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Abstract

Many mass-storage devices have related inputs which, if written on them,
have a relatively high probability of being misread. Since this is obviously a
problem, one gets around it by allowing only a subset of ‘good’ inputs to be
written on the device. The subset of ‘good’ inputs is termed a constrained
system, or a constraint.

A one-dimensional (1-D) constraint deals with inputs that are words, and
is defined by a graph. The capacity of the constraint is an easily calculated
number. Moreover, the state-splitting algorithm gives a very general and
practical method for building an encoding/decoding pair for the constraint.
If we assume a noiseless case, then the performance of the encoder/decoder
pair can be made arbitrarily close to the capacity of the constraint.

A two-dimensional (2-D) constraint deals with allowable two-dimensional
arrays, as opposed to the 1-D words. In contrast with 1-D constraints, 2-D
constraints are much less understood. There is no known 2-D counterpart
of the state-splitting algorithm, and there is an inherent difficulty in cal-
culating the capacity of a general 2-D constraint. Therefore, the known
encoding/decoding algorithms are quite specific, and are usually subopti-
mal. Many algorithms assume noiselessness, and it is not obvious how to
make them robust to noise.

In this thesis we present three major results. Our first result is a fixed-
rate encoder/decoder pair for a fairly large family of 2-D constraints. En-
coding and decoding is done in a row-by-row manner, and is sliding-block
decodable.

Essentially, in our first result, the 2-D constraint is turned into a set of
independent and relatively simple 1-D constraints; this is done by dividing
the array into fixed-width vertical strips. Each row in the strip is seen as
a symbol, and a graph presentation of the respective 1-D constraint is con-
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structed. The maxentropic stationary Markov chain on this graph is next
considered: a perturbed version of the corresponding probability distribu-
tion on the edges of the graph is used in order to build an encoder which
operates in parallel on the strips. This perturbation is found by means of a
network flow, with upper and lower bounds on the flow through the edges.

Our second result is a method for bounding the rate of a given bit-stuffing
encoder for a 2-D constraint. Instead of considering the original encoder, we
consider a related one which is quasi-stationary. We use the quasi-stationary
property in order to formulate linear requirements that must hold on the
probabilities of the constrained arrays that are generated by the encoder.
These requirements are used as part of a linear program. The minimum and
maximum of the linear program bound the rate of the encoder from below
and from above, respectively.

A lower bound on the rate of an encoder is also a lower bound on the
capacity of the corresponding constraint. For some constraints, our second
result leads to tighter lower bounds than what was previously known.

Recall that the capacity of 1-D constraints is given by the entropy of
a corresponding stationary maxentropic Markov chain. Namely, we max-
imize the entropy over a finite set of probabilities that must satisfy some
requirements. In our third result, we try to extend certain aspects of this
characterization to 2-D constraints. The result is a method for calculating
an upper bound on the capacity of 2-D constraints.

The key steps are: We look at a maxentropic probability distribution on
square arrays, which is stationary. A set of linear equalities and inequalities
is derived from this stationarity. The result is a concave program, which
can be easily solved numerically.

2



Abbreviations and Notations

G — Edge-labeled directed graph representing a 1-D constraint
S(G) — 1-D constrained system represented by G
(Grow, Gcol) — Pair of vertex-labeled directed graph representing a 2-D constraint
S(Grow, Gcol) — 2-D constraint system represented by (Grow, Gcol)
cap — Capacity
log — The base 2 logarithm
U,V — Index sets of a configuration
B

(t)
M,N — Parallelogram with M rows, N entries in each row, and slope t

BM,N — The index set of an M ×N array
SM,N — All M ×N arrays satisfying constraint S
BM — The index set of an M ×M array
SM — All M ×M arrays satisfying constraint S
(i, j) — Index of a point in a configuration
σα,β — Shift operator, shifting (0, 0) to (α, β)
a[U] — The restriction of a configuration a to the index set U

S[U] — Configurations with index set U that can be extended to configurations
in S

Notation specific to Chapter 2

M — Number of tracks (columns)
t — Stage (row)
k — Track (column)
g

(t)
k — Entry written to row t and column k

γk — kth track
g(t) — tth row
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m and a — Encoder memory and anticipation, respectively
N — Number of tracks actually used by the encoder
G⊗N — Nth Kronecker power of G
D — Multiplicity matrix
∆ — The number of typical edges going out of a typical vertex
Q — Transition matrix
π — Stationary probability vector
P — “Multiplicity matrix,” which might have non-integer entries
P̃ — A good quantization of P

Notation specific to Chapter 3

∂M,N — Boundary index set
∂̄M,N — Interior index set
Ψ — Neighbor set
µ — Conditional probability function
δM,N — Border probability function
A — Random variable corresponding to the measure defined by the encoder
A(k) — Quasi-stationary random variable we get from A

Λ — Index set of the patch
Γ — Index set of the patch’s border
π(z) — Probability of border z

Notation specific to Chapter 4

W (M) — Stationary random variable taking values on SM
r, s — Number of rows and columns in the patch, respectively
∆ — Patch index set
X(M) — Random variable corresponding to the patch
c — Number of cases
γ — Case value
f — A function mapping each (i, j) to one of c cases
(aγ , bγ) — Index of the point in the patch corresponding to case γ
Ψγ — All indexes in the patch preceding (aγ , bγ)
Υγ — The index set {(aγ , bγ)} ∪Ψγ
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Yγ , Zγ — The random variables defined as Yγ = X(M)[Υγ ], Zγ = X(M)[Ψγ ]
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Chapter 1

Introduction

In this chapter we introduce and define one-dimensional and two-dimensional
constraints, along with basic notions related to them. Moreover, we define
the entropy and conditional entropy functions, and state some related the-
orems. Then, we give a brief overview of the next three chapters.

1.1 1-D constraints

This section contains an overview of known results for one-dimensional (1-
D) constraints. Thus, we present and elaborate on certain issues, but do not
give a full and rigorous explanation of them. The contents of this section is
covered by [31].

1.1.1 Definitions

Let G = (V,E,L) be an edge-labeled (directed) graph, L : E → Σ, over
an alphabet Σ. We write e = v

w−→ v′ to mean an edge with initial vertex
s(e) = v and terminal vertex t(e) = v′ labeled L(e) = w. Given a path
γ = v1

w1−→ v2
w2−→ · · · wn−−→ vn+1 in G, we define the labeling of the path γ as

the concatenation of the labels of its edges, namely

L(γ) = w1, w2, . . . , wn .

The constrained system S = S(G) represented by G is the set of labelings
of all the paths in G,

S(G) = {L(γ) : γ is a path in G} .

6



In this work, we will use the terms “constrained system” and “constraint”
interchangeably.

An edge-labeled graph G = (V,E,L) is termed deterministic if there are
no two distinct edges in G that emanate from the same vertex and have the
same labeling.

We say that a deterministic graph G has finite memory if there exists
an integer k for which all paths in G of length k that have the same labeling
terminate in the same vertex. The smallest such k is termed the memory of
G. We say that a constraint S has finite memory if there exists a graph G

with finite memory for which S = S(G). The memory of S is the smallest
k for which a graph G with memory k satisfying S = S(G) exists.

A graph G = (V,E, L) is irreducible if for any pair of vertices v, v′ ∈
V , there is a path in G from v to v′. Any graph can be partitioned into
irreducible sub-graphs.

The adjacency matrix of a graph G = (V,E,L) is a |V | × |V | matrix
indexed by V . For all v, v′ ∈ V , entry (v, v′) in the adjacency matrix is
equal to the number of edges from v to v′. Namely, if (av,v′)v,v′∈V is the
adjacency matrix of V , then

av,v′ = |{e ∈ E : s(e) = v and t(e) = v′}| .

1.1.2 Examples and motivation

We will now describe two commonly used 1-D constraints.
A commonly used constraint in magnetic and optical recording is the

(d, k)-RLL constraint, which requires that there be at most k and at least
d, 0 ≤ d < k, consecutive ‘0’s between two successive ‘1’s. RLL is short for
run-length-limited — indeed — we are limiting the length of each run of
‘0’s to be between d and k. We can also take k =∞, meaning that there is
no upper bound on the length of a run of ‘0’s. For an example of a graph
representing the (2, 5)-RLL constraint see Figure 1.1. Note that the graph is
deterministic, irreducible and has memory equal to 5. We will describe the
constraint’s merits with respect to magnetic recording, the optical recording
case is quite similar.

In magnetic recording, a ‘1’ represents a switch of polarity on the track,
while a ‘0’ represents no switch. A (d, k)-RLL constraint is helpful in two
aspects.

7



0 0 0 0 0

1 1 1 1

Figure 1.1: Graph representation of the (2, 5)-RLL constraint.

Timing control: We infer the position of what we are currently reading
on the track by means of a clock. The (d, k)-RLL constraint ensures that
a ‘1’ (switch of polarity) occurs at least every k time units. This switch of
polarity induces a current in the reading head, which is used to synchronize
the clock.

Inter-symbol interference: Consider a part of a track magnetized as
follows: “North-South-North.” When the reading head is above the ‘South’
section, it will also be affected by the two neighboring ‘North’ sections.
This effect is a negative one, since the two neighbors weaken the magnetic
strength of the section in the middle (it is effectively less of a ‘South’).
Thus, we wish that changes of polarity be somewhat spread apart, and this
is achieved by the d parameter of the (d, k)-RLL constraint.

A second constraint commonly used especially in optical recording is the
dc-free constraint, which is a special case of a spectral null constraint. Our
alphabet Σ is now defined as Σ = {+1,−1}. In magnetic recording, +1 cor-
responds to, say, ‘North’ and −1 to ‘South’. A sequence w = w1, w2, . . . , wn
is in S iff for all 1 ≤ i < j ≤ n we have

∣∣∣∣∣
j∑
k=i

wk

∣∣∣∣∣ ≤ B ,

where the parameter B is a specified constant. For a graph representing
the dc-free constraint for B = 4 see Figure 1.2. Note that this graph is
deterministic, irreducible, and does not have finite memory. The dc-free
constraint guarantees a small value at frequency zero in the discrete Fourier
transform [32, Chapter 5] of w ∈ S.

8
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Figure 1.2: Graph representation of the dc-free constraint for B = 4.

1.1.3 Capacity of 1-D constraints

The capacity of a 1-D constrained system S = S(G) is defined as

cap(S) = lim
n→∞

1
n

log |S ∩ Σn| ,

where from here onward, log is the base 2 logarithm. Note that we are
taking the limit of the ratio of information bits (log |S ∩ Σn|) to word length
(n). For modest sized graphs, we can easily calculate the capacity of a 1-D
constrained system, as we show next.

It turns out [31, Proposition 2.2] that we may assume w.l.o.g. that G
is deterministic. So, we henceforth do so. Moreover, it can be shown [31,
Theorem 3.12] that at least one of the irreducible sub-graphs of G has the
same capacity as G. Thus, we assume from here onward that G is irreducible
(and deterministic).

We now show two methods by which the capacity of S can be calculated.

Algebraic characterization of capacity

Let A = AG be a |V | × |V | matrix indexed by V , where Av,v′ is equal to the
number of edges from v to v′ in G. Let λ(A) be the largest real eigenvalue
of A. Except for trivial cases which we henceforth ignore, λ > 1. We then
have [31, Theorem 3.9]

cap(S(G)) = log λ(AG) .

Probabilistic characterization of capacity

In this thesis, we will mainly be interested in the probabilistic characteriza-
tion of capacity, defined next.

9



A stationary Markov chain P on G is defined through a row vector
π = (πv)v∈V and a function q : E → [0, 1]. Some conditions must hold.
Namely,

1. Each entry in π is non-negative, and the entries sum to 1:∑
v∈V

πv = 1 .

Think of πv as the probability of starting some random path at vertex
v.

2. For each e ∈ E, we have that q(e) is non-negative. Moreover, for all
v ∈ V , the sum of q(e) over all the edges e emanating from v equals 1:∑

e : s(e)=v

q(e) = 1 .

Think of q(e) as the probability of choosing to traverse the edge e,
given that we currently at vertex s(e).

3. Let the transition matrix Q associated with P be defined as follows.
The Matrix Q = (Qu,v)u,v∈V is a |V | × |V | matrix indexed by V . For
each u, v ∈ V , the value of Qu,v is equal to sum of q(e) on all edges of
the form u→ v. Namely,

Qu,v =
∑

e : s(e)=u,t(e)=v

q(e) .

We require that
πQ = π .

Namely, given that the probability of starting our random path at
vertex v is πv, and that we pick the edges to traverse according to the
probability distribution q, the probability of currently being in vertex
v is not a function of the number of edges traversed — it is stationary.

The entropy of a stationary Markov chain P is defined as

H(P) = −
∑
v∈V

πv
∑

e : s(e)=v

q(e) log q(e) . (1.1)
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We will have more to say about (1.1) in Section 1.3 below. It turns out that
[31, Theorem 3.16]

cap(S) = max
P

H(P) ,

where the maximum is over all stationary Markov chains on G. We note that
the optimization problem is an instance of convex programming [7], and thus
easily solved for graphs of modest size. Moreover, the two characterizations
of capacity are in fact dual problems [30, §V].

1.1.4 Finite-state encoders

Let G = (V,E,L) be an edge-labeled graph, and define Gq = (V,E′, L′)
as the qth power of G. Namely, each length q path γ = v1

w1−→ v2
w2−→

. . .
wq−→ vq+1 in G corresponds to an edge v1

w1,w2,...,wq−−−−−−−→ vq+1 in Gq. Note
that the edge labels in Gq are over the alphabet Σq. Define the natural
correspondence φq : (Σq)∗ → (Σ)∗ between sequence over Σq and sequences
over Σ by

φq((w1
1, w

2
1, . . . , w

q
1), (w1

2, w
2
2, . . . , w

q
2), . . . , (w1

n, w
2
n, . . . , w

q
n)) =

w1
1, w

2
1, . . . , w

q
1 , w

1
2, w

2
2, . . . , w

q
2 , . . . , w

1
n, w

2
n, . . . , w

q
n .

Note that a word w ∈ (Σq)∗ is in S(Gq) iff φq(w) is in S(G).
A rate p : q, sliding-block decodable (SBD) encoder for a 1-D constrained

system S is a (generally non-deterministic) irreducible labeled graph E with
the following properties.

P1 The out-degree of each state in E is 2p.

P2 We have S(E) ⊆ Sq, where Sq = S(Gq).

P3 The edges emanating from each vertex are numbered distinctly,
or tagged, from 1 to 2p. Thus, each edge in E has both a label
and a tag.

P4 There are fixed parameters a ≥ 0,m ≥ 0 such that the following
holds. For all w = w−m, w−m+1, . . . , w0, . . . , wa ∈ Σq, if γ1 and
γ2 are two paths in E whose labeling is w, then the tag of the
(m + 1)’st edge of γ1 is equal to the tag of the (m + 1)’st edge in
γ2.
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We will now justify the name “p : q encoder.” Suppose we have a long
stream (bi)

np
i=1 of bits we wish to encode, that is, to map into a sequence in

S. This is done as follows.

1. Divide the stream into blocks of p bits, and let 1 ≤ ui ≤ 2p be such
that (bi+1, bi+2, . . . , bi+p) is the binary representation of ui − 1.

2. We set i = 1 and let v1 be some predetermined ‘start’ vertex in E . We
repeat the following n times:

(a) Find the edge vi
w−→ v′ tagged with ui.

(b) Set vi+1 = v′.

(c) Output φq(w).

(d) i← i+ 1

3. It is known that there exists a constant M = M(G) such that for all
n there is a path of length exactly `(n) from vn+1 to v1 such that
`(n) ≤ M . Note that `(n) is upper-bounded by a constant, and is a
function of n and v1, but not of vn+1. Find such a path γ from vn+1

to v1, and output L(γ).

Properties P1 – P3 ensure the validity of the encoding algorithm. Prop-
erty P4 leads to a decoding algorithm: Let w ∈ (Σq)∗ be such that φq(w)
was the output of the encoder, and let w′ ∈ (Σq)∗ be such that φq(w′) was
read. By Property P4, the value of ui, a < i < m, is uniquely determined
by wi−m, wi−m+1, . . . , wi, . . . , wi+a. Thus, we only need to look at a window
w′i−m, w

′
i−m+1, . . . , wi, . . . , w

′
i+a of length m + a + 1 to decode u′i. Namely,

any errors which may have occurred outside this window will not affect the
decoding of the current block. The case i ≤ m (i ≥ a) can be handled as
well, due to the fact that we know the value, v1, of the start (end) vertex of
the path traveled by the encoder.

We may use the state-splitting algorithm [1] to build a rate p : q SBD
encoder E for S, where the ratio p/q is arbitrarily close to cap(S). However,
as we get closer to capacity, our window size, q(m + a + 1), will generally
grow.
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1.2 2-D constraints

2-D constraints deal with allowable 2-D arrays, as opposed to 1-D constraints
which deal with words. The usefulness of 2-D constraints in cases where the
recording medium is a surface is evident. However, 2-D constraints are
useful in a temporal sense as well. For example [10], consider a 1-D track
satisfying the 1-D (1,∞)-RLL constraint. We require that each rewrite of
the track not alter two adjacent bits. These restrictions can be modeled
as a 2-D constraint. The constraint consists of binary matrices. Each row
of an array represents a valid recording of a 1-D track. Consecutive rows
represent the same track, after every rewrite of the track. Namely, the
row index is in fact a time index. The 2-D constraint requires that no two
1’s are adjacent horizontally, or diagonally. We note that in this scenario,
the decoding must be done according to the contents of the current track.
Namely, we only know the contents of the current row in the array, the other
rows are unavailable.

This section contains an overview of known results for two-dimensional
(2-D) constraints. One should note that the results here are quite specific,
and in many cases suboptimal, as opposed to 1-D constraints.

1.2.1 Index sets and configurations

Denote the set of integers by Z. A (2-D) index set U ⊆ Z2 is a set of
integer pairs. A 2-D configuration over Σ with an index set U is a function
w : U → Σ. We denote such a configuration as w = (wi,j)(i,j)∈U, where for
all (i, j) ∈ U, we have that wi,j ∈ Σ. In this thesis, index sets will always
be denoted by upper-case Greek letters or upper-case Roman letters in the
sans-serif font. We now define a family of index sets which will turn out to
be useful. Denote by B

(t)
M,N the set

B
(t)
M,N = {(i, j) : 0 ≤ i < M , 0 ≤ t · i+ j < N} .

