
Re-Adapting the Regularization of Weights for
Non-Stationary Regression

Nina Vaits and Koby Crammer

Department of Electrical Engneering,
The Technion, Haifa, Israel

nvaits@tx.technion.ac.il,koby@ee.technion.ac.il

Abstract. The goal of a learner in standard online learning is to have the cumula-
tive loss not much larger compared with the best-performing prediction-function
from some fixed class. Numerous algorithms were shown to have this gap ar-
bitrarily close to zero compared with the best function that is chosen off-line.
Nevertheless, many real-world applications (such as adaptive filtering) are non-
stationary in nature and the best prediction function may not be fixed but drift over
time. We introduce a new algorithm for regression that uses per-feature-learning
rate and provide a regret bound with respect to the best sequence of functions
with drift. We show that as long as the cumulative drift is sub-linear in the length
of the sequence our algorithm suffers a regret that is sub-linear as well. We also
sketch an algorithm that achieves the best of the two worlds: in the stationary set-
tings has log(T) regret, while in the non-stationary settings has sub-linear regret.
Simulations demonstrate the usefulness of our algorithm compared with other
state-of-the-art approaches.

1 Introduction

We consider the classical problem of online learning for regression. On each iteration,
the algorithm receives a new instance (for example, input from an array of antennas)
and outputs a prediction of a real value (for example distance to the source). The correct
value is then revealed, and the algorithm suffers a loss based on both its prediction and
the correct output value.

In general, the goal of the learner is to achieve an average loss that is not too big
compared with the loss it would have received if it had chosen to predict according to
the single best-performing function from some fixed class. It is well-known that as the
number of time steps grows, very simple aggregation algorithms are able to achieve
an average loss arbitrarily close to that of the best function in retrospect. Furthermore,
such guarantees hold even if the input and output pairs are chosen in a fully adversarial
manner with no distributional assumptions [6].

Despite the extensive and impressive guarantees that can be made for algorithms
in such settings, competing with the best fixed function is not always good enough. In
many real-world applications, the true target function is not fixed, but is slowly changing
over time. Consider a filter designed to cancel echoes in an hall. Over time, people enter
and leave the hall, furniture are being moved, microphones are replaced and so on.
When this drift occurs, the predictor itself must also change in order to remain relevant.

2 Vaits and Crammer

These reasons led to the development of algorithms and accompanying analysis for
drifting or shifting settings (for example [24, 1, 20, 23] and the references therein). In
this setting, the performance of an algorithm is compared with a sequence of functions
(and not a single function). Often such a sequence is either drifting, where each function
is close in some sense to its predecessor, or shifting, where conceptually the sequence
can be partitioned into few segments, for each there is a single function that performs
well on all examples of that segment.

Recently there is an increased amount of interest in algorithms that exploits second
order information. For example the second order perceptron algorithm [5], confidence-
weighted learning [10, 8], adaptive regularization of weights (AROW) [9], all designed
for classification; and AdaGrad [11] and FTPRL [25] for general loss functions.

In this paper we build on the AROW algorithm and develop an algorithm for re-
gression. Such algorithms are known to work well in practice and converge fast for
stationary-problems. However, for non-stationary problems AROW and other similar
algorithms gradually stop updating their prediction rule, even though their performance
deteriorates. We thus modify the algorithm to overcome these shortcomings. We an-
alyze the algorithm in the worst-case regret framework and show, that as long as the
amount of average-drift is sublinear, the average-loss of our algorithm will converge
to the average-loss of the best sequence of functions. Specifically, we show that if the
cumulative deviation is of order O

(
T 1/p

)
for some known p > 1, then the cumulative

regret isO
(
T (p+1)/(2p) log(T)

)
. We also show that for stationary setting the algorithm

suffers logarithmic regret, similar to previous results [13].
Additionally, we sketch an algorithm that does not employ such prior knowledge.

Specifically, this algorithm runs C + 1 copies of the algorithm mentioned above, each
copy with a parameter chosen to fit a specific assumption of the amount of non-stationarity
in the data. The algorithm then feeds these C+1 outputs to an additional copy that com-
putes a linear combination of these C +1 outputs. Thus, the cumulative loss of the later
algorithm is bounded by the cumulative loss of the best copy (ie the one with the “best”
choice of parameter) with additional regret of O(log T). Therefore, this algorithm for
the non-stationary setting will suffer a polynomial sub-linear regret.

Notation: For a symmetric matrix Σ we denote its jth eigenvalue by λj(Σ). Sim-
ilarly we denote its smallest eigenvalue by λmin(Σ) = minj λj(Σ), and its largest
eigenvalue byλmax(Σ) = maxj λj(Σ).

2 Problem Setting

We work in the online setting for regression evaluated using the square loss. On each
iteration our algorithm receives an instance xt ∈ Rd and predicts a real value ŷt ∈
R it then receives the correct label yt ∈ R, suffers loss ` (yt, ŷt) = (ŷt − yt)

2. The
algorithm then updates its prediction rule, and proceeds to the next round.

Our algorithms employs linear functions (with bounded norm), ŷt = x>t wt−1.
The goal of the learning algorithm is to suffer low loss compared with the best linear

Re-Adapting the Regularization of Weights for Non-Stationary Regression 3

function. Formally, we define the regret of an algorithm to be,

R(T) =
T∑
t

(
x>t wt−1 − yt

)2 − inf
u

T∑
t

(
x>t u− yt

)2
.

