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Abstract

Let I be a finite field and let C be a subset of F™, termed a code. A codeword
c € C is transmitted over a noisy channel and distorted by an error vector e.
We are given y, which is the distorted word (y = ¢+ e) and wish to find out
what ¢ was.

A list-¢ decoder D : F™ — 2€ of decoding radius 7 with respect to a given
metric d : F™ x F" — R is a generalization of classical decoding. Given a
received word y, the output of the list-¢ decoder, D(y), is a list of at most
¢ codewords. This list is guaranteed to contain all codewords in the sphere
of radius 7 centered at y. Under the assumption that no more than 7 errors
occurred in y, we are assured that c is in D(y), and this is regarded as a
decoding success.

In this work, we concentrate on coding for the Lee metric, which appears
in applications such as phase shift keying (PSK) modulation. A polynomial-
time list decoder in this metric is presented and analyzed for alternant codes,
which are subfield sub-codes of generalized Reed-Solomon codes (GRS). We
show a formula for the decoding radius as a function of ¢ and the parameters
of the underlying GRS code.

We also show that unlike the Hamming metric counterpart, the decoding
radius of our list decoder is generally strictly larger than what one gets from
the Lee metric version of the Johnson bound.



Abbreviations and Notations

()
Ao,y ...,0pn
V1,V2,...,Un

é@%}@ﬁ&w: © <o SNZ

D[]
Q(z, 2)
deg, , Q(z, 2)

nonnegative integers (including 0)

ring of integers modulo ¢

maximal list size

codeword

received word

error word

code length

dimension of an underlying GRS code

code minimum distance (in the metric discussed)
code

decoder

Galois field of size ¢

code locators of a GRS or alternant code
column multipliers of a GRS or alternant code
base field of an alternant code

extension field of an underlying GRS code

set of all polynomials with degree less than k over ®
bivariate interpolation polynomial

(u, v)-weighted degree of Q(z, 2)

fixed bijection, (-) : F' — Z,

the set {1,2,...,n}

multiplicity matrix

the score of codeword ¢ with respect to M



Chapter 1

Introduction

Suppose we want to transmit information over a noisy channel. The channel
typically models a communication line or a storage device. Let F' be a finite
field. The channel receives as input a vector x € F™ and outputs a vector
y =x+e € F". That is, y is sometimes a corrupted version of x, where e
— termed the error vector — has a certain probability distribution.

Fix a metric d : F" x F" — N, where N is the set of nonnegative integers.
An (n, M,d) (block) code over F' is a nonempty subset C of size M of F™,
where d = mine, c,ecic;2c, d(C1,C2) is the minimum distance of the code.
If C is a vector space over F, it is termed a linear code with parameters
[n, k,d], where k = log | M is the code dimension. Elements of C are called
codewords.

A code is used to transmit information over the noisy channel. An infor-
mation word u* is encoded via a one-to-one function into a codeword c* € C
and c* is sent over the channel. As stated, at the other end of the channel,
the output is a received word y = c* +e. Given y, we now need to make an
educated guess at the receiving end as to what codeword was sent, and from
this — which information word was transmitted.

It is a well-known theorem in coding theory that a sphere in F™ (with
respect to the metric d) of radius (d — 1)/2 that is centered at y will contain
at most one codeword [16, Chapter 1]. Therefore, we may define the function
D:F"—CU{%} as
c if there exists ¢ € C such that d(c,y) < &1

D(y)z{u

e’ otherwise

Note that if Prob(d(c*,y) > (d—1)/2) is sufficiently small, we have a reliable
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means to transmit information over the noisy channel: Upon receiving y, we
output D(y), where ‘e’ is the “decoding-error” symbol. Since Prob(d(c*,y) >
(d —1)/2) is sufficiently small, D(y) will likely be equal to the transmitted
codeword c*. That is, in most cases, our guess will be correct. We call this
method of decoding classical decoding.

1.1 List-/ decoders

List decoders were introduced by Elias and Wozencraft (see [7]). A list-¢
decoder D : F™ — 2¢ of decoding radius 7 is a generalization of classical
decoding. As before, the input to a list-¢ decoder is the received word y.
However, the output of a list-¢ decoder is now a set (list) of codewords. This
list is guaranteed to contain all codewords in the sphere of radius 7 centered
at y, namely,

D(y)2{ceC:d(c,y)<T}.

Also, the list is guaranteed to contain no more than ¢ codewords, i.e.,
Dy)l<¢.

Under the assumption that no more than 7 errors occurred in y, we are
assured that c* € D(y).

