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ABSTRACT

State channels are a leading approach for improving the scalabil-
ity of blockchains and cryptocurrencies. They allow a group of
distrustful parties to optimistically execute an application-defined
program amongst themselves, while the blockchain serves as a
backstop in case of a dispute or abort. This effectively bypasses
the congestion, fees and performance constraints of the underlying
blockchain in the typical case. However, state channels introduce a
new and undesirable assumption that a party must remain on-line
and synchronised with the blockchain at all times to defend against
execution fork attacks. An execution fork can revert a state chan-
nel’s history, potentially causing financial damage to a party that is
innocent except for having crashed. To provide security even to par-
ties that may go off-line for an extended period of time, we present
Pisa, the first protocol to propose an accountable third party who
can be hired by parties to cancel execution forks on their behalf. To
evaluate Pisa, we provide a proof-of-concept implementation for
a simplified Sprites and we demonstrate that it is cost-efficient to
deploy on the Ethereum network.

1 INTRODUCTION

Improving the scalability of cryptocurrencies and blockchains has
emerged as an important open problem facing the nascent industry.
Although cryptocurrencies have achieved record growth (a total
market capitalisation of $300bn as of April 2018), their ability to
scale and increase transaction capacity is fundamentally at odds
with their approach to security through wide replication [8]; in a
typical cryptocurrency, every node processes every transaction. To
highlight this tension, Ethereum has relaxed a throughput capacity
limit imposed by Bitcoin [23], but as a result some peers lack the
resources to verify new transactions in real-time [26].

Payment channels are a leading scalability approach that over-
comes this tradeoff [4, 12, 17, 21, 25]. The main idea behind payment
channels is optimism: the blockchain serves as a backstop or dispute
handler, and in the typical case payments are carried out privately
among small groups of parties via off-chain messages. Funds de-
posited in a payment channel are guaranteed to be secure, even
if all other parties in the channel are malicious. This is because
the honest party can rely on the blockchain to enforce payments
and authorised withdrawals. While this scaling approach was orig-
inally proposed for payment applications, a generalization of the
technique, called state channels [7, 12, 25], promises to bring scala-
bility benefits to other smart contract applications as well, such as
auctions and online games [2].

The security guarantees of state channels are ensured by the
on-chain dispute handling mechanism. However, this mechanism
also introduces a new failure mode, since it assumes each party
remains on-line and synchronised with the blockchain at all times.
To briefly explain the mechanism, each party in a state channel
maintains a local view of the most recent channel state (e.g., account
balances in the case of payment channels, and arbitrary application-
defined state more generally), along with signatures from all other
parties. If at least one other party aborts (or provides invalid data),
an honest party must publish the most recent signed state to the
blockchain to initiate the dispute process. To handle the case where
a malicious party initiates a spurious dispute, other parties are given
a fixed time period to submit a newer signed state to resolve the
dispute. This is effective as long as honest parties remain online and
responsive; a node that crashes or goes offline for a long period of
timemaymiss the time window to participate in the dispute process.
Worse, a malicious actor may exploit an offline party by reversing
(or forking) collectively authorised states in the channel to their
benefit (an “execution fork”). The global blockchain can ease the
burden on parties by providing a longer grace period during which
they can intervene, but this increases the time it takes to progress
the program and thus introduces a trade-off between security and
performance.

The hazard of execution fork attacks against offline parties is
already known in the off-chain scaling community, who have pro-
posed two mitigations thus far. Both existing approaches empower
users to appoint a third party to help defend against execution forks
on their behalf. The first proposal, called Monitor [10], is inefficient
in that it requires the third party to consume O(N ) storage, where
N is the number of off-chain transactions that have occurred within
the state channel. The second proposal, calledWatchTower [27], im-
proves upon Monitor’s efficiency, but cannot be deployed without
consensus rule changes in the Bitcoin network, and cannot directly
be adapted to generic state channels in Ethereum. As we explore in
Section 3.2, the customer lacks any evidence that they have hired
and paid a third party to watch the channel on their behalf. Thus
both proposals suffer from the drawback that if the appointed third
party fails, there is little to no recourse for the customer.

To overcome the above problems, we propose Pisa, which intro-
duces a new accountable third party to watch generic state channel
constructions. In Pisa, all appointments and payments between
a customer and the accountable third party are performed using
an off-chain payment channel. In return, the customer receives
a signed receipt from the accountable third party, which consti-
tutes evidence that they have agreed to defend the channel. This
receipt can later be used to penalise the accountable third party



if they fail to defend against an execution fork on the customer’s
behalf. Pisa improves on the efficiency of prior proposals, requiring
only O(1) storage from the accountable third paty, and for a two-
party channel an appointment is approximately 162 bytes. Pisa is
application-neutral, and can be used with any state channel pro-
gram, since the accountable third party only receives a hash of
the channel’s state rather than the state itself. This also provides
a privacy benefit, called state privacy, since the accountable third
party does not learn any details about the off-chain interactions
(e.g., payment metadata) except when a dispute is raised via the
global blockchain.

To summarise, our contributions are as follows:

• We propose Pisa, the first application-agnostic state channel
protocol that supports third-party monitoring for arbitrary ap-
plications.

• Pisa is also the first accountable third-party watching protocol
that provides a customer with publicly verifiable cryptographic
evidence in case the third-party fails, which can be used to
penalise a faulty third-party.

• We provide a proof of concept implementation of Pisa for a
simplified Sprites and experimentally demonstrate that it is
cost-efficient to deploy on the Ethereum network.

2 BACKGROUND AND RELATEDWORK

In this section, we present cryptographic primitives used through-
out this paper, an overview of the blockchain, smart contracts and
payment channels before discussing related work.

2.1 Cryptographic notation

Pisa and more generally state channels rely on cryptographic hash
functions and digital signatures. We denote a hash computation as
h ← H(msg) where H is the cryptographic hash function, msg is
the pre-image and h is the resulting hash. For digital signatures, we
denote signing as σk ← Sign(skk ,msg), where skk is the signer’s
secret key,msg is message to be signed and σk is the corresponding
signature. Verification is denoted as 0/1← Sig.Verify(P,msg,σk )
where P is the party’s corresponding public key and the algorithm
returns 1 if the signature is authentic for msg.

2.2 Blockchains, accounts, and smart contracts

All parties independently compute their own pseudonymous iden-
tity called an external account, and this is simply the cryptographic
hash of a public key. For readability, both external accounts and
public keys are interchangeably denoted as P. Once an account is
associated with coins on the network, the party can digitally sign a
transaction using their corresponding secret key sk . A transaction
denotes the sender’s account, receiver’s account, the number of
coins to transfer and a payload. In more expressive platforms like
Ethereum, the payload stores bytecode which is used to deploy and
instantiate a smart contract (i.e., a program) on the network, or
contains instructions for executing a smart contract. The metric
for size and computational complexity of this payload is called gas
and the signer can set a gas price that they are willing to pay as a
transaction fee.

All transactions are published and propagated throughout the
peer-to-peer network. Each peer verifies whether the digital sig-
nature that authorises the transaction corresponds to an external
account with a sufficient balance to cover the transaction’s fee.
Eventually the transaction should reach a group of peers called
miners who collectively participate in a leader election every epoch.
The first peer to solve a computationally difficult puzzle is elected
as the epoch’s leader and atomically creates a new block of transac-
tions. This block is appended to a chain of previous blocks (which
results in the name blockchain) and the miner is given a reward
alongside the fees from each included transaction. Due to the prob-
abilistic nature of the puzzle, two or more miners may propose a
solution (i.e., a competing block) for any given epoch. All compet-
ing blocks are distinct forks based on the same parent block. The
fork that emerges as the longest (and heaviest) chain is eventually
considered the blockchain and only these transactions impact the
network’s state. The blockchain thus only provides eventual con-
sistency and a transaction cannot be considered final until it is in
the longest (and heaviest) chain.

