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Abstract

Reinforcement Learning (RL) is an approach for solving complex multi-

stage decision problems that fall under the general framework of Markov

Decision Problems (MDPs), with possibly unknown parameters. Function

approximation is essential for problems with a large state space, as it facil-

itates compact representation and enables generalization. Linear approx-

imation architectures (where the adjustable parameters are the weights

of pre-fixed basis functions) have recently gained prominence due to effi-

cient algorithms and convergence guarantees. Nonetheless, an appropriate

choice of basis function is important for the success of the algorithm. In

the present paper we examine methods for adapting the basis function

during the learning process in the context of evaluating the value function

under a fixed control policy. Using the Bellman approximation error as

an optimization criterion, we optimize the weights of the basis function

while simultaneously adapting the (non-linear) basis function parameters.

We present two algorithms for this problem. The first uses a gradient-

based approach and the second applies the Cross Entropy method. The

performance of the proposed algorithms is evaluated and compared in

simulations.

Keywords: reinforcement learning, temporal difference algorithms, cross
entropy method, radial basis functions.
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1 Introduction

Reinforcement Learning (RL) has evolved in the last decade into a major ap-
proach for solving hard Markov Decision Problems (MDPs). This framework
addresses in a unified manner the problems posed by an unknown environ-
ment and a large state space (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,
1998). The underlying methods are based on Dynamic Programming, and in-
clude adaptive schemes that mimic either value iteration (such as Q-learning)
or policy iteration (actor-critic methods). While the former attempt to directly
learn the optimal value function, the latter are based on quickly learning the
value of the currently used policy, followed by a slower policy improvement step.

A large state space presents two major challenges. The most obvious one is
the storage problem, as it becomes impractical to store the value function (or
optimal action) explicitly for each state. The other is the generalization problem,
assuming that limited experience does not provide sufficient data for each and
every state. Both these issues are addressed by the Function Approximation
approach (Sutton, 1988), which involves approximating the value function by
functional approximators with given architectures and a manageable number of
adjustable parameters. Obviously, the success of this approach rests on some
regularity properties of the state space, possibly induced by appropriate feature
selection, and on the proper choice of an approximation architecture and size.

In a linear approximation architecture, the value of a state is computed by
first mapping it to a low dimensional feature vector, and then linearly weighting
these features using adjustable weights. The functions used to compute each
entry in the feature vector are called the “basis functions”. A notable class
of linear function approximators is that of Radial Basis Function (RBF) net-
works (Haykin, 1998). In the RL context, linear architectures uniquely enjoy
convergence results and performance guarantees, particularly for the problem
of approximating the value of a fixed stationary policy (see Tsitsiklis and Van
Roy, 1997, Nedic and Bertsekas, 2001). Yet, the approximation quality hinges
on the proper choice of the basis functions.

In this paper we consider the possibility of on-line tuning of the basis func-
tions, in the context of estimating the value function of a fixed policy. Following
the common practice in RBF network training, we separate the problem of esti-
mating the linear weights of the network, from the (harder) problem of adjusting
the parameters of the basis functions themselves. The former is handled on a
faster time scale, using standard TD(λ) algorithms that optimize the linear
weights for fixed basis functions. Basis function parameters are tuned in a
batch manner, using an explicit score function. This approach allows the use of
global optimization methods. Furthermore, it provides safeguards against pos-
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sible divergence and performance degradation, which are well known to occur in
on-line algorithms for non-linear architectures. We consider here two algorithms
for adjusting the basis function parameters: The first is a local, gradient-based
method, while the second is based on the Cross Entropy (CE) method for global
optimization (Rubinstein, 1999; Rubinstein and Kroese, 2004).

To evaluate the performance of these algorithms, we use the common “grid
world” shortest path problem as a convenient test case. Our first simulations
show that the gradient-based algorithm quickly converges to a steady-state
value, but tends to get trapped in local minima that may be quite far from
the optimum. This could well be expected, due to the inherent non-linearity in
the basis-function parameters, which leads to a highly non-convex optimization
problem. The CE method offers a significant improvement in this respect, at
the expense of greater computational effort. Focusing on the CE method, we
proceed to examine its performance for a larger state space, and to examine
the benefit of basis function adaptation as compared to increasing their number
without adapting their parameters. Our results indicate the feasibility of the
proposed algorithms for on-line tuning of the basis function in an unsupervised,
reward-driven environment, and demonstrate the usefulness of efficient global
optimization methods for this purpose.

Our approach is related to the work of Singh et al. (1995) on soft state aggre-
gation, where a gradient-based algorithm was proposed in order to improve the
weights relating each state to the possible clusters. We note that the number of
adjustable parameters required in Singh et al. (1995) is a multiple of the state
cardinality, hence this scheme is not suitable as an approximation architecture
for large problems. When using RBFs as the basis functions, the adaptation
procedure developed in this paper may be considered as a soft state aggregation
procedure. Previous applications of the CE method to MDP optimization in-
clude Dubin (2002), where a direct search in policy space was considered. This
approach was later extended by Mannor et al. (2003). We also note that the CE
method has been applied to several problems that fall within the MDP frame-
work. Specifically, the buffer allocation problem (Allon et al., 2004) and robot
path planning (Helvik and Wittner, 2001) were recently studied; see de-Boer et
al. (2004) for additional references and a discussion.

