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ABSTRACT
Proof-of-work blockchains reward each miner for one completed

block by an amount that is, in expectation, proportional to the

number of hashes the miner contributed to the mining of the block.

Is this proportional allocation rule optimal? And in what sense? And

what other rules are possible? In particular, what are the desirable

properties that any “good” allocation rule should satisfy? To answer

these questions, we embark on an axiomatic theory of incentives in

proof-of-work blockchains at the time scale of a single block. We

consider desirable properties of allocation rules including: symme-

try; budget balance (weak or strong); sybil-proofness; and various

grades of collusion-proofness. We show that Bitcoin’s proportional

allocation rule is the unique allocation rule satisfying a certain

system of properties, but this does not hold for slightly weaker

sets of properties, or when the miners are not risk-neutral. We also

point out that a rich class of allocation rules can be approximately

implemented in a proof-of-work blockchain.
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1 INTRODUCTION
The Bitcoin protocol was a remarkable feat: eleven years after its

sudden appearance [7], and without much adjustment and debug-

ging, it has been used by millions of people and has launched the

blockchain industry. Arguably, the most crucial and ingenious as-

pect of its design lies in the incentives the protocol provides to its

miners to participate and follow it faithfully. We believe it is of great

importance and interest to understand and scrutinize the incentives

provided by blockchain protocols—and to do so through the point
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of view and the methodology of Economic Theory, the science of

incentives.

Flaws in the incentives of a blockchain protocol can manifest

themselves at multiple timescales. For longest-chain proof-of-work

blockchains like Bitcoin, the most well-studied incentive-based

attacks, such as selfish mining [4, 5, 10] and transaction sniping [3],

concern miners reasoning strategically over multiple block creation

epochs. For example, in selfishmining, a miner relinquishes revenue

in the short term to achieve greater revenue (in expectation) in the

long run via a type of forking attack.

This paper studies incentive issues and potential deviations from

intended miner behavior at the most basic time scale, that of a

single block creation epoch. We focus on the allocation of block
rewards, which drives the incentive structure in Bitcoin and many

other similar protocols. The dominant paradigm in proof-of-work

blockchains is to fix a per-block reward, and for each block to

allocate the entire reward to whichever miner first solves a difficult

cryptopuzzle. Assuming that miners independently and randomly

guess and check possible solutions to the cryptopuzzle, the expected

reward earned by a miner is proportional to their share of the total

contributed computational power.

The proportional reward allocation scheme is a simple, natural,

and compelling idea, and in all evidence it works quite well. But is
there any sense in which it is “optimal”? To answer, one has to start by
considering the whole spectrum of options; next onemust articulate

appropriate desiderata; and finally, characterize the full extent of

possible solutions that satisfy these desiderata. This is in line with

the axiomatic methodology, which has been traditionally employed

in Economic Theory for the development of utility theory [13], of

impossibility results in social choice [1], as well as of cooperative

game theory [12], to name three salient examples. The advantage

of the axiomatic approach is that through it one understands not

only the domain of possibilities, but also the costs of transgressing

the boundaries of this domain. This is our focus in this paper.

1.1 The Proportional Allocation Rule and Its
Alternatives

We formalize the question above through the concept of allocation
rules, functions that map profiles of contributed hashing power to

profiles of expected block rewards. The input to such a function is

an n-tuple h = (h1,h2, . . . ,hn ) of positive integers, where hi is the
hash rate contributed by miner i in a given block creation epoch,

and n is the number of distinct miners (i.e., distinct public keys) that

contribute a non-zero hash rate. When the epoch ends and a new

block is authorized, one unit of reward becomes available, and the

question is, how should it be allocated to the miners? The output of
an allocation rule specifies an answer to this question, in the form

of an n-tuple p = (p1,p2, . . . ,pn ), where pi is the expected reward

to miner i . As mentioned above, the allocation rule corresponding

https://doi.org/10.1145/3318041.3355470
https://doi.org/10.1145/3318041.3355470
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to the Bitcoin protocol is the proportional rule, with

pi =
hi∑n
j=1 hj

.

Is the proportional rule “optimal”? Or, an even more basic ques-

tion: What alternatives to the proportional allocation rule are pos-

sible? At first blush, it might seem as though a proof-of-work

blockchain has no choice but to implement the proportional al-

location rule, as presumably the probability distribution over which

miner is first to produce a cryptopuzzle solution will be propor-

tional to the contributed computational power. However, as we

discuss in Section 2.4, a rich class of allocation rules can in principle

be implemented (at least approximately) within a proof-of-work

blockchain. The key idea is to wait for a large number of solutions

to a medium-difficulty cryptopuzzle, rather than a single solution

to a high-difficulty puzzle. Each solution acts as a single sample

from the distribution proportional to miner hash rates, and with a

large enough number of samples all miners’ hash rates can be esti-

mated with high accuracy. This, in turn, permits the (approximate)

implementation of a wide range of allocation rules, even though

the true miner hash rates are not a priori known to the protocol.

1.2 Properties of Allocation Rules
The definition of an allocation rule is generic enough; the question

is, what kinds of properties should such allocation rules satisfy?