The goal of the algorithm is to have R(T) = o(T), such that the average loss will
converge to the average loss of the best linear function u. We use an extended notion
of evaluation, comparing the performance of an algorithm to the performance of a se-
quence of functions,

R(T) =
T∑
t

(
x>t wt−1 − yt

)2 − inf
u1,...,uT

T∑
t

(
x>t ut − yt

)2
.

It is reasonable to assume that the total deviation of the compared sequence is sub-
linear in T , that is, for which

∑
t ‖ut−1 − ut‖ = o(T). Clearly, if the total devi-

ation is Ω(T) we can not expect a learning algorithm to achieve a vanishing aver-
aged regret. Yet, it may be the case that the sequence of functions is not converging
limt→∞

∑t
s=1 ‖us−1 − us‖ yet the algorithm will have vanishing average regret.

3 Algorithm

As in CW [10, 8] and AROW [9] our algorithm maintains a Gaussian distribution pa-
rameterized by a mean wt ∈ Rd and a full covariance matrix Σt ∈ Rd×d. Intuitively,
the mean wt represents the current linear function, while the covariance matrix Σt cap-
tures the uncertainty in the function wt. Given a new example (xt, yt) the algorithm
uses its current mean to make a prediction ŷt = x>t wt−1. Our algorithm then sets the
new distribution to be the solution of the following optimization problem,

DKL (N (w, Σ) ‖N (wt−1, Σt−1)) +
1
2r

`
(
yt −w>xt

)
+

1
2r

(
x>t Σxt

)
This optimization problem is similar to the one of AROW [9] for classification, except
we use the square loss rather than squared-hinge loss used in AROW. Intuitively, the
optimization problem trades off between three requirements. The first term forces the
parameters not to change much per example, as the entire learning history is encapsu-
lated within them. The second term requires that the new vector wt should perform well
on the current instance, and finally, the third term reflects the fact that the uncertainty
about the parameters reduces as we observe the current example xt. Writing the KL
explicitly, we get the following.

1
2

log
(

det Σt−1

det Σ

)
+

1
2
Tr
(
Σ−1

t−1Σ
)

+
1
2

(wt−1 −w)>Σ−1
t−1 (wt−1 −w)− d

2

+
1
2r

`
(
yt −w>xt

)
+

1
2r

(
x>t Σxt

)
. (1)

4 Vaits and Crammer

We now develop the update rule of (1) explicitly. Taking the derivative of (1) with
respect to w and setting it to zero, we get Σ−1

t−1 (w −wt−1)− 1
2r 2 (wt · xt − yt) xt =

0 . Therefore, if Σt−1 is non-singular, the update for the mean parameters is given by

wt = wt−1 −
1
r

(wt · xt − yt) Σt−1xt . (2)

We solve for wt by taking the dot product of each side of the equality with xt :
wt · xt = wt−1 · xt − 1

r (wt · xt − yt) x>t Σt−1xt. Rearranging the terms yields,
(wt · xt)

(
r + x>t Σt−1xt

)
= (wt−1 · xt) r +

(
ytx

>
t Σt−1xt

)
, and substituting back

in (2), we get

wt = wt−1 −
1
r

(
(wt−1 · xt) r +

(
ytx

>
t Σt−1xt

)
r + x>t Σt−1xt

− yt

)
Σt−1xt

=wt−1 −
(

(wt−1 · xt)− yt

r + x>t Σt−1xt

)
Σt−1xt . (3)

We compute the update of the confidence parameters by setting the derivative of (1)
with respect to Σ to zero, − 1

2Σ−1 + 1
2Σ−1

t−1 + 1
2r xtx

>
t = 0 .From this we obtain the

following update for the confidence parameters.

Σ−1
t = Σ−1

t−1 +
1
r
xtx

>
t . (4)

Our goal is to develop algorithms for non-stationary settings. As observed in the
context of CW [10], AROW [9], AdaGrad [11] and FTPRL [25] the matrix Σ can be
interpreted as adaptive learning rate. Therefore, due to the update of (4) the eigenvalues
of Σt goes to zero with t (equivalently, the update (4) forces the eigenvalues of Σ−1

t to
increase) and the effective learning rate goes to zero. As a consequence the algorithm
will gradually stop updating using instances which lie in the subspace of examples that
were previously observed numerous times. This property leads to fast convergence in
the stationary case, but at the same time to poor performance in the non-stationary
case. As it might happen there is a need to update the prediction rule with using some
instance, yet the learning rate for this specific update is too small, and no useful update
may be performed.

We propose two modifications to the above algorithm, that combined together over-
come the problem that learning rate gradually goes to zero. The modified algorithm
operates on segments of the input sequence. In each segment indexed by i, the algo-
rithm checks weather the lowest eigenvalue of Σt is greater than a given lower bound
Λi. Once the lowest eigenvalue of Σt is smaller than Λi the algorithm resets Σt = I
and updates the value of the lower bound Λi+1. Formally, the algorithm uses the update
(4) to compute an intermediate candidate for Σt denote by Σ̃t =

(
Σ−1

t−1 + 1
r xtx

>
t

)−1
.