Smart contracts are conceptually a third party that is trusted for
correctness and availability but not for privacy [18]. We model a
smart contract as a state machine and signed transactions carry
commands cmd which execute the state transition from statei−1
to statei. The contract’s code alongside a transcript of all previous
state transitions is recorded in the blockchain and transactions
that perform state transitions are deterministically executed by all
peers on the network. This deterministic execution implies that the
contract cannot store secret values, but the honest execution of its
protocol is guaranteed. As mentioned previously, a fee is associated
with each state transition performed on the network and the cost
of executing a smart contract increases when the blockchain is
congested as users compete for the remaining space.

2.3 Payment channels

The concept of a payment channel emerged in Bitcoin to avoid
executing all payments on the blockchain. A payment channel al-
lows two parties to deposit coins and continuously re-distribute
each party’s share of this deposit amongst themselves. This reduces
transaction fees paid by the channel’s parties and also reduces con-
gestion on the network as computation is performed locally instead
of the global network. More generally, both parties are executing
state transitions and authorising (i.e. digitally signing) every new
state amongst themselves in such a way that only the most recently
authorised state should be accepted into the blockchain.

It is crucial that parties can invalidate previous states to ensure
the network only accepts the latest state. The simplest approach for
state replacement is called replace-by-incentive [9], which emerged
to support one-way payment channels. As well, the receiver’s in-
centive is to only publish the state that sends them the most coins.
The receiver can either sign the state and publish it to the net-
work, or wait for a new state that increments their balance. This is
considered safe as every state requires both parties to authorise it
before the state can be accepted into the blockchain. There is also
an expiry mechanism that eventually refunds the sender if there is
no activity in the channel. However to extend payment channels
to support bi-directional payments (i.e. sending coins back and

2



forth), early constructions for state replacement in Bitcoin involved
decrementing the channel’s expiry time [9, 24]. This is undesirable
as every change in payment direction brings the channel’s expiry
time closer to present time and ultimately restricts the total number
of payments.

To overcome issues in early payment channel constructions such
as requiring an expiry time and the restricted throughput, Poon and
Dryja proposed replace-by-revocation [31] as a state replacement
technique. Unlike replace-by-incentive, both parties have a copy of
the channel’s latest state and the state replacement requires both
parties to authorise a new state before revoking the old state. Thus
there is a set of revoked states, and only a single valid state. It also
introduced the concept of a dispute period where one party can seek
assistance from the global blockchain to close the channel based on
an authorised state. The counter-party has a fixed time to detect
whether this authorised state was previously revoked, and if so, the
counter-party can submit evidence to the blockchain that the state
was indeed revoked and in return they are sent all coins in channel.
Otherwise the dispute period expires and both parties receive their
share of the channel’s deposit according to the accepted state. As
we explore in the Section 3, a payment channel can be generalised
for arbitrary protocols involving n parties and this dispute process
can be used to enforce the protocol’s progression (instead of simply
closing the channel).

2.4 Related work

Probabilistic micropayments. To avoid processing all transactions
on the blockchain, Pass and shelat [29], and Chiesa et al. [5] pro-
posed using probabilistic payments. Every payment is a lottery
and the receiver is only paid upon winning. The former relies on
a trusted third party, or tying up more collateral than the largest
possible payment. The latter adds support for privacy-preserving
payments, and analyses the collateral requirements assuming a
rational adversary. Probabilistic payments indeed reduce network
congestion, though they increase the variance until the payee re-
ceives money, and they also have weaker expressibility (i.e. only
supports payments) than a state channel.

Channels based on trusted hardware. Teechain [19] is an off-chain
payment channel protocol for Bitcoin that utilizes the Intel SGX
technology to produce the settlement transactions via SGX enclaves
the run in the parties’ computers, rather than by the parties directly.
An accountable third party watching services are unnecessary with
Teechain, since an enclave will only agree to produce a signed
settlement message (to be sent to the blockchain) that deducts all
the amounts that its operator paid to other parties. However, the
Teechain protocol is risky even in the case that SGX is completely
secure, because a party will lose all of her money if the SGX enclave
stops running.1 The risk can be overcome by allowing rollback (to
an enclave backup image) in accord with monotonic hardware coun-
ters, but SGX does not have a secure implementation of hardware
counters [22, 33]. Teechain proposes an extension where a party
duplicates the secret data by using several computers that have
SGX enclaves (these computers run continuously and communicate
among each other via secure channels in order to backup the secret

1Even due to suspend or hiberation, see https://software.intel.com/en-us/node/708995.

data). Still, the money will be lost if all of these computers crash at
the same time.

Payment networks. Poon and Dryja proposed the concept of a
payment (and collateral-based) network for Bitcoin. This allows
multiple two-party channels to form a route and synchronise pay-
ments across the route using hashed time-locked contracts (HTLC)
[24, 31]. Miller et al. proposed how to reduce the worst-case delay
of HTLC to constant time for all channels in the route [25]. As
well, Khalil et al. proposed REVIVE [17] that relies on this syn-
chronisation technique to allow parties to re-balance their share
of coins in a channel without interacting with the blockchain. In
terms of privacy, Malavolta et al. proposed how to preserve the
route’s privacy [21] and, Green and Miers proposed BOLT [14] that
allows two channels to transact via a single intermediary channel
in a privacy-preserving manner. Instead of synchronising a single
payment, Dziembowski et al. proposed Perun [11] that allows two
parties to establish a route and conduct multiple payments without
interacting with the intermediate channels. As mentioned earlier,
Pisa is complementary to payment networks.

3 STATE CHANNELS

A state channel allows a group of mutually distrustful parties to
execute an arbitrary application amongst themselves, while boot-
strapping trust from the underlying blockchain. The blockchain
(and in effect, the smart contract) is consulted only to open the chan-
nel, to store the latest authorised state if necessary and to resolve
any disputes that occur. Our work builds on state channels to make
them more robust in case some parties crash or go offline. Before
proceeding to our main protocol, in this section we explain in detail
the underlying state channel construction. We mostly follow the
abstraction provided by Miller et al. [25]2.

A state channel for n participants P = P1, ...,Pn is modeled as
a state machine that proceeds logically in rounds, and is parame-
terized by an application-defined space of input commands cmd
and a Transition function. In each round, the state channel receives
an input cmd from one of the parties and applies the transition
function

statei ← Transition(statei−1, cmd).
The main challenge in constructing a state channel is to ensure that
the transition function is applied consistently, even in the case that
one or more of the parties is malicious or aborts.

3.1 Generic state channel construction

At a high level, the state channel construction consists of an initial-
ization routine to set up the channel, an off-chain protocol by which
parties can collectively authorise new state transitions amongst
themselves, and a smart-contract based dispute resolution process
in case some party fails.

To initialize a state channel, one party must deploy a smart
contract to the network and register all parties P in the contract
to set it up. Notationally, we use SC to denote the unique identifier
for the state channel contract, and use SC.setup (as one example)

2Alternative state channel abstractions include StCon by Bentov et al. [2] and Perun
by Dziembowski et al. [11].
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to denote a function call in this contract, with the function inputs
omitted for readability.

Once established, all registered parties participate in an interac-
tive protocol called AuthState to execute and authorise new state
transitions. If all parties co-operate, then the contract SC is not
involved and the state replacement is performed off-chain. To keep
track of replaced states, a monotonic counter i is incremented for
every state transition and the state associated with the largest i is
considered the latest state (i.e. replace by monotonic counter). If
one party fails to participate in AuthState, then the state replace-
ment cannot be performed off-chain. Instead, another party in the
channel must initiate the dispute process in SC to complete the
state transition. To initiate, one party updates the contract with an
authorised state (i.e. statei−1) before triggering the dispute process.
This provides a time period for each party to input a command.
After this time period, SC selects one command (i.e. cmd is selected
by the application’s logic), executes it and stores statei as the latest
authorised state (alongside an incremented i). We now describe the
construction in more detail.