We consider an array of possible properties, which a blockchain

designer may (or may not) require of an allocation rule. The first

several properties are motivated by economic viability and fairness

rather than incentives per se.

• Non-negativity. Expected rewards (the pi ’s) should be non-

negative. That is, the protocol cannot require payments from

miners.

• Budget-balance. The protocol cannot be “in the red,” meaning

the sum of expected block rewards cannot exceed the unit of

block reward available. Strong budget-balance insists that the
entire unit of block reward is allocated, while weak budget-
balance allows the protocol to withhold some of the block

reward from miners.

• Symmetry. The allocation rule should not depend on the

names of the miners (i.e., their public keys), only on their

contributed hash rates.

Finally, there are two further properties aimed at disincentivizing

certain behaviors by the miners that may be considered undesirable

by the blockchain designer:

• Sybil-proofness. No miner can possibly benefit by creating

many accounts and splitting its mining power among them.

• Collusion-proofness. Two or more miners cannot benefit by

pooling their mining resources and somehow splitting the

proceeds. This property has different variants depending

on what types of payments between colluding miners are

permitted; see Section 2.2.

The proportional allocation rule satisfies all five properties (pre-

sumably by design), including the strong version of budget-balance.

1.3 Our Results
We prove a number of characterization results that identify which

allocation rules satisfy which sets of desired properties. We begin

with risk-neutral miners, who care only about expected rewards

(and no other details of the reward distribution). Our first result is:

(1) The proportional allocation rule is the unique allocation

rule that, with risk-neutral miners, satisfies non-negativity,

strong budget-balance, symmetry, sybil-proofness, and a

weak form of collusion-proofness (Theorem 3.1).

That Bitcoin’s block reward scheme is a singularly good idea hardly

comes as a surprise. Nevertheless, we believe there is value in for-

mally articulating what makes it unique. Further, if one relaxes the

requirements slightly, additional allocation rules become possible.

For example:

(2) A family of allocation rules that we call the generalized pro-
portional allocation rules constitute the only allocation rules

that, with risk-neutral miners, satisfy non-negativity, weak

budget-balance, symmetry, sybil-proofness, and a slightly

stronger form of collusion-proofness (Theorem 3.3).

But is it reasonable to assume that miners are risk-neutral? The

phenomenon ofmining pools for Bitcoin and other cryptocurrencies
(see e.g. [6]) is a behavior which, intuitively, aims to reduce the

risk of each miner, and thus suggests that miners in the real world

are risk-averse.1 We prove an impossibility result that makes this

intuition precise:

(3) If miners are risk averse (equivalently, their utility is the

expectation of a strictly concave function of the reward),

then there is no non-zero allocation rule that is symmetric,

(weakly) budget-balanced, sybil-proof, and (weakly) collusion-

proof (Theorem 4.1).

This result suggests that mining pools as a form of collusion are

unavoidable. In contrast:

(4) If miners are risk-seeking, then Bitcoin’s proportional allo-

cation rule satisfies (strong versions) of all of the desired

properties (Theorem 4.3).

(5) A deterministic implementation of the proportional rule—

with the block reward split fractionally between miners—

satisfies all of the desired properties even with risk-averse

miners (Corollary 4.2).

The deterministic implementation in (5) can be viewed as a simu-

lation of the functionality of a mining pool inside the blockchain

protocol itself, analogous to the “Revelation Principle” from mecha-

nism design theory.
2

1
There may also be other reasons to join a mining pool, for example to avoid the cost

of maintaining a full node, but risk-aversion is undoubtedly a first-order factor. (Who

is willing to wait an expected twenty years for their first reward?)

2
FruitChain [9] can be likewise interpreted as a lower-variance version of the pro-

portional allocation rule, with “fruits” playing the role of medium-difficulty puzzle

solutions. Bobtail [2] gives still another implementation of the proportional alloca-

tion rule using multiple puzzle solutions; their primary motivation was to reduce the

variance in time between consecutive blocks, rather than that of miners’ rewards per

se.
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2 MODEL
2.1 Allocation Rules
Let N∗ = ∪n≥1N

n
denote the set of all finite tuples of positive

integers. For a positive integern, we write [n] to denote {1, 2, . . . ,n}.
An allocation rule is a function x over N∗ that maps each tuple

h = (h1, . . . ,hn ) ∈ N
n
of length n to an n-tuple p = (p1, . . . ,pn ) of

nonnegative real numbers. Here hi and pi are the hash rate and

expected reward of miner i .3 We also write xi (h) for pi and x(h)
for p. We refer to a tuple h ∈ N∗ as a configuration and x(h) as the
corresponding allocation.

In this section and the next, we assume that miners care only

about their expected rewards (with more being better), and in par-

ticular are risk-neutral. Section 4 addresses the case of non-risk-

neutral miners and the interesting new issues that they raise.
4

2.2 Axioms
With the language and notation of allocation rules, we can translate

the properties in Section 1.2 into formal axioms.
5
See Section 2.3 for

examples of allocation rules that satisfy different subsets of these

properties.

A1. Symmetry: An allocation rule x is symmetric if x(π (h)) =
π (x(h)) for every configuration h ∈ N∗ and every permuta-

tion π .