If indeed Σ̃t � ΛiI then it sets Σt = Σ̃t otherwise it sets Σt = I and the segment
index is increased by 1.

Additionally, before this modification, the norm of the weight vector wt did not
increase much as the “effective” learning rate (the matrix Σt) went to zero. After our

Re-Adapting the Regularization of Weights for Non-Stationary Regression 5

update, as the learning rate is effectively bounded from below, the norm of wt may
increase too fast, which in turn will cause a low update-rate in non-stationarity inputs.

We thus employ one more modification exploited later by the analysis. After updat-
ing the mean wt as in (3) we project it into a ball B around the origin with radius RB

using a Mahalanobis distance. Formally, we define the function proj(w̃, Σ,RB) to be
the solution of the following optimization problem,

arg min
‖w‖≤RB

1
2

(w − w̃)>Σ−1 (w − w̃) (5)

We write the Lagrangian,

L =
1
2

(w − w̃)>Σ−1 (w − w̃) + α

(
1
2
‖w‖2 − 1

2
R2

B

)
.

Setting to zero the gradient with respect to w we get, Σ−1 (w − w̃)+αw = 0 . Solving
for w we get

w =
(
αI + Σ−1

)−1
Σ−1w̃ =

1
α

(
I + (αΣ)−1

)−1

Σ−1w̃ = (I + αΣ)−1
w̃ .

From KKT conditions we get that If ‖w̃‖ ≤ RB then α = 0 and w = w̃. Otherwise, α
is the unique positive scalar that satisfy the equality,

‖ (I + αΣ)−1
w̃‖ = RB .

The value of α can be found using binary search and eigen-decomposition of the matrix
Σ. We write explicitly Σ = V ΛV > for a diagonal matrix Λ. By denoting u = V >w̃
we get that the last equation equals to, ‖ (I + αΛ)−1

u‖ = RB . We thus wish to

find α such that
∑d

j

u2
j

(1+αΛj,j)2
= R2

B . It can be done using a binary search in the
range α ∈ [0, a] where a = (‖u‖/RB − 1)/λmin(Λ). To summarize the projection
step can be performed in time cubic in d and logarithmic in RB and Λi. We call the
algorithm ARCOR for adaptive regularization with covariance reset. A pseudo-code of
the algorithm is summarized in Fig. 1. We note that it can be combined with Mercer
kernels, and omit the details due to lack of space.

4 Analysis

We turn to analyze the algorithm in the non-stationary case, computing the regret with
respect to more than a single comparison vector. Before we proceed with the bound we
define additional notation. We denote by ti the example index for which a restart was
performed for the ith time, that is Σti = I for all i. We define by n the total number
of restarts, or intervals. We denote by Ti = ti − ti−1 the number of examples between
two consecutive restarts. Clearly T =

∑n
i=1 Ti. Finally, we denote by Σi−1 = Σti−1

just before the ith restart, and we note that it depends on exactly Ti examples (since the
last restart).

In what follows we compare the performance of the algorithm to the performance
of a sequence of weight vectors ut ∈ Rd all of which are of bounded norm RB . In other
words, all the vectors ut belong to B = {u : ‖u‖2 ≤ RB}.

6 Vaits and Crammer

Parameters: 0 < r, RB , a sequence 1 > Λ1 ≥ Λ2...
Initialize: Set w0 = 0 , Σ0 = I , i = 1
For t = 1, . . . , T do

– Receive an instance xt

– Output prediction ŷt = x>t wt−1

– Receive the correct label yt

– Update:

Σ̃−1
t = Σ−1

t−1 +
1

r
xtx

>
t (6)

w̃t = wt−1 +
(yt − x>t wt−1)Σt−1xt

r + x>t Σt−1xt
(7)

– Update Σt:
If Σ̃t � ΛiI set Σt = Σ̃t else set Σt = I , i = i + 1

– Update wt:
wt = proj (w̃t, Σt, RB)

Output: wT , ΣT

Fig. 1. ARCOR: adaptive regularization of weights for regression with covariance reset.

Theorem 1. Assume the algorithm of Fig. 1 is run with an input sequence (x1, y1), . . . ,
(xT , yT), that all the inputs are of unit norm ‖xt‖ = 1, and that the outputs are
bounded Y = maxt |yt|. Let ut be any sequence of bounded weight vectors ‖ut‖ ≤
RB . The cumulative loss is bounded by,∑

t

(
x>t wt−1 − yt

)2 ≤∑
t

(
x>t ut − yt

)2
+ 2

(
R2

B + Y 2
) n∑

i=1

log det
((

Σi
)−1
)

+ ru>T Σ−1
T uT + 2RBr

∑
t

1
Λi(t)

‖ut−1 − ut‖ , (8)

where n is the number of covariance restarts and Σi−1 is the value of the covariance
matrix just before the ith restart.

Note that the number of restarts n is not fixed but depends both on the total number of
examples T and the scheme used to set the values of the lower bound of the eigenvalues
Λi. In general, the lower the values of Λi are, the smaller the number of covariance-
restarts occur, yet the larger the value of the last term of the bound is, which scales
inversely proportional to Λi. A more precise statement is given in the next corollary.

