
Ordering Transactions with Prediction in Distributed Object Stores

Ittay Eyal1, Ken Birman1, Idit Keidar2, and Robbert van-Renesse1

1Department of Computer Science, Cornell Univerisity, Ithaca, NY, USA
2Department of Electrical Engineering, Technion, Haifa, Israel

Abstract

In cloud-scale datacenters, it is common to shard (par-
tition) data across large numbers of nodes. Atomic
transactions are typically implemented by running
transactions speculatively, and then certifying them,
aborting ones that cause conflicts. However, in high
contention scenarios, this approach has drawbacks:
rather than achieving any substantial level of concur-
rency, it prevents concurrency by aborting all but one
of the contending transactions.

Our work explores a new option. We employ pre-
diction, ordering transactions in advance based on
the objects they are likely to access, providing ACID
transactions in a Resilient Archive with Independent
Nodes (ACID-RAIN). This preliminary ordering de-
creases abort rate, and eliminates aborts in error-free
executions. To allow fast recovery from failures our
scheme does not introduce any locks. The system con-
sistency and durability rely on a single scalable tier of
highly-available independent logs. Simulations using
the Transactional-YCSB workloads show the scalabil-
ity and benefits of ACID-RAIN.

1 Introduction

Large-scale data-center computing systems often
maintain massive data sets, sharded over large num-
bers of storage nodes. When client transactions ac-
cess data on multiple shards, the issue of consistency
arises. Ideally, we would use a system with ACID
transactions [2, 10, 1], because this model facilitates
reasoning about system properties and makes possi-
ble a variety of high-assurance guarantees. Nonethe-
less, the ACID model is widely avoided in today’s
large-scale systems due to efficiency concerns [9]. Ex-
isting approaches typically run transactions specula-
tively and perform certification after they complete
to preserve consistency, either committing or abort-
ing each transaction depending for conflicts.

In this paper, we present ACID-RAIN — an archi-

tecture for ACID transactions in a Resilient Archive
with Independent Nodes. The system orders transac-
tions before they begin by employing predictors that
estimate the set of objects each transaction will ac-
cess. Such predictors can be implemented with ma-
chine learning tools [16]. To leverage prediction, a
transaction reserves a version of each object it will
use. When later accessing the objects, it will only see
these reserved versions.

To run effectively at large scale, ACID-RAIN
must tolerate performance hiccups, message loss, and
crashes, all of which are common in such settings. Ide-
ally, progress should never depend on the responsive-
ness of any single machine. Accordingly, ACID-RAIN
requires reliable entities only at a single tier of the
system — a set of independent highly available logs,
used in a novel manner. All other entities may fail
and can be replaced instantly on failure; the architec-
ture maintains consistency even in the event of false
suspicion. Additionally, reservations serve as sugges-
tions, rather than strict guarantees of the kind that
locking would provide, and a reservation that is not
used because of a sluggish or dead owner is ignored.

The independence of all system elements allows for
good scalability. Nevertheless, due to the interdepen-
dence of the log contents, garbage collection (GC) has
to be carefully coordinated to maintain consistency.

We evaluate our architecture by simulation with the
transactional-YCSB benchmark [7, 8] as our work-
load. We contrast the effectiveness of employing pre-
diction and the scalability of ACID-RAIN with other
approaches.

2 Model and Goal
We assume unreliable servers that may crash or hang,
in an asynchronous, loss-prone network. To accommo-
date reliable storage, we employ highly-available, se-
quentially consistent logs, as explained in Section 3.1.

The system exposes a transactional data store sup-
porting serializable transactions. A client invokes a

1



OM 1

OM i (1)

OM n

TM 1 TM j TM m

Log 1 Log i Log n

OM 1 OM n

OM i (2)

Figure 1: Schematic structure of ACID-RAIN. TMs access mul-
tiple objects per transaction. Objects are managed by OMs.
OMi(1) is falsely suspected to have failed, and replaced by
OMi(2), causing them to concurrently serve the same objects.
OMs are backed by highly-available logs, where they store tenta-
tive transaction entries for serialization, and (later) certification
results.

begin-transaction command, followed by read (e.g., a
field from a table) and update (e.g., setting the value
of a field in a table) operations. Finally the client in-
vokes the end-transaction command, and the system
responds with either a commit or an abort. Commit-
ted transactions form a serializable execution. TMs
are equipped with predictors that foresee which ob-
jects a transaction is likely to access on its initiation.

