
Ordering Transactions with Prediction in Distributed Object Stores

In a world of big data we want transactions
begin_txn

Reads   (return value) 

writes  (return ack) 

...

end_txn (returns commit/abort)

with ACID guarantees

• Atomic 
• Consistent 
• Isolated 
• Durable

Atomic 
transactions

High availability

of sharded data

ACID-RAIN: Ordering with Prediction, Committing with Independent Logs

1. Optimistic, transactions run 
speculatively and then certify. 

2. Conflict detection w/ timestamps.
3. Version reservation (lock on 

future version) by prediction. 
4. Final certification at transaction 

end lock-free: can replace 
slow/failed nodes immediately; 
reservations are only hints. 

Concurrency Control Log Structure

txnEntry txn3

COMMIT txn3

GC txn3

After end_txn
(read-set, 

write-set)

Result 
from TM

txnEntry can 
be garbage-
collectedSummary

Simulation Results
• Custom-made simulator. 
• Transactional YCSB workloads. 
• Uniform random object access.

Transaction 
Manager

Object 
Manager

Object 
Manager

High availability

Fast recovery 
(no leases)

Replicated 
Log

Replicated 
Log

Architecture

Client

Ittay Eyal
1

Ken Birman
1 

Idit Keidar
2

Robbert van-Renesse
1

1 Cornell 2 Technion

• Global log: Forms a bottleneck.
• 2PC with SMR TMs: longer certification 

time so higher contention.

Certification Scalability

Global Log

Benefits of Prediction

Different recall ratios with perfect 
precision (no wrong guesses). 
recall = 0: no prediction and no 
reservation (classical approach)
recall = 1.0: predicting all accesses. 

Better recall  higher commit ratio

Different precision ratios (wrong 
guesses) with perfect recall. 
Bad precision more conflicts

in small data sets

read(x)

x = 42

read(x, v3)

x = 42 (v3)

endTxn

Client TM OMs logs

begin

R
es

er
va

ti
o

n
R

u
n

C
er

ti
fi

ca
ti

o
n

G
ar

b
ag

e 
C

o
lle

ct
io

n

Predict accesses

Execution Example 

with Prediction
1. Prediction and reservation. 
2. Transaction run. 
3. Certification. 
4. Garbage collection (asynchronous)

Reserve 
version (v3)

Wait for version

endTxn

Local success

commit commit

append
transaction

append
commit

ack

GC

append
GC