That is, the expected reward of a miner does not depend on how

the miners are ordered (or their public keys). An example of an

asymmetric rule is a dictator rule, which always allocates the block

reward to the miner with the (say) lexicographically smallest public

key. We consider only symmetric rules in this paper.

A2a. Strong budget-balance: An allocation rule x is strongly
budget-balanced if

∑
i xi (h) = 1 for every configuration h.

A2b. Weakbudget-balance: An allocation rule x isweakly budget-
balanced if

∑
i xi (h) ≤ 1 for every configuration h.

A3. Sybil-proofness: An allocation rule x is sybil-proof if: For
every configuration h ∈ N∗ and every configuration h′ that
can be derived from h by replacing a miner with hash rate hi
by a set S of miners with total hash rate at most hi (i.e., with∑
j ∈S h

′
j ≤ hi ), the total expected reward tominers of S under

h′ is at most that of miner i in the original configuration:∑
j ∈S

x j (h′) ≤ xi (h).

We consider several natural definitions of collusion-proofness,

depending on the type of reward sharing allowed inside the coali-

tion and on whether a Pareto improvement for a coalition is re-

quired to be strict. We consider both arbitrary revenue-sharing

3
For example, hi could be in units of hashes per second. For convenience, we assume

this is an integer. All of our results for integral hash rates immediately imply the same

results for arbitrary positive rational hash rates. (The proofs hold verbatim for hash

rates that are integral multiples of 1/m for somem ∈ N, and hence apply to all finite

rational tuples of hash rates.)

4
With risk-neutral miners, there is no need to specify details of the reward distribution

beyond the expected reward for each miner. For example, xi (h) might represent a

deterministic reward of xi (h) to miner i , or that miner i has a xi (h) probability of

winning the entire block reward (and with the remaining probability receives no

reward). We’ll be more specific about the semantics of an allocation rule in due time,

when we consider non-risk-neutral miners in Section 4.

5
Non-negativity is already baked into our definition of an allocation rule.

agreements and proportional sharing. The latter corresponds to the

reward schemes used in many Bitcoin mining pools (see e.g. [6]).

A4a. Collusion-proofness (under arbitrary reward sharing):
An allocation rule x is collusion-proof (under arbitrary reward
sharing) if: For every configuration h ∈ N∗ and every con-

figuration h′ that can be derived from h by replacing a set T
of miners with a new miner i∗ (representing the coalition)
with hash rate at most the total hash rate of miners inT (i.e.,

with h′i∗ ≤
∑
j ∈T hj ), the total expected reward to miner i∗

under h′ is at most the total expected reward of miners of T
in the original configuration:

xi∗ (h′) ≤
∑
j ∈T

x j (h).

A4b. Strong collusion-proofness (under proportional shar-
ing): An allocation rule x is strongly collusion-proof (under
proportional sharing) if: For every configuration h ∈ N∗ and
every configuration h′ that can be derived from h by replac-

ing a set T of miners with a new miner i∗ with hash rate at

most the total hash rate of miners in T , either: (i) no miner

of T has strictly higher expected reward in h′ (with propor-

tional sharing) than in h; or (ii) some miner of T has strictly

lower expected reward in h′ (with proportional sharing) than
in h. That is, if

xi∗ (h′) ·
hi∑
j ∈T hj

> xi (h)

for some miner i ∈ T , then

xi∗ (h′) ·
hℓ∑
j ∈T hj

< xℓ(h)

for some other miner ℓ ∈ T .
A4c. Weak collusion-proofness (under proportional shar-

ing): An allocation rule x is weakly collusion-proof (under
proportional sharing) if: For every configuration h ∈ N∗ and
every configuration h′ that can be derived from h by replac-

ing a set T of miners with a new miner i∗ with hash rate

at most the total hash rate of miners in T , some miner of T
has expected reward under h′ (with proportional sharing)

at most that in the original configuration. That is, for some

miner i ∈ T ,

xi∗ (h′) ·
hi∑
j ∈T hj

≤ xi (h).

Every violation of (4c) also constitutes a violation of (4b), and simi-

larly for (4b) and (4a). That is, (4a)–(4c) are ordered from strongest

(i.e., most difficult to satisfy) to weakest. Impossibility and unique-

ness results are most compelling for the weakest variants of budget-

balance and collusion-proofness; possibility results are most im-

pressive for the strongest variants. The proportional allocation rule

satisfies the strongest versions of budget-balance and collusion-

proofness (in addition to symmetry and sybil-proofness).

2.3 Examples
This section gives several examples of allocation rules which satisfy

different subsets of the axioms in Section 2.2.
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Example 2.1 (Proportional allocation rule). The proportional allo-
cation rule is defined for each configuration h of length n by

xi (h) =
hi∑

j ∈[n] hj
.

This allocation rule is symmetric, strongly budget-balanced, sybil-

proof, and collusion-proof under arbitrary reward sharing.

Example 2.2 (All-zero allocation rule). The all-zero allocation rule

is defined for each configuration h of length n by

xi (h) = 0

for i = 1, 2, . . . ,n. The all-zero allocation rule is symmetric, weakly

budget-balanced, sybil-proof, and collusion-proof under arbitrary

reward sharing.