It will sometimes be convenient to characterize a list-¢ decoder by its
relative decoding radius 0. A list-¢ decoder D : F™ — 2° has a relative
decoding radius @ if

D(y) 2 {ceC:d(c,y) <nb},

and the list size is at most £. Thus, for a codeword ¢ € C, if d(y, ¢) < n#, then
c € D(y). Note that these two characterizations are essentially equivalent: A
list-¢ decoder has a relative decoding radius @ if and only if it has a decoding
radius 7 = [nf] — 1.

What practical uses do we have for a list-¢ decoder? To answer this
question, let us first define two more decoders. For y € F", define

{Dncp, Dvip} : F* — C

as follows:



Nearest Codeword Decoding: Dycp(y) = ¢, where ¢ € C is such that
d(y,c) is minimal. A nearest codeword decoder is defined in [5, page
10] as a “complete decoder”.

Maximum Likelihood Decoding: Dyp(y) = ¢, where ¢ € C is such
that Prob(y received | ¢ sent) is maximal. For further reference see [8,
page 120].

In case of ties, we pick one codeword according to some rule (for instance,
the first codeword in some lexicographic order).

Suppose we know the value of y and the probability distribution of the
channel, but nothing else. That is, we have no side information, and thus,
Dyip(y) is the “best guess” as to the value of ¢*. We say that the dis-
tance function d accurately models the channel if Prob(y received | c sent)
is a monotonically decreasing function of d(y,c). If this is the case, then
Dnep(y) = Dyip(y) (for example, this happens when the distance function
used is the Hamming metric and the channel is the g-ary symetric channel
with crossover probabilty less than 1 — 1/q). Therefore, an efficient imple-
mentation of Dycp, or at least something “close to it” is desirable. Let
D : F™ — 2€ be a list-¢ decoder, with decoding radius 7. Define the function
Dicp : F" — C as

D{ep(y) = ¢, where ¢ € D(y) is such that d(c,y) is minimal .

Thus, by the definition of D, we have that D{cp(y) = Dnep(y) whenever
d(Dxep(y),y) < 7. Specifically, the latter is true if no more than 7 errors
occurred in the transmission of c*.

It might also be the case that we do have some side information. For
example, suppose we are transmitting text. In that case, some sequences
of codewords results in gibberish, while others do not. A related example:
we might know the a posteriori codeword distribution, that is, we know
Prob(c transmitted) for every ¢ € C. A list-¢ decoder could be utilized for
these cases as well: we choose from D(y) the most probable codeword. If d is
chosen wisely and the decoding radius 7 is large enough, we would generally
not be limiting ourselves by considering only the codewords in D(y), as
opposed to all the codewords in C.



1.2 Hamming and Lee metrics

Denote by [n] the set {1,2,...,n}. The Hamming distance between two
elements x,y in F' is simply

a1 ifx#y
dye(2,y) = { 0 otherwise

Thus, the Hamming distance between two words x = (;)ic,) and y =
(Yi)iem) in F™ is simply the number of indexes where the two words are
different, that is,

dr(x,y) 2> dp(an i) = [{i: 2 # ui}]

1€[n]

The Hamming metric is by far the most studied metric in error correcting
codes.

A lesser used distance function is the Lee metric [14]. Recall that F' =
GF(q), and let Z, denote the ring of integers modulo g. Denote by 1 the
multiplicative unity in Z,. The Lee weight of an element a € Z,, denoted |al,
is defined as the smallest nonnegative integer s such that s-1 € {a, —a}. Fix
a bijection (-) : F' — Z, and define the Lee distance d; between two elements
x,y in F' as

de(z,y) £ [{z) — (y)] -

The Lee distance between two words X = (2;)icp) and y = (¥i)iepn) (over F)
is defined as

dﬁ(xu Y) = Z dﬁ(xiu yz) :
=1

The distance function to be used in a specific case is usually selected
based on the characteristics of the channel, as well as the type of modulation
used. The Lee metric is a very natural one for an additive white Gaussian
noise channel (AWGN), when a phase shift keying modulation is used (PSK)
[2, Chapter 8]. One might also consider the Lee metric for use in noisy
runlength-limited (RLL) (d, k)-constrained channels, or in channels where
spectral-null constraints are desired [22].
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1.3 GRS and alternant codes

We will now define the codes which will be used in this work. Fix F' = GF(q)
and ® = GF(¢™), and denote by ®j[x] the set of all polynomials over @
with degree less than k. Hereafter in this work, we fix Cqrs to be an [n, k]

GRS code over ® with distinct code locators aq, as, ..., a, € ¢ and nonzero
column multipliers vy, vy, ...,v, € ®, that is,
Cars = {¢ = (viu(ay) vau(az) ... vyu(ay)) : u(z) € Dilz]} .