Thus, B
(t)
M,N is the index set of a parallelogram with M rows, N entries in

each row, and slope t. For t = 0 this is simply the index set of an M × N
rectangular array, which we abbreviate as

BM,N = B
(0)
M,N .
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Also, for M equal to N and t = 0 we write

BM = BM,M .

For integers α, β we denote the shifting of U by (α, β) as

σα,β(U) = {(i+ α, j + β) : (i, j) ∈ U} .

Also, by abuse of notation, let σα,β(w) be the shifted configuration (with
index set σ(U)):

σα,β(w)i+α,j+β = wi,j .

For a configuration w with index set U, and an index set V ⊆ U, denote
the restriction of w to V by w[V] = (w[V]i,j)(i,j)∈V; namely,

w[V]i,j = wi,j , where (i, j) ∈ V .

1.2.2 Definitions

A two dimensional (2-D) constrained system over Σ is a generalization of
a 1-D constrained system; it is a set S of rectangular configurations over Σ
and is defined through a pair of vertex -labeled graphs (Grow, Gcol), where
Grow = (V,Erow, L) and Gcol = (V,Ecol, L). Namely, both graphs share the
same vertex set and the same vertex labeling function L : V → Σ. The
constraint S = S(Grow, Gcol) consists of all finite rectangular configurations
(wi,j) over Σ with the following property: Let A be the rectangular index
set of (wi,j)(i,j)∈A. There exists a configuration (ui,j)(i,j)∈A over the vertex
set V such that (a) for each (i, j) ∈ A we have wi,j = L(ui,j); (b) each row
in (ui,j) is a path in Grow; (c) each column in (ui,j) is a path in Gcol.

For a finite index set U, we abuse notation and denote the restriction of
S to U as

S[U] = {w : there exists w′ ∈ S such that w′[U] = w} . (1.2)

If U = BM,N , then we abbreviate

SM,N = S[BM,N ] .

Also, for M equal to N we write

SM = S[BM ] .
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Examples

The following lists some common 2-D constraints, defined over the binary
alphabet.

• The 2-D counterpart of the 1-D (d, k)-RLL constraint is termed the
(dr, kr; dc, kc)-RLL constraint; we now require that each row satisfy
the (dr, kr)-RLL constraint and each column satisfy the (dc, kc)-RLL
constraint. It is defined for 0 ≤ dr < kr ≤ ∞ and 0 ≤ dc < kc ≤
∞. When the row parameters are equal to the column parameters,
we will simply write “2-D (d, k)-RLL” instead of “(d, k; d, k)-RLL”.
Figure 1.3 contains the two graphs which represent the (1,∞; 2,∞)-
RLL constrained system.

00

01

10

Grow :

00

01

10

Gcol :

Figure 1.3: Graph representation of the (1,∞; 2,∞)-RLL constrained
system. The label corresponding to vertices 00, 01, and 10 is their last

(bold) letter; namely 0, 1, and 0, respectively.
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• The 2-D (1,∞)-RLL constraint is termed the hard-square model. Sim-
ply put, we require that a ‘1’ not have a ‘1’ above, below, to the left,
or to the right of it.

• The kings constraint requires that all neighbors (usually 8, unless we
are on the boundary) of each ‘1’ be ‘0’. If ‘1’ is used to represent a
cell with a chess’ king on it, then we simply require that there be no
attacking kings. This constraint was posed in [46], with the additional
requirement that the number of ‘1’s in the array be the largest possible.

• The “no isolated bits” constraint, abbreviated as n.i.b., requires that
each entry is equal to at least one of the entries immediately to its left,
right, top, or bottom (unless we are on the boundary).

• The (d0,r, k0,r, d1,r, k1,r; d0,c, k0,c, d1,c, k1,c)-SRLL constraint (SRLL is
short for symmetric run-length-limited) requires that each run of ‘0’s
in a row (column) be bounded from below by d0,r (d0,c) and from above
by k0,r (k0,c). Similarly, each run of ‘1’s in a row (column) is bounded
from below by d1,r (d1,c) and from above by k1,r (k1,c). We must have
0 ≤ di,s < ki,s ≤ ∞ for i = 0, 1 and s = r, c. As before, we abbreviate
“(d, k, d, k; d, k, d, k)-SRLL” to “2-D (d, k)-SRLL”.

1.2.3 Capacity of 2-D constraints

The capacity of a two dimensional constrained system S is defined as

cap(S) = lim
M,N→∞

1
M,N

log |SM,N | .

As in the 1-D case, the limit indeed exists (see [28, Appendix], and refer-
ences therein). Actually, contrary to the 1-D case, it is not obvious when
|SM,N | = 0, so we must abuse notation and ‘define’ log 0 = −∞. More so,
it follows from [6] (but see also [36]), that the following question is unde-
cidable: “Given a pair of vertex-labeled graphs (Grow, Gcol) with the same
vertex set and labeling function, is cap(S(Grow, Gcol)) 6= −∞?”. Thus, we
have no chance of finding a general method for computing the capacity of a
2-D constrained system.

We next quote some results about capacities of specific constraints.
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Theorem 1.1 (Calkin and Wilf [9], Engel [17]) Let S be the hard-
square model. Then,

0.5878908 ≤ cap(S) ≤ 0.5883392 .

Theorem 1.1 is rather unique, due to the fact that it is derived through the
use of algebraic tools. The lower bound is derived from the ratio of two
eigenvalues, while the proof of the upper bound makes use of the trace of a
certain matrix.

Both the lower and upper bounds in the method of Calkin and Wilf can
be applied to a rather limited family of 2-D constraints. Forchhammer and
Justesen extended the method used to derive the upper bound to a larger
family of 2-D constraints.

Theorem 1.2 (Forchhammer and Justesen [20]) The following ta-
ble (which is taken from [22]) gives upper bounds on the capacities of the 2-D
(d,∞)-RLL constraints, for d = 2, 3, 4.

d upper bound on cap(S)
2 0.4459
3 0.3686
4 0.3188

Kato and Zeger [28] found a necessary and sufficient condition for a
(d, k; d, k)-RLL constraint to have positive capacity.

Theorem 1.3 (Kato and Zeger [28]) Let S be the 2-D (d, k)-RLL con-
strained system, where d < k. Then,

cap(S) = 0 iff k = d+ 1 .

If k > d+ 1 then

cap(S) ≥ max
2≤j≤1+ k−d

2


⌊
1 + d

j

⌋
log(j!) + log(r!)

(j + d)2

 . (1.3)

We note that the bound in Equation (1.3) is constructive, that is, it implies
an encoding and decoding algorithm. More bounds are derived in [28], which
we do not quote here.
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Weeks and Blahut [45] showed that by using a numerical method (Richard-
son extrapolation), one can estimate the capacity of 2-D constraints. Exper-
imentally, this technique seems to work very well. However, at our current
state of knowledge, the numbers they compute are essentially guesses.

1.2.4 Encoders for 2-D constraints

Let M be some given message set, and denote by M∗ the set of all finite
length sequences overM. In full generality, an encoder E for a 2-D constraint
S is a one-to-one function fromM∗ to S. The corresponding decoder D is the
inverse of E . Together, these two functions constitute an encoder/decoder
pair E/D.

Given an encoder/decoder pair E/D for a 2-D constrained system S, we
say that D is a block decoder, and that E is block decodable, if the following
two conditions hold. (1) The input of E and the output of D is a stream of
messages from a message set M. (2) Let ûj be the jth output of D. Then,
ûj is a function of a certain row (usually the jth row). That is, it does not
depend on the contents of other rows.

We next survey two rather general coding techniques for 2-D constraints.

Bit stuffing [25, 37, 39]: A bit stuffing encoder is defined through a certain
probability distribution on the values of the 2-D array. We randomly choose
the value of each element of the array by flipping a biased coin, where the
coin tosses are in fact the result of applying distribution transformers on
the input stream. The bias of the coin is determined by the value of the
already-written neighbors of the current element.

Of course, since we are dealing with constrained arrays, some arrays are not
permitted. For example, if we are dealing with the hard-square model, and
the element we now wish to write to the array has a neighbor to the left
of it, or to the top of it, which is ‘1’ we must set the current element to
‘0’. That is, the ‘coin’ used has a probability of 1 to be ‘0’. If, however,
we are not in such a forced position, then we may set the bias of the coin
to whatever value we choose. In [37], it is shown that for the hard-square
constraint there exists a choice of such biases leading to a rate which is only
0.1% below the capacity of the constraint. A precise definition of bit stuffing
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encoders will be given in Section 3.3. For now, we note that the encoding is
variable rate, and not block decodable.

Recently, a generalization of bit-stuffing was presented by Sharov and Roth
[38]. Namely, the array index set is partitioned into a finite number of sub-
sets, each sub-set corresponding to a different “color” (much like a chess-
board is partitioned into white and black cells). The coding is done in
phases, the number of phases equaling the number of colors. In the phase
corresponding to color c, only the array elements with that color are written
to. The utility of the method stems from the fact that the coding rule is a
function of the color c.

Parallel constrained coding [26]: Fix a 2-D constraint S. Assume that
there exists an integer k such that for any two n row arrays A,C ∈ S we
can find an n× k array B such that ABC ∈ S, where juxtaposition denotes
horizontal concatenation. For example, the existence of such an array is
shown in [18] for a (d0, k0, d1, k1; d0, k0, d1, k1)-SRLL constraint. If this is the
case, then we can prove the existence of an encoder and a block decoder with
performance arbitrarily close to the constraint’s capacity. Unfortunately,
due to a probabilistic argument, the proof of this fact is not constructive,
and generally does not imply efficient algorithms.

Enumerative coding with approximate counts [35]: In (standard)
enumerative coding [12], we assume that the set we encode into (such as 2-
D arrays or 1-D words) can be efficiently enumerated. Moreover, we assume
that this property also holds recursively: if, for example, we encode into
1-D words, then we may efficiently enumerate all the 1-D words we encode
into with a given prefix. If these two assumptions are met, then there
exists an efficient encoder/decoder pair with constant rate approaching the
constraint’s capacity.

In enumerative coding with approximate counts, these two assumptions are
relaxed: we require that the size of the sets be suitably lower-bounded.
These ideas were presented by Immink [27] in the context of speeding up
coding for 1-D constraints. Ordentlich and Roth [35] used these ideas in the
context of 2-D constraints. Contrary to the 1-D case, the derivation of the
lower bounds in [35] is much more intricate, and makes use of probabilistic
arguments.
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We further note that in [33], [34], [41], and [43], encoders and decoders
for specific 2-D constraints are presented. These coding techniques seem
quite specialized.

1.3 Entropy

The notions of entropy and conditional entropy of random variables will play
an important role in Chapters 3 and 4. We now define these concepts and
quote some important results regarding them. The contents of this section
is covered in [13, Chapter 2].

Let X and Y be two random variables. Denote

px = Prob(X = x) .

and
py|x = Prob(X = x, Y = y)/Prob(X = x) .

The entropy of X is denoted by H(X) and is equal to

H(X) = −
∑
x

px log px ,

where 0 log 0 is defined to be zero. Similarly, we define the conditional
entropy H(Y |X) as

H(Y |X) = −
∑
x

px
∑
y

py|x log py|x .

Recall the definition of a stationary Markov chain P given in Subsection 1.1.3
and our definition of the entropy of P given in (1.1). Notice that if we were
to define the random variable X as the value of the initial vertex of the
random path corresponding to P, and the random variable Y as the value
of the first edge traversed along that path, then H(Y |X) would be equal to
the RHS of (1.1).

We now state some properties of the entropy function, which will be
useful later on.

Theorem 1.4 (The chain rule [13, Page 19])

H(X,Y ) = H(X) +H(Y |X) .
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Theorem 1.5 ([13, Page 19]) Let the random variable X take values
on the set Σ. Then,

H(X) ≤ log2 |Σ| .

Theorem 1.6 (Conditioning reduces entropy [13, Page 19])

H(X|Y ) ≤ H(X) .

1.4 Our results

The rest of this thesis consists of three chapters, each containing one of our
major results. The chapters are independent, in the sense that one only
needs to read this introductory chapter in order to read any of them (e.g.,
the reader may now jump directly to the last chapter if he/she wishes to do
so). We now survey the contents of the following chapters.

Chapter 2

In Chapter 2, a constant-rate encoder–decoder pair is presented for a fairly
large family of two-dimensional (2-D) constraints. Encoding and decoding
is done in a row-by-row manner, and is sliding-block decodable.

Essentially, the 2-D constraint is turned into a set of independent and
relatively simple one-dimensional (1-D) constraints; this is done by dividing
the array into fixed-width vertical strips. Each row in the strip is seen as
a symbol, and a graph presentation of the respective 1-D constraint is con-
structed. The maxentropic stationary Markov chain on this graph is next
considered: a perturbed version of the corresponding probability distribu-
tion on the edges of the graph is used in order to build an encoder which
operates in parallel on the strips. This perturbation is found by means of a
network flow, with upper and lower bounds on the flow through the edges
(Figure 2.5).

A key part of the encoder is an enumerative coder for constant-weight
binary words. A fast realization of this coder is shown, using floating-point
arithmetic.
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Chapter 3

In Chapter 3, we present a method for bounding the rate of bit-stuffing
encoders. Instead of considering the original encoder, we consider a related
one which is quasi-stationary. We use the quasi-stationary property in or-
der to formulate linear requirements that must hold on the probabilities of
the constrained arrays that are generated by the encoder. These require-
ments are used as part of a linear program (Figure 3.5). The minimum and
maximum of the linear program bound the rate of the encoder from below
and from above, respectively. Numerical results obtained are summarized
in Table 3.1.

A lower bound on the rate of an encoder is also a lower bound on the
capacity of the corresponding constraint. For some constraints, our results
lead to tighter lower bounds than what was previously known. These lower
bounds are summarized in Table 3.2.

Chapter 4

Recall from Section 1.1.3 that the capacity of 1-D constraints is given by the
entropy of a corresponding stationary maxentropic Markov chain. Namely,
the entropy is maximized over a finite set of probabilities that must satisfy
some requirements. In Chapter 4, certain aspects of this characterization
are extended to 2-D constraints. The result is a method for calculating an
upper bound on the capacity of 2-D constraints.

The key steps are: The stationary maxentropic probability distribution
on square configurations is considered. A set of linear equalities and in-
equalities is derived from this stationarity. The result is a concave program
(Figure 4.3), which can be easily solved numerically. The upper bounds are
summarized in Table 4.1.
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Chapter 2

Row-by-Row Coding for 2-D

Constraints

In this chapter, a constant-rate encoder–decoder pair is presented for a fairly
large family of two-dimensional (2-D) constraints. Encoding and decoding
is done in a row-by-row manner, and is sliding-block decodable.

Essentially, the 2-D constraint is turned into a set of independent and
relatively simple one-dimensional (1-D) constraints; this is done by dividing
the array into fixed-width vertical strips. Each row in the strip is seen as
a symbol, and a graph presentation of the respective 1-D constraint is con-
structed. The maxentropic stationary Markov chain on this graph is next
considered: a perturbed version of the corresponding probability distribu-
tion on the edges of the graph is used in order to build an encoder which
operates in parallel on the strips. This perturbation is found by means of a
network flow, with upper and lower bounds on the flow through the edges.

A key part of the encoder is an enumerative coder for constant-weight
binary words. A fast realization of this coder is shown, using floating-point
arithmetic.

2.1 Introduction

Let G = (V,E,L) be an edge-labeled directed graph (referred to hereafter
simply as a graph), where V is the vertex set, E is the edge set, and L :
E → Σ is the edge labeling taking values on a finite alphabet Σ (as in
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Section 2.5). We require that the labeling L is deterministic: edges that
start at the same vertex have distinct labels. We further assume that G has
finite memory [31, §2.2.3]. Recall from Section 1.1 that the one-dimensional
(1-D) constraint S = S(G) that is presented by G is defined as the set of
all words that are generated by paths in G (i.e., the words are obtained by
reading-off the edge labels of such paths). Also, recall that the capacity of
S is given by

cap(S) = lim
`→∞

(1/`) · log2

∣∣∣S ∩ Σ`
∣∣∣ .

An M -track parallel encoder for S = S(G) at rate R is defined as follows
(see Figure 2.1).

g
(t)
k

γk∈

S

g(t)∈ΣM

0

1

t

1 2 k M

m

a

Figure 2.1: Array corresponding to an M -track parallel encoder.

1. At stage t = 0, 1, 2, · · · , the encoder (which may be state-dependent)
receives as input M ·R (unconstrained) information bits.

2. The output of the encoder at stage t is a word g(t) = (g(t)
k )Mk=1 of length

M over Σ.

3. For 1 ≤ k ≤ M , the kth track γk = (g(t)
k )`−1

t=0 of any given length `,
belongs to S.
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4. There are integers m, a ≥ 0 such that the encoder is (m, a)-sliding-block
decodable (in short, (m, a)-SBD): for t ≥ m, the M ·R information bits
which were input at stage t are uniquely determined by (and can be
efficiently calculated from) g(t−m), g(t−m+1), . . . , g(t+a).

The decoding window size of the encoder is m + a + 1, and it is desirable
to have a small window to avoid error propagation. In this chapter, we will
be mainly focusing on the case where a = 0, in which case the decoding
requires no look-ahead.

In [26], it was shown that by introducing parallelism, one can reduce
the window size, compared to conventional serial encoding. Furthermore,
it was shown that as M tends to infinity, there are (0, 0)-SBD (i.e., block
decodable) parallel encoders whose rates approach cap(S(G)). A key step
in [26] is using some perturbation of the conditional probability distribution
on the edges of G, corresponding to the maxentropic stationary Markov
chain on G. However, it is not clear how this perturbation should be done:
a naive method will only work for unrealistically large M . Also, the proof
in [26] of the (0, 0)-SBD property is only probabilistic and does not suggest
encoders and decoders that have an acceptable running time.

In this chapter, we aim at making the results of [26] more tractable.
At the expense of possibly increasing the memory of the encoder (up to
the memory of G) we are able to define a suitable perturbed distribution
explicitly, and provide an efficient algorithm for computing it. Further-
more, the encoding and decoding can be carried out in time complexity
O(M log2M log logM), where the multiplying constants in the O(·) term
are polynomially large in the parameters of G.