Our next example comprises scaled versions of the proportional

allocation rule, with the scaling constant dependent on the total

hash rate.

Example 2.3 (Generalized proportional allocation rules). For every
nondecreasing function c : N→ [0, 1], the corresponding general-

ized proportional allocation rule is defined for each configuration h
of length n by

xi (h) = c
©«
∑
j ∈[n]

hj
ª®¬ · hi∑

j ∈[n] hj
.

Examples 2.1 and 2.2 are the generalized proportional allocation

rules corresponding to the functions c(y) = 1 and c(y) = 0, respec-

tively.

Generalized proportional allocation rules are symmetric, weakly

budget-balanced, sybil-proof, and collusion-proof under arbitrary

reward sharing. To check sybil-proofness, let h be a configuration

and h′ derived from h by replacing some miner i with hash rate

hi by a set S of miners with total hash rate at most hi (i.e., with∑
j ∈S h

′
j ≤ hi ). Then, the total expected reward under h′ of the

miners in S is:

c
©«
∑
j ∈[n]

hj − hi +
∑
j ∈S

h′j
ª®¬ ·

∑
j ∈S h

′
j∑

j ∈[n] hj − hi +
∑
j ∈S h

′
j

= c
©«
∑
j ∈[n]

hj − hi +
∑
j ∈S

h′j
ª®¬
(
1 −

∑
j ∈[n] hj − hi∑

j ∈[n] hj − hi +
∑
j ∈S h

′
j

)

≤ c
©«
∑
j ∈[n]

hj
ª®¬
(
1 −

∑
j ∈[n] hj − hi∑

j ∈[n] hj

)

= c
©«
∑
j ∈[n]

hj
ª®¬ · hi∑

j ∈[n] hj
,

with the inequality following from the fact that

∑
j ∈S h

′
j ≤ hi . Since

the final expression is miner i’s expected reward in the original

configuration, this verifies sybil-proofness. Collusion-proofness can

be checked using a similar argument.

Example 2.4 (Proportional-to-squares allocation rule). The propor-
tional-to-squares allocation rule is defined for each configuration h

of length n by

xi (h) =
h2i∑n
j=1 h

2

j
.

This allocation rule is symmetric, strongly budget-balanced, and

sybil-proof. It is not evenweakly collusion-proof under proportional

sharing.

Example 2.5 (Proportional-to-square-roots allocation rule). The
proportional-to-square-roots allocation rule is defined for each

configuration h of length n by

xi (h) =
√
hi∑n

j=1
√
hj
.

This allocation rule is symmetric, strongly budget-balanced, and

collusion-proof under arbitrary reward sharing. However, it is not

sybil-proof.

2.4 Implementing Non-Proportional Rules
The proportional allocation rule is realizable, in that there is a

proof-of-work blockchain protocol (namely, Bitcoin) that imple-

ments it. Are non-proportional allocation rules purely hypothetical?

This section demonstrates that, at least in principle, every weakly

budget-balanced and continuous allocation rule can be approxi-

mately implemented within a proof-of-work blockchain.

Fix a power-of-2 M , a cryptographic hash function f , and a

difficulty level b. A full solution is a preimage z such that f (z) has
at least b trailing zeroes, and a partial solution is a z such that f (z)
has at least b − log

2
M trailing zeros. The parameter b is chosen

so that random guessing by miners produces a full solution in a

prescribed amount of time (on average), such as 10 minutes. One

expects partial solutions to be discovered atM times the rate of full

solutions.

Fix a weakly budget-balanced allocation rule x. A high-level

description of one possible corresponding protocol is then:

(1) Miners attempt to find partial and full solutions of the form

⟨pkey |σ |nonce⟩, where pkey is the miner’s public key, σ is

derived from the current blockchain state (e.g., the hash of

the block of transactions at the end of the longest chain),

and nonce is a number of free bits specified by the miner.

(2) A miner who discovers a partial (non-full) solution can add

it to the blockchain.

(3) A miner who discovers a full solution can authorize a new

block of transactions and add it to the blockchain (along with

their full solution).

(4) When a new full solution and corresponding block are pub-

lished, block rewards are distributed according to the num-

ber of partial solutions contributed by each miner since the

preceding full solution. Precisely, let [n] denote the miners

contributing at least one partial solution, дi the number con-

tributed by miner i , andM ′ =
∑
i ∈[n] дi the total number of

partial solutions reported in this epoch. Define an estimate
ˆhi

of miner i’s hash rate by

ˆhi = дi · ρ ·
M

M ′
,
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where ρ denotes the hash rate that would produce (on aver-

age) one partial solution in the prescribed amount of time.

Define miner rewards by x( ˆh1, ˆh2, . . . , ˆhn ).

Several comments are in order. First, this protocol effectively simu-

lates the typical functionality of a mining pool inside the protocol
itself. This is reminiscent of the Revelation Principle from mech-

anism design (see e.g. [8]), which is a simulation argument that

shows how to eliminate non-truthful reporting of preferences by

moving the deviations inside the mechanism itself.

Second, if we take M = 1, then partial and full solutions coin-

cide, M = M ′ = 1, and the protocol essentially recovers Bitcoin’s

implementation of the proportional allocation rule.