We let C,y¢ be the respective alternant code over F', namely, C.y = Cars N EF™.

In the Hamming metric, many efficient classical decoding algorithms are
known for GRS and alternant codes [26],[5],[17],[25]. In the Lee metric, a
classical decoder for normalized (v; = «; , j € [n]) alternant and normal-
ized GRS codes is presented in [22]. One should also mention the negacyclic
codes [2, Chapter 9], introduced by Berlekamp. Berlekamp presented a clas-
sical decoding algorithm for negacyclic codes in the Lee metric.

1.4 List decoding through bivariate polyno-
mials

The Welch-Berlekamp algorithm [26] is a classical (list-1) decoder for GRS
codes in the Hamming metric, which makes use of bivariate polynomials (see
also Berlekamp [3], Blackburn [4], Dabiri and Blake[6], and Ma and Wang
[15] for related work). The methods introduced in this section grew out of the
1997 seminal paper by Sudan [24], which generalized the Welch-Berlekamp
algorithm. In 1999, Sudan’s earlier results were improved by Guruswami and
Sudan [10], and further improved in 2000 by Koetter and Vardy [12]. The
issue of list decoding for a more general metric is discussed by Koetter and
Vardy in [13], which appeared in 2002.

Denote the quantity (k — 1)/n as the modified code rate. Note that
(k — 1)/n is approximately the code rate of Cgrs for large n. However,
our discussion will mainly focus on Cyy.

The polynomial-time list-¢ decoder for C, in [10], [12] is based on the
next lemma. Let M = (M, ;) crjcm be a ¢ x n matrix over N, whose
rows are indexed by the elements of F. The matrix M is referred to as a
multiplicity matriz. The score of a codeword ¢ = (¢;)jen € Car With respect
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to M is defined by
Sule)=> M. (1.1)
j=1

For a nonzero bivariate polynomial Q(z,2) =}, . Qnix"z" over @, let the
(1, v)-weighted degree of Q(z, z) be given by

deg,, Q(z,2) = i%iﬁo{h“ +iv} .

Lemma 1.1 Let ¢ and § be positive integers and M be a g xn matriz over N.
Suppose there exists a nonzero bivariate polynomial Q(x,z) = ZhiQh,ixhz"
over ® that satisfies the degree constraints

degy, Q(z, z) <4 and degy 54 Qz,2) < f3, (1.2)

and the multiplicity constraints

ST OQuidt(v/u) =0, yeF, jeln], 0<s+t<M,y.
h,i
(1.3)

Then, for every codeword ¢ = (vju(cy))jem) € Calts

Smle) =8 = (z-u@)|Qz,2) .

Also,
lceC : Sm(c)>p|<t.

Equation (1.2) determines the number of significant coefficients in Q(z, 2),
while Equation (1.3) defines a set of linear homogeneous equations in these
coefficients. Clearly, a nonzero solution Q(z, z) exists if the number of coef-
ficients exceeds the number of equations.

Example 1.1 Let F' = & = GF(5) = Zs, and fiz (-) as the identity function.
Let C be an [n, k] GRS code over F, withn =4 and k = 2. Fiz'y = (0100)
as the received word. For ¢ = 6, we define Q(z,z) by the following M and
B: 6 =38 and

2 0100
1 1 311
M= 0 31 3 3
4 1 011
3 0000



On the one hand, M implies 4 - ((321) + (121) + (121)) = 32 linear equa-
tions. On the other hand, k = 2, 3 = 8 and { = 6 imply 35 significant
coefficients. Thus, we can construct a nonzero Q(x, z).

Let ¢ = (1140). Because (Sp(c) = 8 > 3), we have that ¢ is in the list.

Based on Lemma 1.1, the design of a list-¢ decoder for C,; in any given
metric can be summarized as follows (see [13]). Find an integer [ and a
mapping M : F" — N%" guch that for the largest possible integer 7, the
following two conditions hold for the matrix M(y) = (M, ;) er e that
corresponds to any received word y, whenever a codeword ¢ € C,; satisfies
d(c,y) <

(C1) Smy)(c) = 8.

(C2) The number of coefficients determined by (1.2) exceeds the number of
equations in (1.3).

The resulting list-¢ decoding algorithm is stated in Figure 1.1.

Input: received word y € F", mapping M : F" — N?*" constant [3,
decoding radius 7, list size /.
Output: list of up to ¢ codewords.