Channel flags. A state channel has three flags [⊥,OK,DISPUTE]
where ⊥ denotes the channel is not initialised, OK specifies the
channel is open and all parties can collectively authorise new states,
and DISPUTE signals that one party has triggered a dispute and
the state transition from statei−1 to statei must be authorised by
the contract.

Channel establishment. One party is responsible for deploying
the state channel contract to the blockchain using SC.setup. The
channel must be initialised with a list of parties P = P1, ...,Pn
and a timer ∆settle which specifies the minimum length of time for
the dispute process. Once the channel establishment is complete,
the channel’s flag transitions ⊥ → OK and all parties can begin
collectively signing (and authorising) every new state. The first
state1 is dependent on the channel’s application.

State replacement. A state channel’s integrity relies on all parties
collectively invalidating previously authorised states to ensure SC
always accepts the latest authorised state. In this construction,
all parties collectively participate in an interactive protocol called
AuthState (defined in Figure 4) that associates every new statei
with an incremented counter i. AuthState requires one party Pk to
select a command cmd and locally execute the state transition.3

This party separately signs the command and the new statei
(alongside a newly incremented i). Both signatures σ cmd

k ,σ state
k and

the values cmd, statei, i are sent to all other parties. Each party must
verify both signed messages and the state transition, according to:

0/1← VerifyTransition(Pk , cmd,σ cmd
k , statei−1, i,σ state

k , SC)

Once satisfied, an honest party sends all other parties their sig-
nature for the new state (and its corresponding i). If an honest party
does not receive a signature from all other parties before a local
timeout, then the signed cmd (alongside statei−1) is used to initiate
the dispute process and complete the transition. To avoid the cost
incurred by the on-chain state transition, all parties must exchange
signatures for statei before an honest party’s local timeout.

3This transition function is available in SC and can be executed locally by the parties,
but it is executed on the network only via the dispute process.

Dispute process. Any party within the channel can enforce a
state transition on-chain via the dispute process. First, one party
updates the contract using SC.setstate with the latest statei−1, its
corresponding counter (e.g. i-1) and a list of signatures ΣP . This
allows the contract to verify that statei−1 was indeed authorised
by all parties before accepting it. Second, one party initiates the
dispute using SC.triggerdispute which transitions the channel’s
flag from OK to DISPUTE and establishes a deadline tsettle. Third,
all parties can input a cmd to be considered for the state transition
using SC.input before SC.tsettle. After the deadline has passed, the
final step requires one party to notify the contract using SC.resolve
which selects a single command from the list of commands, executes
it and performs the state transition to statei.

There is a danger that one party triggers a dispute based on a
previously authorised statei−1 which has already been replaced
off-chain by statei. If the dispute is successful, then the contract
enforces the transition to a forked state′i which may be different to
statei. We call this an execution fork as state′i cannot be replaced
by statei once it is accepted by the contract. For example, if the
application was a payment channel, statei may represent sending
coins from Alice to Bob, but state′i represents a withdrawal that
sends Alice her coins. Thus her coins are no longer available to
facilitate the payment if statei replaced state′i . Preventing an exe-
cution fork requires one party to settle the dispute before SC.tsettle
by updating the contract with the competing statei (alongside i and
the corresponding list of signatures) using SC.setstate. If statei
is accepted, then the contract’s flag transitions from DISPUTE to
OK and the dispute is settled. This introduces a new assumption
that each party must remain on-line and synchronised with the
blockchain in order to detect (and settle) execution forks. To get
around this, we evaluate solutions proposed in the community for
payment channels which allows any party to outsource the respon-
sibility of preventing an execution fork (and settling the dispute
process) to a third party called the Monitor.

3.2 Monitor solution

Dryja proposed the concept of a Monitor for replace-by-revocation
channels in Bitcoin. This is a third party agent who is appointed
by a customer to settle disputes (and prevent execution forks) on
their behalf [10]. Briefly, the customer signs a new transaction that
rewards both the customer and the Monitor if it is used to settle
a dispute. This transaction (and the customer’s signature) is en-
crypted using a secret key that is only revealed if the counter-party
publishes a previously invalidated transaction.4 When a customer
appoints the Monitor to watch a channel on their behalf, the cus-
tomer sends the Monitor this encrypted transaction. Once a dispute
is detected in the customer’s channel, the Monitor must try to
decrypt this encrypted transaction. If the decryption is success-
ful, then the Monitor confirms that the transaction contains the
expected payment before settling the dispute.

Only the transaction which settles a dispute is revealed and all
intermediary transactions remain are hidden. As well, more than

4In a replace-by-revocation channel, each party has a transaction that only they
can broadcast. The unique identifier of the counterparty’s transaction is used as the
encryption key.
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oneMonitor can be appointed to watch the channel and the counter-
party is unaware of any appointment. However due to the nature
of replace-by-revocation channels as presented in Section 2.3, the
Monitor is required to store every encrypted transaction received
from the customer and this employs a storage requirement ofO(N )
for the Monitor per customer. To put this into perspective, Dryja
claimed that for 10k channels, and 1 million payments per channel,
the Monitor will need to store around 1TB of transactions [10].

On the other hand, the Monitor protocol relies on a bonus pay-
ment as the Monitor is rewarded only upon successfully settling a
dispute. This reward policy is also under consideration by Raiden
[6].We call this the double-deposit approach as the channel must allo-
cate coins for use in the channel and the bonus payment. This intro-
duces an unfair reward policy as only a single Monitor can receive
the payment and this results in a race condition as all appointed
Monitors must compete to settle the dispute.5 This is problematic
in the context of a state channel as the deposit must be sufficient to
support multiple disputes (as opposed to a single dispute that closes
the payment channel). There is also no cryptographic evidence if
the Monitor aborts and fails to settle a dispute on the customer’s be-
half. Thus, there is no mechanism for the customer to seek recourse
or to publicly prove the Monitor’s wrongdoing.

A second proposal by Osuntokun [16, 27] called WatchTower
reduces the third party’s storage requirement to O(1), but this pro-
posal cannot be deployed without a new consensus rule to update
Bitcoin Script.6 This new rule essentially allows Bitcoin to support
the replace-by-monotonic-counter approach presented in Section
3.1, but the implementation detail is tailored to work with Bitcoin
script. In terms of payment, it proposes paying the WatchTower via
the off-chain payment network for every appointment as opposed
to relying on the double-deposit approach. However the customer is
not provided with evidence that the WatchTower was appointed to
settle disputes on their behalf and thus there is no deterrence mech-
anism. Finally since WatchTower is designed for payment channels,
it only considers settling a single dispute to close the channel as
opposed to multiple disputes which is necessary to enforce a smart
contract’s progression.

4 PISA PROTOCOL

To overcome the above issues, we propose Pisa and the first ac-
countable third party watching service. Pisa has three components
and it is designed for resolving disputes in the generic state channel
construction presented in Section 3.1.

The first component is publicly verifiable appointments as the
customer has a ratified signed receipt of appointment from the
accountable third party. As well, due to how state channels are de-
signed in Ethereum, the accountable third party will have a storage
requirement of O(1). The second component is fair (and real-time)

5In Ethereum, the deposit can be split between all Monitors that respond to settle the
dispute, but this increases the number of on-chain transactions and does not provide
the Monitor with a fixed reward.
6A new opcode called OP_CHECKSIGFROMSTACK that can verify a signed message
and parse its message.
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Figure 1: System Overview. In ordinary channels (top), par-

ties communicate off-chain to authorize state transitions (1)

through AuthState (Figure 4), but can raise a dispute on-

chain (2) in case of abort. With Pisa (bottom), the interac-

tion between channel participants, (1) and (2), remains un-

changed, but A runs Appoint (Figure 3) to delegate to an ac-

countable third party, (4), who can submit a hashed state on

A’s behalf ifA crashes (5). Pisa further guarantees that if the

accountable third party fails, A obtains a publicly verifiable

receipt and can penalize them through an on-chain recourse

(6).

rewards as the accountable third party is paid for every new ap-
pointment using a one-way payment channel (or alternatively the
accountable third party can be paid using a payment network). The
third component is customer recourse as the ratified signed receipt
can be used to prove the accountable third party’s failed to settle
a dispute on the customer’s behalf and as a result the accountable
third party’s large security deposit is forfeited.

