
Online Classification on a Budget

Koby Crammer
Computer Sci. & Eng.

Hebrew University
Jerusalem 91904, Israel

kobics@cs.huji.ac.il

Jaz Kandola
Royal Holloway,

University of London
Egham, UK

jaz@cs.rhul.ac.uk

Yoram Singer
Computer Sci. & Eng.

Hebrew University
Jerusalem 91904, Israel

singer@cs.huji.ac.il

Abstract

Online algorithms for classification often require vast amounts of mem-
ory and computation time when employed in conjunction with kernel
functions. In this paper we describe and analyze a simple approach for an
on-the-fly reduction of the number of past examples used for prediction.
Experiments performed with real datasets show that using the proposed
algorithmic approach with a single epoch is competitive with the sup-
port vector machine (SVM) although the latter, being a batch algorithm,
accesses each training example multiple times.

1 Introduction and Motivation

Kernel-based methods are increasingly being used for data modeling and prediction be-
cause of their conceptual simplicity and outstanding performance on many real-world tasks.
The support vector machine (SVM) is a well known algorithm for finding kernel-based lin-
ear classifiers with maximal margin [7]. The kernel trick can be used to provide an effective
method to deal with very high dimensional feature spaces as well as to model complex in-
put phenomena via embedding into inner product spaces. However, despite generalization
error being upper bounded by a function of the margin of a linear classifier, it is notoriously
difficult to implement such classifiers efficiently. Empirically this often translates into very
long training times. A number of alternative algorithms exist for finding a maximal margin
hyperplane many of which have been inspired by Rosenblatt’s Perceptron algorithm [6]
which is an on-line learning algorithm for linear classifiers. The work on SVMs has in-
spired a number of modifications and enhancements to the original Perceptron algorithm.
These incorporate the notion of margin to the learning and prediction processes whilst ex-
hibiting good empirical performance in practice. Examples of such algorithms include the
Relaxed Online Maximum Margin Algorithm (ROMMA) [4], the Approximate Maximal
Margin Classification Algorithm (ALMA) [2], and the Margin Infused Relaxed Algorithm
(MIRA) [1] which can be used in conjunction with kernel functions.

A notable limitation of kernel based methods is their computational complexity since the
amount of computer memory that they require to store the so called support patterns grows
linearly with the number prediction errors. A number of attempts have been made to speed
up the training and testing of SVM’s by enforcing a sparsity condition. In this paper we
devise an online algorithm that is not only sparse but also generalizes well. To achieve this
goal our algorithm uses an insertion and deletion process. Informally, it can be thought
of as revising the weight vector after each example on which a prediction mistake has

been made. Once such an event occurs the algorithm adds the new erroneous example
(the insertion phase), and then immediately searches for past examples that appear to be
redundant given the recent addition (the deletion phase). As we describe later, making this
adjustment to the algorithm allows us to modify the standard online proof techniques so as
to provide a bound on the total number of examples the algorithm keeps.

This paper is organized as follows. In Sec. 2 we formalize the problem setting and provide
a brief outline of our method for obtaining a sparse set of support patterns in an online
setting. In Sec. 3 we present both theoretical and algorithmic details of our approach and
provide a bound on the number of support patterns that constitute the cache. Sec. 4 provides
experimental details, evaluated on three real world datasets, to illustrate the performance
and merits of our sparse online algorithm. We end the paper with conclusions and ideas for
future work.

2 Problem Setting and Algorithms

This work focuses on online additive algorithms for classification tasks. In such problems
we are typically given a stream of instance-label pairs (x1, y1), . . . , (xt, yt), we assume
that each instance is a vector xt ∈

� n and each label belongs to a finite set Y . In this
and the next section we assume that Y = {−1, +1} but relax this assumption in Sec. 4
where we describe experiments with datasets consisting of more than two labels. When
dealing with the task of predicting new labels, thresholded linear classifiers of the form
h(x) = sign(w · x) are commonly employed. The vector w is typically represented as
a weighted linear combination of the examples, namely w =

∑

t αtytxt where αt ≥ 0.
The instances for which αt > 0 are referred to as support patterns. Under this assumption,
the output of the classifier solely depends on inner-products of the form x · xt the use of
kernel functions can easily be employed simply by replacing the standard scalar product
with a function K(·, ·) which satisfies Mercer conditions [7]. The resulting classification
rule takes the form h(x) = sign(w · x) = sign(

∑

t αtytK(x,xt)).