Denote by diam(G) the diameter of G (i.e., the longest shortest path
between any two vertices in G) and let AG = (ai,j) be the adjacency matrix
of G, i.e., ai,j is the number of edges in G that start at vertex i and terminate
in vertex j. Our main result, specifying the rate of our encoder, is given in
the next theorem.

Theorem 2.1 Let G be a deterministic graph with memory m. For
M sufficiently large, one can efficiently construct an M -track (m, 0)-SBD
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parallel encoder for S = S(G) at a rate R such that

R ≥ cap(S(G))
(

1− |V |diam(G)
2M

)
−O

(
|V |2 log (M · amax/amin)
M − |V | diam(G)/2

)
, (2.1)

where amin (respectively, amax) is the smallest (respectively, largest) nonzero
entry in AG.

The structure of this chapter is as follows. In Section 2.2 we show how
parallel encoding can be used to construct an encoder for a 2-D constraint.
As we will show, a parallel encoder is essentially defined through what we
term a multiplicity matrix. Section 2.3 defines how our parallel encoder
works, assuming its multiplicity matrix is given. Then, in Section 2.4, we
show how to efficiently calculate a good multiplicity matrix. Although 2-D
constraints are our main motivation, Section 2.5 shows how our method can
be applied to 1-D constraints. Section 2.6 defines two methods by which
the rate of our encoder can be slightly improved. Finally, in Section 2.7 we
show a method of efficiently realizing a key part of our encoding procedure.

2.2 Two-dimensional constraints

Our primary motivation for studying parallel encoding is to show an encod-
ing algorithm for a family of two-dimensional (2-D) constraints.

Let S be a given 2-D constraint over a finite alphabet Σ. Recall the
following: we denote by S`,w the set of all `×w arrays in S, and the capacity
of S is given by

cap(S) = lim
`,w→∞

1
` · w

· log2 |S`,w| .

Suppose we wish to encode information to an ` × w array which must
satisfy the constraint S; namely, the array must be an element of S`,w. As a
concrete example, consider the kings constraint [45]: its elements are all the
binary arrays in which no two ‘1’ symbols are adjacent on a row, column,
or diagonal.

We first partition our array into two alternating types of vertical strips:
data strips having width wd, and merging strips having width wm. In our
example, let wd = 4 and wm = 1 (see Figure 2.2).
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0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 1

Figure 2.2: Binary array satisfying the kings constraint, partitioned into
data strips of width wd = 4 and merging strips of width wm = 1.

Secondly, we select a graph G = (V,E,L) with a labeling L : E → S1,wd

such that S(G) ⊆ S, i.e., each path of length ` in G generates a (column)
word which is in S`,wd

. We then fill up the data strips of our ` × w array
with ` × wd arrays corresponding to paths of length ` in G. Thirdly, we
assume that the choice of wm allows us to fill up the merging strips in a
row-by-row (causal) manner, such that our ` × w array is in S. Any 2-D
constraint S for which such wd, wm, and G can be found, is in the family of
constraints we can code for (for example, the 2-D SRLL constraints belong
to this family [18]).

Consider again the kings constraint: a graph which produces all `× wd

arrays that satisfy this constraint is given in Figure 2.3. Also, for wm = 1,
we can take the merging strips to be all-zero. (There are cases, such as the
2-D SRLL constraints, where determining the merging strips may be less
trivial [18].)

0000 0100

00011000

0010

1010 1001 0101

Figure 2.3: Graph G whose paths generate all `× 4 arrays satisfying the
kings constraint. The label of an edge is given by the label of the vertex it

enters.

Suppose we have an (m, 0)-SBD parallel encoder for S = S(G) at rate R
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with M = (w+wm)/(wd +wm) tracks. We may use this parallel encoder to
encode information in a row-by-row fashion to our `×w array: at stage t we
feed M · R information bits to our parallel encoder. Let g(t) = (g(t)

k )Mk=1 be
the output of the parallel encoder at stage t. We write g(t)

k to row t of the
kth data strip, and then appropriately fill up row t of the merging strips.
Decoding of a row in our array can be carried out based only on the contents
of that row and the previous m rows.

Since M ·R information bits are mapped to M ·wd +(M−1)·wm symbols
in Σ, the rate at which we encode information to the array is

R

wd + wm(1− 1/M)
≤ cap(S(G))
wd + wm(1− 1/M)

.

We note the following tradeoff: Typically, taking larger values of wd (while
keeping wm constant) will increase the right-hand side of the above inequal-
ity. However, the number of vertices and edges in G will usually grow
exponentially with wd. Thus, wd is taken to be reasonably small.

Note that in our scheme, a single error generally results in the loss of
information stored in the respective vertical sliding-block window. Namely,
a single corrupted entry in the array may cause the loss of m+1 rows. Thus,
our method is only practical if we assume an error model in which whole rows
are corrupted by errors. This is indeed the case if each row is protected by
an error-correcting code (for example, by the use of unconstrained positions
[15]).

2.3 Description of the encoder

Let N be a positive integer which will shortly be specified. The N words
γk = (g(t)

k )`−1
t=0, 1 ≤ k ≤ N , that we will be writing to the first N tracks

are all generated by paths of length ` in G. In what follows, we find it
convenient to regard the ` × N arrays (γk)Nk=1 = (g(t)

k )`t=1
N
k=1 as (column)

words of length ` of some new 1-D constraint, which we define next.
The N th Kronecker power of G = (V,E,L), denoted by

G⊗N = (V N , EN , LN ) ,

is defined as follows. The vertex set V N is simply the Nth Cartesian power
of V ; that is,

V N = {〈v1, v2, . . . , vN 〉 : vk ∈ V } .
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An edge e = 〈e1, e2, . . . , eN 〉 ∈ EN goes from vertex v = 〈v1, v2, . . . , vN 〉 ∈
V N to vertex v′ = 〈v′1, v′2, . . . , v′N 〉 ∈ V N and is labeled LN (e) = 〈b1, b2, . . . , bN 〉
whenever for all 1 ≤ k ≤ N , ek is an edge from vk to v′k labeled bk.

Note that a path of length ` in G⊗N is just a handy way to denote N
paths of length ` in G. Accordingly, the `×N arrays (γk)Nk=1 are the words
of length ` in S(G⊗N ).

Let G be as in Section 2.1 and let AG = (ai,j) be the adjacency matrix
of G. Denote by 1 the 1 × |V | all-one row vector. The description of our
M -track parallel encoder for S = S(G) makes use of the following definition.
A |V | × |V | nonnegative integer matrix D = (di,j)i,j∈V is called a (valid)
multiplicity matrix with respect to G and M if

1 ·D · 1T ≤M , (2.2)

1 ·D = 1 ·DT , and (2.3)

di,j > 0 only if ai,j > 0 . (2.4)

(While any multiplicity matrix will produce a parallel encoder, some will
have higher rates than others. In Section 2.4, we show how to compute
multiplicity matrices D that yield rates close to cap(S(G)).)

Recall that we have at our disposalM tracks. However, we will effectively
be using only the first N = 1 ·D · 1T tracks in order to encode information.
The last M −N tracks will all be equal to the first track, say.

Write r = (ri)i∈V = 1 · DT . A vertex v = 〈vk〉Nk=1 ∈ V N is a typical
vertex (with respect to D) if for all i, the vertex i ∈ V appears as an entry
in v exactly ri times. Also, an edge e = 〈ek〉Nk=1 ∈ EN is a typical edge with
respect to D if for all i, j ∈ V , there are exactly di,j entries ek which—as
edges in G—start at vertex i and terminate in vertex j.

A simple computation shows that the number of outgoing typical edges
from a typical vertex equals

∆ =
∏
i∈V ri!∏

i,j∈V di,j ! · a
−di,j
i,j

(2.5)

(where 00 , 1). For example, in the simpler case where G does not contain
parallel edges (ai,j ∈ {0, 1}), we are in effect counting in (2.5) permutations
with repetitions, each time for a different vertex i ∈ V .

The encoding process will be carried out as follows. We start at some
fixed typical vertex v(0) ∈ V N . Out of the set of outgoing edges from v(0),
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we consider only typical edges. The edge we choose to traverse is determined
by the information bits. After traversing the chosen edge, we arrive at vertex
v(1). By (2.3), v(1) is also a typical vertex, and the process starts over. This
process defines an M -track parallel encoder for S = S(G) at rate

R = R(D) =
blog2 ∆c
M

.

This encoder is (m, 0)-SBD, where m is the memory of G.
Consider now how we map M ·R information bits into an edge choice e ∈

EN at any given stage t. Assuming again the simpler case of a graph with no
parallel edges, a natural choice would be to use an instance of enumerative
coding [12]. Specifically, suppose that for 0 ≤ δ ≤ n, a procedure for
encoding information by an n-bit binary vector with Hamming weight δ were
given. Suppose also that V = {1, 2, . . . , |V |}. We could use this procedure
as follows. First, for n = r1 and δ = d1,1, the binary word given as output
by the procedure will define which d1,1 of the possible r1 entries in e will
be equal to the edge in E from the vertex 1 ∈ V to itself (if no such edge
exists, then d1,1 = 0). Having chosen these entries, we run the procedure
with n = r1−d1,1 and δ = d1,2 to choose from the remaining r1−d1,1 entries
those that will contain the edge in E from 1 ∈ V to 2 ∈ V . We continue
this process, until all r1 entries in e containing an edge outgoing from 1 ∈ V
have been picked. Next, we run the procedure with n = r2 and δ = d2,1,
and so forth. The more general case of a graph containing parallel edges
will include a preliminary step: encoding information in the choice of the
di,j edges used to traverse from i to j (ai,j options for each such edge).

A fast implementation of enumerative coding is presented in Section 2.7.
The above-mentioned preliminary step makes use of the Schönhage–Strassen
integer-multiplication algorithm [2, §7.5], and the resulting encoding time
complexity is proportional1 to M log2M log logM . It turns out that this is
also the decoding time complexity. Further details are given in Section 2.7.

1Actually, the time complexity for the preliminary step can be made linear in M , with

a negligible penalty in terms of rate: Fix i and j, and let η be an integer design parameter.

Assume for simplicity that η|di,j . The number of vectors of length η over an alphabet of

size ai,j is obviously aηi,j . So, we can encode bη log2 ai,jc bits through the choice of such

a vector. Repeating this process, we can encode (di,j/η) · bη log2 ai,jc bits through the

choice of di,j/η such vectors. The concatenation of these vectors is taken to represent our

choice of edges. Note that the encoding process is linear in M for constant η. Also, our

losses (due to the floor function) become negligible for modestly large η.
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The next section shows how to find a good multiplicity matrix, i.e., a
matrix D such that R(D) is close to cap(S(G)).

2.4 Computing a good multiplicity matrix

In order to enhance the exposition of this section, we accompany it by a
running example (see Figure 2.4).

α β

θ

a
b

c

de
AG =

 1 1 0
1 0 1
1 0 0



Figure 2.4: Running Example (1): Graph G and the corresponding
adjacency matrix AG.

Throughout this section, we assume a probability distribution on the
edges of G, which is the maxentropic stationary Markov chain P on G [31].
Without real loss of generality, we can assume that G is irreducible (i.e.,
strongly-connected), in which case P is indeed unique. Let the matrix Q =
(qi,j) be the transition matrix induced by P, i.e., qi,j is the probability of
traversing an edge from i ∈ V to j ∈ V , conditioned on currently being at
vertex i ∈ V .

Let π = (πi) be the 1 × |V | row vector corresponding to the stationary
distribution on V induced by Q; namely, πQ = π and

∑
i∈V πi = 1. Let

M ′ = M − b|V | diam(G)/2c , (2.6)

and define

ρ = (ρi) , ρi = M ′πi , and P = (pi,j) , pi,j = ρiqi,j

Running Example (2): Taking the number of tracks in our running
example (Figure 2.4) to be M = 12 gives M ′ = 9. Also, our running
example has

π =
(

0.619 0.282 0.099
)
,
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and

Q =

 0.544 0.456 0
0.647 0 0.353

1 0 0

 .

Thus,

ρ =
(

5.57 2.54 0.89
)

and

P =

 3.03 2.54 0
1.65 0 0.89
0.89 0 0

 .

�

Note that

ρ = 1 · P T and M ′ = 1 · P · 1T .

Also, observe that (2.2)–(2.4) hold when we substitute P for D. Thus,
if all entries of P were integers, then we could take D equal to P . In a
way, that would be the best choice we could have made: by using Stirling’s
approximation, we could deduce that R(D) approaches cap(S(G)) as M →
∞. However, the entries of P , as well as ρ, may be non-integers.

We say that an integer matrix P̃ = (p̃i,j) is a good quantization of P =
(pi,j) if

M ′ =
∑

i,j∈V pi,j =
∑

i,j∈V p̃i,j , (2.7)⌊∑
j∈V pi,j

⌋
≤
∑

j∈V p̃i,j ≤
⌈∑

j∈V pi,j

⌉
, (2.8)

bpi,jc ≤ p̃i,j ≤ dpi,je , and— (2.9)⌊∑
i∈V pi,j

⌋
≤
∑

i∈V p̃i,j ≤
⌈∑

i∈V pi,j
⌉
. (2.10)

Namely, a given entry in P̃ is either the floor or the ceiling of the corre-
sponding entry in P , and this also holds for the sum of entries of a given
row or column in P̃ ; moreover, the sum of entries in both P̃ and P are
exactly equal (to M ′).

Lemma 2.2 There exists a matrix P̃ which is a good quantization of P .
Furthermore, such a matrix can be found by an efficient algorithm.
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uσ

uω

u′1 u′2 u′i u′|V |

u′′1 u′′2 u′′j u′′|V |

uτ

(M ′, M ′)

(b
∑
j∈V pi,jc, d

∑
j∈V pi,je)

(bpi,jc, dpi,je)

(b
∑
i∈V pi,jc, d

∑
i∈V pi,je)

· · ·

· · ·

· · ·

· · ·

Figure 2.5: Flow network for the proof of Lemma 2.2. An edge labeled
(a, b) has lower and upper bounds a and b, respectively.

Proof. We recast (2.7)–(2.10) as an integer flow problem (see Figures 2.5
and 2.6). Consider the following flow network, with upper and lower bounds
on the flow through the edges [3, §6.7]. The network has the vertex set

{uσ} ∪ {uω} ∪ {uτ} ∪
{
u′i
}
i∈V ∪

{
u′′j
}
j∈V ,

with source uσ and target uτ . Henceforth, when we refer to the upper (lower)
bound of an edge, we mean the upper (lower) bound on the flow through it.
There are four kinds of edges:

1. An edge uσ → uω with upper and lower bounds both equaling to M ′.

2. uω → u′i for every i ∈ V , with the upper and lower bounds b
∑

j∈V pi,jc
and d

∑
j∈V pi,je, respectively.

3. u′i → u′′j for every i, j ∈ V , with the upper and lower bounds bpi,jc
and dpi,je, respectively.

4. u′′j → uτ for every j ∈ V , with the upper and lower bounds b
∑

i∈V pi,jc
and d

∑
i∈V pi,je, respectively.
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uσ

uω

u′
α u′

β u′
θ

u′′
α u′′

β u′′
θ

uτ

9;9

3.03;4

2.54;2 1.65;2

0.89;1

0.89;0

5.57;6
2.54;3

0.89;0

5.57;6
2.54;2

0.89;1

P =

 3.03 2.54 0
1.65 0 0.89
0.89 0 0

 , P̃ =

 4 2 0
2 0 1
0 0 0

 .

Figure 2.6: Running Example (3): Flow network derived from P in
Running Example 2. An edge labeled a; b has lower and upper bounds bac
and dae, respectively. A legal real flow is given by a. A legal integer flow is
given by b. The matrix P̃ resulting from the legal integer flow is given, as

well as the matrix P (again).

We claim that (2.7)–(2.10) can be satisfied if a legal integer flow exists:
simply take p̃i,j as the flow on the edge from u′i to u′′j .

It is well known that if a legal real flow exists for a flow network with
integer upper and lower bounds on the edges, then a legal integer flow exists
as well [3, Theorem 6.5]. Moreover, such a flow can be efficiently found [3,
§6.7]. To finish the proof, we now exhibit such a legal real flow:

1. The flow on the edge uσ → uω is
∑

i,j∈V pi,j = M ′.

2. The flow on an edge uω → u′i is
∑

j∈V pi,j .
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3. The flow on an edge u′i → u′′j is pi,j .

4. The flow on an edge u′′j → uτ is
∑

i∈V pi,j .

�
For the remaining part of this section, we assume that P̃ is a good

quantization of P (say, P̃ is computed by solving the integer flow problem
in the last proof). The next lemma states that P̃ “almost” satisfies (2.3).

Lemma 2.3 Let ρ̃ = (ρ̃i) = 1 · P̃ T and r̃ = (r̃i) = 1 · P̃ . Then, for all
i ∈ V ,

ρ̃i − r̃i ∈ {−1, 0, 1} .

Proof. From (2.8), we get that for all i ∈ V ,

b
∑

j∈V pi,jc ≤ ρ̃i ≤ d
∑

j∈V pi,je . (2.11)

Recall that (2.3) is satisfied if we replace D by P . Thus, by (2.10), we have
that (2.11) also holds if we replace ρ̃i by r̃i. We conclude that |ρ̃i − r̃i| ≤ 1.
The proof follows from the fact that entries of P̃ are integers, and thus so
are those of ρ̃ and r̃. �

The following lemma will be the basis for augmenting P̃ so that (2.3) is
satisfied.

Lemma 2.4 Fix two distinct vertices s, t ∈ V . We can efficiently find
a |V |× |V | matrix F (s,t) = F = (fi,j)i,j∈V with non-negative integer entries,
such that the following three conditions hold.

(i)
1 · F · 1T ≤ diam(G) .

(ii) For all i, j ∈ V ,
fi,j > 0 only if ai,j > 0 .

(iii) Denote ξ = 1 · F T and x = 1 · F . Then, for all i ∈ V ,

xi − ξi =


−1 if i = s,

1 if i = t,

0 otherwise.
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Proof. Let k1 = s, k2, k3 . . . , k`+1 = t be the vertices along a shortest
path from s to t in G. For all i, j ∈ V , define

fi,j = |{1 ≤ h ≤ ` : kh = i and kh+1 = j}| . (2.12)

Namely, fi,j is the number of edges from i to j along the path.
Conditions (i) and (ii) easily follow from (2.12). Condition (iii) follows

from the fact that ξi (xi) is equal to the number of edges along the path for
which i is the start (end) vertex of the edge. �

The matrix P̃ will be the basis for computing a good multiplicity matrix
D, as we demonstrate in the proof of the next theorem.

