMMA is ultraconservative.
Theorem 15 MC-ROMMA is ultraconservative.

Proof We first show that the optimization problem given in Equation (22) can be re-rewritten as a
constrained optimization where the unknown variables can be grouped into a single mafiX.in

We replace the prototype-matrimM with the vector(Ml, ey Mk) and the instancg with the vector
(T, .., 1)), It is straightforward to verify that the optimization problem of Equation (22) can
now be rewritten as,

min  ||(Mg,...,My)]|?
subjectto: (Mg, ...,My)- (19X, ..., Tx) > 1
(M1, M) - (M, M) > [[(ME,...,Mp)[|>.

Applying Lemma 12 and Lemma 13 we get that that the optimum of Equation (27) is achieved when
the inequalities hold as equalities. The same property holds for the original version of ROMMA.
We therefore can use Li and Long’s closed form solution and get that the solution is of the form,

(MY MEFY) = g (ML MY (5K T |

for some values; > 0 andd;. Going back to the representation that employs multiple matrices we
get that the value of the prototype-matrix after the update is,

vr Ml =g (I\Zﬁ + %Tﬁ%) . (27)
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Name No. of No. of No. of No. of
Training Examples Test Examples Classes Attributes
Chess-Board 10,000 10,000 8 2
MNIST 60,000 10,000 10 784
USPS 7,291 2,007 10 256
Letter 16,000 4,000 26 16

Table 1: Data sets learning problems used in the experiments

The updated given by Equation (27) can be decomposed into two stages. First, similar to the family
of additive algorithms of Figure 2 and to MIRA (Figure 3), the algorithm replaces the prototype
M} with the sumM; + (d/c;)TiX. Using the third condition of MC-ROMMA (Figure 6) we get

that if the labelr was not one of the sources for an error thér= 0 and thereforevit™* = ML.
Therefore the update is ultraconservative. After the additive changg, ihe MC-ROMMA scales

all the prototypes by a multiplicative factoy. Although all of the prototypes are modified in this
stage, including those which are not in the error sgtf'), the classification functiohl (X) induced

by M! is notaffected by this scaling and thus the update rule is can be viewed as ultraconseBative.

8. Experiments

In this section we describe and discuss the results of experiments we performed with both synthetic
data and natural datasets. The experiments are by no means exhaustive and the main goal of these
experiments is to underscore the merits of the various online algorithms discussed in this paper.

Algorithms:  We compared the following five algorithms. The first algorithm is a multiclass clas-
sifier based on the Perceptron algorithm obtained by training several copies of the Perceptron. Each
copy is trained to discriminate one class from the rest of the classes. To classify a new instance
we compute the output of each of the trained Perceptrons and predict the label which attains the
highest similarity-score. This approach can be viewed as a special case of error correcting output
codes (ECOC), used for reducing a multiclass problems into multiple binary problems (Dietterich
and Bakiri, 1995, Allwein et al., 2000). The next three algorithms belong to the family of algorithms
discussed in Section 4 and whose pseudo-code is given in Figure 2. Each of the three algorithms
corresponds to a different update. All the three algorithms repigcwith My + x whenever the
prediction is incorrect. In addition each of the algorithms modify the set of prototypes constitut-
ing the error set. Specifically, the first update changes the prototypes in the error set in a uniform
manner by adding the vecterx/|E| to each prototype and is thus referred to asuhiéormupdate.

The second update is more conservative and changes only two of the prototypes on each round: the
prototypeMy corresponding to the correct labelnd the prototypé/, which attains the highest
similarity-score. This update is therefore referred tor@supdate. Last, the third update modifies
each prototype from the error-set in proportion to the similarity-score it attains (see Section 4 for
a formal description) an is abbreviated as ghep update. We ran all the algorithms above in an
aggressive fashion: on each round a valup €f0.01 was deducted from the similarity-score of the
correct labely right before computing the error-set and the corresponding update. This modification
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Figure 7: The relative test error (left) and relative number of updates (right) of four of the algorithms
presented in this paper after one epoch (top row) and after three epochs (bottom row).

of the score forces the algorithms to perform an update even on rounds with no prediction error
as long as the margin is smaller thar= 0.01. The fifth algorithm that we tested is an aggressive
version of MIRA with a minimal margin requirement Bf= 0.01. All of the algorithms were used

in conjunction with Mercer kernels. The kernels were fixed for each dataset we experimented with
and we did no attempt to tune their parameters.