1. Interpolation of Q(z,z2): Find Q(z, z) with coefficients from & such
that Equations (1.2) and (1.3) are satisfied.

2. Factorization: Compute the set U of all polynomials u(x) € ®y[x]
such that (z — u(2))|Q(z, 2).

3. Output: Output all ¢ € C such that d(c,y) < 7 and there exists
u(z) € U for which ¢ = (vju(ay) veu(az) vpu(ay)) .

Figure 1.1: Generic bivariate polynomial decoding algorithm for C.

Step 1 of the algorithm may be carried out by Gaussian elimination,
although more efficient algorithms are known for specific cases [21], [1], [18],
[19], [20], [23]. Efficient implementations of Step 2 are known; see for example
[21], which takes expected time O(£2k(3 + log® £log(¢™)). A straightforward
implementation of Step 3 takes O(¢kn) operations. In this work, we aim at
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finding ( and a mapping y — M(y), such that the decoding radius 7, or
alternatively, the relative decoding radius 6, is as large is possible.

1.5 A Johnson-type bound

Fix F = GF(q) and a distance function d over F". For y € F" denote C’ as
an (n, M,d;0,y) code over F if it is an (n, M, d) code over F', and for every
codeword ¢ € C’, we have d(c,y) < On.

We term J (M, 0, q) a Johnson-type bound [11] for 0 < 6 < x if for every
(n, M,d;0,y) code over F' such that 0 < 6 < y,

d/n < J(M,0,q).

We also require that the mapping 6 — J (M, 6, q) is non-decreasing for 0 <
0 <x.

We note that such a bound is usually referred to as a restricted Johnson
bound. It is usually stated for codes C’' such that each codeword ¢ € ('
satisfies d(c,y) = On. However, we will specify a range 0 < § < y such that
both the < #n and the = 6n bounds are equal.

However, for the < On case, the range 0 < 6 < Y, is usually chosen so
that no generality is lost in assuming that d(c,y) < #n. That is, the range
of 6 is usually chosen such that both bounds are equal.

A Johnson-type bound can also be used to bound from bellow optimal
decoding radii.

Proposition 1.2 Fiz ' = GF(q) and a distance function d over F™. Let
C be an (n,M,d) code over F. Let J(M,0,q) be a Johnson-type bound for
0 <60 < x. For a positive integer 0 < £ < M, suppose there exists a smallest
0 <6 < x such that d/n = J(+ 1,0,q), and denote it by 6'. Then, there
exists a list-C decoder for C with relative decoding radius 6.

Proof Let 0* be the largest relative decoding radius attainable by a list-¢
decoder for C, and let D* be the decoder that attains it. If 6* > 6’ then we
are done, since D* is the promised decoder.

Assume 6* < #'. From the optimality of 6*, there exists a received word
y € F" such that

{ceC:d(y,c)<On}>(+1.
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Let C' be a subset of size £ + 1 of {c € C:d(y,c) <6n}. Thus, C' is an
(n,¢ 4+ 1,d';0*,y) code, where d' > d. This contradicts the definition of
J(M.,0,q) and 0. [ ]

1.5.1 A Johnson-type bound for the Lee metric

We will now state a Johnson-type bound for the Lee metric. This, in turn,
will let us bound the optimal relative decoding radius, 8*. For the Lee metric,

define / ;
_ q/4 if g is even
xe(a) —{ (—1)/(4g) ifgisodd (14)
and
M 62
M,6,q) = (20 - , 0<6< . 1.5
Te00) =57 (2= L) 0<02ele). (1)

Notice that 6 — J:(M,0,q) is strictly increasing for 0 < 6 < xz(q). The
following is a special case of Lemma 13.62 in [2] (note also Theorem 13.49
therein).

Proposition 1.3 Fiz F' = GF(q), a bijection (-) : F — Z,, and d = d. as
the Lee metric. Fory € F" and 0 < 0 < x.(q), let C" be an (n,M,d;0,y)
code over F'. Then,

S|

S jﬁ(M,Q,Q) .

For alternant codes we also have the following:

Proposition 1.4 Fiz F' = GF(q), a bijection (-) : F — Z,, and d = d. as
the Lee metric. Let Cgrs be an [n,k,d] GRS code over ® = GF(¢™), and
let Cay be the alternant code Cors N F™ (over F). Let £ > 0, and suppose
0 <& <xc(q) is such that

k—1

n

R:

Then, there exists a list-¢ decoder for Cyy with relative decoding radius ¢'.