In the rest of this section, we present the goals and requirements
before providing an overview of Pisa. Afterwards we highlight the
modifications required to the generic state channel construction
presented in Section 3.1 and the new Pisa contract to facilitate the
appointments from customers.

4.1 Protocol goals

We present a list of protocol goals for Pisa which focus on the
privacy of intermediate states, fairness for the customer and ac-
countable third party, and practical requirements that ensure Pisa
can be deployed.

State privacy. We extend value privacy from [21] such that the
accountable third party does not learn any information about the
state. As well, there is a single (and unavoidable) case when state

5



privacy may be breached. If there is a dispute in the state channel,
then the accountable third party may be required to broadcast the
state hash to SC in order to resolve the dispute. Afterwards one of
the parties in the channel may reveal the state (pre-image of the
hash) in order to execute a command. In this case, the accountable
third party, like all other observers of the blockchain, will learn the
state.

Fair exchange. An honest customer can review the signed receipt
of appointment before deciding whether to pay the accountable
third party in order to ratify it. On the other hand, an honest ac-
countable third party is always paid once they ratify a signed receipt
for the customer.

Non-frameability. A malicious customer or a full collusion of
the state channel’s parties cannot produce evidence that causes an
honest accountable third party to lose their security deposit.

Recourse as a financial deterrent. 7 A accountable third party is
considered rational and only colludes against the customer if their
payout is greater than the loss of their security deposit. An honest
customer should always be able to seek recourse and prove the
accountable third party’s wrongdoing.

Efficiency requirements. The accountable third party stores only
information associated with the latest state, meaning its storage
requirement is O(1) per customer. The accountable third party
should be paid using the one-way (and off-chain) payment channel.

4.2 Overview of Pisa

Figure 1 presents a high-level overview of the system and Figure 2
presents the high-level interaction in Pisa between three parties:
two arbitrary parties in the state channel, and the accountable
third party (and, implicitly, the contracts via interaction with the
network). Initially, the accountable third party sets up the Pisa
contract CC, stores a large security deposit and publicly advertises
their service. At some point, all parties establish a state channel
and begin collectively authorising new states amongst themselves
using the AuthState algorithm presented in Figure 4. If a party
wishes to go offline for an extended period of time, but wants to
ensure that previously invalidated states are not accepted by CC,
they may decide to appoint a accountable third party to watch the
state channel on their behalf.

We call this party the customer, who must deposit coins into the
accountable third party’s contract to set up a one-way payment
channel. Afterwards the customer can outsource the job of moni-
toring the state channel using the Appoint algorithm in Figure 3.
The accountable third party receives a hash of the state which we
denote as hstatei (alongside its counter i and signatures from all
parties ΣP ), the state channel contract’s identifier SC and a pay-
ment for watching the channel. In return the customer is provided
a signed receipt of appointment that specifies the monitoring time
period.

As mentioned previously, once the customer is offline, all other
parties may collude to perform an execution fork. In this case there
7Another way look at this security property is that PISA provides a financial guarantee
that it will always broadcast the latest agreed state it has received from the customer.
If PISA fails to protect the customer, then there is publicly verifiable evidence that can
be used by the customer to seek recourse and thus slash PISA’s security deposit.

are two outcomes. First, the accountable third party may settle
a dispute by publishing hstatei and the counter i alongside the
list of signatures ΣP on behalf of the customer. In this case the
correct state hash will be accepted and the execution fork cancelled.
Otherwise, the accountable third party may fail to respond during
the dispute process. In this case, the Pisa contract empowers the
customer to seek recourse after they come back on-line using both
the signed receipt and a record of the dispute in the state channel.
If the recourse is successful, then the Pisa contract forfeits the
accountable third party’s large deposit.

4.3 Protocol assumptions

We present a list of assumptions for the smart contracts and the
threat model.

Smart contracts. We assume a smart contract is a trusted third
party that maintains public state. All contracts and payment chan-
nels have a unique identifier on the blockchain. The underlying
blockchain cannot be compromised and honest parties can always
interact with the contracts within a designated grace period.

Threat model. We assume the adversary can control the order of
messages, but all messages must be delivered within a designated
grace period. The adversary can either corrupt all parties in the
channel, n−1 parties in the channel and the accountable third party,
the accountable third party’s customer, or just the accountable third
party. However the adversary cannot forge messages from non-
corrupted parties.8 If the accountable third party is corrupted, then
we must assume the adversary is rational and only colludes with
other parties in the customer’s state channel if the payout is more
than the accountable third party’s security deposit.We assume there
is an authenticated and secure end-to-end communication channel
for parties within the state channel to prevent eavesdropping by an
honest-but-curious accountable third party. This also implies there
is no collusion between the accountable third party and a party in
the channel, since otherwise it is trivial to eavesdrop on all states.

4.4 State channel modifications

We focus on modifications to the generic state channel construction
presented in Section 3.1 and the interaction between parties in the
channel to support authorising hstatei instead of statei.

Modifications to the state channel contract. Figure 5 highlights sev-
eral modifications to the state channel construction. SC.setstate
accepts hstatei = H (statei | |ri) as the latest state if it is authorised
by all parties in the channel (instead of statei). The statei (alongside
the blinding nonce ri) is only revealed if one party triggers a dis-
pute and resolves it using SC.resolve. Both modifications allows
the accountable third party to settle disputes by publishing hstatei
(alongside a list of signatures from all parties in the channel) and
this is further explored in Section 4.5. A third modification requires
the contract to record the start time tstart, settle time tsettle and the
new state round stateRound for every successful dispute that per-
forms a state transition using SC.resolve. This evidence is stored

8 This implies the digital signature scheme used in Pisa is unforgeable under chosen
message attacks (EUF-CMA) which is proven for Schnorr signatures [30]. However
for the digital signature algorithm (DSA) such as ECDSA which is used in Ethereum,
this is proven using non-standard assumptions [34].
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Party K Party N Accountable third party

All parties have a secret key sk and have access to SC, CC via the network.
AuthState() is defined in Figure 4 and Appoint() is defined in Figure 3.

SC.setup(P,∆settle)

Multiple states are authorised between Pk ,..., Pn

AuthState(Pk ,Pn , statei−1)
hstatei, i, ΣP , statei, ri ← Pk hstatei, i, ΣP , statei, ri ← Pn

Appoint(ΣP , (hstatei, i), coins)
receipt, si,σC ← Pn pay,σn ← C

Party N goes off-line
SC.setstate(hstatei−1, i − 1, ΣP )
σk ← Sign(skk , (dispute, hstatei−1, i − 1, SC))
SC.triggerdispute(σk )

We present two protocol outcomes based on whether the accountable third party is honest or colludes with Pk
Outcome 1: Accountable third party resolves dispute on behalf of Pn

SC.setstate(hstatei, i, ΣP )
Outcome 2: Accountable third party colludes with Pk and afterwards Pn seeks recourse.

Selects a cmd
σ cmd
k ← Sign(skk , (cmd, hstatei−1, i − 1, SC))

SC.input(cmd,σ cmd
k )

Wait(SC.tsettle)
SC.resolve(statei−1, ri−1)

Party N returns online
b ← SeekRecourse(receipt)
if b = 0, abort
CC.recourse(receipt.tstart, receipt.texpire, receipt.SC,

receipt.i, receipt.hi, si, receipt.σC)

Figure 2: High level interaction for authorising states and if the customer needs to seek recourse.

for later use by the customer to demonstrate the accountable third
party’s failure to settle a dispute on their behalf.