Each of the five algorithms was fed with the training set in an online fashion, i.e. example
by example, and generated a multiclass classification rule. We then evaluated the algorithms by
applying their final set of prototypes to the test data and computed their test error. We repeated
these experiments multiple times. (The specific number of repetitions varies between the datasets
in is reported below.)

Data-Sets: We evaluated the algorithms on a synthetic dataset and on three natural datasets:
MNISTL, USPS andLetter 3. The characteristic of the sets are summarized in Table 1. A com-
prehensive overview of the performance of various algorithms on these sets can be found in a recent
paper by Gentile (2001).

1. Available fromhttp://iwww.research.att.com/ “yann/exdb/mnist/index.html
2. Available fromftp.kyb.tuebingen.mpg.de
3. Available fromhttp:/iwww.ics.uci.edu/ “mlearn/MLRepository.html
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Figure 8: Summary of the test error and the number of updates for various online Please refer to
the text for the exact setting used for each of the algorithms.

The synthetic data-set has eight classes. Each instances is a two dimensional ved@®ifrem
[0,1]. We used the uniform distribution to randomly draw examples. Each example was associated
with a unique label according to the following rule. The dom@iri] x [0, 1] was partitioned into
8 x 8 = 64 squares of the same size. Each square was uniquely identified with a row-column index
(i,]). The label of all instances from a given square indeep) was set to bé(i + j) mod 8 + 1.
We then generated a training set and a test set, each of si@2édL0

Results: The complete results obtained in the experiments are summarized in Appendix B. The
appendix also cites performance results for ROMMA (Li and Long, 2002) and ALMA (Gentile,
2001). A graphical illustration that compares the algorithms described in this paper is given in
Figure 7. This figure contains four bar-plots. Each bar in the plots designates corresponds to a
ratio of a performance measure of one the algorithms and the Perceptron algorithm: the left two
plots show the relative test error and the right two plots show the relative number of updates each
algorithm performed. Formally, the height of each bar in the left two plots is proportior{al te

€p)/€p Whereg,, is the test error of the Perceptron algorithm @gds the test error on one of the
other four algorithms (Uniform, Max, Prop and MIRA). Similarly, the height of each bar is the right
two plots is proportional tqus — Up)/u, Whereup(ua) is the number of updates the Perceptron
algorithm (one of the four algorithms; Uniform, Max, Prop and MIRA) made. The top two plots
refers to the results after cycling once through the training data and the bottom two plots refers to
the results after three cycles through the training data. In each plots there are four groups of bars,
one for each for one of the four multiclass algorithms described in this paper (Uniform, Max, Prop
and MIRA). The results for each consist of four bars corresponding to four dat@bess:Board |,

MNIST, USPSandLetter  (from left to right).

From the figure we see that MIRA outperforms the other algorithms described in this paper, but
this improved performance has a price in terms of the sparseness of the solution. The test error of
the Perceptron is lower than the test error of the rest of the algorithms (Uniform, Max, and Prop)
but the Perceptron performs more updates than the three hence the resulting classifier is less sparse.
For instance, for the USPS dataset, the test error of Uniform, Max, and Prop is about 10% higher
than the error of the Perceptron while the test error of MIRA is around 20% lower than that of the
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Perceptron. The advantage of MIRA over the Perceptron is even more evidentéti¢the dataset

where MIRA's test error is lower by 50% than the Perceptron’s error. After three epochs the test
error of the Uniform update becomes only 8% higher than the error of the Perceptron algorithm on
three datasets and the Uniform update outperforms the Perceptitki®h Whether one epoch or

three, MIRA outperforms all of the algorithms. However, MIRA makes many more updates which
results in large number of support patterns when kernel are used. The number of support patterns
used by MIRA after one epoch is about four times the number used by the Perceptron (two times on
theletter data-set). Uniform, Max and Prop, on the other hand, makes about half of the number of
updates compared to the Perceptron algorithm. This behaviour does not change after three epochs.