The paper is organized as follows. We start in Section 2 with a short sum-
mary of necessary ideas concerning RL in large MDPs. We then present the
basis function optimization problem in Section 3, and propose appropriate score
functions. The CE and gradient-based adaptation methods are presented in Sec-
tion 4. Our experiments are described in Section 5. We conclude and mention
directions for future research in Section 6.
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2 MDPs and Reinforcement Learning

Consider a learning agent in a dynamic environment, which is modelled as an
MDP. The model evolves in discrete time, and is specified by the finite state
space S, finite action sets (A(s), s ∈ S), transition probability p = (p(s′|s, a)),
and reward function R = (R(s, a)). At each time step t = 0, 1, 2, . . . , the agent
observes the state st ∈ S, and generates an action a ∈ A(st). As a result, the
agent obtains a reward Rt = R(st, at), and the process moves to a new state
st+1 = s′ with probability p(s′|st, at). The agent’s goal is to find a (stationary)
policy π, mapping states to actions, that maximizes some reward functional. In
this work we consider the discounted reward criterion, specified by

V π(s) = IEπ

( ∞∑
t=0

γtRt

∣∣s0 = s

)
. (1)

Here 0 < γ < 1 is the discount factor, π is the agent’s policy (to be optimized),
IEπ is the expectation operator induced by π, and s denotes the initial state.
As it is well known (Puterman, 1994; Bertsekas, 1995), an optimal policy exists
within the class of (deterministic) stationary policies, that is, a policy which
is prescribed as a map between states into actions. A randomized stationary
policy can be identified with conditional probabilities π(a|s), which specify the
probability of choosing action a at state s. The value function V π for such a
policy is the unique solution of Bellman’s equation, namely the following set of
linear equations

V π(s) =
∑

a∈A(s)

π(a|s)
(

R(s, a) + γ
∑

s′∈S

p(s′|s, a)V π(s′)

)
, s ∈ S . (2)

The computation of V π is a basic step in the policy improvement algorithm,
which is one of the central DP algorithms for computing the optimal policy.

A direct solution of the above equation (or the corresponding optimality
equation) may not be feasible, either due to unknown environment parameters
(p and R) or due to the cardinality of the state space. In either case, temporal
difference methods may be employed to estimate V π. The resulting algorithm,
where on-line estimates of V π are used for policy improvement steps, is often re-
ferred to as an actor-critic architecture (e.g., Witten, 1977; Barto et al., 1983).
In what follows we focus on the task of learning V π for a fixed policy π. Sup-
pose we wish to approximate V π using a functional approximator of the form
Ṽr : S → IR, where r ∈ IRK is a tunable parameter vector. Suppose further that
the stationary policy π is in effect, and the agent observes the sequence of states
and rewards {(st, Rt)}T

t=0. The TD(λ) algorithm (e.g., Sutton and Barto, 1998)
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for λ ∈ [0, 1] updates the parameter vector r at time t according to the iteration

r := r + αtdt

t∑

i=0

(γλ)t−i∇Ṽr(si).

Here ∇ denotes the gradient of Ṽ with respect to r, αt is the learning gain,
and dt

4
= Rt + γVr(st+1) − Vr(st) is the temporal difference corresponding to

transition at stage t.

In a linear approximation architecture, the approximator Ṽr is given by

Ṽr(s) =
K∑

k=1

rkϕk(s)
4
= r · ϕ(s) , (3)

where r = (r1, . . . , rK) is the vector of tunable weights, ϕk : S → IR are the
basis functions, also referred to as the state features, ϕ(s) = (ϕ1(s), . . . , ϕK(s)),
and · is the standard inner product in IRK . With this linear approximator, the
TD(λ) algorithm takes the form (Sutton, 1988; Tsitsiklis and Van Roy, 1997)

r := r + zt

(
Rt + (γϕ(st+1)− ϕ(st)) · r

)
, (4)

where zt =
∑t

i=0(γλ)t−iϕ(si) ∈ IRK . Roughly, zt(k) keeps track of the relevance
of the present transition to the kth feature, and thus zt is referred to as the
eligibility vector. Obviously, it may be computed iteratively as

zt+1 = γλzt + ϕ(st+1) (5)

with z−1 = 0. It has been shown in Tsitsiklis and Van Roy (1997) that for
appropriate gains αt, and assuming that the Markov chain induced by π is
irreducible, the above algorithm converges to a unique parameter vector r∗.
Furthermore, the approximation error is bounded by a fixed multiple of the
optimal one (see Munos, 2003 for tighter bounds).

Finally, the LSTD(λ) algorithm (Boyan, 2002) is a batch variant of TD(λ),
which converges to the same weight vector as the iterative algorithm above. This
algorithm computes the following K dimensional vector and a K ×K matrix:

bt =
t∑

i=0

ziRi , At =
t∑

i=0

zi (ϕ(si)− γϕ(si+1))
>

. (6)

The matrix At and the vector bt may be incrementally updated after each tran-
sition. The eligibility vector zt is updated as in (5). The approximating weight
vector is calculated, when required, via r = A−1b. This algorithm has been
shown to give favorable convergence rates (e.g., Lagoudakis and Parr, 2001).
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3 Evaluation Criteria

Assume now that each of the basis functions ϕk in (3) has some pre-determined
parametric form ϕθk

. For example, for a Gaussian radial basis function of the
form

ϕθk
(s) = exp

(
−1

2
(s− ck)>W−1

k (s− ck)
)