Third, the larger we takeM , themore accurate the estimated hash

rates
ˆh. Thus any continuous allocation rule can be approximated

as closely as desired by takingM sufficiently large.

Fourth, we ignore incentive issues involving miners’ delaying

the publication of full or partial solutions; Schrivjers et al. [11]

discuss (in the context of mining pools) methods for mitigating

such incentive issues.

Finally, we have deliberately avoided committing to the details

of the implementation, such as the best way to record the par-

tial solutions on-chain. Our point is simply that there appears to

be no fundamental barrier to implementing a wide range of non-

proportional allocation rules in a proof-of-work blockchain.

3 CHARACTERIZATIONS WITH
RISK-NEUTRAL MINERS

3.1 A Uniqueness Result for the Proportional
Allocation Rule

We assume throughout this section that miners are risk-neutral

and are concerned only with their expected rewards. Our first main

result is a uniqueness result for the proportional allocation rule:

It is the only rule that is symmetric, strongly budget-balanced,

sybil-proof, and collusion-proof (even weakly collusion-proof with

proportional sharing).

Theorem 3.1 (Characterization of Rules with A1, A2a, A3,

A4c). The proportional allocation rule is the unique allocation rule
that is symmetric, strongly budget-balanced, sybil-proof, and weakly
collusion-proof (with proportional sharing).

Proof. Let x be an allocation rule that is symmetric, strongly

budget-balanced, sybil-proof, and weakly collusion-proof (with

proportional sharing). We prove by induction that for every con-

figuration h ∈ N∗, x satisfies xi (h) = hi/
∑
j hj . The induction is on

the number t of entries in h that are larger than 1. The base case of

t = 0 is trivial since h is then an all-1 tuple (of length n, say) and
symmetry and strong budget-balance imply that xi (h) = 1/n for

every i .
For the inductive step, assume that the statement holds for all

tuples with less than t entries larger than 1. Now consider a con-

figuration h ∈ Nn for some n ≥ t that sums tom and has t entries
larger than 1. Because x is symmetric, we can assume without loss

of generality that h1,h2, . . . ,ht > 1 while ht+1,ht+2, . . . ,hn = 1.

Let p = (p1, . . . ,pn ) = x(h). We claim that pi = hi/m for each

i ∈ [t]. This claim, together with the assumptions that x is symmet-

ric and strongly budget-balanced, implies that xi (h) = 1/m for all

i > t and hence x indeed agrees with the proportional rule on h.
Suppose pi > hi/m for some i ∈ [t]. Then, consider the configu-

ration h′ obtained by splitting the miner i into hi sybils, each with

hash rate 1. By the inductive hypothesis and the fact that h′ has
t − 1 entries that are larger than 1, x is proportional on h′ and so

each of these miners with hash rate 1 receives 1/m which is strictly

less than pi/hi . This means that, in h′, these hi players with hash

rate 1 would all be better off by colluding and sharing their results

proportionally (i.e., uniformly). This contradicts the assumption

that x is weakly collusion-proof (with proportional sharing). We

conclude that pi ≤ hi/m for all i ∈ [t].
On the other hand, suppose pi < hi/m for some i ∈ [t], and

consider the configuration h′ obtained by splitting miner i into hi
sybils with hash rate 1 each. By the inductive hypothesis, each sybil

receives expected reward 1/m under x in h′. The total expected
reward earned by the sybils therefore exceeds that of miner i in h.
This contradicts the assumption that x is sybil-proof, so we can

conclude that pi ≥ hi/m (and hence pi = hi/m) for all i ∈ [t].
This completes the proof of the claim, the inductive step, and the

theorem. □

3.2 Weak Budget-Balance and Generalized
Proportional Rules

Example 2.3 shows that relaxing the strong budget-balance require-

ment to weak budget-balance enlarges the design space. One might

suspect that, analogous to Theorem 3.1, generalized proportional

allocation rules are the only ones that satisfy symmetry, weak

budget-balance, sybil-proofness, andweak collusion-proofness with

proportional sharing. The next example shows that this is not the

case.

Example 3.2. Consider the following allocation rule x. For a con-
figuration h in which no miner has more than half the overall hash

rate (i.e., hi ≤
1

2

∑
j ∈[n] hj for every i), x agrees with the propor-

tional allocation rule. For a configuration in which one miner i has
more than half of the overall hash rate, miner i receives its fair
share under the proportional rule (i.e., xi (h) = hi/

∑
j ∈[n] hj ), while

other miners receive 0 (x j (h) = 0 for j , i).
The rule x is symmetric, weakly budget-balanced, sybil-proof,

and weakly collusion-proof under proportional sharing. It is not

strongly collusion-proof under proportional sharing, however.

Our second main result shows that if weak collusion-proofness

is strengthened to strong collusion-proofness (with proportional

sharing), then generalized proportional allocation rules are indeed

the only ones that satisfy the axioms A1, A2b, A3, and A4b.

Theorem 3.3 (Characterization of Rules with A1, A2b, A3,

A4b). Generalized proportional allocation rules are the only allocation
rules that are symmetric, weakly budget-balanced, sybil-proof, and
strongly collusion-proof under proportional sharing.