3 ACID-RAIN

We now describe the operation of ACID-RAIN. We
start with an overview of the system’s structure in
Section 3.1, and proceed to describe the algorithm in
Section 3.2.

3.1 System Structure
The structure of the system is illustrated in Figure 1.
At the base of ACID-RAIN are a set of independent
highly-available logs that together describe the state
of the entire system. Each log is accessed through an
Object Manager1 (OM ) that caches the data and pro-
vides the data structure abstraction — exporting read
and write operations, while supporting transactions,
which are managed by Transaction Managers (TMs).

TMs provide the atomic transaction abstraction.
They receive instructions from clients to start and end
a transaction, and operations to perform on individual
objects within the transaction. On transaction start,
the TMs predict which objects it is likely to access,
and reserve these object versions. Then, they specu-
latively perform each operation with the help of the

1In an implementation of the system one may use multiple
OMs per log, dividing the log’s object set, or the other way
around, have multiple logs report to a single OM. The choice
depends on the throughput of the specific implementations cho-
sen for each service. In this paper we use a 1:1 mapping for
simplicity of presentation.

appropriate OMs and according to the order set by
the reservations. Finally, they certify the transaction
by checking for conflicts in each log (via its OM).
Membership monitors are in charge of deciding

and publishing which machines perform which roles,
namely which machines run the log and OM for each
shard, and which TMs are available. Any client can
access any TM for any given transaction. Other than
the logs, server role assignment may be inconsistent.
Each object (transaction) is supposed to be managed
by a single OM (TM, resp.) at a given time, but
this may change due to an unjustified crash suspicion
whereupon an object (transaction, resp.) may tem-
porarily be managed by two OMs (TMs, resp.) that
do not know of one another.

Log Specification ACID-RAIN uses log servers for
reliable storage. Each log server provides a sequen-
tially consistent log object, i.e., update operations are
linearizable, but reads may return outdated results2.
Multiple machines may append entries to a log. Ma-
chines may register to the log; the log then sends to
each all entries, from the first one in the log, to its
end, and then new entries as they arrive. An OM
may instruct the log to truncate its prefix.

3.2 Algorithm
We now describe the ACID-RAIN algorithm. We ex-
plain the reservation and certification protocol (illus-
trated in Figure 2), and then discuss prediction errors,
garbage collection, and failure handling.

A transaction begins with the TM receiving a begin-
transaction instruction from the client. The TM as-
signs it a unique txnID, and predicts which objects
the transaction will access. It interrogates the OMs
about all these objects, and they respond with the
latest unreserved timestamp of each object. The TM
chooses a timestamp larger than maximum among the
responses, and asks the OMs to reserve the objects
with this timestamp to txnID. The OMs confirm the
reservation if no concurrent TM has reserved a larger
timestamp in the meantime. The TM then proceeds
to serve transaction operations by routing them to the
appropriate OMs. Each operation is sent to the OM in
charge of the object, along with the txnID. The OMs
order accesses based on timestamp reservations, and
respond only when the correct version is available.

Each committed transaction is assigned a time-
stamp. When reading an object, the timestamp of the

2Such logs may be implemented with various techniques,
from SMR to log chains [13, 14]; we abstract this away, and
assume highly available logs.

2



Figure 2: An example flow of the algorithm.

latest transaction that wrote this object is returned to
the TM. The transaction’s timestamp is chosen to be
larger than the largest timestamp returned by its op-
erations, and not larger than its reserved timestamp
(if possible).