, (7)

the parameter θk corresponds to the center ck and the width Wk. The value
function in (3) may now be written as

Ṽθ,r(s) =
K∑

k=1

rkϕθk
(s) . (8)

We refer to θ = (θ1, . . . , θK) as the basis function parameters, while r =
(r1, . . . , rK) are the weights. Our problem is to determine the set (θ, r) so that
Ṽθ,r best approximates V π. Similar problems have been studied in the context
of supervised learning (e.g., in radial basis networks), where it is common to han-
dle separately the weight adjustment from the (harder) problem of parameter
selection (Haykin, 1998). In this spirit, we use the LSTD(λ) algorithm, as de-
scribed above, to determine the weights while the basis functions are held fixed.
Assuming that r is determined as a function of θ by an appropriate algorithm,
we shall henceforth omit the explicit dependence of Ṽ on r in our notation. We
are thus left with the problem of learning the “non-linear” parameters θ, namely
tuning the basis functions, in order to allow a better approximation of the value
function.

We shall require explicit evaluation criteria for the quality of a given approx-
imation Ṽ . Since the true value function V π is not available for comparison, we
resort to the Bellman error, which is defined at each state as

Jθ(s)
4
= Ṽθ(s)−

[
Rπ(s) + γ

∑

s′∈S

Pπ(s, s′)Ṽθ(s′)

]
, (9)

where Pπ(s, s′) is the probability that the next state is s′ given that the current
state is s and policy π is used.

It is well known that the norm of the approximation error (V π − Ṽ ) is
bounded by a constant multiple of the Bellman error norm (Bertsekas, 1995,
Bertsekas and Tsitsiklis, 1996). For the purpose of evaluating the quality of a
value function estimation, it will be convenient to consider the following score
function (weighted 2-norm):

S(θ) =
∑

s∈S

β(s)Jθ(s)2. (10)
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The weights β(s) ≥ 0 may be chosen equal for all states, or alternatively may
be used to emphasize certain states at the expense of others. A reasonable
choice is β(s) = pπ(s), the stationary steady state frequencies under the policy
π. This means that we are willing to put up with relatively high Bellman errors
for states that are not visited often (and for which it is harder to have good
value approximations), as long as we have good approximations for frequently
visited states. We note that a similar score function has been used in Singh et
al. (1995); see also the discussion in Bertsekas and Tsitsiklis (1996), Chapter
6.10.

Direct calculation of the score (10) requires the model of the environment
(transition probabilities and rewards). In addition, depending on the choice of
weights, the steady state probabilities under policy π may be required. When
these quantities are not available, we may try to estimate or approximate them
on line. When the state space is large, summing over all states is not feasible,
and we might be forced to sum over a representative subset of states (see Bert-
sekas and Tsitsiklis, 1996). The representative states (RS) should typically be
separated relative to some state space metric, and possibly represent significant
states, such as bottlenecks (McGovern and Barto, 2001; Menache et al., 2002) or
uncommon states (see Ratitch and Precup, 2002 for novel criteria for “complex”
states). The actual number of RS is determined according to available memory
and computation resources. The score function now becomes

S(θ) =
∑

s∈RS

β(s)

(
Ṽθ(s)−

[
R̃π(s) + γ

∑

s′∈S

P̃π(s, s′)Ṽθ(s′)

])2

, (11)

where P̃π(·, ·) and R̃π(·) are estimates for the transition probabilities and re-
wards, respectively. The weights β(s) may be chosen as above.

When the MDP is deterministic (or almost so), a reasonable score function
can be expressed directly in terms of the temporal differences, for example

S(θ) =
1
T

T−1∑
t=0

(
Ṽθ(st)−

[
Rt + γṼθ(st+1)

])2

. (12)

This score is comparable to (11), with RS = S, β(s) = p̃π(s), R̃π(s) and
P̃π(s, s′) taken as their empirical means. For batch processing the latter score
does not seem to present a particular advantage, while Eq. (11) allows greater
flexibility, for example in evaluating the approximation error at infrequently vis-
ited states. We note that if the reward or transition probabilities are stochastic
then Eq. (12) considers the inherent variance in the value as well. If this evalu-
ation criterion is used within a policy improvement scheme, this might lead to
favoring policies with a small variance.
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An alternative approach for defining a score for an unknown model is based
on Monte-Carlo simulation. It might be possible to obtain a high-precision esti-
mate V̂ (s) for the value function V π(s) over the restricted set of representative
states, using direct simulation. The score of the approximation Ṽθ may then be
defined as

S(θ) =
∑

s∈RS

β(s)
(
V̂ (s)− Ṽθ(s)

)2

. (13)

The apparent advantage of (13) over (11) is that there is no need to estimate
the transition probabilities and rewards for the representative states. Yet, using
Eq. (13) requires exhaustive sampling of the representative states and their
successor states. The advantage of score (13) over (12) is that it only considers
the value and the randomness in the reward or transitions is averaged out.

4 Basis Function Optimization

Recall that we consider the basis function approximation (8) to the value func-
tion V π(s). We present here two methods for optimizing the basis functions
parameters θ with respect to the selected score function. The first is gradient-
based, and the second employs the CE method. In either case, the state-reward
history needs to be observed only once, and then stored and re-used at subse-
quent stages. It is assumed that this history is sampled under a fixed policy π,
so that the state process is a stationary Markov chain.