Corollary 1. Assume the algorithm of Fig. 1 made n restarts. Under the conditions of
Theorem 1 we have,∑

t

(
x>t wt−1 − yt

)2 ≤∑
t

(
x>t ut − yt

)2
+ 2

(
R2

B + Y 2
)
dn log

(
1 +

T

nrd

)
+ ru>T Σ−1

T uT + 2RBrΛ−1
n

∑
t

‖ut−1 − ut‖ , (9)

Re-Adapting the Regularization of Weights for Non-Stationary Regression 7

Proof. By definition we have
(
Σi
)−1 = I + 1

r

∑Ti+ti

t=ti
xtx

>
t . Denote the eigenvalues

of
∑Ti+ti

t=ti
xtx

>
t by λ1, . . . , λd. Since ‖xt‖ = 1 their sum is Tr

(∑Ti+ti

t=ti
xtx

>
t

)
= Ti.

We use the concavity of the log function to bound log det
((

Σi
)−1
)

=
∑d

j log
(
1 + λj

r

)
≤ d log

(
1 + Ti

rd

)
. Applying concavity again we bound the following sum,

n∑
i

log det
((

Σi
)−1
)
≤

n∑
i

d log
(

1 +
Ti

rd

)
≤ dn log

(
1 +

T

nrd

)
,

where we used the fact that
∑n

i Ti = T . Substituting the last inequality in Theorem 1,
as well as using the monotinicity of the coefficients, Λi ≥ Λn for all i ≤ n, yields the
desired bound.

Implicitly, the second and fourth terms of the bound have opposite dependence on
n. The second term is increasing with n � T , while the fourth is decreasing with n.
If n is small it means that the lower bound Λn is very low (otherwise we would make
more restarts) and thus Λ−1

n is large. We now make this implicit dependence explicit.
Our goal is to bound the number of restarts n as a function of the number of exam-

ples T . This depends on the exact sequence of values Λi used. The following lemma
provides a bound on n given a specific sequence of Λi.

Lemma 1. Assume the algorithm of Fig. 1 is run with some sequence of Λi, then the
number of restarts is upper bounded by,

n ≤ min
N

{
N : T ≤ r

N∑
i

(
Λ−1

i − 1
)}

.

Proof. Since
∑n

i=1 Ti = T , then the number of restarts is maximized when the number
of examples between restrats Ti is minimized. We prove now a lower bound on Ti for
all i = 1 . . . n. A restart occurs for the ith time when the smallest eigenvalue of Σt is
larger (for the first time) then Λi.

As before, by definition we have,
(
Σi
)−1 = I+ 1

r

∑Ti+ti

t=ti
xtx

>
t . By Theorem 8.1.8

of [15] we have that there exists a matrix A ∈ Rd×Ti with each column belongs to the
d − 1-dimensional simplex (that is ak,l ≥ 0 and

∑
k ak,l = 1 for l = 1, . . . , Ti) such

that the kth eigenvalue λi
k of

(
Σi
)−1

equals to λi
k = 1 + 1

r

∑Ti

l=1 ak,l. The value of
Ti is defined when the largest eigenvalue of

(
Σi
)−1

hits Λ−1
i . Formally, we get the

following lower bound on Ti,

arg min
{ak,l}

s s.t. max
k

(
1 +

1
r

s∑
l=1

ak,l

)
≥ Λ−1

i

ak,l ≥ 0 for k = 1, . . . , d, l = 1, . . . , s∑
k

ak,l = 1 for l = 1, . . . , s

8 Vaits and Crammer

For a fixed s a maximal value maxk

(
1 + 1

r

∑s
l=1 ak,l

)
is obtained if all the “mass” is

concentrated in one value k. That is we have ak,l = 1 for k = k0 and ak,l = 0 other-
wise. In this case maxk

(
1 + 1

r

∑s
l=1 ak,l

)
=
(
1 + 1

r s
)

and the lower bound is obtained
when

(
1 + 1

r s
)

= Λ−1
i . Solving for s we get that the shortest possible length of the ith

interval is bounded by, Ti ≤ r
(
Λ−1

i − 1
)

. Summing over the last equation we get,
T =

∑n
i Ti ≤ r

∑n
i

(
Λ−1

i − 1
)

. Thus, the number of restarts is upper bounded by the
minimal value n that satisfy the last inequality.

Combining Lemma 1 with Corollary 1 we get,

Corollary 2. Assume the algorithm of Fig. 1 is ran with a polynomial schema, that is
Λ−1

i = iq−1 + 1 for some q > 1. Under the conditions of Theorem 1 we have,∑
t

(
x>t wt−1 − yt

)2 ≤∑
t

(
x>t ut − yt

)2
+ ru>T Σ−1

T uT

+ 2
(
R2

B + Y 2
)
d (q(T + 1) + 1)

1
q log

(
1 +

T

nrd

)
(10)

+ 2RBr
(
(q(T + 1) + 1)

q−1
q + 1

)∑
t

‖ut−1 − ut‖ . (11)

Proof. Substituting Λ−1
i = iq−1 + 1 in Lemma 1 we get,

r

n∑
i

(
Λ−1

i − 1
)

= r

n∑
i=1

iq−1 ≥
∫ n

1

xq−1dx =
1
q

(nq − 1) . (12)

Setting the last term to T + 1 we get an upper bound on n,

n ≤ (q(T + 1) + 1)1/q ⇒ Λ−1
n ≤ (q(T + 1) + 1)(q−1)/q + 1 . (13)

Comparing the last two terms of the bound of Corollary 2 we observe a natural tradeoff
in the value of q. The third term of (10) is decreasing with large values of q, while the
fourth term of (11) is increasing with q.