Theorem 2.5 Let P̃ = (p̃i,j) be a good quantization of P . There exists
a multiplicity matrix D = (di,j) with respect to G and M , such that

1. di,j ≥ p̃i,j for all i, j ∈ V , and—

2. M ′ ≤ 1 ·D · 1T ≤M

(where M ′ is as defined in (2.6)). Moreover, the matrix D can be found by
an efficient algorithm.

Proof. Consider a vertex i ∈ V . If r̃i > ρ̃i, then we say that vertex i has
a surplus of r̃i − ρ̃i. In this case, by Lemma 2.3, we have that the surplus
is equal to 1. On the other hand, if r̃i < ρ̃i then vertex i has a deficiency of
ρ̃i − r̃i, which again is equal to 1.

Of course, since
∑

i∈V ρ̃i =
∑

i∈V r̃i = M ′, the total surplus is equal to
the total deficiency, and both are denoted by Surp:

Surp =
∑
i∈V

max {0, r̃i−ρ̃i} = −
∑
i∈V

min {0, r̃i−ρ̃i} . (2.13)

Denote the vertices with surplus as (sk)
Surp
k=1 and the vertices with defi-

ciency as (tk)
Surp
k=1 . Recalling the matrix F from Lemma 2.4, we define

D = P̃ +
Surp∑
k=1

F (sk,tk) .

We first show that D is a valid multiplicity matrix. Note that Surp ≤
|V | /2. Thus, (2.2) follows from (2.6), (2.7), and (i). The definitions of
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surplus and deficiency vertices along with (iii) give (2.3). Lastly, recall that
(2.4) is satisfied if we replace di,j by pi,j . Thus, by (2.9), the same can be
said for p̃i,j . Combining this with (ii) yields (2.4).

Since the entries of F (sk,tk) are non-negative for every k, we must have
that di,j ≥ p̃i,j for all i, j ∈ V . This, together with (2.2) and (2.7), implies
in turn that M ′ ≤ 1 ·D · 1T ≤M .

�
Running Example (4): For the matrix P̃ in Figure 2.6, we have

r̃ =
(

6 2 1
)
, ρ̃ =

(
6 3 0

)
.

Thus, Surp = 1. Namely, the vertex θ has a surplus while the vertex β has
a deficiency. Taking s = θ and t = β we get

F (s,t) =

 0 1 0
0 0 0
1 0 0

 , and D =

 4 3 0
2 0 1
1 0 0

 .

�
Now that Theorem 2.5 is proved, we are in a position to prove our main

result, Theorem 2.1. Essentially, the proof involves using the Stirling approx-
imation and taking into account the various quantization errors introduced
into D. The proof itself is given in the Appendix.

2.5 Enumerative coding into sequences with a given

Markov type

The main motivation for our methods is 2-D constrained coding. However,
in this section, we show that they might be interesting in certain aspects of
1-D coding as well. Given a labeled graph G, a classic method for building
an encoder for the 1-D constraint S(G) is the state-splitting algorithm [1].
The rate of an encoder built by [1] approaches the capacity of S(G). Also,
the word the encoder outputs has a corresponding path in G, with the
following favorable property: the probability of traversing a certain edge
approaches the maxentropic probability of that edge (assuming an unbiased
source distribution). However, what if we’d like to build an encoder with a
different probability distribution on the edges? This scenario may occur, for
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example, when there is a requirement that all the output words of a given
length N that are generated by the encoder have a prescribed Hamming
weight2.

More formally, suppose that we are given a labeled graph G = (V,E,L);
to make the exposition simpler, suppose that G does not contain parallel
edges. Let Q and π be a transition matrix and a stationary probability
distribution corresponding to a stationary (but not necessarily maxentropic)
Markov chain P on G. We assume w.l.o.g. that each edge in G has a positive
conditional probability. We are also given an integer M , which we will
shortly elaborate on.

We first describe our encoder in broad terms, so as that its merits will be
obvious. Let D and N be as previously defined, and let RT (D) be specified
shortly. We start at some fixed vertex v0 ∈ V . Given M ·RT (D) information
bits, we traverse a soon to be defined cyclic path of length N in G. The
concatenation of the edge labels along the path is the word we output. Of
course, since the path is cyclic, the concatenation of such words is indeed in
S(G). Moreover, the path will have the following key property: the number
of times an edge from i to j is traversed equals di,j . Namely, if we uniformly
pick one of theN edges of the path, the probability of picking a certain edge e
is constant (not a function of the input bits), and is equal to the probability
of traversing e on the Markov chain P, up to a small quantization error.
The rate RT of our encoder will satisfy (2.1), where we replace R by RT and
cap(S) by the entropy of P. We would like to be able to exactly specify the
path length N as a design parameter. However, we specify M and get an N
between M and M − b|V | diam(G)/2c.

Our encoding process will make use of an oriented tree, a term which we
will now define. A set of edges T ⊆ E is an oriented tree of G with root
v0 if |T | = |V | − 1 and for each u ∈ V there exists a path from u to v0

consisting entirely of edges in T (see Figure 2.7). Note that if we reverse the
edge directions of an oriented tree, we get a directed tree as defined in [19,
Theorem 2.5]. Since reversing the directions of all edges in an irreducible

2We remark in passing that one may use convex programming techniques (see [30,

§V]) in order to efficiently solve the following optimization problem: find a probability

distribution on the edges of G yielding a stationary Markov chain with largest possible

entropy, subject to a set of edges (such as the set of edges with label ‘1’) having a prescribed

cumulative probability.
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graph results in an irreducible graph, we have by [19, Lemma 3.3] that an
oriented tree T indeed exists in G, and can be efficiently found. So, let us
fix some oriented tree T with root v0. By [19, Theorem 2.5], we have that
every vertex u ∈ V which is not the root v0 has an out-degree equal to 1.
Thus, for each such vertex u we may define parent(u) as the destination of
the single edge in T going out of u.

v0

Figure 2.7: Oriented tree with root v0.

We now elaborate on the encoding process. The encoding consists of two
steps. In the first step, we map the information bits to a collection of lists.
In the second step, we use the lists in order to define a cyclic path.

First step: Given M · RT (D) information bits, we build for each vertex
i ∈ V a list λ(i) of length ri,

λ(i) = (λ(i)
1 , λ

(i)
2 , . . . , λ(i)

ri ) .

The entries of each λ(i) are vertices in V . Moreover, the following properties
are satisfied for all i:

• The number of times j is an entry in λ(i) is exactly di,j .

• If i 6= v0, then the last entry of the list equals the parent of i. Namely,

λ(i)
ri = parent(i) .

Recalling (2.5), a simple calculation shows that the number of possible
list collections is

∆T = ∆ ·
∏

i∈V \{v0}

di,parent(i)

ri
. (2.14)
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Thus, we define the rate of encoding as

RT =
blog2 ∆T c

M
.

Also, note that as in the 2-D case, we may use enumerative coding in order
to efficiently map information bits to lists.

Second step: We now use the lists λ(i), i ∈ V , in order to construct
a cyclic path starting at vertex v0. We start the path at v0 and build a
length-N path according to the following rule: when exiting vertex i for the
kth time, traverse the edge going into vertex λ(i)

k .
Of course, our encoding method is valid (and invertible) iff we may al-

ways abide by the above-mentioned rule. Namely, we don’t get “stuck”,
and manage to complete a cyclic path of length N . This is indeed the case:
define an auxiliary graph G(D) with the same vertex set, V , as G and di,j
parallel edges from i to j (for all i, j ∈ V ). First, recall that for sufficiently
large M , the presence of an edge from i to j in G implies that di,j > 0. Thus,
since G was assumed to be irreducible, G(D) is irreducible as well. Also, an
edge in T from i to j implies the existence of an edge in G(D) from i to j.
Secondly, note that by (2.3), the number of times we are supposed to exit a
vertex is equal to the number of times we are supposed to enter it. The rest
of the proof follows from [40, p. 56, Claim 2], applied to the auxiliary graph
G(D). Namely, our encoder follows directly from van Aardenne-Ehrenfest
and de Bruijn’s [42] theorem on counting Eulerian cycles in a graph.

We now return to the rate, RT , of our encoder. From (2.6), (2.9), (2.10)
and Theorem 2.5, we see that for M sufficiently large, ∆T is greater than
some positive constant times ∆. Thus, (2.1) still holds if we replace R by
RT and cap(S) by the entropy of P.

2.6 An example, and two improvement techniques

Recall from Section 2.2 the square constraint: its elements are all the bi-
nary arrays in which no two ‘1’ symbols are adjacent on a row, column, or
diagonal. By employing the methods presented in [9], we may calculate an
upper bound on the rate of the constraint. This turns out to be 0.425078.
We will show an encoding/decoding method with rate slightly larger than
0.396 (about 93% of the upper bound). In order to do this, we assume that
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the array has 100,000 columns. Our encoding method has a fixed rate and
has a vertical window of size 2 and vertical anticipation 0.

We should point out now that a straightforward implementation of the
methods we have previously defined gives a rate which is strictly less than
0.396. Namely, this section also outlines two improvement techniques which
help boost the rate.

We start out as in the example given in Section 2.2, except that the width
of the data strips is now wd = 9 (the width of the merging strips remains
wm = 1). The graph G we choose produces all width-wd arrays satisfying
the kings constraint, and we take the merging strips to be all-zero. Our
array has 100,000 columns, so we have M = 10,000 tracks (the last, say,
column of the array will essentially be unused; we can set all of its values to
0).

Define the normalized capacity as

cap(S(G))
wd + wm

.

The graph G has |V | = 89 vertices and normalized capacity

cap(S(G))
wd + wm

≈ cap(S(G))
wd + wm(1− 1/M)

≈ 0.402 .

This number is about 94.5% from the upper bound on the capacity of our
2-D constraint. Thus, as expected, there is an inherent loss in choosing to
model the 2-D constraint as an essentially 1-D constraint. Of course, this
loss can be made smaller by increasing wd (but the graph G will grow as
well).

From Theorem 2.1, the rate of our encoder will approach the normalized
capacity of 0.402 as the number of tracks M grows. So, once the graph
G is chosen, the parameter we should be comparing ourselves to is the
normalized capacity. We now apply the methods defined in Section 2.4
and find a multiplicity matrix D. Recall that the matrix D defines an
encoder. In our case, this encoder has a rate of about 0.381. This is 94% of
the normalized capacity, and is quite disappointing (but the improvements
shown in Sections 2.6.1 and 2.6.2 below are going to improve this rate). On
the other hand, note that if we had limited ourselves to encode to each track
independently of the others, then the best rate we could have hoped for with
0 vertical anticipation turns out to be 0.3 (see [29, Theorem 5]).
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2.6.1 Moore-style reduction

We now define a graph G which we call the reduction of G. Essentially, we
will encode by constructing paths in G, and then translate these to paths in
G. In both G and G, the maxentropic distributions have the same entropy.
The main virtue of G is that it often has less vertices and edges compared to
G. Thus, the penalty in (2.1) resulting from using a finite number of tracks
will often be smaller.

For s ≥ 0, we now recursively define the concept of s-equivalence (very
much like in the Moore algorithm [31, page 1660]).

• For s = 0, any two vertices v1, v2 ∈ V are 0-equivalent.

• For s > 0, two vertices v1, v2 ∈ V are s-equivalent iff 1) the two vertices
v1, v2 are (s − 1)-equivalent, and 2) for each (s − 1)-equivalence class
c, the number of edges from v1 to vertices in c is equal to the number
of edges from v2 to vertices in c.

Denote by Πs the partition induced by s-equivalence. For the graph G given
in Figure 2.3,

Π0 = {0000,0001,0010,0100,0101,1000,1001,1010} ,

Πs≥1 ={0000},{0010,0100},{1000,0001},{1010,1001,0101} .

Note that, by definition, Πs+1 is a refinement of Πs. Thus, let s′ be the
smallest s for which Πs = Πs+1. The set Πs′ can be efficiently found (essen-
tially, by the Moore algorithm [31, page 1660]).

Define a (non-labeled) graph G = (V,E) as follows. The vertex set of G

is
V = Πs′ .

For each c ∈ V, let v(c) be a fixed element of c (if c contains more than one
vertex, then pick one arbitrarily). Also, for each v ∈ V , let c(v) be the class
c ∈ V such that v ∈ c. Let σG(e) (σG(e)) and τG(e) (τG(e)) denote the start
and end vertex of an edge e in G (G), respectively. The edge set E is defined
as

E =
⋃
c∈V

{e ∈ E : σG(e) = v(c)} , (2.15)

where
σG(e) = c(σG(e)) and τG(e) = c(τG(e)) .
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Namely, the number of edges from c1 to c2 in G is equal to the number of
edges in G from some fixed v1 ∈ c1 to elements of c2, and, by the definition
of s′, this number does not depend on the choice of v1. The graph G is
termed the reduction of G. The reduction of G from Figure 2.3 is given in
Figure 2.8. Note that since G was assumed to be irreducible, we must have
that G is irreducible as well.

{0000} {0100, 0010}

{1000, 0001}

{1010, 1001, 0101}

Figure 2.8: Reduction of the graph G from Figure 2.3.

Lemma 2.6 The entropies of the maxentropic Markov chains on G and
G are equal.

Proof. Let A = AG be the adjacency matrix of G, and recall that
A = AG is the adjacency matrix of G. Let λ′ and x′ = (x′c)c∈V be the
Perron eigenvalue and right Perron eigenvector of A, respectively [31, §3.1].
Next, define the vector x = (xv)v∈V as

xv = x′c(v) .

It is easily verifiable that x is a right eigenvector of A, with eigenvalue λ′.
Now, since x′ is a Perron eigenvector of an irreducible matrix, each entry of
it is positive. Thus, each entry of x is positive as well. Since A is irreducible,
we must have that x is a Perron eigenvector of A. So, the Perron eigenvalue
of A is also λ′. �

The next lemma essentially states that we can think of paths in G as if
they were paths in G.

Lemma 2.7 Let ` ≥ 1. Fix some c0, c`+1 ∈ V, and v0 ∈ c0. There exists
a one-to-one correspondence between the following sets. First set: paths of

43



length ` in G with start vertex c0 and end vertex c`+1. Second set: paths of
length ` in G with start vertex v0 and end vertex in c`+1.

Moreover, for 1 ≤ t ≤ ` − 1, the first t edges in a path belonging to the
second set are a function of only the first t edges in the respective path in
the first set.

Proof. We prove this by induction on `. For ` = 1, we have

|{e ∈ E : σG(e) = c0 , τG(e) = c1}| =
|{e ∈ E : σG(e) = v0 , τG(e) ∈ c1}| .

To see this, note that we can assume w.l.o.g. that v0 = v(c0), and then recall
(2.15). For ` > 1, combine the claim for `− 1 with that for ` = 1. �

Notice that diam(G) ≤ diam(G). We now show why G is useful.

Theorem 2.8 Let D be the multiplicity matrix found by the methods
previously outlined, where we replace G by G. Let N = 1 · D · 1T . We may
efficiently encode (and decode) information to G⊗N in a row-by-row manner
at rate R(D).

Proof. We conceptually break our encoding scheme into two steps. In
the first step, we “encode” (map) the information into N paths in G, each
path having length `. We do this as previously outlined (through typical
vertices and edges in G). Note that this step is done at a rate of R(D). In
the second step, we map each such path in G to a corresponding path in
G. By Lemma 2.7, we can indeed do this (take c0 as the first vertex in the
path, c`+1 as the last vertex, and v0 = v(c0)).

By Lemma 2.7 we see that this two-step encoding scheme can easily be
modified into one that is row-by-row. �

Applying the reduction to our running example (kings constraint with
wd = 9 and wm = 1), reduces the number of vertices from 89 in G to 34 in
G. The computed D increases the rate to about 0.392, which is 97.5% of the
normalized capacity.

2.6.2 Break-merge

Let G⊗N be the Nth Kronecker power of the Moore-style reduction G. Recall
that the rate of our encoder is

R(D) =
blog2 ∆c
M

,
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where ∆ is the number of typical edges in G⊗N going out of a typical vertex.
The second improvement involves expanding the definition of a typical edge,
thus increasing ∆. This is best explained through an example. Suppose
that G has Figure 2.9 as a subgraph; namely, we show all edges going out
of vertices α and β. Also, let the numbers next to the edges be equal to the
corresponding entries in D. The main thing to notice at this point is that
if the edges to ε and ζ are deleted (“break”), then α and β have exactly
the same number of edges from them to vertex j, for all j ∈ V (after the
deletion of edges, vertices α and β can be “merged”).

ε ζ

α β

θ δ

5 2

4 7

3 9

Figure 2.9: Break-merge example graph.

Let v be a typical vertex. A short calculation shows that the number of
entries in v that are equal to α (β) is 5 + 4 + 3 = 12 (9 + 7 + 2 = 18). Recall
that the standard encoding process consists of choosing a typical edge e
going out of the typical vertex v and into another typical vertex v′. We now
briefly review this process. Consider the 12 entries in v that are equal to
α. The encoding process with respect to them will be as follows (see Figure
2.10):

• Out of these 12 entries, choose 5 for which the corresponding entry in
v′ will be ε. Since there is exactly one edge from α the ε in G, the
corresponding entries in e must be equal to that edge.

• Next, from the remaining 7 entries, choose 4 for which the correspond-
ing entries in v′ will be θ. There are two parallel edges from α to θ,
so choose which one to use in the corresponding entries in e.

• We are left with 3 entries, the corresponding entries in v′ will be δ.
Also, we have one option as to the corresponding entries in e.
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v = α

12

β

18

. . .

v′ = ε

5

θ

4

δ

3

θ

9

δ

7

ζ

2

. . .

Figure 2.10: Illustration of the entries in two typical vertices v, v′, where
we got from v to v′ by the standard encoding process.

A similar process is applied to the entries in v that are equal to β. Thus,
the total number of options with respect to these entries is

12! · 24

5! · 4! · 3!
· 18! · 29

2! · 9! · 7!
≈ 3.97 · 1014 .

Next, consider a different encoding process (see Figure 2.11).