4.1 Gradient Based Adaptation

Adaptation of the weights of basis functions using gradient descent and temporal
difference learning dates back to Sutton (1988), where the case where only r is
modified was considered; see Tsitsiklis and Van-Roy (1996) for a review. The
algorithm presented in this section proceeds by interleaving optimization steps
for either r or θ, while keeping the other fixed. We shall concentrate on the
score function provided in Eq. (11) and show that we are able to analytically
calculate the gradient. The algorithm presented below may be easily adjusted for
the score function of Eq. (13). This algorithm has similarities to the algorithms
suggested by Bradtke (1993), Bradtke and Barto (1996) who considered using
linear least squares for temporal difference learning, and to the algorithm used
by Werbos (1990). The LSTD algorithm is used here to find gradients of the
score with respect to both the linear (r) and non-linear (θ) parameters.

The basis functions are initialized with some choice of θ. The following
steps are then repeated: (i) The LSTD(λ) algorithm is applied to estimate
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the optimal weights r (with θ fixed). (ii) The basis-function parameters θ are
updated using gradient descent steps with respect to the score S(θ), while r is
held fixed. The gradient of S(θ) is easily obtained from (8) and (11), as follows:

∂

∂θ
S(θ) = 2

∑

s∈RS

β(s)J(s, θ, r)
∂J(s, θ, r)

∂θ
, (14)

with

J(s, θ, r) = r · ϕθ(s)−
[
R̃π(s) + γ

∑

s′∈S

P̃π(s, s′)r · ϕθ(s′)

]
. (15)

The gradient descent step may be improved by letting r change optimally with
θ, and computing the gradient in θ accordingly. Let r(θ) denote the optimal
value of r given θ. Then we replace the partial derivative ∂J(s,θ)

∂θ with the
composite derivative ∂J(s,θ,r(θ))

∂θ . Letting θq denote the q-th element of θ, the
corresponding derivative is given by

∂

∂θq
J(s, θ, r(θ)) =

∂r(θ)
∂θq

· ϕθ(s) + r(θ) · ∂ϕθ(s)
∂θq

− γ
∑

s′∈S

P̃π(s, s′)
[
∂r(θ)
∂θq

· ϕθ(s′) + r(θ) · ∂ϕθ(s′)
∂θq

]
. (16)

We note that ∂ϕθ(s)
∂θq

is a vector of zeros except for one element, which corre-
sponds to the derivative of the basis function to which θq belongs. The main
issue remains calculation of the derivatives of the linear weights with respect to
the basis function parameters, namely ∂r(θ)

∂θq
. We next describe how to estimate

∂r(θ)
∂θq

by extending the LSTD(λ) algorithm.

Recall that the LSTD(λ) algorithm calculates the optimal weights via r(θ) =
A−1b, with A and b defined in (6). We thus have the estimate

∂r(θ)
∂θq

= −A−1 ∂A

∂θq
A−1b + A−1 ∂b

∂θq
. (17)

Using the expressions for A, b and zt (Equations (5) and (6), with ϕ replaced
by ϕθ), we can form an estimate for their partial derivatives which is computed
incrementally within the LSTD(λ) algorithm, in parallel with the usual updates
of A and b:

∂At

∂θq
=

∂At−1

∂θq
+

∂zt

∂θq
(ϕθ(st)− ϕθ(st+1))

> + zt

(
∂ϕθ(st)

∂θq
− ∂ϕθ(st+1)

∂θq

)>
;

∂bt

∂θq
=

∂bt−1

∂θq
+

∂zt

∂θq
Rt;

∂zt+1

∂θq
= λ

∂zt

∂θq
+

∂ϕθ(st+1)
∂θq

. (18)
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The partial derivative ∂r(θ)
∂θq

may then be evaluated from Eq. (17) whenever
required. The whole algorithm is summarized in Table 1.

The stopping condition requires having two consecutive parameter vectors,
that are ε-close to each other (component-wise), where ε > 0 is a small real
value. The learning rate vector ηm may be separately chosen for each entry
of θ. There are many heuristic rules for controlling the step size for gradient
methods, see for example Bertsekas (1999) for discussion of such methods.

4.2 Cross Entropy Based Adaptation

Recall that the score function of either (11) or (13) may be calculated for a given
vector of parameters θ. This score can naturally serve as the score function for
the CE method for optimization. We now describe the CE-based adaptation al-
gorithm and refer the reader to de-Boer et al. (2004) for further discussion of the
CE method. We assume that the parameter vector θ is drawn from a probability
density function (pdf) f(·; v), which has some parametric form (e.g., Gaussian),
with a meta-parameter v. A CE iteration starts by generating a sample of can-
didate parameter vectors θ1 . . . θN drawn independently from f(·; v). The scores
S(θj), j = 1, 2, . . . , N are then computed for these parameter vectors; in our
case, the LSTD(λ) algorithm (described in Section 2) is used for estimating the
approximated value function Ṽ , which is then used to calculate the score. Next
the parameters v of the random mechanism are updated using these scores, as
follows. First, the “best” ρN parameter vectors θj are selected (both N and
0 < ρ < 1 are predetermined parameters of the algorithm). Specifically, in the
m-th CE iteration we order the S(θj)’s in decreasing order, S(1) ≥ . . . ≥ S(N)

and evaluate the (1− ρ) sample quantile,

γ̂m = S(d(1−ρ)Ne). (19)