Another perspective of the results on MHBIST data-set is illustrated in Figure 8. The plot on
the left hand side plot corresponds to results obtained after one epoch while the right hand side plot
corresponds to results obtained after three epochs. In each of the two pleo@xiselesignates the
test error of an algorithm divided by the test error of the Perceptron algorithm anehttis is the
number of updates the algorithm made divided by the number of updates of the Perceptron. Each of
the algorithm is thus associate with a coordinate in each plot. By definition, the Perceptron algorithm
is the point(1,1). We added to the plots the results obtained by two more algorithms: Li and
Long’s (2002) ROMMA algorithm and Gentile’s (2001) ALMA algorithm. These algorithms were
designed for binary classification problems and were adapted for multiclass problems using the one-
vs-rest reduction. Li and Long evaluated ROMMAMNIST using a non-homogeneous polynomial
kernel of degree four in an aggressive manner. ALMA was evaluated using a non-homogeneous
polynomial kernel of degree six. In the experiments with these algorithm, each input instance was
normalized to have ah, of one. The plots appearing in Figure 8 further underscore the tradeoff
between accuracy and sparseness. While MIRA exhibits the lowest error rate, with the exception
of ROMMA, it is also the algorithm that makes the largest number of updates. Analogously, the
three updates from Figure 2 make far less updates at the expense of inferior performance. ROMMA
seems to exhibit somewhat poorer performance in terms of the accuracy versus number of updates
ratio while ALMA seems to be comparable in terms of that ratio. We would like to note these
performance differences might be attributed to the different pre-processing and different kernels
used in our experiments. Nonetheless, all algorithms do exhibit a natural tradeoff between accuracy
and sparseness of the solution.

9. Summary

In this paper we described a general framework for deriving ultraconservative algorithms for mul-
ticlass categorization problems and analyzed the proposed algorithms in the mistake bound model.
We investigated in detail an additive family of online algorithms. The entire family reduces to
the Perceptron algorithm in the binary case. In addition, we gave a method for choosing a unique
member of the family by imposing a quadratic objective function that minimizes the norm of the
prototype matrix after each update. We then gave an analogous family of multiplicative algorithms.
A question that remains open is how to impose constraints similar to the one MIRA employs in
the multiplicative case. We also described an ultraconservative version of Li and Long’s ROMMA
algorithm. We believe that the ultraconservative approach to multiclass problems can be also be
applied to to quasi-additive algorithms (Grove et al., 2001) and p-norm algorithms (Gentile, 2001).
Another interesting direction for research that generalizes our framework is the design and analysis
of algorithms that maintain more than one prototype per class. While this approach is clearly useful
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in cases where the distribution of instances from a given class is not concentrated in one direction, it
seems rather tricky to generalize the ultraconservative paradigm to the case of multiple prototypes.

We would like to note that this work is part of a general line of research on multiclass learning.
Allwein et al. (2000) described and analyzed a general approach for multiclass problems using error
correcting output codes (Dietterich and Bakiri, 1995). Building on that work, we (Crammer and
Singer, 2000) investigated the problem of designing good output codes for multiclass problems.
Although the model of learning using output code differs substantially from the framework studied
in this paper, a few of the techniques presented here build upon other results (Crammer and Singer,
2000). Finally, a few of the techniques used in this paper can also be applied in batch settings
to construct Multiclass Support Vector Machines (MSVM). The implementation details on how to
efficiently build MSVMs appear in another place (Crammer and Singer, 2001).
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Appendix A. Technical Proofs

Proof of Theorem 4:

The caseD = 0 follows from Theorem 3 thus we can assume at 0. The theorem is proved

by transforming the non-separable setting to a separable one. To do so, we extend each instance
X € R"toZ € R™T as follows. The firsh coordinates of are set tod. Then+t coordinate o is

set toA, which is a positive real number whose value is determined later; the rest of the coordinates
of Z are set to zero. We similarly extend the matdx to W* € RK*("T) as follows. We set the

first n columnsw* to be%M*. For each row we set\",,; to g—tA if r =y* and zero otherwise. To
summarize, the structure @¥* is,

W* - M* 6r7yt%t

1
z
We choose the value @& so that||W*||> = 1, hence,
. 1 D?
1= W IE= 5 (143
which gives that,
Z=1\/1+—.