Proof. Let x be an allocation rule that is symmetric, weakly

budget-balanced, sybil-proof, and strongly collusion-proof under

proportional sharing. We claim that, for each positive integerm,
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there is a nonnegative real number c(m) ≤ 1 such that

xi (h) = c(m) ·
hi
m

for every configuration h with total hash rate (

∑
j hj ) equal tom.

To prove the claim, fix a positive integerm. First, let 1
m ∈ Nm

denote the all-1 tuple of lengthm and define

c(m) =
∑
i ∈[m]

xi (1
m ).

Since h is symmetric and weakly budget-balanced, c(m) ≤ 1 and

xi (1
m ) = c(m)/m for every i ∈ [m]. Second, let h∗ denote the

configuration with a single miner with hash ratem. Since x is sybil-

proof and strongly collusion-proof (under proportional sharing),

the expected reward assigned by x to the sole miner in h∗ is c(m).

We follow the approach in the proof of Theorem 3.1 and prove

by induction that, for every configuration h ∈ N∗ with
∑
i hi =m,

xi (h) = c(m) ·
hi
m

for every miner i . The induction is again on the number t of entries
in h that are larger than 1. The base case of t = 0 is trivial by the

choice of c(m).

For the inductive step, we consider a configuration h ∈ Nn for

some n ≥ t with
∑
i ∈[n] hi = m and exactly t entries larger than

1. Without loss of generality (since x is symmetric), assume that

h1, . . . ,ht > 1 and ht+1, . . . ,hn = 1. Let p = (p1, . . . ,pn ) = x(h).
With respect to the first t miners, the same argument as in the

proof of Theorem 3.1 shows that pi = c(m) · (hi/m) for every i ∈ [t].
(This part of the argument requires only weak collusion-proofness

under proportional rewards.) Example 3.2 shows that the rest of

the proof (for miners t + 1, t + 2, . . . ,n) must differ from that of

Theorem 3.1 and make use of strong collusion-proofness. The issue

is that because x is only assumed to be weakly budget-balanced, it

does not follow directly from pi = c(m) · (hi/m) for all i ∈ [t] that
pi = c(m)/m for all i > t .

So assume for contradiction that pi , c(m)/m for some i > t
(and hence, by symmetry, for all such i). If pi > c(m)/m, then x fails

sybil-proofness: the sole miner in configuration h∗ can increase its

expected reward by splitting into n sybils with hash rates as in h.
On the other hand, if pi < c(m)/m, then x fails strong collusion-

proofness under proportional sharing: if the n miners in h form

the grand coalition, then with proportional sharing, every miner

i ∈ [t] receives the same expected reward pi = c(m) · (hi/m) as in

h while the expected reward of every miner i > t strictly increases

(from pi to c(m)/m). We conclude that pi = c(m)/m for every i > t
and hence pi = c(m) · (hi/m) for every miner i . This concludes the
proof of the claim.

All that remains is to show that c(m) must be a nondecreasing

function ofm. This follows from sybil-proofness: if c(m + 1) < c(m)

for somem, then in the single-miner configuration with hash rate

m + 1, the miner would have an incentive to replace itself with a

miner with hash ratem. □

4 BEYOND RISK NEUTRALITY: POSSIBILITY
AND IMPOSSIBILITY RESULTS

We have been assuming so far that miners are risk-neutral and care

only about the expectation of their reward, as opposed to other

distributional characteristics (like variance). Going beyond this

assumption reveals the interesting ways in which risk affects in-

centives in blockchain protocols.

4.1 Von Neumann-Morgenstern Utilities
The earliest, and most principled, treatment of risk in economics is

through von Neumann and Morgenstern’s utility theory, articulated
more than seven decades ago [13]. One starts from each agent

having a very general set of arbitrary preferences between lotteries
(finite-support probabilistic distributions over different amounts

of money), where the preferences of agents are assumed to satisfy

four very natural and plausible axioms: completeness, transitivity,

continuity, and independence. The remarkable result proved is that

any such system of preferences of an agent is tantamount to the

agent possessing a utility function U , a function mapping amounts

of money to the reals, such that the agent prefers lottery L to lottery

M if and only if EL[U (p)] ≥ EM [U (p)], where the expectation is

over the random variable p (which is in units of money). That is,

any agent with preferences satisfying the properties above can be

modeled as an expected utility-maximizer.
For an agent with utility function U , we can interpret U (p) as

the amount of utility the agent receives from a reward of p. For
ease of presentation, we assume throughout that U (0) = 0 and

thatU is twice-differentiable and strictly increasing. The risk sensi-

tivity of an agent can then be gauged by the second derivative of

U . Risk-neutrality corresponds to a linear utility function, with 0

second derivative; in this case, E[U (p)] = U (E[p]) for every distri-

bution over rewards p. A risk-averse agent is an expected utility

maximizer with a strictly concave utility function—a function with

an everywhere negative second derivative. For a risk-averse agent,

E[U (p)] ≤ U (E[p]) for every distribution over p (by Jensen’s in-

equality). For example, a risk-averse agent may not risk flipping

a fair coin if the two outcomes are either losing 30% of their for-

tune, or doubling it. (Whereas a risk neutral — or risk-seeking, see
Section 4.5 — agent would be happy to flip the coin.)