The majority of additive online algorithms for classification, for example the well known
Perceptron [6], share a common algorithmic structure. These online algorithms typically
work in rounds. On the tth round, an online algorithm receives an instance xt, computes
the inner-products st =

∑

i<t αiyiK(xi,xt) and sets the predicted label to be sign(st).
The algorithm then receives the correct label yt and evaluates whether ytst ≤ βt. The exact
value of parameter βt depends on the specific algorithm being used for classification. If the
result of this test is negative, the algorithms do not modify wt and thus αt is implicitly
set to 0. Otherwise, the algorithms modifies its classification using a predetermined update
rule. Informally we can consider this update to be decomposed into three stages. Firstly, the
algorithms choose a non-negative value for αt (again the exact choice of the parameter αt is
algorithm dependent). Secondly, the prediction vector is replaced with a linear combination
of the current vector wt and the example, wt+1 = wt + αtytxt. In a third, optional stage
(see for example [4]), the norm of the newly updated weight vector is scaled, wt+1 ←
ctwt+1 for some ct > 0. The various online algorithms differ in the way the values of the
parameters βt, αt and ct are set. A notable example of an online algorithm is the Perceptron
algorithm [6] for which we set βt = 0, αt = 1 and ct = 1. More recent algorithms
such as the Relaxed Online Maximum Margin Algorithm (ROMMA) [4] the Approximate
Maximal Margin Classification Algorithm (ALMA) [2] and the Margin Infused Relaxed
Algorithm (MIRA) [1] can also be described in this framework although the constants
βt, αt and ct are not as simple as the ones employed by the Perceptron algorithm.

An important computational consideration needs to be made when employing kernel func-
tions for machine learning tasks. This is because the amount of memory required to
store the so called support patterns grows linearly with the number prediction errors. In

Input: Tolerance β.
Initialize: Set ∀t αt = 0 ,w0 = 0 , C0 = ∅.
Loop: For t = 1, 2, . . . , T

• Get a new instance xt ∈
� n.

• Predict ŷt = sign (yt(xt ·wt−1)).
• Get a new label yt.
• if yt(xt ·wt−1) ≤ β update:

1. Insert Ct ← Ct−1 ∪ {t}.
2. Set αt = 1.
3. Compute wt ← wt−1 + ytαtxt.
4. DistillCache(Ct,wt, (α1, . . . , αt)).

Output : H(x) = sign(wT · x).

Figure 1: The aggressive Perceptron algorithm with a variable-size cache.

this paper we shift the focus to the problem of devising online algorithms which are
budget-conscious as they attempt to keep the number of support patterns small. The
approach is attractive for at least two reasons. Firstly, both the training time and clas-
sification time can be reduced significantly if we store only a fraction of the potential
support patterns. Secondly, a classier with a small number of support patterns is intu-
itively ”simpler”, and hence are likely to exhibit good generalization properties rather
than complex classifiers with large numbers of support patterns. (See for instance [7]
for formal results connecting the number of support patterns to the generalization error.)

Input: C,w, (α1, . . . , αt).
Loop:

• Choose i ∈ C such that
β ≤ yi(w − αiyixi).

• if no such i exists then return.

• Remove the example i :

1. αi = 0.
2. w← w − αiyixi.
3. C ← C/{i}

Return : C,w, (α1, . . . , αt).