Once a TM receives an end-transaction instruction
from a client, it notifies the transaction’s OMs, detail-
ing the transaction’s timestamp and log-set (the logs
in charge of the shards it touched). When it receives
such a notification, an OM appends to its log an entry
consisting of the txnID, its timestamp, its read- and
write-sets (read-set with the read timestamps, write-
set with written values), and its log-set. It then waits
for the entry to appear in the log.

A transaction is committed if and only if it is writ-
ten to all logs, and it does not conflict with previous
transactions on any of them. Conflicts are violations
of read-write, write-read or write-write order. Each
OM checks for local conflicts by checking timestamps
in the prefix of the log up to the transaction entry,
and sends its local result (success/failure) to the call-
ing TM. If all return success, then the transaction has
committed, otherwise it has aborted. The TM notifies
the client of the transaction result and instructs the
OMs to place this result in the logs. The OMs notify
the TM once the results are logged.

Prediction Errors If there are no prediction errors,
failures, or false suspicions, there are no aborts.

If the transaction accesses an object that was not
predicted, this object has no reserved version for it.
Accessing it can therefore result in a conflict of the
transaction, or of the following ones. This conflict
would be detected at certification time, and result in
an abort of a transaction. Despite the harm to per-
formance, it would not break consistency.

If a transaction does not access an object that was
predicted, the TM must still release the reservation
when the transaction ends. This reservation might
slow the processing of other transactions that wait for
its release, but would not break consistency.

If a TM is suspected as failed, its reservations are
revoked. This too may harm performance, but cannot
break consistency.

GC Logs are truncated to conserve resources and to
reduce log replay time on OM recovery. Each OM oc-
casionally summarizes the log prefix, and places this
summary in the log. However, this snapshot is insuf-
ficient, since truncation must not break transaction
certification. Each transaction should be either com-
mitted or aborted in all its logs, and therefore can-
not be removed from any of them before the result
is published. To verify this, the committing TM ap-
pends a GC entry to all the transaction’s logs after
receiving an acknowledgement that they all registered
the transaction’s result. An OM can invoke log prefix
truncation if the prefix was summarized, and all its
transactions have corresponding GC entries.

Robustness In case of a TM or OM crash, or a
missing result or GC entry (due to message loss), an-
other TM may read the transaction entry in one of
the logs, find its log-set, and continue the certification
and GC process.

If a TM places a transaction entry in a strict subset
of the transaction’s log set, when another TM is in-
structed to fix this, it cannot tell whether the original
TM is crashed or slow. To overcome this, we intro-
duce poison entries. The fixing TM places a poison
entry in the logs that miss the original entry. A poi-
son is interpreted as a transaction entry with a con-
flict. The original entry may either arrive eventually
or not. The first entry/poison counts, and the follow-
ing are ignored. Any TM can therefore observe the
log and consistently determine the state of the trans-
action, without a race hazard.

4 Evaluation

We evaluate ACID-RAIN by comparing its perfor-
mance to the classical approach that does not use

3



(a) Uniform random (b) Hot zone (c) Slack

Figure 3: Ordering transactions in advance reduces conflicts and increases commit ratio. High conflict rates occur without with
uniform access to a small number of objects (a), and high probability of accessing a hot-zone (b). Even inaccurate prediction
is significant in high contention, compared to the the classical approach (accuracy=0). Commit ratio is affected if the predictor
reserves unnecessary objects by a factor of slack (c).

prediction and compare its certification protocol with
other certification schemes. We use a custom-built
event-driven simulation, simulating each of the agents
in the system — clients, TMs, OMs and logs. Our
workloads are an adaptation of the transactional
YCSB specification [7, 8], based on the original (non-
transactional) YCSB workloads [5]. Each transaction
has a set of read/update operations spread along its
execution. Object accesses follow one of two differ-
ent random distributions — (1) uniform, where each
object is chosen uniformly at random, and (2) hot-
zone, where some of the objects belong to a so called
hot-zone, and each access is either to the hot-zone, or
outside of it (chosen uniformly within each zone). For
every run, we set an average transaction per unit-time
rate (TPUT), and transactions arrivals are governed
by a Poisson process with the required TPUT.