We now show thatW* achieves a margin 0% on the extended data sequence. Note that far all

andt,
_ gt

(M- X+ 8 pd)

Nl ~ NIk
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Now, using the definition ofi' we get,

% T o Lomged) —maxd L
Wi-Z —max{W -2} = = (My-X+d) rggX{z(Mr >'<‘)}
1 11—, .
— Zdt+z[Myt ?—@%X{Mr %}}
> Z(y— [M;‘t-it—rrr;a}x{M;‘ >'<‘}D
+% [M;‘t-f(t—max{l\ﬁ;‘ i‘}}
_ Yy
7 (28)
We also have that,
I1Z]1 = IX|2+ 02 < R+ A% (29)

In summary, Equation (28) and Equation (29) imply that the sequértcg'),...,(Z",y") is clas-
sified correctly with margin% and each instancg is bounded above big? + A2. Thus, we can use
Theorem 3 and conclude that the number of mistakes that the algorithm maf@gn ..., (Z7,y")
is bounded from above by,

R2 + A2

(30)

Minimizing Equation (30) ovel we get that the optimal value fdris /DR and the tightest mistake
bound is,
(D +R)?

¥

To complete the proof we show that the prediction of the algorithm in the extended space and in the
original space are equal. Namely, Mt andW! be the value of the parameter matrix just before
receivingx andZ, respectively. We need to show that the following conditions hold fod, ..., T

2

1. The firstn columns ofW! are equal tavit.

2. The(n+t)th column ofW! is equal zero.

3. MEXE=W!-Zforr=1,....k
The proof of these conditions is straightforward by inductiori.on [ |
Proof of Theorem 7:

LetM be the prototype matrix just before roundnd denote by’ the updated matrix after round
t, that is,

M =M +T.X (r=1,2,...,Kk) .
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As in Theorem 3, we boun{iM||3 from above and below. First, we develop the lower bound on
IM||3 by bounding the term,

wI
-
=i

i (Mr +Ttr)_(t)

r=1

_‘
= |l
MR

=

M+ 3 T (M;-X) (31)

_‘
Il
.

We further develop the second term using the second constraint of MIRA. Substiljating- 3, . T
we get,

(X)) = ;TE(M:-%)JFW(M;-%)

= ;Tr M* ;TI’ Myt
r %

= ; (=) (My =My -
Ay
Using the fact thaM * classifies all the instances with margime obtain,
Zrtr (M; %) > ; (-t y=Tyy. (32)
r r yt
Combining Equation (31) and Equation (32) we get,
ZM* M, > ZM* M, +Tiy.

Thus, afterT rounds the matrit satisfies,

S MM, > vzrﬁ. (33)
r

Using the definition of the vector-norm and applying the Cauchy-Schwartz inequality we get,

k _ k _
IMZIM*)2 = <ZHMrH2> (Z\IMF‘\F)
r=1 r=1

> (My-Mi 4 ...+ Mg-M;)?
K 2

= | IM-M (34)
r=1

Plugging Equation (33) into Equation (34) and using the assumptiomthé of a unit vector-norm
we get the following lower bound,

M2 > v (Zr;)z | (35)
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Next, we bound the vector-norm df from above,
M = ZHWHZ
ZH'\EHWHZ
> IMe[[*+23 1 (Me-X) + 5 o |
= M2y 7 (M) + K] 3 ()7 (36)

r

Using the definition of MIRA (Figure 3) we know that are chosen to minimizgM’||2. Note that
T = 0 satisfies the constraints of MIRA and thien reduces tv . Therefore we have that,

23 1 (Mr - %) + [K]? 3 ()% <.

T

But ||X||? 5, (t})2 > 0 and finally we get,

3T (M -X) <0. 37)

Plugging Equation (37) into Equation (36) while using the boliRd|?> < R? and Lemma 2 we
obtain,

’ 2
M2 < IM]P+2RI? (Ty)
< IMP+2)|R)PT - (38)
Thus, afterT round the matriXM satisfies,
[LYR ZIIR\\ZZT§- (39)

Combining Equation (35) and Equation (39) we obtain,

v (ZT;)Z < IMI? <2IRIE

ZT;SZ%Z.