We retain those θj parameter vectors with S(θj) ≤ γ̂m, and discard all others.
Next, a new meta parameter vm is calculated by solving

vm = arg max
v

N∑

j=1

I{S(θj)≤γ̂m} log f(θj ; v). (20)

If f belongs to the natural exponential family (e.g., Gaussians) then (20) has
a closed form solution (see Rubinstein and Kroese, 2004). For example, let us
assume that each θq element of θ is drawn independently of the others accord-
ing to a Gaussian pdf with mean µθq and variance σ2

θq
. Let m + 1 be the

current CE iteration and γ̂m the current threshold. The corresponding pdf is
updated according to the following equations, which are the solution of (20) (see
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Input: state-reward trace (st, Rt)T
t=0

Parameters:

• Representative States (RS)

• Basis functions (ϕθk
)K
k=1

• Initial basis function parameters θ0

• Initial learning rate vector, η0.

Set m := 0
Repeat:

1. Simulation step:

• Estimate Ṽθm using LSTD(λ) (Eq. (5), (6)) and ∂r(θm)
∂θ (Eq. (18))

• Calculate S(θj), according to (11)

• Calculate the gradient of S(θm) using (14)-(16).

2. Optimization step:

• Set θm+1 := θm − ηm · ∇S(θm)

• If ‖θm+1 − θm‖∞ < ε then stop; otherwise

- Set m := m + 1
- Update ηm

- Reiterate from step 1.

Table 1: Gradient-based adaptation algorithm. The algorithm receives an ex-
periment (a trace of states and rewards) and outputs a parametrization and an
approximation of the value function. The max-norm is denoted by ‖ · ‖∞.
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Rubinstein and Kroese, 2004)

µ
(m+1)
θq

=

N∑
j=1

I{S(θj)≤γ̂m}θ
j
q

N∑
j=1

I{S(θj)≤γ̂m}

,

σ2
θq

(m+1)
=

N∑
j=1

I{S(θj)≤γ̂m}
(
θj

q − µ
(m+1)
θq

)> (
θj

q − µ
(m+1)
θq

)

N∑
j=1

I{S(θj)≤γ̂m}

. (21)

Here θj
q denotes the qth element of the parameter vector θj . While there are sev-

eral possible stopping conditions, we chose to terminate the algorithm when the
improvement in the score is small for d consecutive iterations, see Eq. (22). The
stopping rule is slightly different than the standard stopping rule where γ̂m is re-
quired not to change for a few iterations (e.g. de-Boer et al., 2004). The reason
for this deviation from the standard stopping rule is that the score function is
stochastic, so the score of the elite samples might fluctuate randomly even after
effective convergence was attained. Using the score function of Eq. (22) leads
to a faster convergence. The pseudo-code of the algorithm is given in Table 2.
Note that the algorithm as described here is a batch algorithm in the sense that
it uses a single experience trace, which is obtained initially. It is straightforward
to modify the algorithm so that a different (updated or extended) experience
trace is used at each iteration. Unlike in the gradient-based solution, LSTD(λ)
is invoked N times before an optimization step takes place. This could be a
computationally expensive procedure. Yet, we observe that the LSTD(λ) eval-
uations of different parameter vectors are computationally independent of each
other. Thus, if parallel computing resources are at hand, LSTD(λ) may be
executed simultaneously for all parameter vector candidates.

5 Experiments

We describe in this section several experiments that were conducted on a maze-
world, in order to evaluate the efficiency of the proposed algorithms. We start
with a description of the maze world setup (Section 5.1). Our first experiment
evaluates and compares the performance of both the gradient and the CE-based
adaptation algorithms (Section 5.2). Subsequently, we restrict the discussion to
the CE method. In Section 5.3 we examine a similar environment with a much
higher density of states, thereby demonstrating the capability of the CE-based
basis function adaptation algorithm to scale up in the state space cardinality.
The final experiment (Section 5.4) compares the approximation error obtained
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Input: state-reward trace (st, Rt)T
t=0

Parameters:

• Representative States (RS)

• Basis functions (ϕθk
)K
k=1

• The CE constants, ρ and N

• Initial values for the meta-parameter vector, v0.

Set m := 1 (iteration counter)
Repeat:

1. Simulation step:

• Generate a sample (θ1, θ2, . . . , θN ) from the density f(·; vm−1)

• For every θj , j = 1, 2, . . . , N

– Estimate Ṽθj using LSTD(λ) (Eq. (5) and (6))
– Calculate S(θj) (Either (11) or (13)).

2. Optimization step:

• Compute the sample (1− ρ)-quantile γ̂m according to (19)

• For the same sample (θ1, θ2, . . . , θN ), obtain the solution vm of (20)

• If for some m ≥ d, say d = 5,

γ̂m ≥ γ̂m−1 − ε , · · · , γ̂m−d+1 ≥ γ̂m−d − ε, (22)

then stop; otherwise set m := m + 1 and reiterate from step 1.

Table 2: Cross entropy adaptation algorithm. The algorithm receives an exper-
iment (a trace of states and rewards) and outputs a parameterization and an
approximation of the value function.
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by our CE-based adaptation process with those obtained with two alternatives;
the first is using a larger number of pre-determined basis functions, and the
second is an unsupervised placement of basis functions, based on steady-state
frequencies.