Proof Denote by d’ the minimum distance of C,;. One can easily prove that
the minimum Lee distance of a code is always greater than or equal to its
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minimum Hamming distance. It is a well-known theorem that the minimum
Hamming distance of an [n, k] GRS code is n — k + 1 [16, page 304]. So, if
d =d; and Cggrs is an [n, k,d] GRS code, then d > d > n — k + 1. We may
now apply Propositions 1.2 and 1.3.

Also, note that for fixed code locators aq, as, ..., a,, there exist nonzero
column multipliers vy, vq, ..., v, such that d =d =n —k + 1. [ ]

1.6 Organization of this work

In this work, we present a polynomial-time list-¢ decoder for alternant codes
over F' = GF(q) in the Lee metric. For this decoder, we derive a formula for
the relative decoding radius 6 as a function of the list size ¢, the code length
n, the field size ¢, and the underlying GRS code dimension k. We also show
that unlike the Hamming metric counterpart, the decoding radius of our list
decoder is generally strictly larger than what one gets from the Lee metric
version of the Johnson bound.

Chapter 2 contains the definition and analysis of our list decoder for the
case where / is finite. Chapter 3 is devoted to the asymptotic analysis of
the results obtained in Chapter 2, when ¢ — oco. Chapter 3 also contains
an asymptotic comparison of the decoding radius obtained by our algorithm
and the decoding radius promised by the Lee metric version of the Johnson
bound. In Chapter 4, we partially justify the choice of the score matrix
made in Chapter 2. Chapter 5 discuses what codes one might choose, and
also compares the performance of our decoder to that of other decoders.

12



Chapter 2

A List Decoder for the Lee
Metric

2.1 Introduction

Recall from Section 1.3 that F' = GF(q) and ® = GF(¢™). Define C as the
alternant code:

C =Cu = {c= (nu(ay) vou(az) ... vyu(ay,)) : u(x) € Oz} N F™ .

We now wish to present a list-¢ decoder for C over the Lee metric, based
on the general framework outlined in Section 1.4. Let ¢ be the list size, and
let r and A be positive integers such that 0 < A <r. Let y be the received
word. The mapping y = (y;)jepn — M(y) = (M) erjepm), referred to in
Section 1.4, is defined here as

M, ;=max{0,r —de(y;,7) - Ay, v€F, j€[n]. (2.1)

The choice of this mapping will be justified in Chapter 4. Note that Exam-
ple 1.1 is consistent with this mapping, for r = 3 and A = 2
For as yet unspecified parameters A and 6, define

R(0,6,r,A\) = (2.2)
(%1) ((f+1)(r—9A)—(T;1) (2A+1)+(A;1)A(1+2r—%A)+T) ,
where

r—AA+1 . _
T:T(r,A,)\):{< ;) iEA=q/2

0 otherwise ’ (2.3)

13



and an expression of the form () is shorthand for a(a — 1)/2 (later on,
we wil let the parameters of Equation 2.2 range over the reals). Note that
R(0,¢,r,A,;\) is a linear function of #. The following proposition is the
basis for our decoder: it provides a choice for 3, which, along with the
mapping y — M(y) in Equation (2.1), satisfies conditions (C1) and (C2) in
Section 1.4.

Proposition 2.1 For integers £ > 0 and 0 < A < r, define

A(r,A) =min{[r/A], |q/2]}, (2.4)
and let 0 = 0(L,r, A) be the unique real such that
k—1

— = R(6,(,r, A A(r, A))

Given any nonnegative integer T < nf, conditions (C1) and (C2) are satisfied

for
B=rn—T1A,

and the mapping y = (y;)jem — M(y) = (Myj)rerjem defined in Equa-
tion (2.1).

Recall that in Example 1.1 we had £ =6, ¢q=5,n=4,r =3,and A = 2.
A short calculation shows that A(r, A) =1, and 0(¢,r, A) = 0.55. Thus, we
choose 7 =2 < nf, and B = rn — 1A = 8. To sum up, in Example 1.1 we
can correct up to 2 errors in the Lee metric.

Note that A(r,A), and hence R(6,¢,r, A, A(r,A)), are functions of g.
However, for the sake of brevity, we will not write this explicitly. The proof
of Proposition 2.1 follows from the next three claims.

Claim 2.2 Fiz v, A, 7, 3, and the mapping y = (y;)jem — M(y) =
(M, j)verjem as in Proposition 2.1. Let ¢ € C be a codeword and y =
(Yj)jem be a received word such that dz(c,y) < 7. Then, Spy)(c) > rn —
TA = (3.