Using the second constraint of the algorithm we get,

Flle= 3 il == 3 ey =25
r r yt

and therefore,

and therefore,

RZ
T < 4— .
ZII 1< v
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Proof of Theorem 11:

Let
k

G=3 D (M;[|M})
r=1

and defined; = @, ; — @;. Note that these definitions imply that,
A = PP
M/l Mri
Z Z Mt+l

\ My
Z Mrilog <ME,i >
Mt
= Z ZM |°9<Mt+1>

Recall that if no error was made on ttte example(§* = y!) thenT = 0, M1 = M' andA; = 0.
We therefore further develop the expressiondpfor the case when there was a prediction error on
roundt,

2

] Z;
ZM“ log (ﬁ)

[ @y - g
)

[log(ZH)|IM; |1 —n Tt (M} - X
(Iog(ZH)IM{[l2) =n S T (M -X) .

r
r
2
Using the assumptioiM [, = 1 for allr = 1,...,k we get,

=S log(Z)) —n$ T (M; - X) . (40)

Let us now further develop both terms of the expression above. For the right term we use the second
constraint of the algorithm and substitute = — 5. T to get that,

> (M7 -X) = 2 (My —My) - % .

Using the assumption th&t* classifies all the instances with margiand the fourth constraint of
the algorithm<T§,t = l) we obtain,

PRALTERS ; by=vii =v. (41)
r %
To bound the left term we use the inequality :
vn>0, xe[-1,1] e”x<ﬂe”+lTx e .
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Since|tt| < 1 and|X||» < 1 then|ti x| < 1 and thus,

Zr = ZMﬁie”TtrX}
< S 1+TtXfeﬂ ! :Xfe—ﬂ
_ ZI\/Ite“Jre ZI\/Ite” e o
- el > M+ ()
- ‘3”2 I+ S oty (0 ) %+ S ()

Note that||[M!|; = 1 since the algorithm normalizes the rows of the matrix on every step. We
assumed that there is an error in classifyih@nd, as in the additive family of algorithms, we need
to consider two cases. The first case is when the lalvehs not the source of the error, that is
(Myt M) X' > 0. Then by using the third constraint of the algorithm we get that 0 and

thus (—t¢) (My — M) - X = 0. In the second case, if the labeivas a possible source of error,
then(Mi M_) X' < 0. Using the first constraint of the algorithm we know tln',atg 0 and thus
(—1t) (My — M) - X < 0. Sincen > 0 we have thak (e —e™") > 0 and therefore we get,

g+en g —ehn
t<
Zi < 2 + 2
Taking the log of Equation (42) we get,

-1 e,
log(Z;) < Iog[emrze +€n 2e Ttr(l\/l;t.f(t)]

Spen/  @en,
Iog[ 5 <1+en+e_nrtr(M;t.>'<t)>]

B el+e el—e & (N

= Iog( 5 >+Iog[l+en+e - T (M- X) |
We use the fact the Idg) is concave and therefore I+ x) < x for x > —1. Since|t}| < 1,
HM l1=1, X~ <1and

T (MY -X) (42)

— 9

eh—en
eh+en

we conclude that,

e4e ) el—e
t
log(Z;) < Iog( > ) taren

Plugging Equations (41) and (43) into Equation (40) we get that if there is an error tih thetance
then

T (MY -X) (43)

JAY

IN

¢l e Qe
yoa( ")y e o
e”+e el—e™
- klog( 5 ) e (M) - X‘)Zﬁ,—ny.

984




ULTRACONSERVATIVE ONLINE ALGORITHMS FORMULTICLASS PROBLEMS

Using the second constraint of the algoritiif t. = 0) we obtain,

—N
A < klog<en+2e ) —ny.

Therefore, if the algorithm makes mistakes on the sequengé,yt),...,(x",y") then

tiat <m [klog (eﬂ +2e—n> _ r]y] . (44)
On the other hand,
T T
t;At = t;(‘btﬂ —®) =P - Dy
> —d; = —klog(n) . (45)

Combining Equations (44) and Equations (45) we obtain,

m [klog <eﬂ +2e—n> —r]y] > —klog(n) .

Solving formwe get,
log(n)
T ngtlog (grfe)

Minimizing overn we obtain the required bound,

o(wb$m>.