• Out of the 12 entries in v that are equal to α, choose 5 for which
the corresponding entry in v′ will be ε. As before, the corresponding
entries in e have only one option.

• Out of the 18 entries in v that are equal to β, choose 2 for the corre-
sponding entry in v′ will be ζ. Again, one option for entries in e.

• Now, of the remaining 23 entries in v that are equal to α or β, choose
4 + 9 = 13 for which the corresponding entry in v′ will be θ. We have
two options for the entries in e.

• We are left with 3+7 = 10 entries in v that are equal to α or β. These
will have δ as the corresponding entry in v′, and one option in e.

Thus, the total number of options is now(
12
5

)
·
(

18
2

)
· 23! · 213

13! · 10!
≈ 1.14 · 1015 .

The important thing to notice is that in both cases, we arrive at a typical
vertex v′.
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v = α

12

β

18

. . .

v′ = ε

5

θ

13

δ

10

ζ

2

. . .

Figure 2.11: Illustration of the entries in two typical vertices v, v′, where
we got from v to v′ by the improved encoding process. The shaded part

corresponds to vertices that were merged.

To recap, we first “broke” the entries in v that are equal to α into two
groups: Those which will have ε as the corresponding entry in v′ and those
which will have θ or δ as the corresponding entry. Similarly, we broke entries
in v that are equal to β into two groups. Next, we noticed that of these
four groups, two could be “merged”, since they were essentially the same.
Namely, removing some edges from the corresponding vertices in G resulted
in vertices which were mergeable.

Of course, these operations can be repeated. The hidden assumption is
that the sequence of breaking and merging is fixed, and known to both the
encoder and decoder. The optimal sequence of breaking and merging is not
known to us. We used a heuristic. Namely, choose two vertices such that
the sets of edges emanating from both have a large overlap. Then, break
and merge accordingly. This was done until no breaking or merging was
possible. We got a rate of about 0.396, which is 98.5% of the normalized
capacity.

2.7 Fast enumerative coding

Recall from Section 2.3 that in the course of our encoding algorithm, we
make use of a procedure which encodes information into fixed-length binary
words of constant weight. A way to do this would be to use enumerative
coding [12]. Immink [27] showed a method to significantly improve the
running time of an instance of enumerative coding, with a typically negligible
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penalty in terms of rate. We now briefly show how to tailor Immink’s method
to our needs.

Denote by n and δ the length and Hamming weight, respectively, of the
binary word we encode into. Some of our variables will be floating-point
numbers with a mantissa of µ bits and an exponent of ε bits: each floating-
point number is of the form x = a · 2b where a and b are integers such
that

2µ ≤ a < 2µ+1 and − 2ε−1 ≤ b < 2ε−1 .

Note that µ + ε bits are needed to store such a number. Also, note that
every positive real x such that

2µ · 2−2ε−1 ≤ x ≤ (2µ+1 − 1) · 22ε−1−1

has a floating point approximation x with relative precision(
1− 1

2µ

)
≤ x

x
≤
(

1 +
1
2µ

)
. (2.16)

We assume the presence of two look-up tables. The first will contain the
floating-point approximations of 1!, 2!, . . . , n!. The second will contain the
floating-point approximations of f(0), f(1), . . . , f(δ), where

f(χ) = fµ(χ) = 1− 32χ+ 16
2µ

.

In order to exclude uninteresting cases, assume that µ ≥ 10 and is such
that f(δ) ≥ 1/2. Also, take ε large enough so that n! is less than the
maximum number we can represent by floating point. Thus, we can assume
that µ = O(log δ) and ε = O(log n).

Notice that in our case, we can bound both n and δ from above by the
number of tracks M . Thus, we will actually build beforehand two look-up
tables of size 2M(µ+ ε) bits.

Let x denote the floating-point approximation of x, and let ∗ and ÷
denote floating-point multiplication and division, respectively. For 0 ≤ χ ≤
κ ≤ n we define ⌈

κ

χ

⌉
=
⌈
(κ! ∗ f(χ))÷ (χ! ∗ (κ− χ)!)

⌉
.

Note that since we have stored the relevant numbers in our look-up table,
the time needed to calculate the above function is only O(µ2 + ε). The
encoding procedure is given in Figure 2.12. We note the following points:
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• The variables n, ψ, δ and ι are integers (as opposed to floating-point
numbers).

• In the subtraction of
⌈
n−ι
δ−1

⌉
from ψ in line 5, the floating-point number⌈

n−ι
δ−1

⌉
is “promoted” to an integer (the result is an integer).

Name: EnumEncode(n, δ, ψ)

Input: Integers n, δ, ψ such that 0 ≤ δ ≤ n and 0 ≤ ψ <
⌈
n
δ

⌉
.

Output: A binary word of length n and weight δ.

if (δ == 0) // stopping condition: /* 1 */
return 00 . . . 0︸ ︷︷ ︸

n

; /* 2 */

for (ι← 1; ι ≤ n− δ + 1; ι++) { /* 3 */
if (ψ ≥

⌈
n−ι
δ−1

⌉
) /* 4 */

ψ ← ψ −
⌈
n−ι
δ−1

⌉
; /* 5 */

else /* 6 */
return 00..0︸︷︷︸

ι−1

1‖EnumEncode(n− ι, δ − 1, ψ); /* 7 */

} /* 8 */

Figure 2.12: Enumerative encoding procedure for constant-weight binary
words.

We must now show that the procedure is valid, namely, that given a valid
input, we produce a valid output. For our procedure, this reduce to showing
two things: 1) If the stopping condition is not met, a recursive call will be
made. 2) The recursive call is given valid parameters as well. Namely, in
the recursive call, ψ is non-negative. Also, for the encoding to be invertible,
we must further require that 3)

⌈
n
0

⌉
= 1 for n ≥ 0.

Condition 2 is clearly met, because of the check in line 4. Denote〈
κ

χ

〉
= (κ! ∗ f(χ))÷ (χ! ∗ (κ− χ)!)

(and so,
⌈
κ
χ

⌉
= d
〈
κ
χ

〉
e). Condition 3 follows from the next lemma.
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Lemma 2.9 Fix 0 ≤ δ ≤ n. Then,(
n

δ

)
·
(

1− 32(δ + 1)
2µ

)
≤
〈
n

δ

〉
≤
(
n

δ

)
·
(

1− 32δ
2µ

)
.

Proof. The proof is essentially repeated invocations of (2.16) on the
various stages of computation. We leave the details to the reader. �

Finally, Condition 1 follows easily from the next lemma.

Lemma 2.10 Fix 0 ≤ δ ≤ n. Then,⌈
n

δ

⌉
≤

n−δ+1∑
ι=1

⌈
n− ι
δ − 1

⌉
.

Proof. The claim will follow if we show that〈
n

δ

〉
≤

n−δ+1∑
ι=1

〈
n− ι
δ − 1

〉
.

This is immediate from Lemma 2.9 and the binomial identity(
n

δ

)
=

n−δ+1∑
ι=1

(
n− ι
δ − 1

)
.

�
Note that the penalty in terms of rate one suffers because of using

our procedure (instead of plain enumerative coding) is negligible. Namely,
log2

⌈
n
δ

⌉
can be made arbitrarily close to log2

(
n
δ

)
. Since we take ε = O(log n)

and µ = O(log δ), we can show by amortized analysis that the running time
of the procedure is O(n log2 n). Specifically, see [11, Section 17.3], and take
the potential of the binary vector corresponding to ψ as the number of
entries in it that are equal to ‘0’. The decoding procedure is a straight-
forward “reversal” of the encoding procedure, and its running time is also
O(n log2 n).

Appendix

Proof of Theorem 2.1: Let ∆̃ be as in (2.5), where we replace di,j by
p̃i,j and ri by ρ̃i. By the combinatorial interpretation of (2.5), and the fact
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that di,j ≥ p̃i,j for all i, j ∈ V , it easily follows that ∆ ≥ ∆̃. Thus,

R(D) ≥ blog2 ∆̃c
M

=
M ′

M
· blog2 ∆̃c

M ′
.

Denote by e the base of natural logarithms. By Stirling’s formula we
have

log2(t!) = t log2(t/e) +O(log t) ,

and from (2.5) we get that

log2 ∆̃ =
∑
i∈V

ρ̃i log2(ρ̃i/e)−
∑
i,j∈V

p̃i,j log2(p̃i,j/e)

+
∑
i,j∈V

p̃i,j log2(ai,j)−O(|V |2 logM) .

By (2.7) and (2.9),∑
i,j∈V

p̃i,j log2(ai,j) =
∑
i,j∈V

pi,j log2(ai,j) − O
(
|V |2 log2(amax/amin)

)
.

Since
∑

j p̃i,j = ρ̃i, we have∑
i∈V

ρ̃i log2(ρ̃i/e)−
∑
i,j∈V

p̃i,j log2(p̃i,j/e)

=
∑
i∈V

ρ̃i log2(ρ̃i)−
∑
i,j∈V

p̃i,j log2(p̃i,j) .

Moreover, by (2.8) and (2.9), the RHS of the last equation equals∑
i∈V

ρi log2(ρi)−
∑
i,j∈V

pi,j log2(pi,j)−O(|V |2) .

We conclude that

log2 ∆̃ =
∑
i∈V

ρi log2(ρi)−
∑
i,j∈V

pi,j log2(pi,j)

+
∑
i,j∈V

pi,j log2(ai,j)−O
(
|V |2(logM · amax/amin)

)
.

Lastly, recall that ρi = M ′πi and pi,j = ρiqi,j . Thus,

log2 ∆̃ = M ′H(P)−O
(
|V |2(logM · amax/amin)

)
,
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where H(P) is the entropy of the stationary Markov chain P with tran-
sition matrix Q. Recall that P was selected to be maxentropic: H(P) =
cap(S(G)). This fact, along with (2.6) and a short calculation, finishes the
proof. �
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Chapter 3

Bounds on the Rate of 2-D

Bit-Stuffing Encoders

In this chapter, we present a method for bounding the rate of bit-stuffing
encoders. Instead of considering the original encoder, we consider a related
one which is quasi-stationary. We use the quasi-stationary property in order
to formulate linear requirements that must hold on the probabilities of the
constrained arrays that are generated by the encoder. These requirements
are used as part of a linear program. The minimum and maximum of the
linear program bound the rate of the encoder from below and from above,
respectively.

A lower bound on the rate of an encoder is also a lower bound on the
capacity of the corresponding constraint. For some constraints, our results
lead to tighter lower bounds than what was previously known.

3.1 Introduction

Consider a 2-D constraint S defined over some finite alphabet Σ. Informally,
a bit-stuffing encoder for S operates as follows. We encode information to
an M ×N rectangular array; namely, we produce an array a ∈ S ∩ ΣM×N .
We first initialize the “boundaries” of the array (formally defined later)
according to some fixed probability distribution. Then, we write to the
“interior” of the array in raster fashion: row-by-row. The symbol currently
written is the result of a coin toss. The probability distribution of the
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1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

Figure 3.1: Binary array satisfying the kings constraint. If we flip any one
(or more) of the highlighted “0” bits to “1”, then the resulting array will

not satisfy the kings constraint.

coin is a function of neighboring symbols, which have already been written.
However, the “coins” used are in fact (invertible) probability transformers,
the input of which is the information we wish to encode. Thus, information
can be encoded, and decoded.

A bit-stuffing encoder is “variable-rate.” The bit-stuffing technique was
initially devised for encoding one-dimensional (1-D) constraints [5]. In [25]
and [37], bit-stuffing encoders for specific 2-D constraints were presented
and analyzed. In [22], a slightly different definition of bit-stuffing was used
to give lower bounds on the capacity of specific 2-D constraints.

In this chapter, we derive upper and lower bounds on the rate of a general
bit-stuffing encoder. A lower bound on the rate of an encoder is also a lower
bound on the capacity of the corresponding constraint:

cap(S) = lim
M,N→∞

1
M ·N

· log2

∣∣S ∩ ΣM×N ∣∣ .
For some constraints, our results lead to tighter lower bounds on capacity
than what was previously known.

Fix some 2-D constraint S over an alphabet Σ. As a running example,
consider the kings constraint Skgs, defined over the binary alphabet Σkgs =
{0, 1} (see Figure 3.1). A binary array satisfies the kings constraint if each
entry set to “1” has all of its eight neighbors set to “0”. Namely, two entries
equal to “1” may not appear consecutively along a row, column, or diagonal.

The rest of this chapter is organized as follows. In Sections 3.2 and 3.3,
we define our notation and our model of a bit-stuffing encoder, respectively.
In Section 3.4, we define the concept of quasi-stationarity. We also prove
that, w.l.o.g., we may assume that our encoder is quasi-stationary. In Sec-
tion 3.5, we take advantage of the quasi-stationary property and define a
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linear program. The minimum (maximum) of the linear program bounds
the rate of our encoder from below (above). Finally, Section 3.6 states a
generic lower bound on capacity, and contains examples where this bound
improves on previous results.

We note at this point that although this chapter deals with 2-D con-
straints, our method can be easily generalized to higher dimensions as well.

3.2 Notation

We first recall the relevant notation from Section 1.2, and add some new
notation.

Parallelogram and rectangle: For M,N > 0 and t ≥ 0, denote

B(t)
m,n = {(i, j) : 0 ≤ i < M , 0 ≤ t · i+ j < N} .

Also, for t = 0, denote
BM,N = B(0)

m,n .

Configuration: Let a = (ai,j)(i,j)∈U be a 2-D configuration over Σ. Namely,
the index set satisfies U ⊆ Z2, and for all (i, j) ∈ U we have that ai,j ∈ Σ.

Shifts: For integers α, β we denote the shifted index set as

σα,β(U) = {(i+ α, j + β) : (i, j) ∈ U} .

Also, by abuse of notation, let σα,β(a) be the shifted configuration (with
index set σ(U)):

σα,β(a)i+α,j+β = ai,j .

Restriction of configuration: For an index set Ψ ⊆ U, denote the restric-
tion of a to Ψ by a[Ψ] = (a[Ψ]i,j)(i,j)∈Ψ. Namely,

a[Ψ]i,j = ai,j , where (i, j) ∈ Ψ .

Shift and restrict: Let τα,β(a,Ψ) be shorthand for

τα,β(a,Ψ) = (σ−α,−β(a))[Ψ] .

Namely, shift the configuration a such that index (α, β) is now index (0, 0),
and then restrict to Ψ.
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Boundary: Denote by ∂(U,Ψ) the set of all the indexes (α, β) ∈ U for which
the “shift and restrict” operation is invalid.

∂(U,Ψ) = {(α, β) ∈ U : σα,β(Ψ) 6⊆ U} .

The index set ∂(U,Ψ) is termed the “boundary,” and the “interior” is

∂̄(U,Ψ) = U \ ∂(U,Ψ) .

When U = BM,N and Ψ is understood from the context, we abbreviate

∂M,N = ∂(BM,N ,Ψ) , ∂̄M,N = ∂̄(BM,N ,Ψ) .

Figure 3.2 shows an example of such sets, where

Ψ = {(0,−2), (0,−1), (−1,−1), (−1, 0), (−1, 1)} . (3.1)

Restriction of constraint: Denote the restriction of S to U by

S[U] = {a : there exists a′ ∈ S such that a′[U] = a} .

If U = BM,N , then we abbreviate

SM,N = S[BM,N ] .

Lexicographic ordering: We define a lexicographic ordering ≺lex on Z2 as

(i′, j′) ≺lex (i, j) ⇐⇒ (i′ < i) or (i′ = i and j′ < j) .

Also, we define the index set

Ti,j =
{

(i′, j′) : (i′, j′) ≺lex (i, j)
}
. (3.2)

3.3 Bit stuffer definitions

In this section, we present the formal definition of bit-stuffing encoders. A
bit-stuffing encoder for S is defined through a triple

E = (Ψ, µ, δ = (δM,N )M,N>0) .

56



•

N

M

Ψ

BM,N

∂M,N

∂̄M,N

−1

0

1

2

3

4

−2 −1 0 1 2 3 4 5 6 7

Figure 3.2: The index (0, 0) is represented by •. We take Ψ as in (3.1), and
it is represented by the diagonally striped cells. We set M = 5 and N = 8.

The index set BM,N is represented by the shaded part (both light and
dark). The boundary ∂M,N is represented by the lighter shaded part, while

the interior ∂̄M,N is represented by the darker shaded part.

The set
Ψ ⊆ T0,0 (3.3)

is termed the neighbor set. The conditional probability function µ,

µ(·|·) , µ : Σ× S[Ψ]→ [0, 1] ,

is a conditional probability distribution on Σ, given an element of S[Ψ]. For
M,N > 0, the boundary probability function

δM,N : S[∂M,N ]→ [0, 1]

is a probability distribution on S[∂M,N ]. From here onward, we fix E .
For our running example, let the neighbor set Ψkgs = Ψ be as in (3.1),

and define ϕ(0), ϕ(1) ∈ Skgs[Ψ] as

ϕ
(0)
0,−2=0 ϕ

(0)
0,−1=0 ϕ

(0)
−1,−1=0 ϕ

(0)
−1,0=0 ϕ

(0)
−1,1=0

ϕ
(1)
0,−2=1 ϕ

(1)
0,−1=0 ϕ

(1)
−1,−1=0 ϕ

(1)
−1,0=0 ϕ

(1)
−1,1=0

(see Figure 3.3). Also, take the conditional probability function as

µkgs(1|ϕ) = 1− µkgs(0|ϕ) =


0.258132 ϕ = ϕ(0)

0.312231 ϕ = ϕ(1)

0 otherwise .

(3.4)
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ϕ(0) =
0 0 0

0 0 •
ϕ(1) =

0 0 0
1 0 •

Figure 3.3: The two non-trivial configurations for µ in our running
example, where • designates coordinate (0, 0).

Thus, µkgs(·|·) can be implemented using two coins (one for the context ϕ(0)

and one for ϕ(1)). For our running example, we take δM,N as the function
equal to 1 for the all zero boundary (0)(i,j)∈∂M,N , and 0 for all other members
of Skgs[∂M,N ].

Given integers M,N > 0, the bit-stuffing encoder E defines a probabil-
ity measure on the elements a = (ai,j)(i,j)∈BM,N of BM,N , in the following
manner. As a first step, we set the boundary a[∂M,N ], according to the
probability distribution δM,N . Next, we write the contents of the interior
of a in raster fashion: row-by-row, from left to right. The probability of
writing w ∈ Σ in entry (i, j) ∈ ∂̄M,N is given by

Prob(ai,j = w) = µ(w|(τi,j(a,Ψ)) .