Assuming a bound on the deviation
∑

t ‖ut−1 − ut‖ ≤ C T 1/p. We set q =
2p/(p+1) and get that the sum of (10) and (11) is of orderO

(
T (p+1)/(2p) log(T)

)
. As

a consequence we get that, as long as p > 1 the sum of (10) and (11) is o(T) and thus is
vanishing. Furthermore, when the noise is very low we have p ≈ −(1 + ε) in this case
q ≈ 2 + (2/ε), and we get that the algorithm will not make any restarts and retrieve the
bound ofO(log T) for the stationary case. Intuitively, for this choice of q the algorithm
will have only one interval, and there will be no restarts.

Intuitively, this schema to set Λi balances between the amount of noise (need for
many restarts) and the property that using the covariance matrix for updates achieves
fast-convergence. We note that an exponential schema Λi = 2−i will lead to very few
restarts, and very small eigenvalues of the covariance matrix. This is because the last
segment will be about half the length of the entire sequence.

Re-Adapting the Regularization of Weights for Non-Stationary Regression 9

5 Proof of Theorem 1

We first state the following lemmas, for which we define

dt (z,v) = (z−v)>Σ−1
t (z−v) , dt̃ (z,v) = (z−v)>Σ̃−1

t (z−v) , χt = x>t Σt−1xt .

Lemma 2. Let w̃t and Σ̃t be defined in (6) and (7) in Fig. 1, then,

dt−1 (wt−1,ut−1)− dt̃ (w̃t,ut−1) =
1
r
`t −

1
r
gt −

`tχt

r (r + χt)
. (14)

The proof follows a chain of algebraic equalities and is omitted due to lack of space.

Lemma 3. Denote by ∆t = dt−1 (wt−1,ut−1)− dt (wt,ut) then

∆t ≥
1
r

(`t − gt)− `t
χt

r(r + χt)

+ u>t−1Σ
−1
t−1ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i ‖ut−1 − ut‖ (15)

where i− 1 is the number of restarts performed before example t.

Proof. We write ∆t as a telescopic sum of four terms as follows,

∆t,1 = dt−1 (wt−1,ut−1)− dt̃ (w̃t,ut−1) ∆t,2 = dt̃ (w̃t,ut−1)− dt (w̃t,ut−1)
∆t,3 = dt (w̃t,ut−1)− dt (wt,ut−1) ∆t,4 = dt (wt,ut−1)− dt (wt,ut)

We lower bound each of the four terms. Since, the value of ∆t,1 was computed in
Lemma 2 we start with the second term. If no reset occurs then Σt = Σ̃t and ∆t,2 = 0.
Otherwise, we use the facts that 0 � Σ̃t � I , and Σt = I and get,

∆t,2 = (w̃t − ut−1)
>

Σ̃−1
t (w̃t − ut−1)− (w̃t − ut−1)

>
Σ−1

t (w̃t − ut−1)

= Tr
(
(w̃t − ut−1) (w̃t − ut−1)

>
(
Σ̃−1

t −Σ−1
t

))
≥ Tr

(
(w̃t − ut−1) (w̃t − ut−1)

> (I − I)
)

= 0 .

To summarize, ∆t,2 ≥ 0. We can lower bound ∆t,3 by using the fact that wt is a
projection of w̃t onto a closed set (a ball of radius RB around the origin), which by
our assumption contains ut. Employing Corollary 3 of [20] we get, dt (w̃t,ut−1) ≥
dt (wt,ut−1) and thus ∆t,3 ≥ 0.

Finally, we lower bound the fourth term ∆t,4,

∆4 = (wt − ut−1)
>

Σ−1
t (wt − ut−1)− (wt − ut)

>
Σ−1

t (wt − ut)

= u>t−1Σ
−1
t ut−1 − u>t Σ−1

t ut − 2w>
t Σ−1

t (ut−1 − ut) (16)

We use Hölder inequality and then Cauchy-Schwartz inequality to get the following
lower bound,

− 2w>
t Σ−1

t (ut−1 − ut) = −2Tr
(
Σ−1

t (ut−1 − ut) w>
t

)
≥ −2λmax

(
Σ−1

t

)
w>

t (ut−1 − ut) ≥ −2λmax

(
Σ−1

t

)
‖wt‖‖ut−1 − ut‖ .

10 Vaits and Crammer

We use the facts that ‖wt‖ ≤ RB and that λmax

(
Σ−1

t

)
= 1/λmin (Σt) ≤ Λ−1

i , where
i is the current segment index, and get

−2w>
t Σ−1

t (ut−1 − ut) ≥ −2Λ−1
i RB‖ut−1 − ut‖ . (17)

Substituting (17) in (16) and using Σt � Σt−1 we get,

∆t,4 ≥ u>t−1Σ
−1
t ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i ‖ut−1 − ut‖

≥ u>t−1Σ
−1
t−1ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i ‖ut−1 − ut‖ . (18)

Combining (18) with Lemma 2 concludes the proof.