5.1 General Setup

The domain which has been chosen for the experiments is a discrete two dimen-
sional maze-world (e.g., Kaelbling et al., 1996). In this domain an agent roams
around the maze, trying to reach goal states as quickly as possible. The agent
receives a small negative reward for each step, and a positive reward for reaching
goal states. A goal state is also an absorbing state, after which the agent starts
a new episode at a state which is chosen uniformly at random. The agent may
choose to move to one of four neighboring tiles (unless there is an obstacle), and
in our experiments its movement is perturbed with probability 0.1, meaning
that it may fail to move in the chosen direction with this probability, in which
case it moves in another (random) direction. The policy π that is selected for
evaluation is the “shortest path” policy, which always follows the direction of
the shortest Manhattan distance to the closest goal (if there is more than one
such direction, the agent chooses between them with equal probabilities). The
maze and the policy π are presented in Figure 1. There are two goals in the
maze (marked with “G”), one in the lower right corner and one in the middle,
surrounded by a grey obstacle.

The basis functions, which have been chosen in order to approximate the
value function are the standard radial basis functions (Eq. (7)). The param-
eters to be tuned are the two dimensional center position ck, and the 2 × 2
width matrix Wk of each basis function ϕθk

. We further assume that the two
dimensions of each Gaussian basis function are independent, reducing the width
matrix to a diagonal matrix,

W =
(

W x 0
0 W y

)
.

This gives 4 tunable parameters per basis function. Radial basis functions sat-
isfy the differentiability requirement of the gradient-based algorithm, and are a
natural choice for our domain, where the value function has a local nature (i.e.,
nearby states have similar values) over most of the state-space. We note that
there might be better choices of basis functions, even in our domain; our main
purpose here is to examine the tuning capability of the adaptation algorithms
for a given family.
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The maze world and the shortest−path policy
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Figure 1: The maze-world. The obstacle is grey and the goals are marked
with “G”. The shortest path policy is shown by arrows. When two actions are
optimal we plot a diagonal arrow in the direction of the mean of the two optimal
directions.

5.2 Gradient and Cross Entropy Based Adaptations

Our initial experiments concern the maze of Figure 1, with a 25 × 25 state
space, on which both the gradient-based and CE-based adaptation algorithms
are tested and compared. The parameters of the runs, which are common for
both methods are:

• The default negative reward is set to −0.5 and the reward for reaching a
goal state to 8.

• A state-reward trace of T = 10000 steps is recorded and serves as the
data for adaptation. As described, the initial state is chosen a random,
and whenever the agent reaches a goal state it starts a new episode at a
randomly chosen state (see previous page).

• The number of Gaussian basis functions is set to 11. Note that this gives
44 tunable parameters, as compared to a state space of |S| = 625 states.

• The LSTD algorithm (see Eq. (6)) is used for the evaluation step, with
λ = 0.9.
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• We use the score criterion (11), where due to the small environment, all
visited states serve as representative states. Equal weights (β(s) = 1

|S| )
are used for all states.

We implemented the gradient-based adaptation described in Section 4.1.
The parameters of the runs, specific to this algorithm were: The learning rate
of each of the 44 parameters (11 radial basis functions, four parameters each)
was set to 5× 10−4; each run terminated when the score did not improve any-
more; the initial basis functions placement was uniform; the initial width of
each basis function was determined in a way that all the state space is “cov-
ered”, with some overlap between neighboring basis functions (the initial setup
of the basis functions is illustrated in the left part of Figure 6). In all the ex-
periments performed (differing in their state-reward trace), the convergence of
the gradient-based adaptation was very fast and usually monotone (except for
the vicinity of the minima, where it fluctuated). Some sample runs are pre-
sented in Figure 2, where a monotone decrease of the mean square error may be
observed. However, convergence is typically to a non-optimal value which sig-
nificantly differs between different trials. This clearly indicates the existence of
multiple local minima, as could be expected by the non-linear dependence of the
basis functions on their parameters (see, e.g., Auer et al., 1996). To illustrate
the extent of this local minima problem, we plot in Figure 3 the mean square
error of the estimated value (to which the algorithm converged) with respect to
the true value. Note that each point in Figure 3 represents a run of the gradient-
based adaptation algorithm. Observe that some values are repeated, indicating
convergence to identical parameter vectors; however, the many different values
of the eventual error indicate a plethora of local minima, with widely varying
error performance.

Applying the CE method to the maze-world requires choosing the distribu-
tion from which the basis function parameters are drawn in every CE iteration.
For simplicity we assume that each parameter is drawn from an independent
Gaussian distribution. This is performed for each of the four parameters that
define each basis function. For example, the x coordinate of the center of the
kth basis function, cx

k, is assumed to be distributed according to a probabil-
ity distribution function (pdf) N(µcx

k
, σ2

cx
k
). A similar assumption holds for the

other three parameters of each radial basis function: the y coordinate of the
center cy

k, and the widths W x
k , W y

k along the two axes. We comment that when
a parameter that corresponds to the width of a basis function (W x

k or W y
k ) was

negative, we simply took its absolute value. Since there are two parameters for
the pdf of each of the 44 parameters of the basis functions, the meta-parameter
v is comprised of a total of 88 parameters. The pdfs of the basis function
parameters are updated according to the set of rules given in (21).
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Figure 2: The mean square error (MSE) for a few sample runs of the gradient-
based algorithm.
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Figure 3: Final mean squared errors (after convergence) of the gradient-based
algorithm, sorted from the lowest error to the highest.