Specifically, note that when writing entry (i, j), we have by (3.3) that τi,j(a)
is a function of entries of a which have already been written. A fundamental
requirement for Ψ and µ is that for every M , N , and δM,N , the support of
the probability measure thus defined is contained in SM,N .

Let
A(E ,M,N) = A = (Ai,j)(i,j)∈BM,N

be a random variable taking values on SM,N according to the measure we
have just defined. Namely,

Prob(A = a) = δM,N (a[∂M,N ]) ·
∏

(i,j)∈∂̄M,N

µ(ai,j |τi,j(a,Ψ)) . (3.5)

We now explain how E is used to actually encode information. The “coin
tosses” corresponding to the invocations of µ are, in effect, a function of the
information we wish to encode. Specifically, the values of the tosses are the
output of distribution transformers on the input stream (the mapping from
the input stream to the sequence of coin tosses is one-to-one) [37]. Thus, we
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may encode information, and also decode it. So, we define the rate of our
encoder as

R(E) , lim inf
M,N→∞

H(A[∂̄M,N ]|A[∂M,N ])
M ·N

,

where
A = A(E ,M,N) .

Note that since

lim inf
M,N→∞

∣∣∂̄M,N

∣∣
M ·N

= 1 ,

we also have that

R(E) = lim inf
M,N→∞

H(A(E ,M,N))
M ·N

.

3.4 Quasi-stationarity

Fix k > 0. Define the random variable

A(k)(E ,M,N) = A(k) = (A(k)
i,j )(i,j)∈BM,N

taking values on SM,N as follows. For w ∈ SM,N , we have

Prob(A(k)=w) =
1
k2

∑
0≤i,j<k

Prob(σ−i,−j(A′[BM,N ])=w) ,

where
A′ = A(E ,M + k − 1, N + k − 1) .

Namely, givenA′, we randomly and uniformly pick anM×N sub-configuration
of it, and shift accordingly. The usefulness of A(k) is that it is “quasi-
stationary” [25, §6].

Lemma 3.1 ([25, Proposition 6.1]) Let E, M , N , and k be given.
Let U ⊆ BM,N be an index set, and let w ∈ S[U] be given. Suppose that
for given integers α, β we have that σα,β(U) ⊆ BM,N . Denote A(k) =
A(k)(E ,M,N). Then,∣∣∣Prob(A(k)[U] = w)− Prob(A(k)[σα,β(U)] = σα,β(w))

∣∣∣ ≤ |α|+ |β|
k

.
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Next, we show that A(k) is a random variable corresponding to an en-
coder very similar to E . First, define δ(k) = (δ(k)

M,N )M,N>0, where

δ
(k)
M,N : S[∂M,N ]→ [0, 1]

(that is, δ(k)
M,N is a probability distribution on S[∂M,N ]), and for every d ∈

S[∂M,N ],
δ

(k)
M,N (d) = Prob(A(k)(E ,M,N)[∂M,N ] = d) .

Next, define the encoder E(k) as

E(k) = (Ψ, µ, δ(k)) . (3.6)

Lemma 3.2 ([25, Proposition 6.2]) The probability distributions of
A(k)(E ,M,N) and A(E(k),M,N) are equal.

The next lemma essentially states that the normalized entropies of A
and A(k) are asymptotically equal (for M,N →∞ and k fixed). The proof
is straightforward.

Lemma 3.3 Fix an integer k > 0. Then,

R(E) = R(E(k)) .

It follows from Lemma 3.3 that we can obtain bounds on R(E) by bound-
ing instead the rate of the quasi-stationary encoder E(k). And, indeed, quasi-
stationarity will turn out to be useful for this purpose.

3.5 Linear program

In this section, we present lower and upper bounds on R(E). The bounds
will be expressed as values of corresponding linear programs.

For r, s > 0 and t ≥ 0, we say that the parallelogram B
(t)
r,s is valid with

respect to the neighbor set Ψ if the set{
(α, β) : (Ψ ∪ (0, 0)) ⊆ σα,β(B(t)

r,s)
}

(3.7)

is non-empty. Namely, some shift of the parallelogram includes the neighbor
set Ψ and (0, 0). From here onward, we fix r, s, and t so that B

(t)
r,s is valid.
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• •

Ψ

Λ

Γ
t = 1

(u, v) = (−1,−1)
t = 0

(u, v) = (−1,−2)

r = 4, s = 5

Figure 3.4: The index sets Ψ, Λ, and Γ. The index sets are shown for
r = 4, s = 5, and for both t = 0 and t = 1. The index (0, 0) is represented
by •. We take Ψ as in (3.1), and it is represented by the diagonally striped

cells. The index set Λ is represented by the shaded part (both light and
dark). The boundary Γ is represented by the lighter shaded part. Note

that Ψ ⊆ Γ ⊆ Λ.

Also, we fix u and v, where (u, v) is the largest element of (3.7), with respect
to the ordering ≺lex.

Denote (see Figure 3.4)

Λ = σu,v(B(t)
r,s) , Γ = ∂(Λ,Ψ) .

For an as yet unspecified probability distribution over S[Γ]

π(z) , z ∈ S[Γ] ,

define the random variable Y taking values on S[Λ] as follows. For y ∈ S[Λ],

Prob(Y = y) = π(y[Γ])
∏

(i,j)∈Λ\Γ

µ(yi,j |τi,j(y,Ψ)) (3.8)

(compare to (3.5)). Note that Prob(Y = y) is a linear function of the various
π(z)’s. Next, define

Λ′ = σu,v(B
(t)
r−1,s) , Λ′′ = σu,v(B

(t)
r,s−1) ,

and
Γ′ = ∂(Λ′,Ψ) , Γ′′ = ∂(Λ′′,Ψ) .

Consider the linear program in Figure 3.5. First, note that it is indeed
a linear program. Namely, recall that by (3.8), the probability distribution
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of Y is a linear function of the π(z)’s. Thus, both sides of (3.9) and (3.10)
are also linear functions of the π(z)’s. For example, the LHS of (3.9) equals∑

y∈S[Λ] : y[Γ′]=z′

π(y[Γ])
∏

(i,j)∈Λ\Γ

µ(yi,j |τi,j(y,Ψ)) .

Denote the value of the linear program when minimizing by lp∗min = lp∗min(E),
and when maximizing by lp∗max = lp∗max(E). Since (3.5) and (3.8) are very
similar, we may intuitively say that E outputs Y . The optimization is over
the probability distribution of the boundary Y [Γ]. The linear requirements
(3.9) and (3.10) are added to force the distribution of Y to be stationary.
The objective function is the rate at point (0, 0).

The following theorem is our main result.

Theorem 3.4 For the linear program in Figure 3.5, we have that

lp∗min ≤ R(E) ≤ lp∗max .

In order to prove the theorem, we first state and prove a lemma, on a
slightly modified linear program.

Lemma 3.5 Fix k > 0, and replace (3.9) and (3.10) in Figure 3.5 by∣∣∣Prob(Y [Γ′] = z′)− Prob(Y [σ0,1(Γ′)] = σ0,1(z′))
∣∣∣ ≤ 1

k

and∣∣∣Prob(Y [Γ′′] = z′′) − Prob(Y [σ1,−t(Γ′′)] = σ1,−t(z′′))
∣∣∣ ≤ t+ 1

k
,

respectively.
Denote the minimum and maximum of the resulting linear program as

lp(k)
min and lp(k)

max, respectively. Then,

lp(k)
min ≤ R(E) ≤ lp(k)

max .

Proof. Consider E(k) (as defined by (3.6)). For given M and N , define
the index sets

D = ∂(BM,N ,Λ) , I = ∂̄(BM,N ,Λ) .

Obviously,

lim
M,N→∞

|I|
M ·N

= 1 . (3.11)
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Minimize (Maximize)

−
∑
z∈S[Γ]

π(z)
∑
w∈Σ

µ(w|z[Ψ]) log2 µ(w|z[Ψ])

over the variables (π(z) : z ∈ S[Γ]), subject to the following:∑
z∈S[Γ]

π(z) = 1 .

For all z ∈ S[Γ],
π(z) ≥ 0 .

For all z′ ∈ S[Γ′],

Prob(Y [Γ′] = z′) = Prob(Y [σ0,1(Γ′)] = σ0,1(z′)) . (3.9)

For all z′′ ∈ S[Γ′′],

Prob(Y [Γ′′] = z′′) = Prob(Y [σ1,−t(Γ′′)] = σ1,−t(z′′)) . (3.10)

Figure 3.5: Linear program. The minimum (maximum) value is denoted
lp∗min (lp∗max) and is a lower (upper) bound on R(E).

Denote A(k) = A(k)(E ,M,N). By (3.11) and Lemma 3.2,

R(E(k)) = lim
M,N→∞

H(A(k)[I]|A(k)[D])
|I|

.

Notice that Ψ ⊆ Λ. Thus, I ⊆ ∂̄M,N , and we have

H(A(k)[I]|A(k)[D]) =
∑

(i,j)∈I

H(A(k)
i,j |A

(k)[Ti,j ∩ BM,N ])

=
∑

(i,j)∈I

H(A(k)
i,j |τi,j(A

(k),Ψ)) ,

where Ti,j is as defined in (3.2) and the last equality follows from (3.5).
We now prove the following claim: for all (i, j) ∈ I, we have that

lp(k)
min ≤ H(A(k)

i,j |τi,j(A
(k),Ψ)) . (3.12)
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To see this, fix some (i, j) ∈ I, and define for all z ∈ S[Γ],

p(k)(z) = Prob(τi,j(A(k),Γ) = z) .

Substituting π(z) = p(k)(z), the objective function in Figure 3.5 is equal
to H(A(k)

i,j |τi,j(A(k),Ψ)). Also, notice that the probability distribution of Y
is equal to that of τi,j(A(k),Λ). By the fact that A(k) is quasi-stationary
(and thus, so is every sub-configuration of it), all the linear requirements in
the modified linear program are satisfied (i.e., the p(k)(z)’s form a feasible
solution). So, our claim (3.12) is proved.

We conclude that lp(k)
min ≤ R(E(k)). Thus, by Lemma 3.3,

lp(k)
min ≤ R(E) .

A similar proof yields R(E) ≤ lp(k)
max. �

Proof of Theorem 3.4. First, note that the modified linear program
defined in Lemma 3.5 has at least one feasible solution, p(k)(z), whenever
M and N are large enough so that I is non-empty.

For a given k, denote the minimizing variable values of the modified
linear program by π(k)(z), z ∈ S[Γ]. Think of these variable values as a
vector

π(k) = (π(k)(z))z∈S[Γ] .

By compactness, the series π(k), k = 1, 2, . . . , has a cluster point, which
we denote by π∗. Obviously, π∗ implies a feasible solution for the linear
program in Figure 3.5. More so, we must also have that the value of the
objective function for this feasible solution is a lower bound on R(E). So,

lp∗min ≤ R(E) .

Similarly, we deduce that
R(E) ≤ lp∗max .

�
Remark: While the definition of the encoder E includes (besides Ψ and

µ) also the boundary distributions δ = (δM,N )M,N>0, the bounds lp∗min and
lp∗max do not depend on δ.

Applying Theorem 3.4 to our running example, with r = 4, s = 5, t = 1,
gives

0.42430953 ≤ R(E) ≤ 0.42442765 .
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Table 3.1: Bounds on the rates of encoders using a small number of coins.

Constraint Coins lp∗min lp∗max [25]
(2,∞)-RLL 1 0.440722 0.444679 0.4267
(3,∞)-RLL 1 0.349086 0.386584 0.3402

n.i.b. 2 0.91773 0.919395 0.91276

(1,∞)-RLL 3 0.587776 0.587785 —

To the best of our knowledge, our running example is the highest rate bit-
stuffing encoder known, given that we are allowed to use at most two coins
(i.e., two probability transformers). For comparison, we have calculated by
the method presented in [9] that

cap(Skgs) ≤ 0.425078 .

Namely, with two coins we achieve a rate that is only 0.2% less than capacity.
Table 3.1 contains our results for a number of constraints. We abbreviate

the “no isolated bits” constraints as “n.i.b.”. In the first three rows, we
compare ourselves to the results in [25] (Table 1 and Equation (12)). For
the comparison to be fair, we restrict ourselves to the neighbor sets Ψ used
in [25], and use the same number of coins.

3.6 A lower bound on capacity

The following is a straightforward corollary of Theorem 3.4.

Corollary 3.6 For every bit-stuffing encoder E,

lp∗min(E) ≤ cap(S) .

Thus, we can use the minimizing linear program of Figure 3.5 to bound
cap(S) from below.

To obtain better lower bounds on cap(S), we can search for good Ψ and
µ. For instance, for the set Ψ = Ψkgs in (3.1), the function µkgs in (3.4)
was obtained by maximizing lp∗min over all µ that form with Ψkgs (and every
δ) a bit-stuffing encoder for Skgs. Better lower bounds can be obtained by
looking at larger sets Ψ (at the price of higher computational complexity).
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Table 3.2: Bounds on the rates of certain bit-stuffing encoders.

Constraint Coins lp∗min lp∗max [38] Then Best
(2,∞)-RLL 5 0.444202 0.444997 0.444172 0.4423
(3,∞)-RLL 2 0.359735 0.368964 0.365623 0.3641
(0, 2)-RLL 66 0.815497 0.816821 0.816007 0.7736

18 0.815013 0.816176
9 0.810738 0.819660

n.i.b. 56 0.922640 0.923748 0.920862 0.9156

Table 3.2 summarizes our results for certain constraints. The penulti-
mate column contains the lower bounds published in [38], which to the best
of our knowledge are the tightest known, excluding ours. We have high-
lighted values of lp∗min which are an improvement of [38]. The results in [38]
were obtained independently of ours, at around the same time. Thus, we
have also included the lower bounds that were the best known at the time
that [38] and our method were published. These results are taken from [35],
[22], [4], and [21], respectively, and appear in the last column.
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Chapter 4

Concave Programming

Upper Bounds on the

Capacity of 2-D Constraints

In this chapter, we derive an upper bound on the capacity of 2-D constraints.
Recall from Subsection 1.1.3 that the capacity of 1-D constraints is given by
the entropy of a corresponding stationary maxentropic Markov chain. Our
bound is the results of extending certain aspects of this characterization to
2-D constraints.

The key steps are: The stationary maxentropic probability distribution
on square configurations is considered. A set of linear equalities and in-
equalities is derived from this stationarity. The result is a concave program,
which can be easily solved numerically.

4.1 Introduction

Let Σ be a finite alphabet, and let (Grow, Gcol) be a pair of vertex-labeled
graphs over Σ, as defined in Section 1.2. Fix S = S(Grow, Gcol), and recall
that

cap(S) = lim
M→∞

1
M2
· log2 |SM | . (4.1)

In this chapter, we show a method for calculating an upper bound on cap(S).
Recall from Subsection 1.1.3 that the capacity of a given 1-D constraint

is equal to the value of an optimization program, where the optimization
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is on the entropy of a certain stationary Markov chain, and is carried out
over the conditional probabilities of that chain. We try to extend certain
aspects of this characterization of capacity to 2-D constraints. What results
is a (generally non-tight) upper bound on cap(S).

The structure of this chapter is as follows. In Section 4.2, we show the
existence of a certain stationary random variable taking values on SM and
having entropy approaching the capacity of S, as M →∞. We then consider
a relatively small sub-configuration of that random variable, and denote it
by X(M). The section concludes with an upper bound on the capacity of S,
which is a function of the probability distribution of X(M). In Section 4.3,
we derive a set of linear equations which hold on the probability distribu-
tion of X(M). In Section 4.4, we argue as follows: The bound derived in
Section 4.2 is a function of the probability distribution of X(M), which we
do not know how to calculate; however, by Section 4.3 we know that this
probability distribution is subject to a set of linear requirements. Thus,
we formalize an optimization problem, where the unknown probability dis-
tribution is replaced by a set of variables, subject to the above-mentioned
linear requirements. The maximum of this optimization problem is an upper
bound on the capacity of S. We then show that this optimization problem is
easily solved, since it is an instance of convex programming. In Section 4.5,
we show our computational results. Finally, in Section 4.6 we present an
asymptotic analysis of our method.

We note at this point that although this chapter deals with 2-D con-
straints, our method can be easily generalized to higher dimensions as well.

4.2 A preliminary upper bound on cap(S)

Let M be a positive integer and let W be a random variable taking values
on SM = S[BM ]. We say that W is stationary if for all U ⊆ BM , all α, β ∈ Z
such that σα,β(U) ⊆ BM , and all w′ ∈ S[U], we have that

Prob(W [U] = w′) = Prob(W [σα,β(U)] = σα,β(w′)) .

The following is a corollary of [8, Theorem 1.4]. The proof is given in
the Appendix.

Theorem 4.1 There exists a series of random variables (W (M))∞M=1

with the following properties: (i) Each W (M) takes values on SM . (ii) The
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probability distribution of W (M) is stationary. (iii) The normalized entropy
of W (M) approaches cap(S),

cap(S) = lim
M→∞

1
M2
·H(W (M)) . (4.2)

We now proceed towards deriving Lemma 4.2 below, which gives an
upper bound on cap(S), and makes use of the stationarity property. We note
in advance that this bound is not actually meant to be calculated. Thus, its
utility will be made clear in the following sections. In order to enhance the
exposition, we accompany the derivation with two running examples.

A strict total order ≺ is a relation on Z2 × Z2, satisfying the following
conditions for all (i1, j1), (i2, j2), (i3, j3) ∈ Z2.

• If (i1, j1) 6= (i2, j2), then either (i1, j1) ≺ (i2, j2) or (i2, j2) ≺ (i1, j1),
but not both.

• If (i1, j1) = (i2, j2), then neither (i1, j1) ≺ (i2, j2) nor (i2, j2) ≺ (i1, j1).

• If (i1, j1) ≺ (i2, j2) and (i2, j2) ≺ (i3, j3), then (i1, j1) ≺ (i3, j3).

For (i, j) ∈ Z2, define T
(≺)
i,j as the set of all the indexes preceding (i, j).

Namely,

T
(≺)
i,j =

{
(i′, j′) ∈ Z2 : (i′, j′) ≺ (i, j)

}
.