Proof Consider the matrix M'(y) = (M, ;) erjcn),
M,%j =r— dﬁ(yju'V) AL

Obviously, M! ; < M, ; for all v € F and j € [n], and so Spp(y(c) <
Smy)(c). Notice, however, that Syy(y)(c) = rn —dz(c,y)A, and the proof
follows. [ ]
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Claim 2.3 Fiz constants r, A, and the mapping y = (y;) e — M(y) =
(M, j)verjem) as in Proposition 2.1. Let A = A(r,A) and T =T(r, A, \) be
as defined in Equations (2.4) and (2.3), and let'y be a received word. The
number of constraints implied by M(y) in Equation (1.3) is

n((“;)mﬂ)— (/\gl)A(l—FQr—%A)—T) . (@25)

Proof Notice that the number of integer pairs (s,t) such that 0 < s+t <m
is (";'). Thus, the number of constraints implied in Equation (1.3) is

5 (MgH) :n<(r;1) _T+2i(r—i§+l)) |

YEF, j€[n]

A straightforward simplification of the sum on the RHS yields the required
result. ]

Claim 2.4 The number of significant coefficients implied by B = rn— 1A in
Equation (1.2) is at least

(rn— TA)(C 1) — (k1) (‘g; 1) | (2.6)

Proof From Equation (1.2) we see that the number of significant coefficients

is at least ,

> (B (k1))

=0

and the proof follows. [ ]

We are now able to prove Proposition 2.1.

Proof of Proposition 2.1 Claim 2.2 ensures that condition (C1) holds.

Since 7 < n#,
n ((r—m)(un - %(@”)) (2.7)

is less than Equation (2.6). Note that by the way 6 = 0(¢,r, A) is defined,
Equation (2.7) is equal to Equation (2.5). Thus, Equation (2.6) is greater
than Equation (2.5), and so, condition (C2) holds as well. n
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In light of Proposition 2.1, we now have a method for constructing a list-¢
decoder for the Lee metric: given the list size ¢ an alternant code C whose
underlying GRS code has modified rate %, pick 0 < A < r and let 6 be
such that % = R(6,¢,r, A, A(r,A)). By Proposition 2.1, we are assured a
decoding radius 7 > [nf] — 1. Because we aim at getting a decoding radius
that is as large as possible, we will optimize over r and A.

We will, however, find it easier to optimize the inverse function, that is,
given ¢ and 6, find r and A that maximize R(6,¢, A, A(r,A)). The rest of
this chapter is devoted to the latter optimization.

Definition 2.1 For fized ¢ and 0, we define the pair (r*, A*), where r* =
r*(0,0) and A* = A*(0,0), as the pair (r, A) which mazximizes the function
R(0,¢,r, A, A(r,A)), subject to 0 < A < r. For the sake of uniqueness, in
case of ties (several pairs of r and A for which the maximum is attained), we
pick the pair for which A is the smallest, and for that A, r is the smallest.
Thus, we denote the mazimum value of R for given 6 and { as

R(0,0) = RO, 0,7", A", A(r*, A")) . (2.8)

For the rest of this chapter, let ¢ and 0 be fixed. We still need to prove
that the above definition is indeed well-defined, i.e., that A* and r* are
bounded. This will follow from the analysis in Section 2.2, where we show
that these optimal values satisfy 0 < A* < r* < . In Section 2.3, we will
find a closed formula for the optimal value of r for a fized A. This, in turn,
will allow us to identify the interval of values of € for which A*(6,¢) equals
a given value A. In particular, we show that 6 — R(6,¢) is piecewise linear
and characterize the intervals where it is linear. Also, in Section 3 we will
calculate the asymptotic values of the optimal r» and A as ¢ — oo.

2.2 Bounding r* and A*

We will now prove two lemmas, which will lead to the inequality
O<A*<)r* < /(.

As a by-product, we will conclude that r* and A* are indeed well-defined.
For fixed ¢ and 6, define R(r, A, \) = R(0,¢,r, A, \).
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Lemma 2.5 Let \ be an integer such that 2 < \ < |q/2]. Then,
R(r,A;X—1)> R(r, A, \) .
Proof We have two cases to consider:

Case 1 )\ = ¢/2: In this case,

2
(C+1)

which is negative if and only if AA — 1 <7 < AA. This completes the
proof in this case, since r, A, and \ are all integers.

R(ry,A;N—1) — R(r, A, \) = (r—=AA+1)(r—AA),

Case 2 \ < ¢/2: In this case,

R(ry,A;N—1) — R(r, A, \) = (r—=AA+1)(r—XAA).