The parameters of the CE method were set to N = 100 (samples per it-
eration) and ρ = 0.1 (fraction of retained best samples)1. The initial values
for the parameter pdfs were determined in a way that the initial experiment

1An additional CE related parameter α, which describes the smoothing factor in the update

of the meta-parameter vector (see de-Boer et al., 2004), was set to 1 in all the experiments of

this paper; we did not check the affect of optional smoothing on performance.
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conditions were consistent with the runs of the gradient-based algorithm. Thus,
the means of the centers (i.e., µcx

k
, µcy

k
) and the means of the widths (i.e., µW x

k
,

µW y
k
) originally correspond to a selection of basis functions parameters θ, which

covers (on average) the entire state space, with some overlap between neighbor-
ing basis functions. In Figure 4 we present the true value function (left most)
of the maze world along with two approximations: the center figure is the ap-
proximated value function obtained by the initial basis function placement, and
the rightmost figure is the approximated value function using the basis func-
tion placement, which is obtained from the CE adaptation algorithm. The final
value function is clearly closer to the true value function. In each case the linear
weights r have been optimized as usual, using the LSTD algorithm.
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Figure 4: Maps of the value functions. Bright areas represent states with high
value function. The barrier is denoted by black. The left map describes the
true value function, as calculated using dynamic programming; the middle map
is the estimated value which is calculated using the initial placement; the right
map is the estimated value function obtained under the final placement of basis
functions.

Performance curves for the CE method are presented in Figure 5. The benefit
of the adaptation process is evident. The score (11) improved monotonously
until it converged. In addition, using the true value function, the left graph
shows the improvement of the (real) mean square error. Comparing the mean
square error in Figure 5 and Figure 3 we observe that the CE method obtains a
lower approximation error than the bulk of the gradient runs. Figure 6 presents
the initial and final arrangement of the radial basis functions in a typical CE
run. One may notice that the basis function centers immigrate to “interesting
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Figure 5: Performance graphs of the CE algorithm. On the left is the mean
square error between the estimated value and the real value. On the right we
plot the score of the CE given by Eq. (11). The x-axis in both graphs is the CE
iteration counter. Results are averaged over 10 runs. The error bars represent
the empirical standard deviation over these runs.

areas”, where the value function is not smooth (the barrier location in our case).

It is apparent that the CE method involves testing a large number of RBF
parameter sets. Therefore, It is interesting to compare the computational ef-
fectiveness of the CE method with a random search over the basis function
parameters. In Figure 7 we plot the lowest score produced by the CE method
as a function of the number of tested parameterizations. On the same graph
we show the lowest score produced by a random search (starting with the same
initial conditions as the first CE iteration.) The superior performance of the CE
method can be clearly observed. This indicates that the selection mechanism
inherent in the CE method achieves the goal of guiding the search to preferred
areas in the parameter space.

5.3 A Larger State Space

In this subsection we demonstrate the scalability of the proposed CE-based
adaptation algorithm to larger state-spaces. We use the same geometric struc-
ture of the maze-world of the preceding experiments (Figure 1). However we
increase the density of states to 500×500, giving 250, 000 states (instead of 625
states). The type of the basis functions (RBF), their number and initial ar-
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Figure 6: The Gaussian basis functions, before and after the adaptation process.
We note that more basis functions are placed at areas of discontinuity, in our
case at the zone of the barrier.
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for random search and CE-based adaptation. Results are averaged over ten runs
with an error bar representing the empirical standard deviation.
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rangement, as well as the environment characteristics (i.e., the state transition
probabilities and the evaluated policy) remain the same. Since the average num-
ber of states (until reaching a goal state) has increased by 500

25 = 20, we reduced
the cost-per-step to 0.5

20 = 0.025 to keep the value function on the same scale.
Similarly, the number of state-reward pairs in the history trace was increased
to 500, 000. We used RS to save memory resources. The relevant statistics were
collected for just 1% of the states, distributed evenly in the state space. In
addition, in order to further save memory we switched to the score criterion
(13), with β(s) = 1

|RS| . Each episode was initiated in a randomly selected RS.
The simulation results for N = 200 and ρ = 0.05 are presented in Figures 8
and 9. The CE algorithm improves the score by a factor of 10 and the average
error by a factor of more than 7 compared to the initial placement of the basis
functions2. It may be observed that the relative improvement in the score is
similar to the smaller maze. However, the improvement in the MSE (relative to
the true value function) is significantly better, indicating the appropriateness of
the score (13) in this case. It is interesting to observe the distribution of errors
across the state space, which is depicted in Figure 10. States suffering from high
errors are those around the obstacle. This can be attributed to the discontinuity
in the value function in this area, which the (smooth) basis functions find hard
to approximate, and possibly to the low frequency of visits to these areas, which
are not on an ordinary path to one of the goals (meaning that the only way to
visit these states is to start an episode from a nearby state).

5.4 Additional Comparisons

So far we proposed a method which couples RL with supervised selection of
basis functions. The adaptation process is guided so it minimizes the Bellman
error of the approximated value function. We now consider two alternatives to
this process.

1. Increasing the number of basis functions, while keeping the uniform place-
ment. This may avoid altogether the need for basis function tuning. The
obvious drawback, besides a less compact representation, is the additional
effort required to tune a larger number of linear weights (for fixed basis
functions).