Figure 2: DistillCache

In Sec. 3 we present a formal analysis and
the algorithmic details of our approach.
Let us now provide a general overview
of how to restrict the number of support
patterns in an online setting. Denote by
Ct the indices of patterns which consti-
tute the classification vector wt. That is,
i ∈ Ct if and only if αi > 0 on round
t when xt is received. The online classi-
fication algorithms discussed above keep
enlarging Ct – once an example is added
to Ct it will never be deleted. However,
as the online algorithm receives more ex-
amples, the performance of the classifier
improves, and some of the past examples
may have become redundant and hence
can be removed. Put another way, old examples may have been inserted into the cache sim-
ply due the lack of support patterns in early rounds. As more examples are observed, the
old examples maybe replaced with new examples whose location is closer to the decision
boundary induced by the online classifier. We thus add a new stage to the online algorithm
in which we discard a few old examples from the cache Ct. We suggest a modification of
the online algorithm structure as follows. Whenever yt

(
∑

i<t αiyiK(x,xi)
)

≤ βt, then
after adding xt to w and inserting the tth into Ct, we scan the cache Ct for seemingly
redundant examples by examining the margin conditions of old examples in Ct. If such
an example is found, we discard it from the both the classifier and the cache by updating
wt ← wt−αiyixi and setting Ct ← Ct/{i}. The pseudocode for this “budget-conscious”
version of the aggressive Perceptron algorithm [3] is given in Fig. 1. We say that the algo-

rithm employs a variable-size cache since we do no limit explicitly the number of support
patterns though we do attempt to discard as many patterns as possible from the cache. A
similar modification, to that described for aggressive Perceptron, can be made to all of the
online classification algorithms outlined above. In particular, we use a modification of the
MIRA [1] algorithm in our experiments.

3 Analysis

In this section we provide our main formal result for the algorithm described in the previous
section. Informally, the theorem below states that the actual size of the cache that the algo-
rithm builds is inversely proportional to the square of the best margin that can be achieved
on the data. This form of bound is common to numerous online learning algorithms for
classification. However, here the bound is on the size of the cache whereas in common
settings this bound is on the number of prediction mistakes. The bound also depends on β,
the margin used by the algorithm to check whether a new example should be added to the
cache and to discard old examples attaining a large margin. Clearly, the larger the value of
β the more often we add examples to the cache.

Theorem 1 Let (x1, y1), . . . , (xT , yT) be an input sequence for the algorithm given in
Fig. 1, where xt ∈

� n and yt ∈ {−1, +1}. Denote by R = maxt ‖xt‖. Assume that there
exists a vector u of unit norm (‖u‖ = 1) which classifies the entire sequence correctly with
a margin γ = mint yt(u · xt) > 0. Then the number of support patterns constituting the
cache is at most S ≤ (R2 + 2β)/γ2 .

Proof: The proof of the theorem is based on the mistake bound of the Perceptron algo-
rithm [5]. To prove the theorem we bound ‖wT ‖22 from above and below and compare the
bounds. Denote by αt

i the weight of the ith example at the end of round t (after stage 4 of
the algorithm). Similarly, we denote by α̃t

i to be the weight of the ith example on round
t after stage 3, before calling the DistillCache (Fig. 2) procedure. We analogously
denote by wt and w̃t the corresponding instantaneous classifiers. First, we derive a lower
bound on ‖wT ‖2 by bounding the term wT · u from below in a recursive manner.

wT · u =
∑

t∈CT

αT
t yt(xt · u)

≥ γ
∑

t∈CT

αT
t = γ S . (1)

We now turn to upper bound ‖wT ‖2. Recall that each example may be added to the cache
and removed from the cache a single time. Let us write ‖wT‖2 as a telescopic sum,

‖wT ‖
2 = (‖wT ‖

2 − ‖w̃T ‖
2) + (‖w̃T ‖

2 − ‖wT−1‖
2) + . . . + (‖w̃1‖

2 − ‖w0‖
2) . (2)

We now consider three different scenarios that may occur for each new example. The
first case is when we did not insert the tth example into the cache at all. In this case,
(‖w̃t‖2 − ‖wt−1‖2) = 0. The second scenario is when an example is inserted into the
cache and is never discarded in future rounds, thus,

‖w̃t‖
2 = ‖wt−1 + ytxt‖

2 = ‖wt−1‖
2 + 2yt(wt−1 · xt) + ‖xt‖

2 .