4.2 Collusion-Proofness Revisited
In this section and the next, we consider (randomized) allocation

rules that allocate the entire reward to (at most) one miner. We

interpret an output xi (h) of an allocation rule as the probability

that miner i receives the entire reward in the configuration h.
Of the four types of axioms in Section 2.2, symmetry and budget-

balance are obviously independent of any model of miner utility.

The sybil-proofness axiom requires only cosmetic changes:

A3. Sybil-proofness (with general utility functions): An al-

location rule x is sybil-proof if: For every allowable miner

utility function U , every configuration h ∈ N∗, and every

configuration h′ that can be derived from h by replacing a

miner with hash rate hi by a set S of miners with total hash

rate at most hi (i.e., with
∑
j ∈S h

′
j ≤ hi ), the total expected

utility to i in h′ is at most that in the original configuration:∑
j ∈S

x j (h′) ·U (1) ≤ xi (h) ·U (1).

Assuming that every allowable utility functionU is strictly increas-

ing (and thus, U (1) > U (0) = 0), this axiom is equivalent to the
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definition of sybil-proofness for risk-neutral miners given in Sec-

tion 2.2.

We need to adjust the definition of collusion-proofness, since

now the incentives of miners are affected by their utility functions.

Fix a classU of allowable utility functions — for example, all linear

functions, or all strictly concave functions. We next define analogs

of axioms (4a) and (4c) from Section 2.2 (we skip (4b) because

we do not need it in our statements). A reward-sharing scheme
with miner set S specifies how the miners of S would split a block

reward internally; formally, it is a collection of nonnegative random

variables {ri }i ∈S that satisfy

∑
i ∈S ri ≤ 1 with probability 1.

A4a. Collusion-proofness againstU (under arbitrary reward
sharing): An allocation rule x is collusion-proof againstU
(under arbitrary reward sharing) if: For every configuration

h ∈ N∗, every choice of utility functionUi ∈ U for each par-

ticipating miner i , every configuration h′ that can be derived

from h by replacing a set T of miners with a new miner i∗

with hash rate at most the total hash rate of miners inT , and
every reward sharing scheme {ri }i ∈T , either: (i) no miner

ofT has higher expected utility in h′ (with the given reward

sharing scheme) than in h; or (ii) some miner ofT has strictly

lower expected utility in h′ (with the given reward sharing

scheme) than in h. That is, if

xi∗ (h′) · E[Ui (ri )] > Ui (1) · xi (h)

for some miner i ∈ T , then

xi∗ (h′) · E[Uℓ(rℓ)] < Uℓ(1) · xℓ(h)

for some other miner ℓ ∈ T .
A4c. Weak collusion-proofness against U (under propor-

tional sharing): An allocation rule x is weakly collusion-
proof againstU (under proportional sharing) if: For every con-
figuration h ∈ N∗, every choice of utility function Ui ∈ U

for each participating miner i , every configuration h′ that
can be derived from h by replacing a set T of miners with

a new miner i∗ with hash rate at most the total hash rate

of miners in T , some miner of T has expected utility under

h′ (with proportional sharing) at most that in the original

configuration. That is, for some miner i ∈ T ,

xi∗ (h′) ·Ui
(

hi∑
j∈T hj

)
≤ Ui (1) · xi (h).

4.3 Risk Aversion and Impossibility
With risk-neutral miners, the proportional allocation rule imple-

mented by the Bitcoin protocol satisfies all of the axioms in Sec-

tion 2.2, including collusion-proofness (even with arbitrary reward

sharing). In reality, however, Bitcoin is not collusion-proof, in that

most miners join a mining pool that effectively acts like a large

single miner.
6
There is anecdotal evidence that miners generally

join mining pools to lower the variance of the rewards received,

analogous to an insurance policy, and we view the ubiquity of

mining pools as strong evidence that most miners are risk-averse.

How does risk aversion affect the set of possible allocation rules

satisfying our standard axioms?

6
See https://www.blockchain.com/en/pools for the biggest Bitcoin mining pools.

As of this writing, the largest pool (BTC.com) controls roughly 20% of the total hash

rate.

The following impossibility result shows that the incentive to
form mining pools is not an artifact of the specific allocation rule

implemented in Bitcoin; rather, it is a fundamental difficulty with

risk-averse miners.

Theorem 4.1 (Impossibility with Risk-Averse Miners). As-
sume that all miners are expected utility-maximizers with the same
strictly concave utility function U satisfying U (1) > U (0) = 0.
There is no non-zero allocation rule that is symmetric, weakly budget-
balanced, sybil-proof, and weakly collusion-proof againstU = {U }

(with proportional sharing).

Note that this impossibility result holds even with our weakest

notions of budget-balance (A2b) and collusion-proofness (A4c). The

assumption that all miners share the same utility functionU only

makes the impossibility result more compelling.