Exchanging collectively authorised state hashes. Figure 4 presents
AuthState which is an interactive protocol between all parties to
authorise a new state. To initiate a state transition, the initiator Pk
signs a command cmd and separately signs the tuple (hstatei, i, SC).
All other parties P2, ...,Pn must verify the state transition upon
receiving both signed messages:

VerifyTransition(Pk , cmd,σ cmd
k , ri, i, hstatei,σ

hstatei
k , ri−1, statei−1, SC)

if Pk < SC.ΣP return 0
statei ← Transition(statei−1, cmd)
if hstatei , H(statei | |ri) return 0
set hstatei−1 := H(statei−1 | |ri−1)
return Sig.Verify(Pk , (cmd, hstatei−1, i − 1, SC),σ cmd

k ) ∧

Sig.Verify(Pk , (hstatei, i, SC),σ
hstate
k )

Briefly, VerifyTransition checks if statei is indeed a valid transi-
tion from statei−1 using the command cmd and if this transitionwas

authorised by the signer. Then it checks if statei, ri correspond to
hstatei and that the signer has indeed authorised hstatei (alongside
the incremented i). If an honest party does not receive a signa-
ture from all other parties before LocalTimeout(), then they can
enforce this state transition via the dispute process. To enforce,
an honest party updates the contract with the previously autho-
rised hstatei−1 using SC.setstate before initiating a dispute using
SC.triggerdispute. This provides a grace period for all parties
to input a command (including the initiator’s signed cmd) before
SC.tsettle. Once the dispute’s deadline has passed, any party can call
SC.resolve. This reveals statei, selects one cmd from the list of
inputs (i.e. determined to the application’s logic) and performs the
state transition on-chain.

4.5 Pisa contract

The Pisa contract CC allows a customer to hire the accountable third
party to monitor their state channel. All payments are performed
using a one-way (and off-chain) payment channel and the account-
able third party is paid for every new hstatei they are appointed
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to publish on the customer’s behalf. Each payment incorporates a
fair exchange protocol to ratify a signed receipt of appointment for
the customer after the accountable third party is paid for accepting
this task. The signed receipt alongside a list of recorded disputes
in SC can later be used in CC to prove the accountable third party’s
wrongdoing if they did not settle a dispute to prevent an execution
fork. In the following, we provide an overview of the Pisa contract
which is presented in Figure 6. As before, we denote the contract
as CC and interaction with the contract is denoted as a function e.g.
CC.setup with the parameters omitted for readability.

Contract flags. There are four flags (⊥,OK,CHEATED,CLOSED).
The flag ⊥ specifies that the contract is not initialised. To transition
⊥ → OK, the accountable third party must invoke SC.setup to
set a list of timers and store a large security deposit. Customers
can open payment channels while the contract’s flag = OK by
storing a deposit using SC.deposit. To withdraw the security de-
posit, the accountable third party must initiate a closing period
SC.stopmonitoring which transitions from OK → CLOSED. It
also enforces a time period (e.g. ∆withdraw) for customers to seek
recourse. The accountable third party withdraws their deposit using
SC.withdraw when this time period has expired and if all payment
channels are closed. Crucially the contract can transition from any
flag to CHEATED if the customer can prove the accountable third
party’s wrongdoing using SC.recourse.

Contract establishment. To transition from ⊥ → OK requires the
accountable third party to set the contract’s timers ∆settle,∆withdraw
and store a large security deposit using CC.setup. The first timer
∆settle is used to determine the minimum time period for the ac-
countable third party to respond and settle the customer’s payment
channel. The second timer ∆withdraw is used to determine the min-
imum time period the accountable third party must wait before
their security deposit can be withdrawn. Both timers cannot be
retrospectively changed.

Customer’s one-way payment channel. The accountable third
party’s contract maintains a list of one-way payment channels.
Each payment channel has four flags (⊥,OK,DISPUTE,CLOSED).
Flag ⊥ implies the one-way payment channel has never existed and
CLOSED implies the channel was previously opened. To open the
channel and transition from ⊥ → OK or CLOSED→ OK requires
the customer to deposit coins using CC.deposit. For readability, we
assume SC represents a new instance of the payment channel and
it always has a unique identifier if it is closed and re-opened.

Due to the nature of a one-way payment channel, every new
payment signed by the customer increments the number of coins
sent to the accountable third party and only the accountable third
party canmutually sign the final payment to close the channel using
CC.setstate. However the customer can signal their desire to close
the channel by initiating the dispute using CC.triggerdispute.
The accountable third party must respond using CC.setstate to
settle the dispute and redeem their share of the customer’s deposit.
Otherwise, after the grace period, the customer can return their
full deposit using CC.resolve.

Fair exchange of signed receipt. Figure 3 presents our fair ex-
change protocol which provides the customer with a ratified signed
receipt once the payment is accepted by the accountable third party.

To initiate the fair exchange, the customer sends the authorised
hstate (alongside all signatures ΣP ), the channel identifier SC and
the expected minimum time period for this appointment ∆expire.
We assume that the appointment time period ∆expire chosen by
the customer is larger than the payment channel’s settlement time
period CC.∆settle. This ensures the accountable third party must
watch the channel for a reasonable period of time if the signed
receipt’s ratification is enforced on-chain by the customer. As well,
the mutually agreed price for each appointment is omitted, but can
be fixed or variable. Upon receiving a new appointment request,
the accountable third party must locally verify whether they can
settle a dispute on behalf of the customer using:

VerifyAppointment(ΣP , SC, i, hstate,∆min)

if i ≤ SC.stateRound return 0
if SC.∆settle ≤ ∆min return 0
if SC.flag , OK return 0
return Sig.Verify(SC.P, (hstate, i, SC), ΣP )

Briefly this checks whether the authorised hstatei was signed
by all parties in SC and the dispute period in the customer’s state
channel is reasonable (i.e. greater than a minimum bound ∆min). If
the accountable third party is satisfied they can settle a dispute in
the channel, then the accountable third party sends a signed receipt
to the customer which includes the start time tstart, expiry time
texpire, the channel identifier SC and a conditional transfer hash hi.
This receipt is not yet ratified and cannot be used for recourse until
the accountable third party reveals the corresponding pre-image si
of hi. The customer must verify the signed receipt can later be used,
if necessary, to prove the accountable third party’s wrong doing
and it is indeed valid for CC after it is ratified:

VerifyReceipt(receipt, SC, CC, i,∆fresh,∆expire)

if receipt.SC , SC return 0
if receipt.CC , CC return 0
if CurTime() − receipt.tstart < ∆fresh return 0
if receipt.texpire − receipt.tstart < ∆expire return 0
if receipt.i , i return 0
return Sig.Verify(C, (receipt.tstart, receipt.texpire, SC,

CC, i, receipt.hi), receipt.σC)
Briefly this checks whether the signed receipt’s appointment

start time receipt.tstart is close to present time ∆fresh and its expiry
time receipt.texpire is in the future by at least ∆expire. As well, the
customer must check the receipt.i corresponds to the expected the
counter for hstatei and the receipt references both the customer’s
channel SC and the accountable third party’s channel CC. Once sat-
isfied, the customer initiates a conditional transfer which increases
the number of coins sent to the accountable third party by an agreed
price and this transfer is only valid if si is revealed. The accountable
third party must locally verify the conditional transfer:

VerifyPayment(pay, coins, receipt.hi, CC)
if pay.coins , coins return 0
if pay.hi , receipt.hi return 0
if pay.CC , CC return 0
if pay.coins ≤ CC.ID[Pk].balance

9 return 0
return Sig.Verify(Pk , (pay.hi, pay.coins, pay.CC), pay.σk )

9The ID[Pk ].balance refers to the customer’s current "off-chain" balance in the
one-way payment channel.
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Customer Accountable third party

Both parties have a signing key sk , the appointment cost coins and can access SC, CC via the network.
Customer has hstatei, i,∆fresh,∆settle and the accountable third party has ∆min.