Lemma 4. During the runtime of the algorithm of Fig. 1 we have

ti+Ti∑
t=ti

χt

(χt + r)
≤ log

(
det
(
Σ−1

ti+1−1

))
= log

(
det
((

Σi
)−1
))

. (19)

We remind the reader that: (1) ti is the first example index after the ith restart (2) Ti is
the number of examples observed before the next restart (3) the notation Σi = Σti+1−1

is the covariance matrix just before the next restart.

The proof of the lemma is similar to the proof of Lemma 4 [9] and thus omitted. We
now turn to prove Theorem 1,

Proof. We bound the sum
∑

t ∆t from above and below, and start with an upper bound
using the property of telescopic sum and get,∑

t

∆t = (d0 (w0,u0)− dT (wT ,uT)) ≤ d0 (w0,u0) (20)

We compute a lower bound by applying Lemma 3 and get,∑
t

∆t ≥
∑

t

(
1
r

(`t − gt)− `t
χt

r(r + χt)

+ u>t−1Σ
−1
t−1ut−1 − u>t Σ−1

t ut − 2RBΛ−1
i(t)‖ut−1 − ut‖

)
,

where i(t) is the number of restarts occurred before observing the tth example. We
continue to develop the last equation and get,∑

t

∆t ≥
1
r

∑
t

`t −
1
r

∑
t

gt −
∑

t

`t
χt

r(r + χt)

+
∑

t

(
u>t−1Σ

−1
t−1ut−1 − u>t Σ−1

t ut

)
−
∑

t

2RBΛ−1
i(t)‖ut−1 − ut‖

=
1
r

∑
t

`t −
1
r

∑
t

gt −
∑

t

`t
χt

r(r + χt)

+ u>0 Σ−1
0 u0 − u>T Σ−1

T uT − 2RB

∑
t

Λ−1
i(t)‖ut−1 − ut‖ . (21)

Re-Adapting the Regularization of Weights for Non-Stationary Regression 11

Combining (20) with (21) and using d0 (w0,u0) = u>0 Σ−1
0 u0 (w0 = 0) we get,

1
r

∑
t

`t −
1
r

∑
t

gt −
∑

t

`t
χt

r(r + χt)
− u>T Σ−1

T uT

− 2RB

∑
t

Λ−1
i(t)‖ut−1 − ut‖ ≤ 0 .

Rearranging the terms we get,∑
t

`t ≤
∑

t

gt +
∑

t

`t
χt

r + χt
+ ru>T Σ−1

T uT + 2RBr
∑

t

1
Λi(t)

‖ut−1 − ut‖ (22)

Since ‖wt‖ ≤ RB , (and we assume that) ‖xt‖ = 1 and supt |yt| = Y , we get that
supt `t ≤ 2(R2

B + Y 2). The second term in the right-hand-side is bounded using the
last inequality and Lemma 4,

∑
t

`t
χt

r + χt
=

n∑
i

ti+Ti∑
t=ti

`t
χt

r + χt

≤
n∑
i

(
sup

t
`t

)
log det

((
Σi
)−1
)

≤ 2
(
R2

B + Y 2
) n∑

i

log det
((

Σi
)−1
)

. (23)

To conclude, we showed that if the algorithm is given an upper bound on the amount
of drift, which is sub-linear in T , it can achieve sub-linear regret. Furthermore, if it
is known that there is no non-stationarity in the reference vectors, then running the
algorithm with q = ∞ will have a regret logarithmic in T . We use this property in the
next section, where we describe a version of the algorithm when such a bound is not
known, or is very loose.

6 Algorithm for Unknown Amount of Drift

We sketch now an algorithm, which does not assuming knowing the exact drift level,
yet achieves log(T) regret in the stationary case, and sub-linear regret otherwise

In a nutshell, the algorithm runs C + 1 copies of ARCOR, one with q = ∞ (no
reset) and the others with q = 1, 2, 3...C. On each iteration the input vector xt is
fed into the C + 1 copies each of which computes a prediction ŷt,c. These C + 1
predictions are collected into a vector in RC+1. This vector is then fed into another
copy of the algorithm which is run with q = ∞ and RB = 1. Denote its weight vector
by vt ∈ RC+1. The output of our algorithm is thus ŷt = v>t−1ŷt. Given the feedback,
the algorithm updates all C + 1 copies using ARCOR, as well as the additional copy.

12 Vaits and Crammer

Fig. 2. Cumulative squared loss for AROW for regression, ARCOR with few value of q and
NLMS vs iteration. Left panel shows result for dataset with no shifts and the right panel for
dataset with shifts.

Conceptually, we position C + 2 copies of the algorithm in a network of depth 2. The
first layer is composed of C + 1 nodes, each runs its own copy of the algorithm under
a specific assumption of drift value (as above). The outputs if the first layer are fed into
the second layer, that integrates them linearly into a final output.

Intuitively, since the value of vt can be any member of the standard basis (ie (0..1..0),
we get that the loss of the additional copy is bounded with the loss of the best copy with
additional log(T) term (the regret for the stationary case). Thus if the best copy is the
one with q = ∞ (ARCOR for the stationary case), the total regret is logarithmic in T .
Otherwise, in the non-stationary case, the regret of the best copy would be polynomial
in T , which is the final regret. We just sketched the proof of the following theorem,

Theorem 2. Assuming the algorithm just presented is run with C + 1 copies of AR-
COR and the additional copy. Then, the total loss of the algorithm is bounded by∑

t (ŷt − yt)
2 ≤ minC+1

c=1

∑
t (ŷc,t − yt)

2 + D log(T) ,where D is a constant depend-
ing on the number of copies C and the parameter used r.