Running Example I: Define the lexicographic order ≺lex as in Chap-
ter 3. Namely, we have that (i1, j1) ≺lex (i2, j2) iff

• i1 < i2, or

• (i1 = i2 and j1 < j2)

Running Example II: Define the “interleaved raster scan” order ≺irs

as follows. We have that (i1, j1) ≺irs (i2, j2) iff

• i1 ≡ 0 (mod 2) and i2 ≡ 1 (mod 2), or

• i1 ≡ i2 (mod 2) and i1 < i2, or

• i1 = i2 and j1 < j2.

69



1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

≺lex

1 2 3 4 5
16 17 18 19 20
6 7 8 9 10
21 22 23 24 25
11 12 13 14 15

≺irs

Figure 4.1: An entry labeled i in the left (right) configuration precedes an
entry labeled j according to ≺lex (≺irs) iff i < j.

(See Figure 4.1 for both examples.)
For the rest of this section, fix positive integers r and s, and define the

index set
Λ = Br,s .

We will refer to Λ as “the patch.” The bound we derive in Lemma 4.2 will
be a function of the following:

• the strict total order ≺,

• the integers r and s, which determine the order r × s of the patch Λ,

• an integer c, which will denote the number of “colors” we encounter,

• a coloring function f : Z2 → {1, 2, . . . , c}, mapping each point in Z2

to one of c colors,

• c indexes, (aγ , bγ)cγ=1, such that for all 1 ≤ γ ≤ c,

(aγ , bγ) ∈ Λ

(namely, each color γ has a designated point in the patch, which may
or may not be of color γ).

The function f must satisfy two requirements, which we now elaborate
on. Our first requirement is: for all 1 ≤ γ ≤ c,

lim
M→∞

{(i, j) ∈ BM : f(i, j) = γ}
M2

=
1
c
. (4.3)
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Namely, as the orders of W (M) tend to infinity, each color is equally1 likely.
Our second requirement is: there exist index sets Ψ1,Ψ2, . . . ,Ψc ⊆ Λ such
that for all indexes (i, j) ∈ Z2,

σi′,j′(Ψγ) = T
(≺)
i,j ∩ σi′,j′(Λ) , (4.4)

where γ = f(i, j), i′ = aγ− i, and j′ = bγ− j. Namely, let (i, j) be such that
f(i, j) = γ, and shift Λ such that (aγ , bγ) is shifted to (i, j). Now, consider
the set of all indexes in the shifted Λ which precede (i, j): this set must be
equal to the correspondingly shifted Ψγ .

Running Example I: Take r = 4 and s = 7 as the patch orders. Let
the number of colors be c = 1. Thus, we must define f = flex as follows:
for all (i, j) ∈ Z2, flex(i, j) = 1. Take the point corresponding to the single
color as (a1 = 3, b1 = 5). See also Figure 4.2(a).

Running Example II: As in the previous example, take r = 3 and
s = 5 as the patch orders. Let the number of colors be c = 2. Define
f = firs as follows:

firs(i, j) =

{
1 i ≡ 0 (mod 2)

2 i ≡ 1 (mod 2)
.

Take (a1 = 3, b1 = 5) and (a2 = 2, b2 = 4). See also Figure 4.2(b).

Lemma 4.2 Let (W (M))∞M=1 be as in Theorem 4.1 and define

X(M) = W (M)[Λ] .

Let ≺, r, s, c, f , (Ψγ)cγ=1, and (aγ , bγ)cγ=1 be given. For 1 ≤ γ ≤ c, define

Υγ = {(aγ , bγ)} ∪Ψγ .

Let
Yγ = X(M)[Υγ ] and Zγ = X(M)[Ψγ ]

(note that Yγ and Zγ are functions of M). Then,

cap(S) ≤ lim sup
M→∞

1
c

c∑
γ=1

H(Yγ |Zγ) .

1In fact, it is possible to generalize (4.3), and require only that the limit exists for all

γ. We have not found this generalization useful.
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• •

•

lex irs

(a) (b)

γ = 1

γ = 2

Figure 4.2: The left (right) column corresponds to Running Example I
(II). The configurations are of order r × s and represent the index set Λ.

The • symbol is in position (aγ , bγ). The shaded part is Ψγ .

Proof. Let X, W and Ti,j be shorthand for X(M), W (M) and T
(≺)
i,j ,

respectively. First note that

Yγ = W [Υγ ] and Zγ = W [Ψγ ] .

We show that

lim
M→∞

1
M2

H(W ) ≤ lim sup
M→∞

1
c

c∑
γ=1

H(Yγ |Zγ) .

Once this is proved, the claim follows from (4.2).
By the chain rule (Theorem 1.4), we have

H(W ) =
∑

(i,j)∈BM

H(Wi,j |W [Ti,j ∩ BM ]) .

We now recall (4.4) and define the index set ∂̄ to be the largest subset of
BM for which the following condition holds: for all (i, j) ∈ ∂̄, we have that

σi′,j′(Ψγ) ⊆ BM , (4.5)

where hereafter in the proof, γ = f(i, j), i′ = aγ − i, and j′ = bγ − j. Define
∂ = BM \ ∂̄. Note that since r and s are constant, and Ψ1,Ψ2, . . . ,Ψc ⊆ Λ,
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then
|∂|
M2

= O(1/M) .

Thus, on the one hand, we have

1
M2

∑
(i,j)∈∂

H(Wi,j |W [Ti,j ∩ BM ]) ≤ log2 |Σ| ·O(1/M) .

On the other hand, from (4.4) and (4.5) we have that for all (i, j) ∈ ∂̄,

σi′,j′(Ψγ) ⊆ Ti,j ∩ BM .

Hence, since conditioning reduces entropy (Theorem 1.6),

1
M2

∑
(i,j)∈∂̄

H(Wi,j |W [Ti,j ∩ BM ])

≤ 1
M2

∑
(i,j)∈∂̄

H(Wi,j |W [σi′,j′(Ψγ)])

=
1
M2

∑
(i,j)∈∂̄

H(W [{(i, j)} ∪ σi′,j′(Ψγ)]|W [σi′,j′(Ψγ)])

=
1
M2

∑
(i,j)∈∂̄

H(Yγ |Zγ) ,

where the last step follows from the stationarity of W (M). Recalling (4.3),
the proof follows. �

The following is a simple corollary of Lemma 4.2.

Corollary 4.3 Let (W (M))∞M=1 be as in Theorem 4.1 and define

X(M) = W (M)[Λ] .

Fix positive integers r and s. Let ` be a positive integer, and let (ρ〈k〉)`k=1 be
non-negative reals such that

∑`
k=1 ρ

〈k〉 = 1. For every 1 ≤ k ≤ `, let ≺〈k〉,
c〈k〉, f 〈k〉, (Ψ〈k〉γ )cγ=1, and (a〈k〉γ , b

〈k〉
γ )cγ=1 be given. Also, for 1 ≤ γ ≤ c〈k〉, let

Υ〈k〉γ = {(a〈k〉γ , b〈k〉γ )} ∪Ψ〈k〉γ .

Define
Y 〈k〉γ = X(M)[Υ〈k〉γ ] and Z〈k〉γ = X(M)[Ψ〈k〉γ ]

73



(note that Y 〈k〉γ and Z〈k〉γ are functions of M). Then,

cap(S) ≤ lim sup
M→∞

∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

H(Y 〈k〉γ |Z〈k〉γ ) .

Corollary 4.3 is the most general way we have found to state our results.
This generality will indeed help us later on. However, almost none of the
intuition is lost if the reader has in mind the much simpler case of

` = 1 , ρ〈1〉 = 1 , c〈1〉 = 1 , ≺〈1〉=≺lex ,

(a〈1〉1 , b
〈1〉
1 ) = (r−1, t) , and Ψ〈1〉1 = Λ ∩ T

(a
〈1〉
1 ,b

〈1〉
1 )

, (4.6)

where 0 ≤ t < s. This simpler case was demonstrated in Running Example
I.

4.3 Linear requirements

Recall that X(M) = W (M)[Λ] is an r×s sub-configuration of W (M), and thus
stationary as well. In this section, we formulate a set of linear requirements
(equalities and inequalities) on the probability distribution of X(M). For
the rest of this section, let M be fixed and let X be shorthand for X(M).

4.3.1 Linear requirements from stationarity

In this subsection, we formulate a set of linear requirements that follow from
the stationarity of X(M). Let x ∈ S[Λ] be a realization of X. Denote

px = Prob(X = x) .

We start with the trivial requirements. Obviously, we must have for all
x ∈ S[Λ] that

px ≥ 0 .

Also, ∑
x∈S[Λ]

px = 1 .

Next, we show how we can use stationarity to get more linear equations
on (px)x∈S[Λ]. Let

Λ′ = {(i, j) : 0 ≤ i < r − 1 , 0 ≤ j < s} .
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For x′ ∈ S[Λ′] we must have by stationarity that

Prob(X[Λ′] = x′) = Prob(X[σ1,0(Λ′)] = σ1,0(x′)) . (4.7)

As a concrete example, suppose that r = s = 3. We claim that

Prob

X =
1 0 0
0 0 1
∗ ∗ ∗

 = Prob

X =
∗ ∗ ∗
1 0 0
0 0 1

 ,

where ∗ denotes “don’t care”.
Both the left-hand and right-hand sides of (4.7) are marginalizations

of (px)x. Thus, we get a set of linear equations on (px)x, namely, for all
x′ ∈ S[Λ′], ∑

x :x[Λ′]=x′

px =
∑

x :x[σ1,0(Λ′)]=σ1,0(x′)

px .

To get more equations, we now apply the same rational horizontally,
instead of vertically. Let

Λ′′ = {(i, j) : 0 ≤ i < r , 0 ≤ j < s− 1} .

for all x′′ ∈ S[Λ′′], ∑
x :x[Λ′′]=x′′

px =
∑

x :x[σ0,1(Λ′′)]=σ0,1(x′′)

px .

4.3.2 Linear equations from reflection, transposition, and

complementation

We now show that if S is reflection, transposition, or complementation in-
variant (defined below), then we can derive yet more linear equations.

Define vM (·) (hM (·)) as the vertical (horizontal) reflection of a rectan-
gular configuration with M rows (columns). Namely,

(vM (w))i,j = wM−1−i,j , and (hM (w))i,j = wi,M−1−j .

Define τ as the transposition of a configuration. Namely,

τ(w)i,j = wj,i .
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For Σ = {0, 1}, denote by comp(w) the bitwise complement of a config-
uration w. Namely,

comp(w)i,j =

{
1 if wi,j = 0

0 otherwise .

We state three similar lemmas, and prove the first. The proof of the
other two is similar.

Lemma 4.4 Suppose that S is such that for all M > 0 and w ∈ ΣM×M ,

w ∈ S ⇐⇒ hM (w) ∈ S ⇐⇒ vM (w) ∈ S .

Then, w.l.o.g., the probability distribution of W is such that for all w ∈ SM ,

Prob(W = w) = Prob(W = hM (w)) = Prob(W = vM (w)) . (4.8)

Lemma 4.5 Suppose that S is such that for all M > 0 and w ∈ ΣM×M ,

w ∈ S ⇐⇒ τ(w) ∈ S .

Then, w.l.o.g., W is such that for all w ∈ SM ,

Prob(W = w) = Prob(W = τ(w)) . (4.9)

Lemma 4.6 Suppose that Σ = {0, 1} and S is such that for all M > 0
and w ∈ ΣM×M ,

w ∈ S ⇐⇒ comp(w) ∈ S .

Then, w.l.o.g., W is such that for all w ∈ SM ,

Prob(W = w) = Prob(W = comp(w)) . (4.10)

Proof of Lemma 4.5. Let h and v be shorthand for hM and vM ,
respectively. For M fixed, we define a new random variable W new taking
values on SM , with the following distribution: for all w ∈ SM ,

Prob(W new=w) =
1
4

∑
w′∈

{w,h(w),v(w),h(v(w))}

Prob(W=w′) .
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Since h(h(w)) = v(v(w)) = w and h(v(w)) = v(h(w)) we get that (4.8)
holds for W new. Moreover, by the concavity of the entropy function,

H(W ) ≤ H(W new) .

Thus, the properties defined in Theorem 4.1 hold for W new. �

If the condition of Lemma 4.4 holds, then we get the following equations
by stationarity. For all x ∈ S[Λ],

px = pvr(x) = phs(x) .

If the condition of Lemma 4.5 holds, then the following holds by station-
arity. Assume w.l.o.g. that r ≤ s, and let

Λ̃ = {(i, j) : 0 ≤ i, j < r} .

For all χ ∈ S[Λ̃], ∑
x :x[Λ̃]=χ

px =
∑

x :x[Λ̃]=τ(χ)

px .

If the condition of Lemma 4.6 holds, then we get the following equations
by stationarity. For all x ∈ S[Λ],

px = pcomp(x) .

4.4 An upper bound on cap(S)

For the rest of this section, let r, s, `, ρ〈k〉, ≺〈k〉, c〈k〉, f 〈k〉, Ψ〈k〉γ , and
(a〈k〉γ , b

〈k〉
γ ) be given as in Corollary 4.3. Recall from Corollary 4.3 that we

are interested in H(Y 〈k〉γ |Z〈k〉γ ), in order to bound cap(S) from above.
As a first step, we fix M and express H(Y 〈k〉γ |Z〈k〉γ ) in terms of the prob-

abilities (px)x of the random variable X(M). For given 1 ≤ k ≤ ` and
1 ≤ γ ≤ c〈k〉, let

y ∈ S[Υ〈k〉γ ] and z ∈ S[Ψ〈k〉γ ]

be realizations of Y 〈k〉γ and Z
〈k〉
γ , respectively. Let

p〈k〉γ,y = Prob(Y 〈k〉γ = y) and p〈k〉γ,z = Prob(Z〈k〉γ = z)
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(p〈k〉γ,y and p
〈k〉
γ,z are functions of M). From here onward, let py and pz be

shorthand for p〈k〉γ,y and p〈k〉γ,z, respectively. Both py and pz are marginalizations
of (px)x, namely,

py =
∑

x∈S[Λ] :x[Υ
〈k〉
γ ]=y

px , pz =
∑

x∈S[Λ] :x[Ψ
〈k〉
γ ]=z

px .

Thus, for given γ and k,

H(Y 〈k〉γ |Z〈k〉γ ) =
∑

y∈S[Υ
〈k〉
γ ]

−py log2 py +
∑

z∈S[Ψ
〈k〉
γ ]

pz log2 pz

is a function of the probabilities (px)x of X(M).
Our next step will be to reason as follows: We have found linear re-

quirements that the px’s satisfy and expressed H(Y 〈k〉γ |Z〈k〉γ ) as a function
of (px)x. However, we do not know of a way to actually calculate (px)x. So,
instead of the probabilities (px)x, consider the variables (p̄x)x. From this
line of thought we get our main theorem.

Theorem 4.7 The value of the optimization program given in Figure 4.3
is an upper bound on cap(S).

Proof. First, notice that if we take p̄x = px, then (by Section 4.3) all the
requirements which the p̄x’s are subject to indeed hold, and the objective
function is equal to ∑̀

k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

H(Y 〈k〉γ |Z〈k〉γ ) .

So, the maximum is an upper bound on the above equation. Next, by com-
pactness, a maximum indeed exists. Since the maximum is not a function
of M , the claim now follows from Corollary 4.3. �

We now proceed to show that the optimization problem in Figure 4.3 is
an instance of concave programming [7, p. 137], and thus easily calculated.
Since the requirements that the variables (p̄x)x are subject to are linear, this
reduces to showing that the objective function is concave in (p̄x)x.

Lemma 4.8 The objective function in Figure 4.3 is concave in the vari-
ables (p̄x)x∈S[Λ], subject to them being non-negative.
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maximize ∑̀
k=1

ρ〈k〉

c〈k〉

c〈k〉∑
γ=1

Ξ(k, γ)

over the variables (p̄x)x∈S[Λ], where for

1 ≤ k ≤ ` , 1 ≤ γ ≤ c〈k〉 , y ∈ S[Υ〈k〉γ ] , z ∈ S[Ψ〈k〉γ ] ,

we define
p̄〈k〉γ,y ,

∑
x∈S[Λ] : x[Υ

〈k〉
γ ]=y

p̄x , p̄〈k〉γ,z ,
∑

x∈S[Λ] : x[Ψ
〈k〉
γ ]=z

p̄x ,

Ξ(k, γ) , −
∑

y∈S[Υ
〈k〉
γ ]

p̄〈k〉γ,y log2 p̄
〈k〉
γ,y +

∑
z∈S[Ψ

〈k〉
γ ]

p̄〈k〉γ,z log2 p̄
〈k〉
γ,z ,

and the variables p̄x are subject to the following requirements:

(i)
∑
x∈S[Λ]

p̄x = 1 .

(ii) For all x ∈ S[Λ],
p̄x ≥ 0 .

(iii) For all x′ ∈ S[Λ′], ∑
x : x[Λ′]=x′

p̄x =
∑

x : x[σ1,0(Λ′)]=σ1,0(x′)

p̄x .

(iv) For all x′′ ∈ S[Λ′′], ∑
x : x[Λ′′]=x′′

p̄x =
∑

x : x[σ0,1(Λ′′)]=σ0,1(x′′)

p̄x .

(v) (If S is reflection (resp. complementation) invariant) For all x ∈ S[Λ],

p̄x = p̄vr(x) = p̄hs(x) (resp. p̄x = p̄comp(x)) .

(vi) (If S is transposition invariant) For all χ ∈ S[Λ̃],∑
x : x[Λ̃]=χ

p̄x =
∑

x : x[Λ̃]=τ(χ)

p̄x .

Figure 4.3: Optimization program over the variables p̄x (assuming w.l.o.g.
that r ≤ s). The optimum is an upper bound on cap(S).
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Proof. Recall that for all 1 ≤ k ≤ ` we have that ρ〈k〉

c〈k〉
is non-negative.

Thus, it suffices to prove that for all 1 ≤ k ≤ ` and 1 ≤ γ ≤ c〈k〉, the function
Ξ(k, γ) is concave in the variables (p̄x)x. So, let k and γ be fixed, and let p̄y
and p̄z be shorthand for p̄〈k〉γ,y and p̄

〈k〉
γ,z, respectively.