(C+1)

Up to a factor of 2, this is exactly the same expression as in Case 1,
and the proof follows.

Lemma 2.6 Let r and A be such that 0 < A < r and r > {. Then there
erist 0 < r' < r and 0 < A" < min{r’, A} such that R(r', A", A(r+', A")) >
R(r, A, A(r,A)), where A(-,-) is given by Equation (2.4).

Proof Denote A = A(r,A), N = A(r',A’), and i = r — £ — 1. There are two
cases to consider:

Case 1 A <r—1: Let v =r—1and A’ = A. We will first prove that
R(r', A", N) > R(r, A, N).

o If A =¢/2, then

R(r', A", \) — R(r, A, \)

2

= et EAT A2 A2 AA)
> £(€+1)(i/\+()\—1)+€(/\—1))

> 0,

where the first inequality follows from AA < r.
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e On the other hand, if A < ¢/2, then
R(r', A", X\) — R(r, A, \)

2 , .

- £(€+1)(—1—£+2(1+z))\+2€)\—(1+z+€))\)
> £(€+1)(M+(A—1)+£(A—1))

> 0.

From the fact that A’ < A and Lemma 2.5 we conclude that

R(r', A" X)) > R(r', A", \) > R(r, A, \) .
Case 2 A=r: Let ' =r—1and A’ = A—1. Note that A = X' = 1. Thus,

R(¥, A N) — R(r, A, \) = (i + 0+ 06) .

2
0+1)
This expression is obviously nonnegative, and the proof follows.

From Lemma 2.6 we conclude that r* and A* are indeed well-defined, or,
more specifically, that:

Corollary 2.7 For a specified 0 and ¢, 0 < A* <r* < /(.

Thus, we have a finite search space.

2.3 Maximizing R, for a given A

As stated earlier, we wish to maximize R(r, A, A(r, A)), subject to 0 < A < r.
Unfortunately, we have no closed formulas for the maximizing values r* and
A*. However, if we fix A, we can state a “fixed A” version of the above-
mentioned optimization problem, which we do know how to solve. Since A*
is such that 0 < A* < ¢, we will be able to solve the non-fixed optimization
problem (finding A* and 7*) in O(¢) time. Building on these results, in
Section 2.4 we will obtain a full characterization of the linear intervals of
the piecewise linear function R(,¢). This characterization will enable us to
solve the non-fixed optimization problem in O(log¢) time. The “fixed case”
counterpart of the above-mentioned optimization problem is as follows:
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Definition 2.2 For fized ¢, 0, and A > 0, we define ra = ra(0,0,A) as
the value of r that mazimizes R(0,0,r, A, A(r,A)), subject to 0 < A < r.
For the sake of uniqueness, in case of ties (several values of r for which the
mazximum is attained), we pick the smallest value of r.

Note that by Equation (2.4), A(r, A) = |£] for r > A[2]. Note also that
R(r, A, ng) is a convex quadratic polynomial when viewed as a function of
r, by Equation (2.2). Therefore, ra is indeed well-defined. Also, note that
the above-mentioned “fixed A” optimization problem isn’t actually affected
by the value of 6, again by Equation (2.2).

Suppose for what follows that A is fixed. We will find rpo and Ax =
A(ra, A). We will do this in two steps: we will first find the value of A,
and from this deduce ra. The order of exposition, however, will be reversed:
we will first find 7a, as a function of Aa; from this derivation of ra, we will
deduce Aa.

Lemma 2.8 Let A be such that A < . Then ra < /.

Proof Assume that ra > ¢, the rest of the proof is very much along the
same lines as Case 1 of Lemma 2.6. |

2.3.1 An implicit formula for rx

Fix (> 1,1 <A</ 1< )\<|qg/2], and recall that for every r, the function
0 — R(0,0,r, A, \) is linear, specifically,
2A

RO, 0,r,A;\) = R(0,0,1, A, \) — 79 : (2.9)
From Equation (2.2) we obtain that the mapping r — R(0,¢,7, A, \) is a
N-concave quadratic polynomial. Denote by a(\) the integer value of r for
which R(0,¢,r, A, \) is maximized (the smallest such integer, in case of ties).
From the definition of {a(A) and the N-concavity of r — R(0,¢,7, A, \), we
have the following:

Lemma 2.9 Fiz { > 1, 1 < A</, 1< X< [q/2]. Let v be an integer.
Then,
R(r+1,A;A) < R(r,A\) <= r >¢&A(N), (2.10)

and
R(r—1,A,)) < R(r,A,\) <= 1 <&a(N). (2.11)