We note that Theorem 1 or one of its corollaries can be used to bound each of the terms∑T
t (ŷc,t − yt)

2. Specifically, if the minima is obtained for the stationary case we get a
logarithmic regret all together, otherwise the polynomial term is dominant in the bound.

7 Simulations

We illustrate the algorithms with two synthetic datasets, one with drifting only, and
the other also with switching. We generated 2, 000 points in R20 where the first ten
coordinates were grouped into five groups of size two. Each such pair was drawn from
a 45◦ rotated Gaussian distribution with standard deviation 10 and 1. The remaining
10 coordinates were drawn from independent Gaussian distributions N (0, 2). The first
dataset was generated using a sequence of vectors ut ∈ R20 for which the only non-
zero coordinates are the first two. This vector in R2 is of unit norm ‖ut‖ = 1 and
rotating in a rate of t−0.01.

Re-Adapting the Regularization of Weights for Non-Stationary Regression 13

Similarly, the second dataset was generated with a sequence of rate t−0.5, but with
one additional twist. Every 50 time-steps the two-dimensional vector defined above was
“embedded” in different pair of coordinates of the reference vector ut, for the first 50
steps it were coordinates 1, 2 in the next 50 examples, coordinates 3, 4 and so on. This
change causes a switch in the reference vector ut. Finally, the target label yt was set to
be x>t ut + ξt where ξt ∼ N (0, 2).

Three algorithms are evaluated: NLMS (normalized least mean square) [2, 21] which
is a state-of-the-art first-order algorithm, AROW for regression, as developed in Sec. 3
with no restarting nor projection and ARCOR for various value of q. All algorithms
have one parameter to tune, which was performed using a single random sequence. We
repeat each experiment 100 reporting the mean cumulative square-loss and 95% confi-
dence interval. We note that Aggregating Algorithm (AA) and Ridge Regression(RR)
algorithm are very close algorithmically and in performance to AROW for regression
and thus omitted.

The results are summarized in Fig. 2. In a nutshell, AROW for regression performs
worst, NLMS is second and ARCOR is the best. This is surprising, as AROW for clas-
sification outperforms many algorithms that are related in spirit to NLMS. Yet, as men-
tioned above, the algorithm drives its learning rate to zero, not allowing for the ability
to track drifting concepts. For both datasets, and mainly for the one with switching
(right panel), AROW for regression is sensitive to the non-stationary properties of the
data, and thus suffers very large loss, as its tracking ability is very slow. NLMS has
nice tracking properties, but its learning rate is relatively slow. ARCOR tracks as fast
as AROW, yet it bounds the learning rate and thus allows fast tracking rate. Note that
in both datasets the “gap” between the cumulative error of all algorithms increases with
time, this means that ARCOR tracks better both on drifting and switching settings.

8 Related Work and Summary

There is a large body of research in online learning for regression problems. Almost
half a century ago, Widrow and Hoff [28] developed a variant of the least mean squares
(LMS) algorithm for adaptive filetering and noise reduction. The algorithm was further
developed and analyzed extensively (see e.g. [12]). The normalized least mean squares
filter (NLMS) [2, 21] builds on LMS and performs better to scaling of the input. The
recursive least squares (RLS) [19] is the closest to our algorithm in the signal processing
literature, it also maintains a weight-vector and a covariance-like positive semi-definite
(PSD) matrix used to re-weight the input.

In the machine learning literature the problem of online regression was studied ex-
tensively, and clearly we can not cover all the relevant work. Cesa-Bianchi et al. [4]
studied gradient descent based algorithms for regression with the squared loss. Kivinen
and Warmuth [22] proposed various generalizations for general regularization func-
tions. We refer the reader to a comprehensive book in the subject [6].

Foster [14] studied an online version of the ridge regression algorithm in the worst-
case setting. Vovk [18] proposed a related algorithm called the Aggregating Algorithm
(AA), and later Forster [13] improved its regret analysis for the square loss. Both algo-
rithms employ second order information. ARCOR for the separable case is very similar

14 Vaits and Crammer

to these algorithms, although has alternative derivation. Recently, few algorithms were
proposed either for classification [5, 10, 8, 9] or for general loss functions [11, 25] in the
online convex programming framework. Our work shares the same design principles of
AROW [9] yet it is aimed for regression. Furthermore, it has two important modifica-
tions which makes it work in the drifting or shifting setting. These modifications make
the analysis more complex than of AROW.

Two of the approaches used in previous algorithms for non-stationary setting are
to bound the weight vector and covariance reset. Bounding the weight vector was per-
formed either by projecting it into a bonded set [20], shrinking it by multiplication [23]
or subtracting previously seen examples [3]. These three methods (or at least most of
their variants) can be combined with kernel operators, and in fact, the last two ap-
proaches were designed and motivated by kernels.