Proof of Theorem 4.1. Let x be a non-zero and symmetric allo-

cation rule. Let h be a configuration such that xi (h) > 0 for some i ,
and assume for simplicity that hi is even. Obtain h′ from h by re-

placing miner i with two miners i1 and i2 with hash rate hi/2 each.
By symmetry, xi1 (h

′) = xi2 (h
′); let q denote this common probabil-

ity. If x is sybil-proof, then 2q ≤ xi (h); suppose this is indeed the

case. Starting now from h′, if the two miners i1 and i2 join forces

and combine hash rates to produce the configuration h (sharing

rewards proportionally), then their expected utilities change from

U (1) · q

to

U
(
1

2

)
· xi (h) ≥ 2 ·U

(
1

2

)
· q.

Our assumption onU implies that 2U (1/2) > U (1) and hence both

miners are strictly better off in the coalition. We conclude that x is

not weakly collusion-proof under proportional sharing. □

4.4 Possibility with Deterministic Rewards
The impossibility result in Theorem 4.1 holds for randomized alloca-

tion rules x that always allocate the entire block reward to a single

miner according to the probability distribution specified by x(h). At
the other extreme are deterministic allocation rules, for which each

xi (h) represents a (fractional) block reward deterministically given

to miner i . With risk-neutral miners, there is no difference between

the two types of rules, and both the randomized and deterministic

implementations of the proportional allocation rule satisfy all of

our axioms.

With a deterministic allocation rule, the miner utility functions

no longer matter—more (deterministic) reward is always better than

less. (Remember that utility functions are strictly increasing.) In

this case, miners effectively act as if they were risk-neutral, and

so all results for risk-neutral miners carry over to deterministic

allocation rules and miners with arbitrary utility functions. For

example, the following corollary of Theorem 3.1 is immediate.

Corollary 4.2 (Possibility with Deterministic Rewards).

For every familyU of utility functions, the deterministic implementa-
tion of the proportional allocation rule is the unique deterministic al-
location rule that is symmetric, strongly budget-balanced, sybil-proof,
and weakly collusion-proof againstU (with proportional sharing).



AFT ’19, October 21–23, 2019, Zurich, Switzerland Xi Chen, Christos Papadimitriou, and Tim Roughgarden

Bitcoin’s implementation of the proportional allocation rule is

inherently randomized. But a deterministic version of the rule can

be approximated as closely as desired using a protocol of the type

described in Section 2.4 (with a sufficiently large value of the pa-

rameterM).

In the proposed implementation in Section 2.4, the choice of the

miner who can authorize a new block of transactions and add it

to the blockchain—the first miner to find a full solution—is still

effectively chosen randomly (see step (3)). This highlights the fact

that there are really two distinct problems to solve in each block

creation epoch:

(1) Electing a leader to authorize the next block of transactions.

(2) Distributing block rewards.

In Bitcoin, the solutions to these problems are tightly coupled, in

that the choices of the leader and of the recipient of the block

reward are always the same. The solutions are decoupled in the de-

terministic implementation of the proportional allocation, with the

leader elected randomly as in Bitcoin but with rewards distributed

deterministically.

4.5 The Case of Risk-Seeking Miners
For completeness, this section studies risk-seeking miners, meaning

expected utility maximizers with strictly convex utility functions.

In a surprising contrast with the impossibility result for risk-averse

miners (Theorem 4.1), here the (randomized implementation of the)

proportional allocation rule satisfies all of the same axioms as in

the case of risk-neutral miners.

Theorem 4.3 (The Proportional Rule with Risk-Seeking

Miners). LetU be the set of all convex functions U : [0, 1] → R≥0
withU (1) > U (0) = 0. The proportional allocation rule is symmetric,
strongly budget-balanced, sybil-proof, and collusion-proof against U
under arbitrary reward sharing.

Proof. The proportional allocation rule is obviously symmetric

and strongly budget-balanced. It is sybil-proof for risk-neutral min-

ers and hence also non-risk-neutral miners (see the discussion in

Section 4.2).

To complete the proof, assume for the purposes of contradiction

that the proportional allocation rule is not collusion-proof under

arbitrary transfers against the setU of convex utility functionsU
that satisfyU (1) > U (0) = 0. Then, there is a configuration h ∈ Nn ,
utility functionsU1,U2, . . . ,Un ∈ U for the participating miners, a

subsetT ⊆ [n] of the miners, and a reward-sharing scheme {ri }i ∈T
such that∑

j ∈T hj∑
j ∈[n] hj

· E[Ui (ri )] ≥
hi∑

j ∈[n] hj
·Ui (1) for every i ∈ T ,

with the inequality strict for at least one miner i ∈ T .
Summing these inequalities over i ∈ T and using thatUi (1) > 0

for every miner i , we then have∑
j ∈T hj∑
j ∈[n] hj

·
∑
i ∈T

E
[
Ui (ri )
Ui (1)

]
>

∑
i ∈T

hi∑
j ∈[n] hj

and, thus,

E

[∑
i ∈T

Ui (ri )
Ui (1)

]
> 1.

However, since each Ui is convex withUi (1) > Ui (0) = 0, we have

Ui (ri ) ≤ ri ·Ui (1) (with probability 1) and thus, since

∑
i ∈T ri ≤ 1

(again with probability 1),

E

[∑
i ∈T

Ui (ri )
Ui (1)

]
≤ E

[∑
i ∈T

ri

]
≤ 1.

This completes the contradiction and the proof. □
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