Proof of Lemma 12:

Note that the claim implies that the first inequality constraint of MC-ROMMA's optimization
problem is satisfied with equality after the update. Assume, by contradiction that this is not the case.
That is, after an update we get,

ST (MX) > 1. (46)
r

We now show that there exists a mathik which satisfies the constraints of the optimization prob-
lem, but achieves a norm which is smaller than the norid Gf*. This yields a contradiction to the
assumption that1+1 is the optimal solution.

Sincex” was misclassified we need to consider the following two cases for eachrlafiéle
first case is when the labelwas not the source of the error, tha(ig), —M;) -X > 0. Then, using
the third constraintr ¢ E'U{y'} = 1! = 0) we get thatr! = 0 and thug —Tt) (I\Z;t — I\ZE) X =0.

The second case is when one of the sources of error was ther Jaleel(My, — M) . X < 0. From
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the first constraint of the algorithm we know thét< 0 and thug—tt) (M;t - I\WE) X < 0. Finally,
summing over alt we get,

;(—rﬁ)(l\ﬁ;—l\ﬁﬁ)-%go. (47)
1A

We further develop the left hand-side of the above equality using the second constraint of the algo-
rithm (3, ¢ = 0) and get,

|
—;_'r-r
N—
—
<
\<‘ —
|
<
=
b1t
|

3 0 H) - 3 ()
r#yt r#yt

= 3R ()

rZy
— ST (MR . (48)
r
Combining Equations (47) and (48) we get,
3T (M -X) <0. (49)
r

From Equations (46) and (49) we get that there exists(0, 1) andM’ =aM! + (1—a)M™1such
thatM’ satisfies the first constraint of the algorithm with equality, j.ett (Mr >_<f) = 1. Using the
definition of M’ and the convexity of the squaréd norm we get that,

IM? < alf| M2+ (21— an) MU 2. (50)

Note thatM! is the optimal solution of the quadratic optimization problem if we omit the first
inequality constraint given in Equation (22). In additidi! does not satisfy that first constraint,
therefore||M!||? < [M™+1||2. Plugging this inequality into Equation (50) we get,

M2 < [MEH2

Since bothvit andM'! satisfy the second inequality constraint of Equation (22) Mnds a con-
vex combination oMt andMt*1, thenM’ also satisfies the second constraint. TherefM'ei,s a
feasible point and thus we get a contradiction. |

Proof of Lemma 13:
Let Al denote the set of all matrices which satisfy the first constraint with equality, that is,

At_{M: (M, X _1} .
> 1 (M %)
From Lemma 12 we know thatit*1 ¢ Al. Define
& X
X2 [s(T5)?] 7
and let,
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be the matrix whoseth row isal. It is straightforward to verify thad! € A'. We now show that
it attains the minimal vector-norm among all of the matricedinFrom the definitions above the
norm ofa is,

¢ X ' X
28 = ) AP RS2

%12 [ 5 (12)]
[1%][2 3 5(18)2]?
1

X2 (3t -

Also note that for everyl € Al we have,

M.al = ZI\Z
X
= XM TR (5.0
M, - X
G zs 7 2.5

;
X112 [Zs(15)?]

where for the last equation we used the fact tat Al. Combining the last two equalities we get
that for allM € Al,

M2 = 1M —a) 4|2
= [M-aP+]ad|?+2(M-d —a-a)
1 1
_ ||M—at||2+||at||2+2( - )
P07 RS
M PP (51)

Since the term on the right side of Equation (51) is constant, the norh & minimized when
the term on the left hand side equals zero, thailis- al. However,M'*! ¢ A" and it attains the
minimal norm. We therefore gé¥l'*! = a'. We now assume by contradiction that the second
inequality constraint of the optimization problem does not hold with equalityMbt?, that is
M1 Mt > ||MY||2. Plugging the value af1'*! = & into the inequality we get,

Tt;(r Mt 2
> ||[M .
2 Fsaa M > M

Rearranging the terms we finally get,

3T G M) > MR | 2]
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However,M! # O (sincet > 1), X # 0 (since the input sequence is separable)gutd)? > 0 (since
E! £ 0), therefore,

> (X-MY) >0,

r

which is a contradiction to the assumption that there was a prediction error ontround |