The Covariance Reset RLS algorithm (CR-RLS) [26, 17, 7] was designed for adap-
tive filtering. CR-RLS makes covariance reset every fixed amount of data points, while
ARCOR performs restarts based on the actual properties of the data: the eigenspectrum
of the covariance matrix. Furthermore, as far as we know, there is no analysis in the mis-
take bound model for this algorithm. Both ARCOR and CR-RLS are motivated from
the property that the covariance matrix goes to zero and becomes rank deficient.

In both algorithms the information encapsulated in the covariance matrix is lost
after restarts. In a rapidly varying environments, like a wireless channel, this loss of
memory can be beneficial, as previous contributions to the covariance matrix may have
little correlation with the current structure. Recent versions of RLS+CR [16, 27] employ
covariance reset to have numerically stable computations.

Our work combines both techniques with online learning with second order algo-
rithm for regression. In this aspect we have the best of all worlds, fast convergence rate
due to the usage of second order information, and the ability to adapt in non-stationary
environments due to projection and resets. Current work includes extending the algo-
rithm for general loss function, efficient implementation of the algorithm and automat-
ically detecting the level of non-stationarity.

Acknowledgments: This research was supported in part by the Israeli Science Foun-
dation grant ISF-1567/10 any by the European Unions Seventh Framework Programme
(FP7/2007-2013) under PASCAL2 (PUMP PRIMING). KC is a Horev Fellow, sup-
ported by the Taub Foundations.

References

1. Peter Auer and Manfred K. Warmuth. Tracking the best disjunction. Electronic Colloquium
on Computational Complexity (ECCC), 7(70), 2000.

2. N. J. Bershad. Analysis of the normalized lms algorithm with gaussian inputs. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 34(4):793–806, 1986.

3. Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Tracking the best hyper-
plane with a simple budget perceptron. Machine Learning, 69(2-3):143–167, 2007.

4. Nicolo Ceas-Bianchi, Philip M. Long, and Manfred K. Warmuth. Worst case quadratic loss
bounds for on-line prediction of linear functions by gradient descent. Technical Report IR-
418, University of California, Santa Cruz, CA, USA, 1993.

Re-Adapting the Regularization of Weights for Non-Stationary Regression 15

5. Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. A second-order perceptron algo-
rithm. Siam Journal of Commutation, 34(3):640–668, 2005.

6. Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, New York, NY, USA, 2006.

7. Min-Shin Chen and Jia-Yush Yen. Application of the least squares algorithm to the ob-
server design for linear time-varying systems. Automatic Control, IEEE Transactions on,
44(9):1742 –1745, sep 1999.

8. K. Crammer, M. Dredze, and F. Pereira. Exact confidence-weighted learning. In NIPS 22,
2008.

9. K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weighted vectors. In
Advances in Neural Information Processing Systems 23, 2009.

10. M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification. In ICML,
2008.

11. John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. In COLT, pages 257–269, 2010.

12. A. Feuer and E. Weinstein. Convergence analysis of lms filters with uncorrelated gaussian
data. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(1):222–230, 1985.

13. Jurgen Forster. On relative loss bounds in generalized linear regression. In Fundamentals of
Computation Theory (FCT), 1999.

14. Dean P. Foster. Prediction in the worst case. The Annals of Statistics, 19(2):1084–1090,
1991.

15. Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, Baltimore, MD, USA, 1996.

16. S.G. Goodhart, K.J. Burnham, and D.J.G. James”. Logical covariance matrix reset in self-
tuning control. Mechatronics, 1(3):339 – 351, 1991.

17. G.C. Goodwin, E.K. Teoh, and H. Elliott. Deterministic convergence of a self-tuning regu-
lator with covariance resetting. Control Theory and App., IEE Proc. D, 130(1):6 –8, 83.

18. Volodimir G.Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop
on Computational Learning Theory, pages 371–383. Morgan Kaufmann, 1990.

19. Monson H. Hayes. 9.4: Recursive least squares. In Statistical Digital Signal Processing and
Modeling, page 541, 1996.

20. Mark Herbster and Manfred K. Warmuth. Tracking the best linear predictor. Journal of
Machine Learning Research, 1:281–309, 2001.

21. R. R. itmead and B. D. O. Anderson. Performance of adaptive estimation algorithms in
dependent random environments. IEEE Transactions on Automatic Control, 25:788–794,
1980.

22. Jyrki Kivinen and Manfred K.Warmuth. Exponential gradient versus gradient descent for
linear predictors. Information and Computation, 132:132–163, 1997.

23. Jyrki Kivinen, Alex J. Smola, and Robert C. Williamson. Online learning with kernels. In
NIPS, pages 785–792, 2001.

24. Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Inf. Comput.,
108(2):212–261, 1994.

25. H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimization for online
convex optimization. In COLT, pages 244–256, 2010.

26. Mario E. Salgado, Graham C. Goodwin, and Richard H. Middleton. Modified least squares
algorithm incorporating exponential resetting and forgetting. International Journal of Con-
trol, 47(2):477 –491, 1988.

27. Hong-Seok Song, Kwanghee Nam, and P. Mutschler. Very fast phase angle estimation algo-
rithm for a single-phase system having sudden phase angle jumps. In Industry Applications
Conference. 37th IAS Annual Meeting, volume 2, pages 925 – 931, 2002.

28. B. Widrow and Jr. M.E. Hoff. Adaptive switching circuits. 1960.