σk ← Sign(skk , (coins, CC))
CC.deposit(coins,σk )

hstatei, i, SC, ΣP ,∆expire
−−−−−−−−−−−−−−−−−−−−−−−→

b ← VerifyAppointment(ΣP , SC, i, hstatei,∆min)

if b=0, abort
si

r← R, hi ← H(si)
tstart ← CurTime(), texpire ← tstart + ∆expire
σC ← Sign(skC, (tstart, texpire, SC, CC, i, hi)
receipt← (σC, tstart, texpire, SC, CC, i, hi)

receipt
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

b ← VerifyReceipt(receipt, SC, CC, i,∆fresh,∆expire)

if b=0, abort
σk ← Sign(skk , (receipt.hi, coins, CC))
pay← (σk , receipt.hi, coins)

pay
−−−−−−−−−−−−−−−−−−→

b ← VerifyPayment(pay, coins, receipt.hi, CC)
if b=0 return 0

We present three protocol outcomes based on depending on the accountable third party’s response.
Outcome 1: Accountable third party accepts payment within a timely manner

b ← hi = H(si) si
←−−−−−−−−−−−−−−−−

if b=0, move to outcome 2 or 3
Outcome 2: Accountable third party does not reveal si privately to the customer, but redeems on-chain

LocalTimeout()
σk ← Sign(skk , (close, CC))
CC.triggerdispute(σk )

σC ← Sign(skC, (hi, coins, CC))
CC.setstate(hi, coins, si, pay.σk ,σC)

Outcome 3: Accountable third party does not reveal si privately to the customer, no on-chain redemption

LocalTimeout()
σk ← Sign(skk , (close, CC))
CC.triggerdispute(σk )
Wait(CC.tsettle)
CC.resolve(Pk )

Figure 3: Appoint: A fair exchange protocol that ensures the Monitor is paid upon validating the customer’s receipt.

Briefly this checks if the payment is transferring the agreed price,
if the conditional transfer hash hi corresponds to receipt.hi and if
the customer has a sufficient balance in the off-chain and one-way
payment channel to cover the payment. If satisfied, the accountable
third party sends the customer si which ratifies the signed receipt
and completes the payment. Otherwise if the customer does not

receive si before a local timeout, then the customer initiates a dis-
pute using CC.triggerdispute to enforce the receipt’s ratification
within the time period CC.∆settle. To claim the payment (and ratify
the signed receipt), the accountable third party must reveal the
conditional transfer and the corresponding si using CC.setstate.
This settles the dispute and returns both parties their share of the
deposit. If the dispute expires and si is not revealed, then customer’s
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Party K Party N

Each party has a signing key sk , a local copy of the previously authorised state
hstatei−1, statei−1, ri−1, i − 1, ΣP and can access SC via the network

Selects a cmd
statei ← Transition(statei−1, cmd)
ri

r← R
i← i + 1
hstatei ← H(statei | |ri)
σhstate
k ← Sign(skk , (hstatei, i, SC))

σcmd
k ← Sign(skk , (cmd, hstatei−1, i − 1, SC))

(hstatei, i,σhstate
k ), (cmd,σ cmd

k ), statei, ri
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b ← VerifyTransition(Pk , cmd,σ cmd
k , ri, i, hstatei,

σhstatei
k , statei−1, ri−1, SC)

if b=0, abort

We present two protocol outcomes based on Party N’s response.
Outcome 1: Pn co-operates and authorises the state transition

σn ← Sign(skn , (hstatei, i, SC))
σn

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
b ← Sig.Verify(Pn , (hstatei, i, SC),σn )
if b=0, abort

Outcome 2: Pn aborts and does not authorise the state transition

LocalTimeout()
SC.setstate(hstatei−1, i − 1, ΣP )

σk ← Sign(skk , (dispute, hstatei−1, i − 1, SC))
SC.triggerdispute(σk )

SC.input(cmd,σcmd
k )

Wait(SC.tsettle)
SC.resolve(statei−1, ri−1)

Figure 4: AuthState: Two (out of N) parties authorising a state.

full deposit is returned using CC.resolve and the signed receipt is
never ratified.

Seeking Recourse. The customer can check whether the account-
able third party failed to settle a dispute on their behalf:

SeekRecourse(receipt)
SC := receipt.SC
for k in SC.disputelist.length
if SC.disputelist[k].tstart > receipt.tstart ∧
receipt.texpire > SC.disputelist[k].texpire ∧
receipt.i ≥ SC.disputelist[k].stateRound
return 1

return 0

Briefly this checks whether there was a successful dispute while
the accountable third party was expected to monitor the channel.
If there is a dispute such that receipt.i ≥ SC.stateRound, then an
execution fork was performed. The customer can seek recourse by

calling CC.recourse with the signed receipt. This requires CC to
fetch the list of disputes recorded in SC and verify there is a recorded
dispute between receipt.start and receipt.expire. If there is a dispute
which satisfies receipt.i ≥ SC.stateRound, then the accountable
third party’s contract is marked as cheating CC.flag = CHEATED.
This forfeits the accountable third party’s security deposit and
allows all customers to immediately close remaining payment chan-
nels and withdraw their deposit.

Closing contract. The accountable third party can signal its de-
sire to stop accepting new customers using CC.stopmonitoring
which transitions the flag fromOK→ CLOSED. The large security
deposit can be returned when all payment channels are closed and
the grace period ∆withdraw has expired. It is crucial the expiry time
for a customer’s signed receipt is never greater than the withdrawal
time such that twithdraw > texpire otherwise the accountable third
party’s deposit can be returned before the receipt expires.
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5 SECURITY ANALYSIS

We focus on the protocol’s goals outlined in Section 4.1 based on
the assumptions presented in Section 4.3.

5.1 State Privacy

Our goal is to protect the privacy of all intermediary states the ac-
countable third party is appointed to publish if there is a dispute and
we consider a malicious accountable third party who cannot corrupt
parties in SC. The accountable third party receives hstatei during
the interactive Appoint protocol and the pre-image of hstatei in-
cludes a nonce ri such that H(statei | |ri). This nonce prevents the
accountable third party simply brute-forcing hstatei to learn statei
and thus we rely on the pre-image resistance property of a crypto-
graphic hash function. There are two situations when the nonce
ri is revealed. First ri is revealed during the interactive AuthState
protocol, but we previously assumed a malicious accountable third
party cannot eavesdrop on this communication channel. Second
ri is globally revealed (alongside statei) in SC to complete the dis-
pute process by SC.resolve. As mentioned in the state privacy
goal, the accountable third party learns if a globally revealed statei
corresponds to a hstatei in which they were appointed to publish.

5.2 Fair Exchange

We consider the case of a malicious customer. After receiving a
signed receipt from the accountable third party, the customer can
propose a malformed conditional transfer which is not applicable
for CC by including a different hash than supplied by the accountable
third party such that pay.hi , receipt.hi or reference a different
contract such that pay.CC , CC. As well, the customer can propose
a conditional transfer which underpays the accountable third party,
but can be redeemed using CC.setstate. The accountable third
party locally runs VerifyPayment to check the above conditions to
ensure the conditional transfer is well-formed, fulfills the payment
and can be accepted by CC.setstate. Otherwise the accountable
third party does not reveal si and the signed receipt is not ratified.

Next we consider the case of a malicious accountable third party.
Once the accountable third party has received pay, the accountable
third party can simply not reveal si and wait until receipt.texpire
for the signed receipt to expire. To prevent stalling, the customer
performs a local time-out before triggering the dispute process in
CC and Figure 3 illustrates two outcomes for the fair exchange. The
accountable third party can mutually sign pay and reveal si before
CC.tsettle in order to claim the payment. By claiming the payment in
CC, however, the signed receipt is atomically ratified as si is publicly
revealed. Otherwise the customer is fully refunded via the dispute
process and the accountable third party can no longer accept the
payment. It is crucial the receipt’s expiry time receipt.texpire is sig-
nificantly greater than CC.tsettle to ensure the receipt can be ratified
via the dispute process. As mentioned previously we assumed the
customer has chosen a ∆expire which is significantly greater than
CC.∆settle.

Finally we consider whether the accountable third party can steal
the customer’s deposit from the one-way payment channel. The
nature of a replace-by-incentive and one-way channel, however, is

that all payments must be authorised by both the sender and re-
ceiver. Therefore the accountable third party cannot independently
authorise a payment which steals the customer’s full deposit.