Prediction Our first test scenario imposes a load
substantially below the system’s capacity with 16
shards. Each transaction reads and writes 10 objects.
The simulation is faithful to the algorithm, with the
exception of a small shortcut – OMs grant reserva-
tions by arrival time rather than by timestamp. This
results in deadlocks in high contention scenarios, and
these are resolved with timeouts.

First we vary prediction accuracy, i.e., the average
ratio of objects the predictor guesses out of the set
the transaction eventually accesses. An accuracy of 0
is equivalent to no prediction and no reservation (the
classical approach), and an accuracy of 1.0 means pre-
dicting all accesses.

We consider (1) uniform random load (Figure 3a),
increasing contention by decreasing the number of ob-
jects, and (2) load with a hot-zone of 1000 out of 107

(Figure 3b), increasing contention by increasing the
hot-zone access probability. Without prediction, com-
mit rate drops as contention rises. Accurate predic-
tion reduces or even eliminates this drop.3 In highest

3Note that when all accesses are to the hot zone (Figure 3b

contention scenarios, even with moderate prediction
accuracy, we obtain significant improvement over the
classical approach (prediction=0).

We define slack to be the average ratio between the
number of accesses predicted and the number of ob-
jects accessed by the transaction. If a transaction ac-
cesses 10 object, then with a slack of 1.5, it would
reserve another 5 random objects. In Figure 3c we
compare (now with uniform random load and a vari-
able number of objects) the effect of using a perfect
predictor (slack=1) with predictors that overpredict
by factors of 2 and 4. The impact of overprediction
is surprisingly minor, a finding that should make it
easier to create a practical predictor.

Certification scalability To evaluate the scala-
bility of ACID-RAIN’s certification mechanism, we
avoid prediction and measure the maximal commit
rate it can accommodate with an increasing number
of shards. Each transaction performs 3 reads and 3
writes of objects chosen uniformly at random from
a small set of 500 objects. We compare (Figure 4)
ACID-RAIN against two approaches (more details in
Section 5): SMR TMs is two-phase commit with reli-
able coordinators (TMs). Global log is an architecture
where TMs submit all transactions to a single global
log and check conflicts on that single log.

ACID-RAIN scales better than 2PC since its faster
certification reduces contention. It has no bottleneck
as with a global log (that has less overhead in small
scale). While the parameters we choose are arbitrary,
the trends are apparent; choosing other parameters
would provide similar trends.

at 1.0), commit rates are lower with imperfect prediction than in
the uniform random case with 1000 objects (Figure 3a at 103).
This is because all accesses to the hot-zone go through a sin-
gle OM that becomes a bottleneck. On the bright side, since
object access conflicts occur only at a single shard, the reserva-
tions prevent deadlocks and result in perfect commit ratio with
perfect prediction.

4



Figure 4: For an increasing number of shards, we run multiple
simulations to find the maximal TPUT the system can handle.
A global log forms a bottleneck, and 2PC with SMR TMs is
blocked by contention much earlier than ACID-RAIN due to its
longer certification time.

5 Related Work

Our transaction ordering protocol is based on a
state-machine ordering mechanism suggested by Lam-
port [12], but we have generalized the protocol to work
with arbitrary overlapping participant sets. We are
unaware of work that uses prediction to order dis-
tributed transactions before certification.

We briefly review here work related to ACID-
RAIN’s certification protocol. One approach for certi-
fication is to use a single highly-available service that
orders all transactions in the system, e.g. [4, 3]. A
transaction commits if and only if it has no conflicts
with previous committed transactions. When update
(not read-only) transaction rate is high, such a global
service becomes a bottleneck. In contrast, our system
has no such bottleneck.

Many systems [2, 15, 10, 6] use two-phase commit
for transaction certification. The downside of these
approaches compared to ACID-RAIN is that they
require a coordinator that performs transactions to
be highly available. This requires another consensus
(in addition to the one at the shard itself) for each
transaction, increasing certification time, and there-
fore contention.