Since we inserted (xt, yt), the condition yt(wt−1 · xt) ≤ β must hold. Combining this
with the assumption that the examples are enclosed in a ball of radius R we get, (‖w̃t‖2 −
‖wt−1‖

2) ≤ 2β +R2. The last scenario occurs when an example is inserted into the cache
on some round t, and is then later on removed from the cache on round t + p for p > 0. As
in the previous case we can bound the value of summands in Equ. (2),

(‖w̃t‖
2 − ‖wt−1‖

2) + (‖wt+p‖
2 − ‖w̃t+p‖

2)

Input: Tolerance β, Cache Limit n.
Initialize: Set ∀t αt = 0 ,w0 = 0 , C0 = ∅.
Loop: For t = 1, 2, . . . , T

• Get a new instance xt ∈
� n.

• Predict ŷt = sign (yt(xt ·wt−1)).
• Get a new label yt.
• if yt(xt ·wt−1) ≤ β update:

1. If |Ct| = n remove one example:
(a) Find i = arg maxj∈Ct

{yj(wt−1 − αjyjxj)}.
(b) Update wt−1 ← wt−1 − αiyixi.
(c) Remove Ct−1 ← Ct−1/{i}

2. Insert Ct ← Ct−1 ∪ {t}.
3. Set αt = 1.
4. Compute wt ← wt−1 + ytαtxt.

Output : H(x) = sign(wT · x).

Figure 3: The aggressive Perceptron algorithm with as fixed-size cache.

= 2yt(wt−1 · xt) + ‖xt‖
2 − 2yt(w̃t+p · xt) + ‖xt‖

2

= 2 [yt(wt−1 · xt)− yt ((w̃t+p − ytxt) · xt)]

≤ 2 [β − yt ((w̃t+p − ytxt) · xt)] .

Based on the form of the cache update we know that yt ((w̃t+p − ytxt) · xt) ≥ β, and
thus,

(‖w̃t‖
2 − ‖wt−1‖

2) + (‖wt+p‖
2 − ‖w̃t+p‖

2) ≤ 0 .

Summarizing all three cases we see that only the examples which persist in the cache
contribute a factor of R2 + 2β each to the bound of the telescopic sum of Equ. (2) and
the rest of the examples do contribute anything to the bound. Hence, we can bound the
norm of wT as follows,

‖wT‖
2 ≤ S

(

R2 + 2β
)

. (3)

We finish up the proof by applying the Cauchy-Swartz inequality and the assumption
‖u‖ = 1. Combining Equ. (1) and Equ. (3) we get,

γ2S2 ≤ (wT · u)2 ≤ ‖wT‖
2‖u‖2 ≤ S(β + R2) ,

which gives the desired bound.

4 Experiments

In this section we describe the experimental methods that were used to compare the per-
formance of standard online algorithms with the new algorithm described above. We also
describe shortly another variant that sets a hard limit on the number of support patterns.
The experiments were designed with the aim of trying to answer the following questions.
First, what is effect of the number of support patterns on the generalization error (mea-
sured in terms of classification accuracy on unseen data), and second, would the algorithm
described in Fig. 2 be able to find an optimal cache size that is able to achieve the best
generalization performance. To examine each question separately we used a modified ver-
sion of the algorithm described by Fig. 2 in which we restricted ourselves to have a fixed
bounded cache. This modified algorithm (which we refer to as the fixed budget Perceptron)

Name No. of No. of No. of No. of
Training Examples Test Examples Classes Attributes

mnist 60000 10000 10 784
letter 16000 4000 26 16
usps 7291 2007 10 256

Table 1: Description of the datasets used in experiments.

simulates the original Perceptron algorithm with one notable difference. When the num-
ber of support patterns exceeds a pre-determined limit, it chooses a support pattern from
the cache and discards it. With this modification the number of support patterns can never
exceed the pre-determined limit. This modified algorithm is described in Fig. 3. The algo-
rithm deletes the example which seemingly attains the highest margin after the removal of
the example itself (line 1(a) in Fig. 3).

Despite the simplicity of the original Perceptron algorithm [6] its good generalization per-
formance on many datasets is remarkable. During the last few year a number of other addi-
tive online algorithms have been developed [4, 2, 1] that have shown better performance on
a number of tasks. In this paper, we have preferred to embed these ideas into another online
algorithm and start with a higher baseline performance. We have chosen to use the Margin
Infused Relaxed Algorithm (MIRA) as our baseline algorithm since it has exhibited good
generalization performance in previous experiments [1] and has the additional advantage
that it is designed to solve multiclass classification problem directly without any recourse
to performing reductions.