5.3 Non-frameability

We consider if all parties in the SC collude to appoint the accountable
third party and later prevent the accountable third party settling a
dispute using SC.setstate. If successful, this records a dispute in
SC and alongside the corresponding signed receipt, the colluding
parties can satisfy CC.recourse. The accountable third party re-
ceives hstatei, i, ΣP from the customer which is necessary to settle
any future dispute and this is verified using VerifyAppointment. To
interfere with the dispute process, the cartel must modify the state
of SC such that hstatei, i, ΣP is no longer valid for settling a dispute.
The cartel can use SC.setstate to update the contract such that
SC.stateRound ≥ receipt.i, but this does not record a dispute in the
channel and it also implies the accountable third party is no longer
required to settle a dispute. The contract will always accept hstatei
as it is simply a random string of bytes. The only option for the
adversary is to register a new party to SC such that the accountable
third party will not have a signature from the newly registered
party to settle a future dispute. Parties can only be registered us-
ing SC.resolve after the dispute process is complete as this is the
only time the state is revealed and a registration command can
be processed. The accountable third party can settle a malicious
registration if it results in an execution fork and thus parties cannot
register a new party to interfere with ΣP .

5.4 Recourse as a financial deterrent

In the fair exchange analysis, it was shown the customer pays for
a signed receipt only if it is indeed valid and can be used to seek
recourse. However if the customer is off-line, then a malicious
accountable third party can collude with the channel’s remaining
n − 1 parties simply by not settling a dispute and permitting an
execution fork in the state channel. The accountable third party
should thus be deterred both from invalidating the customer’s
signed receipt, and from receiving a payout that is greater than the
loss of the security deposit.

The former follows on from the fair-exchange analysis as the
customer already has the corresponding si and the signed receipt is
ratified. To re-iterate, a receipt contains themonotonic counter i, the
start and expire time of the appointment tstart, texpire, the receipt
hash hi and of course both contracts SC, CC. The timestamp for any
execution forks (or disputes) is enforced by SC and thus the signed
receipt is always valid between tstart and texpire. The only remaining
option to invalidate the signed receipt is to record a larger counter
SC.stateRound in the contract. However, the dispute process strictly
increments the counter by one and thus setting a dispute based on
a previously authorised state (i.e. to perform an execution fork) will
always have a counter which is less than (or equal to) the receipt.
Since the other n − 1 parties require the customer’s assistance to
authorise a new hstatei with a larger counter than the receipt’s
counter, the safety of the customer is therefore guaranteed.

The latter deters a dishonest accountable third party if the out-
standing potential payout for cheating is less than the pre-agreed
collateral backing. The accountable third party’s potential pay-off
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State Privacy Verifiable Job Storage Fair Exchange Signed Receipt Financial Deterrent Fork-free
Monitor ✓ × O(N ) G G × ✓

WatchTower ✓ ✓ O(1) G G × ×

Pisa ✓ ✓ O(1) ✓ ✓ ✓ ✓

Table 1: Comparison of arbitration outsourcing protocols. Notation ✓ has property, × does not have property, G not proposed

in original protocol but we believe it is compatible.

for cheating is not easily measurable, since a single customer can
appoint the accountable third party to watch two or more channels,
and an appointment is publicly disclosed only if there is a dispute
via the global blockchain (or the customer seeks recourse). In an
extended version of this paper, we extend Pisa to reserve coins
from the security deposit for each customer, parametrized accord-
ing to a leveraged ratio for discounted service fees. This extension
of explicit coin allocation can be used to compensate customers for
their loss if the accountable third party cheats, making the service
more attractive relative to burning of the security deposit. How-
ever, compensation can also be less secure than burning in several
respects. In particular, it may allow the accountable third party to
minimise the loss of their security deposit by compensating a Sybil
account.

5.5 Efficiency requirements

We consider if all parties in SC collude to outsource multiple ap-
pointments to the accountable third party for a single state chan-
nel such that the storage requirement is not O(1). The algorithm
VerifyAppointment run by the accountable third party ensures the
counter i is incremented for every new appointment. Furthermore
SC.setstate will settle the dispute as long as the corresponding
counter i for hstatei is the largest received so far. Thus the ac-
countable third party only needs to store the hstatei (alongside
a valid signature for all parties in SC) which is associated with
the largest monotonic counter i, although the accountable third
party is required to keep track of the designated time period for
each appointment which can potentially requireO(N ) storage. The
accountable third party’s local policy can dictate the number of
unique time periods stored and whether each new appointment
simply extends the expiry time.

6 PROOF OF CONCEPT IMPLEMENTATION

We present a proof of concept implementation for Pisa based
on a simplified version of Sprites [25] to evaluate whether it is
gas-efficient to deploy. In the following, we provide a high-level
overview of the experiment before evaluating its cost.

Our experiment involves three contracts.10 Both the state chan-
nel contract and the PISA contract are implemented as illustrated in
Figure 5 and 6. The third contract is a simplified version of Sprites
which stores the full state and it has the transition function. This
function can only be called by the state channel contract and it is
the only function that can modify the state (i.e. execute a state tran-
sition). Separating the state channel and the transition function
into distinct contracts is beneficial as the accountable third party

10Code: https://github.com/PISAresearch/pisa

is only required to audit the state channel contract11. In terms of
functionality, simplified Sprites only supports withdrawing coins
or sending payments.

Table 1 presents the cost of our experiments for Pisa on a pri-
vate Ethereum network. Steps 1-3 highlight the one-time costs for
creating each contract.

For the Pisa contract, the customer creates a payment channel in
step 4 using a single transaction. The customer can uncooperatively
close the payment channel via the dispute process in steps 5-6 which
requires 3 transactions. Intermediary (and off-chain) payments
between the customer and accountable third party do not incur any
cost. Every appointment (and payment) requires three rounds of
communication between the customer and accountable third party.
The accountable third party can close the channel with a mutually
authorised payment in step 7 and this requires a single transaction.
If the accountable third party aborts and fails to settle a dispute on
the customer’s behalf, then step 8 represents the customer seeking
recourse and proving the accountable third party’s wrongdoing
using a ratified signed receipt. Submiting this proof to the Pisa
contract requires a single transaction.

For the state channel contract, step 9 represents updating the
contract with the latest authorised state hash. This requires a single
transaction and the gas cost is constant for any party, including
when the accountable third party settles a dispute on the customer’s
behalf. Steps 10-12 represents a successful dispute and requires a
single transaction to trigger the dispute, up to O(n) transactions
for submitting commands, where n is the number of parties in
the channel, and a single transaction to resolve the dispute. When
the dispute is resolved, the transition function is invoked in the
simplified Sprites contract.

7 DISCUSSION AND FUTUREWORK

Comparison of arbitration outsourcing protocols. Table 1 presents
a comparsion of Monitor, WatchTower and Pisa. All protocols
achieve state privacy which hides the customer’s outsourced state
from the third party unless there is a dispute. However in the
Monitor protocol, the third party cannot verify if an appointment
received from the customer can be used to settle a dispute. Further-
more, a Monitor must store all received appointments O(N ) from
the customer for every update in their payment channel. Watch-
Tower achievesO(1) storage by proposing a new consensus rule (i.e.
it is not fork-free) to allow payment channels in Bitcoin to support
replace by monotonic counter (i.e. the state replacement technique
proposed from Sprites [25]). Pisa is the first protocol to propose an

11In practice, this allows all state channels to have the same bytecode regardless of
their application and thus it is straight-forward audit in real-time.
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Step Command Cost (gas) Cost ($)
Create Contracts

1 Accountable third party contract 1,609,613 2.53
2 State contract 1,892,135 2.97
3 Sprites contract 869,280 1.37

Appoint accountable third party
4 Customer opens payment channel (CC.deposit) 65,504 0.10
5 Customer signals payment channel closure (CC.triggerdispute) 48,763 0.08
6 Customer is refunded (CC.resolve) 37,290 0.06
7 Accountable third party closes payment channel (CC.setstate) 103,794 0.16
8 Customer seeks recourse (CC.recourse) 51,892 0.08

State Channel Dispute Process
9 Party set collectively authorised state (SC.setstate) 90,130 0.14
10 Party initiates dispute process (SC.triggerdispute) 78,667 0.12
11 Party submits a command (SC.input) 140,275 0.22
12 Party resolves dispute and state transition is executed on-chain (SC.resolve) 149,494 0.23

Table 2: Cost of Pisa for simplified Sprites. We have approximated the cost in USD ($) using the conversion rate of 1 ether =

$785.31 and the gas price of 2 Gwei which reflects the real world costs in May 2018.

accountable third party as the customer is provided with a crypto-
graphic (and publicly verifiable) warrant that the third party was
hired, a financial deterrent is enforced to deter cheating by the
third party and the customer can pursue recourse if wrongdoing
is detected. On hindsight, our fair exchange protocol to ratify a
signed receipt upon paying the third party is compatible with both
WatchTower and Monitor. Thus, the contributions within Pisa are
beneficial for Bitcoin and Ethereum channel networks.