Appendix B. Summary of Experimental Results

The results of the experiments are summarized in Tables 2 through 5. Each table contains results for
a different dataset. The datasets @hess-Board , MNIST, USPSandLetter . Each column gives
results after a single pass through the training set. Each row in the tables corresponds to a specific
algorithm. The top row in each pair of rows corresponds to the test error while the bottom row gives
the cumulative number of updates each algorithm made. Some of the tables also contain results
for ALMA (Gentile, 2001) and ROMMA (Li and Long, 2002). Both algorithms used the one-vs-
rest reduction of multiclass to binary. ROMMA was trained using a non-homogeneous polynomial
kernel of degree four and the data was normalized to havg morm of 1. See (Li and Long, 2002)
for further details. ALMA was designed and analyzed by Gentile (2001). ALMA was trained using
different kernels than in this paper, On th8lIST data-set is was trained using a non-homogeneous
polynomial kernel of degree six and the data was normalized to haker@orm of 1. On théJSPS
data-set is was trained using a Gaussian kernel with a standard deviatidnasfBon the etter
dataset is was trained using a ploy-Gaussian kernel. Further details are provides by Gentile (2001).
We used the prediction the last set of prototypes each algorithm outputs after cycling through
the training set. However, Gentile (2001) reports that better results can be obtained by combining
ALMA with a voting technique (Freund and Schapire, 1999). In the tables below we report results
that were obtained without any voting or averaging techniques.

Epochs
Algorithm 1 2 3 4 5

Perceptron 5.6 4.9 4.7 4.7 4.6
1891 2029 2050 2059 2062

Uniform 6.3 5.1 4.7 4.7 4.7
1745 1933 1966 1971 1973

Max 6.1 54 5.2 5.1 5.1
1758 1912 1936 1944 1947

Prop 6.2 5.3 5.2 51 51
1723 1900 1927 1934 1938

MIRA 4.3 4.0 3.9 4.0 4.0

7229 7259 7260 7261 7261

Table 2: Experimental results for Chess-Board data. The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms afterl,...,10 epochs of training
on 10,000 examples.
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Epochs
Algorithm 1 2 3 Kernel

Perceptron 1.83 1.58 1.68 Homogeneous
5299 6633 7112 Polynomial
agg-ROMMA | 2.05 1.76 1.67
30088 44495 58583 Non-Homogeneous
ALMA »(0.9) | 1.84 1.53 1.45 Polynomial
11652 13712 1459¢

Uniform 2.31 1.89 1.62
2726 3271 3458
Max 2.61 2.13 1.89 Homogeneous
2823 3423 3605 Polynomial
Prop 2.46 2.04 1.85
3050 3722 3957
MIRA 1.45 1.37 1.36

20162 23878 26176

Table 3: Experimental results for the MNIST data-set. The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms after 1,...,3 epochs.

Epochs Kernel
Algorithm 1 2 3 4 5

Perceptron 593 563 498 478 4.83 Homogeneous
936 1167 1240 1266 1281 Polynomial
ALMA (0.95) | 5.72 5.05 4.85
1752 2087 2239

ALMA2(0.9) | 543 5.06 4.90 Gaussian
2251 2606 2746
Uniform 6.73 553 538 548 543
492 578 603 614 621
Max 6.08 6.38 548 538 5.38 Homogeneous
527 607 639 645 647 Polynomial
Prop 6.63 598 573 558 543
494 575 600 612 615
MIRA 478 468 463 4.63 4.58

3242 3864 4250 4517 4726

Table 4: Experimental results for the USPS data-set.The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms aftet 1,...,5 epochs.
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Epochs Kernel
Algorithm 1 2 3 4 5
Perceptron 7.45 5.13 4.60 4.32 3.95 Gaussian
4215 5635 6469 7023 7359
ALMA »(0.8) | 4.20 3.55 3.27 Poly-Gaussian
11258 13003 13673
Uniform 7.07 5.40 4,90 4.88 4.28
2202 2754 3057 3293 3432
Max 7.40 6.08 4.63 4.73 4,73 Gaussian
2334 2951 3313 3510 3635
Prop 8.00 7.03 4,98 4.83 4.4
2205 2784 3117 3336 3475
MIRA 3.68 3.08 2.70 2.50 2.38
8184 11964 14929 17453 19701

Table 5: Experimental results for the Letter data-set. The test error (top) and number of support
patterns (bottom) for five multiclass online algorithms after 1,...,5 epochs.
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