The algorithms were evaluated on three natural datasets: mnist1, usps2 and letter3.
The characteristics of these datasets has been summarized in Table 1. A comprehensive
overview of the performance of various algorithms on these datasets can be found in a
recent paper [2]. Since all of the algorithms that we have evaluated are online, it is not
implausible for the specific ordering of examples to affect the generalization performance.
We thus report results averaged over 11 random permutations for usps and letter and
over 5 random permutations for mnist. No free parameter optimization was carried out
and instead we simply used the values reported in [1]. More specifically, the margin param-
eter was set to β = 0.01 for all algorithms and for all datasets. A homogeneous polynomial
kernel of degree 9 was used when training on the mnist and usps data sets, and a RBF
kernel for letter data set. (The variance of the RBF kernel was identical to the one used
in [1].)

We evaluated the performance of four algorithms in total. The first algorithm was the
standard MIRA online algorithm, which does not incorporate any budget constraints. The
second algorithm is the version of MIRA described in Fig. 3 which uses a fixed limited
budget. Here we enumerated the cache size limit in each experiment we performed. The
different sizes that we tested are dataset dependent but for each dataset we evaluated at
least 10 different sizes. We would like to note that such an enumeration cannot be done in
an online fashion and the goal of employing the the algorithm with a fixed-size cache is to
underscore the merit of the truly adaptive algorithm. The third algorithm is the version of
MIRA described in Fig. 2 that adapts the cache size during the running of the algorithms.
We also report additional results for a multiclass version of the SVM [1]. Whilst this
algorithm is not online and during the training process it considers all the examples at once,
this algorithm serves as our gold-standard algorithm against which we want to compare

1Available from http://www.research.att.com/ ỹann
2Available from ftp.kyb.tuebingen.mpg.de
3Available from http://www.ics.uci.edu/˜mlearn/MLRepository.html

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

1.2

1.3

1.4

1.5

1.6

1.7

1.8

mnist

Support Patterns

T
es

t E
rr

or

Fixed
Adaptive
SVM
MIRA

500 1000 1500 2000 2500 3000 3500

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

usps

Support Patterns

T
es

t E
rr

or

Fixed
Adaptive
SVM
MIRA

1000 2000 3000 4000 5000 6000 7000 8000 9000

2

2.5

3

3.5

4

4.5

5

5.5

6

letter

Support Patterns

T
es

t E
rr

or

Fixed
Adaptive
SVM
MIRA

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

1300

1350

1400

1450

1500

1550

mnist

Support Patterns

T
ra

in
in

g
O

nl
in

e
E

rr
or

s

Fixed
Adaptive
MIRA

500 1000 1500 2000 2500 3000 3500

235

240

245

250

255

260

265

270

usps

Support Patterns

T
ra

in
in

g
O

nl
in

e
E

rr
or

s

Fixed
Adaptive
MIRA

1000 2000 3000 4000 5000 6000 7000 8000 9000

1250

1300

1350

1400

1450

1500

letter

Support Patterns

T
ra

in
in

g
O

nl
in

e
E

rr
or

s

Fixed
Adaptive
MIRA

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

2

2.5

3

3.5

4

4.5

5

5.5

x 10
4 mnist

Support Patterns

T
ra

in
in

g
M

ar
gi

n
E

rr
or

s

Fixed
Adaptive
MIRA

500 1000 1500 2000 2500 3000 3500

3500

4000

4500

5000

5500

6000

6500

usps

Support Patterns

T
ra

in
in

g
M

ar
gi

n
E

rr
or

s

Fixed
Adaptive
MIRA

1000 2000 3000 4000 5000 6000 7000 8000 9000

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4 letter

Support Patterns
T

ra
in

in
g

M
ar

gi
n

E
rr

or
s

Fixed
Adaptive
MIRA

Figure 4: Results on a three data sets - mnist (left), usps (center) and letter (right). Each
point in a plot designates the test error (y-axis) vs. the number of support patterns used
(x-axis). Four algorithms are compared - SVM, MIRA, MIRA with a fixed cache size and
MIRA with a variable cache size.

performance. Note that for the multiclass SVM we report the results using the best set of
parameters, which does not coincide with the set of parameters used for the online training.