Persistent dispute evidence. The Ethereum community are seek-
ing proposals to charge rental fees [35] and expire instantiated
contracts (alongside stored data). This is problematic for Pisa as the
state channel contract cannot be immediately destroyed if there is
a dispute in order to preserve evidence and prove the accountable
third party’s wrongdoing. In an extended version of this paper, we
present another approach using a new contract called the dispute
registry. This contract is responsible for storing disputes on behalf
of all other contracts and periodically clearing dispute records (e.g.
after one week). Otherwise, Ethereum could make the event-logs
recorded in the transaction receipt accessible via the Ethereum Vir-
tual Machine and the event-logs could be used as the indisputable
evidence.

Customer crash recovery. It was reported in March 2018 [3] that
one party tried to close a replace-by-revocation channel using a
previous (and revoked) state, but the counter-party was on-line.
Due to the nature of a replace-by-revocation channel, the counter-
party was awarded all coins in the channel. At the time, it was
implied that this was an attempt to reverse payments and steal the
counter-party’s coins. However it later emerged that the party had
allegedly crashed and lost a copy of the latest state. As a result, their
wallet software used the revoked state to close the channel. One
desirable feature for an accountable third party is to support crash
recovery by storing an encryption of the state which can later be
retrieved and decrypted by the customer. In an extended version
of this paper, we propose how to encrypt the state such that it is
gas-efficient and compatible with the Ethereum network.

8 CONCLUSION

In this paper, we proposed Pisa to help address a new (and undesir-
able) security assumption for state channels by allowing a customer
to appoint an accountable third party to monitor a state channel
on their behalf. Pisa is designed to support any application built
using a state channel and it is the first protocol that allows the
customer to seek recourse if the accountable third party’s fails to
settle a dispute on their behalf. To evaluate Pisa, we provided a
proof of concept implementation for Sprites to demonstrate that it
is cost-efficient to deploy in practice. We hope Pisa provides a new
step towards the realisation of state channels as a practical scaling
solution for cryptocurrencies.
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Modified generic state channel contract
flag := ⊥
stateRound := 0
state, hstate := ε
P, disputelist, cmdlist := ∅
tsettle, tstart,∆settle := 0

function setup(P, ∆settle):
discard if flag , ⊥
set ∆settle := ∆settle, P := P, flag := OK
EventSetup(P,∆settle)

function setstate(hstatei, i, ΣP ):
discard if i ≤ stateRound
if Sig.Verify(P, (hstatei, i, this), ΣP )

set stateRound := i
set hstate := hstatei
set cmdlist := ∅; flag := OK
EventEvidence(stateRound, hstatei)

function triggerdispute(σk ):
discard if flag , OK
discard if Pk < P
if Sig.Verify(Pk , (dispute, hstate, stateRound, this),σk )

set flag := DISPUTE
set tstart := CurTime()
set tsettle := tstart + ∆settle
EventDispute(tsettle)

function input(cmd,σk ):
discard if flag , DISPUTE
discard if Pk < P
if Sig.Verify(Pk , (cmd, hstatei, stateRound, this),σk )

set cmdlist[Pk ] := cmd
EventInput(cmd,Pk )

function resolve(statei, ri):
discard if CurTime() ≤ tsettle
discard if hstate , H (statei, ri)
if flag = DISPUTE

set state := transition(statei, cmdlist)
set P := state.P
set cmdlist := ∅; flag := OK
add (stateRound, tstart, tsettle) to disputelist
set stateRound := stateRound + 1
EventResolve(stateRound)

function transition(state, cmdlist) internal:
// Implement application logic.
// Only executable by the contract on the network.
// Locally executed by parties to verify a transition.

Figure 5: Modifications to the state channel construction

from Sprites
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PISA contract
flag := ⊥
IDC := ∅
∆settle,∆withdraw, twithdraw := 0
deposit, profit := 0

function setup(coins,σC,∆withdraw,∆settle,):
discard if flag , ⊥
if Sig.Verify(C, coins,σC)

set C := C, deposit := coins
set ∆withdraw := ∆withdraw, ∆settle := ∆settle, flag := OK

EventSetup()

function deposit(coins,σk ):
discard if flag , OK
discard if ID[Pk ].flag = DISPUTE
if Sig.Verify(Pk , (coins, this),σk )
if ID[Pk ].flag = CLOSED
set ID[Pk ].flag := OK

set ID[Pk ].deposit += coins
EventDeposit(Pk , coins)

function setstate(hi, coins, si,σk ,σC):
discard if flag = CHEATED
discard if coins > ID[Pk ].deposit
discard if hi , H(si).
if Sig.Verify(C, (hi, coins, , thisa),σC)
∧ Sig.Verify(Pk , (hi, coins, this),σk )
set profit += coins
send ID[Pk ].deposit − coins to Pk
set ID[Pk ].flag := CLOSED
set ID[Pk ].deposit := 0
set ID[Pk ].tsettle := 0
EventEvidence(Pk )

function triggerdispute(σk ):
if ID[Pk ].flag = OK ∧
Sig.Verify(Pk , (close, this),σk )
set ID[Pk ].flag := DISPUTE
set ID[Pk ].tsettle := CurTime() + ∆settle
EventDispute(Pk , ID[Pk ].tsettle)

function resolve(Pk ):
if flag = CHEATED ∨
(ID[Pk ].tsettle ≤ CurTime() ∧ ID[Pk ].flag = DISPUTE)
send ID[Pk ].deposit coins to Pk
set ID[Pk ].flag := CLOSED
set ID[Pk ].deposit := 0
set ID[Pk ].tsettle := 0
EventResolve(Pk )

aFor readability, we assume this is a unique identifier for the contract and a new
instance of the payment channel (e.g. to prevent replay-attacks of previously signed
messages, a counter may be incremented for every new deposit or when the channel
is settled)

PISA contract (continued)
function stopmonitoring(σC):

discard if flag = CHEATED
if Sig.Verify(C, (stop, this),σC)

set flag := CLOSED
set twithdraw := CurTime() + ∆withdraw
EventClose(twithdraw)

function withdraw(σC):
discard if flag = CHEATED
if Sig.Verify(C, (withdraw, this),σC)

if ID.length=0 ∧ CurTime()> twithdraw ∧ flag=CLOSED
set profit += deposit, deposit := 0

send profit to C
set profit := 0
EventWithdraw()

function recourse(tstart, texpire, SC, i, hi, si,σC):
discard if flag = CHEATED
discard if hi , H(si)
set chan := lookup(SC)
if Sig.Verify(C, (tstart, texpire, SC, this, i, hi),σC)

for k in chan.disputelist.length
if chan.disputelist[k].tstart > tstart
∧ texpire > chan.disputelist[k].texpire
∧ i ≥ chan.disputelist[k].stateRound

set flag := CHEATED
EventForfeit()

Figure 6: PISA contract
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