The approaches of MDCC [11] and S-DUR [17]
are close to ACID-RAIN’s certification mechanism.
However, ACID-RAIN separates the OM abstraction
from the highly-available log layer, facilitating its soft-
leasing mechanism and fast recovery. We also address
garbage collection, which cannot be done indepen-
dently at the logs.

Sinfonia [1] uses an architecture similar to our cer-
tification mechanism, but addresses minitransactions
that are submitted as a whole, with no attempt to
order potentially conflicting transactions. We address
full transactions, where the clients sequentially access
objects before ending a transaction, and use prediction
to order them in advance. We believe our techniques

could be used to reduce abort rates of systems using
Sinfonia or a similar certification mechanism.

6 Conclusion
Prediction of transaction behavior has potential to
significantly decrease abort rates in large scale trans-
actional systems with high contention. In addition,
performance should never depend on a single ma-
chine that can suffer failure or a performance hic-
cup. In ACID-RAIN we employ prediction to obtain
soft reservations and implement atomic transactions
while requiring high availability only in a single tier
of independent logs. This allows for low latency high
throughput certification with fast recovery from fail-
ures and performance hiccups.

References
[1] Aguilera, M., Merchant, A., Shah, M., Veitch, A., and

Karamanolis, C. Sinfonia: a new paradigm for building scal-
able distributed systems. In ACM SIGOPS Operating Systems
Review (2007).

[2] Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A.,
Larson, J., Léon, J., Li, Y., Lloyd, A., and Yushprakh,
V. Megastore: Providing scalable, highly available storage for
interactive services. In CIDR (2011).

[3] Bernstein, P. A., Reid, C. W., and Das, S. Hyder-a transac-
tional record manager for shared flash. In CIDR (2011).

[4] Camargos, L., Pedone, F., and Wieloch, M. Sprint: a
middleware for high-performance transaction processing. ACM
SIGOPS Operating Systems Review (2007).

[5] Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. Benchmarking cloud serving systems with YCSB.
In SoCC (2010), ACM.

[6] Corbett, J., et al. Spanner: Googles globally-distributed
database. OSDI (2012).

[7] Das, S., Nishimura, S., Agrawal, D., and El Abbadi, A.
Albatross: lightweight elasticity in shared storage databases for
the cloud using live data migration. VLDB (2011).

[8] Elmore, A., Das, S., Agrawal, D., and El Abbadi, A.
Zephyr: live migration in shared nothing databases for elastic
cloud platforms. In ACM SIGMOD (2011).

[9] Gray, J., Helland, P., O’Neil, P., and Shasha, D. The dan-
gers of replication and a solution. In ACM SIGMOD Record
(1996).

[10] Kallman, R., et al. H-store: a high-performance, distributed
main memory transaction processing system. VLDB (2008).

[11] Kraska, T., Pang, G., Franklin, M. J., and Madden, S.
MDCC: Multi-data center consistency. CoRR (2012).

[12] Lamport, L. Using time instead of timeout for fault-tolerant
distributed systems. TOPLAS (1984).

[13] Lamport, L. The part-time parliament. TOCS (1998).

[14] Malkhi, D., Balakrishnan, M., Davis, J., Prabhakaran, V.,
and Wobber, T. From Paxos to CORFU: a flash-speed shared
log. SIGOPS OS Review (2012).

[15] Patterson, S., Elmore, A., Nawab, F., Agrawal, D., and
El Abbadi, A. Serializability, not serial: Concurrency control
and availability in multi-datacenter datastores. VLDB (2012).

[16] Pavlo, A., Jones, E., and Zdonik, S. On predictive model-
ing for optimizing transaction execution in parallel oltp systems.
VLDB (2011).

[17] Sciascia, D., Pedone, F., and Junqueira, F. Scalable deferred
update replication. In DSN (2012).

5


	Introduction
	Model and Goal
	ACID-RAIN
	System Structure
	Algorithm

	Evaluation
	Related Work
	Conclusion