The results are summarized in Fig 4. This figure is composed of three different plots or-
ganized in columns. Each of these plots corresponds to a different dataset - mnist (left),
usps (center) and letter (right). In each of the three plots the x-axis designates number of
support patterns the algorithm uses. The results for the fixed-size cache are connected with
a line to emphasize the performance dependency on the size of the cache.

The top row of the three columns shows the generalization error. Thus the y-axis designates
the test error of an algorithm on unseen data at the end of the training. Looking at the error
of the algorithm with a fixed-size cache reveals that there is a broad range of cache size
where the algorithm exhibits good performance. In fact for MNIST and USPS there are
sizes for which the test error of the algorithm is better than SVM’s test error. Naturally, we
cannot fix the correct size in hindsight so the question is whether the algorithm with variable
cache size is a viable automatic size-selection method. Analyzing each of the datasets in
turn reveals that this is indeed the case – the algorithm obtains a very similar number
of support patterns and test error when compared to the SVM method. The results are
somewhat less impressive for the letter dataset which contains less examples per class. One
possible explanation is that the algorithm had fewer chances to modify and distill the cache.
Nonetheless, overall the results are remarkable given that all the online algorithms make a
single pass through the data and the variable-size method finds a very good cache size while

making it also comparable to the SVM in terms of performance. The MIRA algorithm,
which does not incorporate any form of example insertion or deletion in its algorithmic
structure, obtains the poorest level of performance not only in terms of generalization error
but also in terms of number of support patterns.

The plot of online training error against the number of support patterns, in row 2 of Fig 4,
can be considered to be a good on-the-fly validation of generalization performance. As the
plots indicate, for the fixed and adaptive versions of the algorithm, on all the datasets, a
low online training error translates into good generalization performance. Comparing the
test error plots with the online error plots we see a nice similarity between the qualitative
behavior of the two errors. Hence, one can use the online error, which is easy to evaluate,
to choose a good cache size for the fixed-size algorithm.

The third row gives the online training margin errors that translates directly to the number
of insertions into the cache. Here we see that the good test error and compactness of the
algorithm with a variable cache size come with a price. Namely, the algorithm makes
significantly more insertions into the cache than the fixed size version of the algorithm.
However, as the upper two sets of plots indicate, the surplus in insertions is later taken care
of by excess deletions and the end result is very good overall performance. In summary, the
online algorithm with a variable cache and SVM obtains similar levels of generalization and
also number of support patterns. While the SVM is still somewhat better in both aspects
for the letter dataset, the online algorithm is much simpler to implement and performs a
single sweep through the training data.

5 Summary

We have described and analyzed a new sparse online algorithm that attempts to deal with
the computational problems implicit in classification algorithms such as the SVM. The
proposed method was empirically tested and its performance in both the size of the resulting
classifier and its performance are comparable to SVM. There are a few possible extensions
and enhancements. We are currently looking at alternative criteria for the deletions of
examples from the cache. For instance, the weight of examples might relay information on
their importance for accurate classification. Incorporating prior knowledge to the insertion
and deletion scheme might also prove important. We hope that such enhancements would
make the proposed algorithms a viable alternative to SVM and other batch algorithms.

Acknowledgements: The authors would like to thank John Shawe-Taylor for many helpful
comments and discussions. This research was partially funded by the EU project KerMIT
No. IST-2000-25341.

References
[1] K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass problems. Jornal

of Machine Learning Research, 3:951–991, 2003.
[2] C. Gentile. A new approximate maximal margin classification algorithm. Journal of Machine

Learning Research, 2:213–242, 2001.
[3] Mézard M. Krauth W. Learning algorithms with optimal stability in neural networks. Journal of

Physics A., 20:745, 1987.
[4] Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine Learning,

46(1–3):361–387, 2002.
[5] A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the Symposium on

the Mathematical Theory of Automata, volume XII, pages 615–622, 1962.
[6] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in

the brain. Psychological Review, 65:386–407, 1958. (Reprinted in Neurocomputing (MIT Press,
1988).).

[7] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