2. Unsupervised placement of basis functions, based on the empirical fre-
quencies of the state samples alone.

2The CPU time for each run was between 44 to 47 hours on a Pentium IV 2.4 GHZ, 1 GB

RAM platform.
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Figure 8: Performance of the CE adaptation algorithm for the 500× 500 maze.
On the left is the mean square error between the estimated value and the real
value. On the right we plot the score of the CE given by Eq. (13). Results are
averaged over 10 runs.

The latter point is motivated by a common practice of RBF network training,
where the basis function parameters (centers and widths in our case) are first
selected; the linear weights of the (fixed) network are then calculated as a Least
Squares problem. As reviewed in Ghosh and Nag (2000), the common methods
for an initial unsupervised placement of basis function are (i) Basis functions
centers are placed at randomly selected subsets of the data points; (ii) Clustering
algorithms (e.g., K-Means); (iii) The basis functions are fitted as a mixture-of-
Gaussians distribution to an empirical sample.

It is therefore of interest to compare the efficiency of the above (simpler)
methods to the value function driven adaptation process, described in our work.
We examined the third method, where the motivation is to concentrate basis
functions in areas where there are many inputs points (states). Since we use
RBFs, it is only natural to perform a maximum likelihood estimation for the
steady-state occupancy measure. We solved the above problem using the cel-
ebrated Expectation-Maximization (EM) algorithm (e.g., McLachlan and Kr-
ishnan, 1997), which gives a convenient solution for density estimation with a
mixture of Gaussians. The linear weights of the system are still calculated by
the LSTD algorithm.

We compared the above approaches (i.e., adding basis functions, and the lat-
ter unsupervised approach) with the CE-based adaptation on a 50 × 50 maze-
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Figure 9: Maps of the value functions for the 500 × 500 maze. Bright areas
represent states with high value function. The barrier is denoted by black.
The left map describes the true value function, as calculated using dynamic
programming; the middle map is the estimated value which is calculated using
the initial placement; the right map is the estimated value function obtained
under the final placement of basis functions.
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Figure 10: The real error per state for the 500 × 500 maze, i.e., the absolute
difference between the DP value and the value after the CE adaptation process.
Bright areas represent states with high value estimation error.

world with the same topology as in Figure 1. The mean squared error was
calculated under each of the three approaches for different number of basis
functions (4, 6, 9, 16, 25, and 36 basis functions). We used the gmm function
in the Netlab neural network software3 in order to perform EM for the Gaus-
sian mixture model. A state-reward trace of T = 20000 steps was used. The
CE-based adaptation algorithm using score function (13) was executed for 10
iterations, while N was set to 20K (K is the number of basis function; we chose
N in the spirit of Remark 3.6 in de-Boer et al., 2004, whereby in the stochastic
node networks (SNN) model, N is recommended to be a multiple of a constant
C and the number of adjustable parameters; here C = 5) and ρ to 0.05. The
results are presented in Figure 11. In that figure we plot the mean squared error
as a function of the number of basis functions for: a uniform placement of basis
functions (which is the starting point of the CE-based adaptation algorithm), an
unsupervised placement of basis functions, namely the outcome of the EM algo-
rithm, and the CE-based adaptation algorithm. The experiment indicates that
adding more basis function improves performance, yet the error with just 9 basis
functions and the CE-based adaptation is smaller than the error obtained by the
other two approaches using 36 basis functions. One can also observe that un-
supervised placement of basis-functions outperforms uniform placement, but is

3Available from http://www.ncrg.aston.ac.uk/netlab/.
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Figure 11: Performance graphs of the CE adaptation, comparing it with EM
placement and uniform placement of Gaussian basis functions. Here the x-axis
represent the number of basis functions that were used. The y-axis represents
the (final) mean square error. Results are averaged over 10 runs.

still considerably inferior to the performance of the CE-based adaptation. Both
observations point to the performance advantage of the supervised adaptation
process.

6 Conclusion and Future Directions

We have addressed in this paper the problem of on-line adaptation of the ba-
sis function parameters in temporal difference learning. Gradient-based and a
CE-based adaptation methods were proposed. The gradient-based adaptation
algorithm was observed to quickly converge to local minima so that a global
optimization approach was called for. The CE-based adaptation managed to
avoid local minima, and achieved superior tuning of the basis functions param-
eters. Furthermore, the CE method outperformed both a uniform placement of
a larger number of basis functions, and unsupervised density-based placement
of basis functions.

The algorithms and simulations that were presented here demonstrate the
feasibility of basis function tuning in an unsupervised, reward-driven environ-
ment. Additional development and experimentation is required in order to assess
the efficacy of these methods in large real-world problems. On the algorithmic
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side, a promising idea which may lead to faster convergence is to modify only a
subset of basis functions in each CE iteration, based on regional separation of
the state space. The criteria for choosing which subset of parameters should be
optimized is an interesting research direction.

Within an RL scheme, low order approximations are important both to
reduce the complexity of subsequent operations (such as performing a policy
improvement step based on a value function approximation), and to acceler-
ate learning. It is evident, however, that optimal tuning of the basis function
parameters requires a great deal of computational effort. It is therefore impor-
tant to evaluate its benefits within the overall RL paradigm. A simple way to
accelerate learning is to tune the basis functions after some initial experimen-
tation phase, and then proceed with the learning process with those fixed basis
functions. An important research direction, which was not pursued here, is to
devise methods for tuning the basis functions in relation with other RL algo-
rithms, such as Q-learning and direct learning in the policy space (Sutton and
Barto, 1998).
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