Recalling the definition of p̄〈k〉γ,y and p̄
〈k〉
γ,z in Figure 4.3 and the fact that

Ψ〈k〉γ ⊆ Υ〈k〉γ , we get that

Ξ(k, γ) =
∑

y∈S[Υ
〈k〉
γ ]

z=y[Ψ
〈k〉
γ ]

−p̄y log2

p̄y
p̄z

.

Thus, it suffices to show that each summand is concave in (p̄x)x. This
is indeed the case: let (p̄(1)

x )x∈S[Λ] and (p̄(2)
x )x∈S[Λ] be non-negative. Let

0 ≤ ξ ≤ 1 be given, and define (p̄(3)
x )x∈S[Λ] as

p̄(3)
x = ξp̄(1)

x + (1− ξ)p̄(2)
x , x ∈ S[Λ] .

For t = 1, 2, 3, denote by p̄(t)
y and p̄(t)

z the marginalizations corresponding to
(p̄(t)
x )x. Obviously,

p̄(3)
y = ξp̄(1)

y + (1− ξ)p̄(2)
y , y ∈ S[Υ〈k〉γ ] .

and
p̄(3)
z = ξp̄(1)

z + (1− ξ)p̄(2)
z , z ∈ S[Ψ〈k〉γ ] .

We must show that for all y ∈ S[Υ〈k〉γ ], z = y[Ψ〈k〉γ ]

p̄(3)
y log2

p̄
(3)
y

p̄
(3)
z

≤ ξp̄(1)
y log2

p̄
(1)
y

p̄
(1)
z

+ (1− ξ)p̄(2)
y log2

p̄
(2)
y

p̄
(2)
z

.

This is indeed the case, by the log sum inequality [13, p. 29]. �

4.5 Computational results

At this point, we have formulated a concave optimization problem, and
wish to solve it. There are quite a few programs, termed solvers, that
enable one to do so. Many such solvers — most of them proprietary — are
hosted on the servers of the NEOS project [14][24][16], and the public may
submit moderately sized optimization problems to them. We have coded our
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optimization problems in the AMPL modeling language [23], and submitted
them to NEOS.

Essentially, a solver starts with some initial guess as to the optimizing
value of (p̄x)x∈S[Λ], and then iteratively improves the value of the objective
function. This process is terminated when the solver decides that it is “close
enough” to the optimum. Denote by p̃ = (p̃x)x∈S[Λ] this “close enough”
assignment to the variables. Of course, we must supply an upper bound on
cap(S), not an approximation to one. Thus, let f̃ and

g̃ = (g̃x)x , x ∈ S[Λ] ,

be the value of the objective function and its gradient at p̃, respectively.
Obviously, f̃ is a lower bound on the value of our optimization problem. For
an upper bound, we replace the objective function in Figure 4.3 by

maximize

f̃ +
∑
x∈S[Λ]

g̃x · (p̄x − p̃x)

 ,

and get a linear program (the value of which can be calculated exactly). By
concavity, the value of this linear program is indeed an upper bound. So,
we use NEOS yet again to solve it. For the sake of double-checking, we
submitted the above optimization problems to two solvers: IPOPT [44] and
MOSEK.

Before stating our computational results, let us first define one more
strict total order, which we have termed the “skip” order, ≺skip (see Fig-
ure 4.4). We have that (i1, j1) ≺skip (i2, j2) iff

• i1 < i2, or

• (i1 = i2 and j1 ≡ 0 (mod 2) and j2 ≡ 1 (mod 2)), or

• (i1 = i2 and j1 ≡ j2 (mod 2) and j1 < j2)

Our computational results appear in Table 4.1. To the best of our knowl-
edge, they are presently the tightest. We compare our results to those ob-
tained by the method described in [20]. When available, these compared-to
bounds are taken from previously published work, as indicated to the left of
them. The rest are the result of our implementation of [20]. We note that
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1 5 2 6 3 7 4
8 12 9 13 10 14 11
15 19 16 20 17 21 18

≺skip

Figure 4.4: An entry labeled i in the configuration precedes an entry
labeled j according to ≺skip iff i < j.

Table 4.1: Upper-bounds on the capacity of some 2-D constraints.

Constraint r s k ≺ used Upper bound Comparison

(2,∞)-RLL 3 8 7 ≺lex, ≺skip 0.4457 0.4459 [22]
(3,∞)-RLL 4 8 5 ≺lex 0.36821 0.3686 [22]
(0, 2)-RLL 3 5 2 ≺lex 0.816731 0.817053

n.i.b. 3 4 1 ≺skip 0.92472 0.927855

the indexes (a〈k〉γ , b
〈k〉
γ ) and coefficients ρ〈k〉 used for each constraint were op-

timized by hand, through trial and error. Also, we note that when applying
our method to the 2-D (1,∞)-RLL constraint, our bound was inferior to
the one presented in [45] (utilizing the method of [9]). Finally, recall that
Table 3.2 contains corresponding lower bounds.

4.6 Asymptotic analysis

For a given constraint S and positive integers r and s, let t be an integer such
that 0 ≤ t < s. Denote by µ(r, s, t) the value of the optimization program
in Figure 4.3, where the parameters are as in (4.6). In this section, we show
that even if we restrict ourselves to this simple case, we get an upper bound
which is asymptotically tight, in the following sense.

Theorem 4.9 For all ε > 0, there exist

r0 > 0 , s0 > 0 , 0 ≤ t0 < s0
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such that for all

r ≥ r0 , s ≥ s0 , t0 ≤ t ≤ s− (s0 − t0) ,

we have that
µ(r, s, t)− cap(S) ≤ ε .

In order to prove Theorem 4.9, we need the following lemma.

Lemma 4.10 For all ε > 0, there exist

r0 > 0 , s0 > 0 , 0 ≤ t0 < s0

such that
µ(r0, s0, t0)− cap(S) < ε .

Proof. Another well known method for bounding cap(S) from above is
the so called “stripe method.” Namely, for some given θ, consider the 1-D
constraint S = S(θ) defined as follows. The alphabet of the constraint is
Σθ. A word of length r′ satisfies S if and only if when we write its entries as
rows of length θ, one below the other, we get an r′ × θ configuration which
satisfies the 2-D constraint S.

Define the normalized capacity of S as

ĉap(S) =
1
θ
cap(S) .

By the definition of cap(S), the normalized capacity approaches cap(S) as
θ →∞. Thus, fix a θ such that

ĉap(S)− cap(S) ≤ ε/2 .

We say that a 1-D constraint has memory m if there exists a graph
representing it, and all paths in the graph of length m with the same labeling
terminate in the same vertex. By [31, Theorem 3.17] and its proof, there
exists a series of 1-D constraints {Sm}∞m=1 such that S ⊆ Sm, the memory
of Sm is m, and limm→∞ cap(Sm) = cap(S). Thus, fix m such that

ĉap(Sm)− ĉap(S) ≤ ε/2 .
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To finish the proof, we now show that

µ(r0, s0, t0) ≤ ĉap(Sm) ,

where

r0 = m + 1 , s0 = 2 · θ , t0 = θ − 1 .

Note that µ(r0, s0, t0) is the maximum of

H(X̄m,θ−1|X̄[T(≺lex)
m,θ−1 ∩ Bm+1,2·θ]) , (4.11)

over all random variables X̄ ∈ Sm+1,2·θ with a probability distribution sat-
isfying our linear requirements.

For all 0 ≤ φ < θ we get by the (imposed) stationarity of X̄ that (4.11)
is bounded from above by

Hφ = H(X̄m,φ|X̄[T(≺lex)
m,φ ∩ Bm+1,θ]) .

So, (4.11) is also bounded from above by

1
θ

θ−1∑
φ=0

Hφ . (4.12)

The first θ columns of X̄ form a configuration with index set Bm+1,θ. By our
linear requirements, stationarity (specifically, vertical stationarity) holds for
this configuration as well. So, we may define a stationary 1-D Markov chain
[31, §3.2.3] on Sm, with entropy given by (4.12). That entropy, in turn, is
at most ĉap(Sm). �

Proof of Theorem 4.9. The following inequalities are easily verified:

µ(r, s, t) ≥ µ(r + 1, s, t) .

µ(r, s, t) ≥ µ(r, s+ 1, t) .

µ(r, s, t) ≥ µ(r, s+ 1, t+ 1) .

The proof follows from them and Lemma 4.10. �
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Appendix

Our goal in this appendix is to prove Theorem 4.1. Essentially, Theorem 4.1
will turn out to be a corollary of [8, Theorem 1.4]. However, [8, Theorem 1.4]
deals with configurations in which the index set is Z2. So, some definitions
and auxiliary lemmas are in order.

Recall that (Grow, Gcol) is the pair of vertex-labeled graphs through
which S = S(Grow, Gcol) is defined. Also, recall that each member of S
is a configuration with a rectangular index set. Namely, the index set of a
configuration in S is σi,j(BM,N ), for some i, j, M , and N . We now give a
very similar definition to that of S, only now we require that the index set
of each configuration is Z2. Namely, define S = S(Grow, Gcol) as follows: A
configuration (wi,j)(i,j)∈Z2 over Σ is in S(Grow, Gcol) iff there exists a con-
figuration (ui,j)(i,j)∈Z2 over the vertex set V with the following properties:
for all (i, j) ∈ Z2, (a) the labeling of ui,j satisfies L(ui,j) = wi,j ; (b) there
exists an edge from ui,j to ui,j+1 in Grow; (c) there exists an edge from ui,j
to ui+1,j in Gcol.

For positive integers M,N > 0, define SM,N as the restriction of S to
BM,N . Namely,

SM,N = S[BM,N ] ,

where the definition of the restriction operation is as in (1.2). Also, for M
equal to N , define

SM = SM,M .

Note that for all M,N > 0 we have

SM,N ⊆ SM,N , (4.13)

and there are cases in which the inclusion is strict. Next, define the capacity
of S as

cap(S) = lim
M→∞

1
M2
· log2 |SM | .

The limit indeed exists, by sub-additivity (see [28, Appendix], and references
therein).

For integers M,N > 0 and δ ≥ 0, denote

CM,N,δ = σ−δ,−δ(BM+2δ,N+2δ)
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and let
SM,N,δ = S[CM,N,δ] .

Note that the index set CM,N,δ of each element of SM,N,δ is simply BM,N ,
padded with δ columns to the right and left and δ rows to the top and
bottom. The following lemma will help us bridge the gap between finite and
infinite index sets.

Lemma 4.11 Let w be a configuration over the finite alphabet Σ with
index set BM,N . If for all δ ≥ 0 we have that

w ∈ SM,N,δ[BM,N ] , (4.14)

then we must have that
w ∈ SM,N .

Proof. Define the following auxiliary directed graph. The vertex set is⋃
δ≥0

{ŵ ∈ SM,N,δ : ŵ[BM,N ] = w} .

For every δ ≥ 0, there is a directed edge from w1 ∈ SM,N,δ to w2 ∈ SM,N,δ+1

iff w1 = w2[CM,N,δ]. It is easily seen that this graph is a directed tree with
root w, as defined in [19, §2.4]. Since (4.14) holds for all δ ≥ 0, the vertex
set of the tree is infinite (and countable). On the other hand, since the
alphabet size |Σ| is finite, the out-degree of each vertex is finite. Thus, by
König’s Infinity Lemma [19, Theorem 2.8], we must have an infinite path in
the tree starting from the root w.

Denote the vertices of the above-mentioned infinite path as

w = w[0], w[1], w[2], . . . .

We now show how to find a configuration (w′i,j)(i,j)∈Z2 such that w′ ∈ S and
w = w′[BM,N ]. For each (i, j) ∈ Z2, define w′i,j as follows: let δ ≥ 0 be such

that (i, j) ∈ CM,N,δ, and take w′i,j = w
[δ]
i,j . It is easily seen that w′ is well

defined and contained in S. �
The following lemma states that although the inclusion in (4.13) may be

strict, the capacities of S and S are equal.

Lemma 4.12 Let S and S be as previously defined. Then,

cap(S) = cap(S) . (4.15)
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Proof. By (4.13), we must have that cap(S) ≤ cap(S). For the other
direction, it suffices to prove that for all M > 0,

cap(S) ≤ 1
M2

log2 |SM | . (4.16)

So, let us fix M and prove the above. By Lemma 4.11, there exists δ ≥ 0
such that for all w ∈ ΣM×M ,

w 6∈ SM =⇒ w 6∈ SM,M,δ[BM ] .

For t > 0, let M ′ be shorthand for

M ′ = t ·M .

By the definition of capacity, we have that

cap(S) = lim
t→∞

1
(M ′)2

log2 |SM ′ | . (4.17)

Now, let us partition BM ′ into the following disjoint sub-sets of indexes: for
0 ≤ i, j < t, define the set

Di,j = σi·M,j·M (BM ) .

Let w′ ∈ SM ′ . Notice that for all 0 ≤ i, j < t for which

σi·M,j·M (CM,M,δ) ⊆ BM ′ , (4.18)

we must have that w′[Di,j ] is equal to some correspondingly shifted element
of SM . On the other hand, for M and δ fixed, the number of pairs (i, j) for
which (4.18) does not hold is O(t). Thus, a simple calculation gives us that

1
(M ′)2

log2 |SM ′ | ≤
1
M2

log2 |SM |+O(1/t) .

This, together with (4.17), proves (4.16). �
For a given M > 0, define the set F(M) of configurations with index set

Z2 as follows: a configuration (wi,j)(i,j)∈Z2 is in F(M) iff for all (i, j) ∈ Z2,

w[σi,j(BM )] ∈ SM .

Namely, each M ×M “patch” is a correspondingly shifted element of SM .
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Note that there exist vertex-labeled graphs Grow(M) and Gcol(M) such
that F(M) = S(Grow(M), Gcol(M)). Specifically, the vertex set of both
graphs is equal to SM ; the label of each such vertex is its lower-left entry;
there is an edge from w1 ∈ SM to w2 ∈ SM in Grow(M) (Gcol(M)) iff the
first M −1 rows (columns) of w1 are equal to the last M −1 (rows) columns
of w2. Thus, cap(F(M)) exists. Also, since w ∈ S implies w ∈ F(M), we
have

cap(S) ≤ cap(F(M)) . (4.19)

The following is a direct corollary of [8, Theorem 1.4].

Corollary 4.13 For all M > 0, there exists a stationary random vari-
able W (M) taking values on F(M)[BM ] such that

cap(F(M)) ≤ 1
M2

H(W (M)) . (4.20)

Proof of Theorem 4.1. Notice that

F(M)[BM ] = SM ⊆ SM .

Thus, W (M) satisfies conditions (i) and (ii) in Theorem 4.1. From (4.15),
(4.19), and (4.20) we get that

cap(S) ≤ lim
M→∞

1
M2
·H(W (M)) .

But since W (M) takes values on SM , we have by Theorem 1.5 that the above
inequality is in fact an equality. Thus, condition (iii) is proved. �
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.''ueli`'' e` ''miveli` zkxrn''

-nv zveaw) sxb ici-lr xcben ueli`d .milin md mihlwd icnn-cg ueli`a

lrn zeize`a zepneqn eizezywy ,(miznvd oia zepeekn zezyw zveawe miz

milind xtqn log oia ihehtniq`d qgik xcben ueli`d leaiw .ihpeelxd a"`d

ueli`d leaiw ,xiaq lceb ilra mitxb xear .jxe`d iwlg ,mieqn jxe`a zeaehd

zepal ozip miavnd levit mzixebl` zxfra ,ok lr xzi .aeyigl lw xtqn `ed

-e`a dtnnd mzixebl` `ed oitvn ,epiidc .ueli`l gprtn/oitvn cnv zeliria

z` zniiwnd dlinl ccewl mivex ep` dze` divnxetpi`d z` ikxr cg-cg ot

-dy okzi ,mle`) dketdd dlertd z` rvand mzixebl` `ed gprtne ,ueli`d

.(yrx ly zetqeezd llba ,azk oitvndy dlind dppi` `xew gprtndy dlin
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aexw avw ilra gprtn/oitvn cnv miavnd levit mzixebl` zxfra zepal ozip

zxyt`n ef dpekz .iteq ''geprt oelg'' aexl yi gprtnl ,sqepa .leaiwl eppevxk

.yrxl znieqn zepiqg (mitqep micrv zhiwp xg`l)

.zeicnn-cg milinl cebipa ,miicnn-ec mikxrn md mihlwd icnn-ec ueli`a

-ireaixd mikxrnd xtqn log oia ihehtniq`d qgik xcben ueli`d leaiw ,zrk

rcid ,miicnn-cg miveli`l d`eeyda .zeqipkd xtqn iwlg ,mieqn lceba mi

zicnn-ec dliawn dreci `l ,hxta .xqga dwel miicnn-ec miveli` iabl eply

ly leaiwd z` aygl ihpxdpi` iyew yi ,ok lr xzi .miavnd levit mzixebl`l

dira `id ''?ilily-i` leaiw yi oezpd ueli`l m`d'' dl`yd :illk icnn-ec ueli`

mirecid geprt/dptvdd inzixebl` ,jk lya .minieqn miveli` xear ,drixk-i`
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mirvazn geprte dptvd .miicnn-ec miveli` ly dlecb dgtynl reaw avw lra
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-fra .divaxehxt dl mirvane zitexhp`qwnd aewxnd zxyxy z` miaygn ep`

lretd ccewn mipea ep` ef divaxehxta zezywd ly zepzend zeiexazqdd zx

zlra dnixf zyx mixicbn ep` divaxehxtd z`ivn jxevl .zerevxd lr liawna

dhiyd `id epznexz ik ,oievi .zezywa dnixfd lr mipezgze mipeilr minqg

-pi`y zncew dceara erited ex`ezy mincewd mialyd ;divaxehxtd aeyigl

miveli` md epzhiyl zixwird divaihendy zexnl ik oiivp ,seqal .eply dp

.miicnn-cg miveli` xear geprte dptvd xear mb da ynzydl ozip ,miicnn-ec

iqgid lwynd ik yexcp ea dxwnd `ed ,ziyeniy epzhiy ea ,oiiprn dxwn ,hxta

l"pk dlin lky dyixcl sqepa) oezp reaw didi ccewnd xviin dze` dlin lk ly

.(icnn-cgd ueli`d z` miiwz

ccewn ly avw lr mipezgze mipeilr minqg aeyigl dhiy `id diipyd epz`vez

`ed jxrnd ly dpezp dqipkl azkpd jxrd ea ccewn ,epiidc .bit-stuffing beqn
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