19



We can also derive a closed formula for £a(A):

L(£+ AN2)/(2))] if A =q/2
§a(A) = { [(6+ AN+ N)/(2A +1)] otherw(ilse

We will now prove that ra = Ea(Aa), for 0 < A < /.
Lemma 2.10 For A > 1, we have ra > Ea(AA)

Proof Let A = Aa. Define 7 as the largest value of 7’ for which A = A(r, A).
Note that v might be oo, namely v = oo if and only if A = [¢/2].
Let r = ra. We will first prove that R(r + 1, A, \) < R(r, A, N).

e If r < =, then, by the definition of ra, R(r + 1,A,\) < R(r, A, \).

(2.12)

e if r =~ (namely, A < [¢/2] and r = (A+1)A — 1), then, by the defini-
tion of ra, R(r+1, A, A+1) < R(r, A, X). But from Equation (2.2), for
any integers r, A > 0, and 0 < A < |¢/2], such that r = (A+1)A — 1,
we have that R(r + 1,A,\) = R(r + 1, A, A+ 1).

Finally, it follows Equation (2.10) that r > &a(A). n
Lemma 2.11 For 1 < A </, we have ra < Ea(Aa).

Proof Let A = Aax. Define § as the smallest value of ' for which A =
A(r'; A). We will first prove that R(r — 1, A \) < R(r, A, \).

e If r > (3, then, by the definition of ra, R(r — 1, A, ) < R(r, A, \).

e If r = and r > A (and so, A > 2), then, by the definition of rx,
R(r —1,A;A—=1) < R(r,A, \). But from Lemma 2.5 we readily get
that R(r — 1L,AJA—1) > R(r — 1, A, \).

e If r=( and r = A (and so, A = 1), then

2
0(0+1)
From Lemma 2.8 we get that R(r — 1, A, A) < R(r, A, ).
Finally, it follows Equation (2.11) that r < {a(N). ]
Proposition 2.12 For A </, let A\ = Ax. Then

A = { [(€+ AX?)/(2))] yr=q/2 (2.13)

R(r,A;\) — R(r—1,A,\) =

(14+0—1).

L(0+ AN+ )N)/(2N+1)]  otherwise
Proof Immediate from Equation (2.12), and Lemmas 2.10 and 2.11. n
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2.3.2 Finding A\p

We will now use Proposition 2.12 to find Aa.
Lemma 2.13 For every integer a > 0 and real x
-t
a a
Proof This is a special case of Equation (3.11) on page 72 of [9]. n
Proposition 2.14 For every 0 < A </,
Aa = min{{\/MJ, Lq/2j} :
Proof Let A = Ax and r = ra. Define

A= /Al

and recall that A = min {\, [¢/2]}.
We now have two cases to consider:

Case 1 A\ < [g/2], and so, A = \: In this case, r = LMJ and

T
A= |r/A]|. Thus,
L)
A= (L2 ]

A

A2+
)\ — 22+1

A

L+ANZ+N)
A< XY <A+1

T
AS\/%<)\+1
T

A= | V7B

Note that the first “if and only if” is explained by Lemma 2.13.
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Case 2 A\ = |¢/2], and so, A > X: Note that in this case we have that

r = L%J if ¢ is odd and r = MQAA’\Q if ¢ is even. Either way,

by a derivation similar to the one in Case 1, we have that the following
holds:

>

< 1LIr/AJ
A< [VITA|

In both Case 1 and Case 2 we have that A = min { {\/E/AJ, lq/2] } |

2.3.3 Conclusion for fixed A

Propositions 2.12 and 2.14 lead to the following result.

Proposition 2.15 For any fired 0 < A < 0, let

A =min { |74 |, [/2]} |
Then

. [(€+ AN2)/(20)] ifA=q/2 (2.14)
4 L6+ AN2+N))/(2A+1) | otherwise :

and
Aa = A (2.15)
2.4 Finding the linear intervals of R(f, /)
Recall that
R(0,0) = m%X{R(H,E, r,AA(r,A) 0 < A<r}.
Also, for fixed A > 0, define Ra(0,¢) = R(0,0,rn, A, Ap), where ra and

Aa are defined in Equation (2.14) and Equation (2.15), respectively. From
Proposition 2.15 we arrive at the following simplification for R(#, /) :

R(0,0) = mAaX{RA(Q,E) 0< AL/}
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1

Figure 2.1: Curve 6 — RA(0,¢) for £ =5, ¢=9,and A =1,2,3,4,5.

Note that for fixed ¢, Ra(6,¢) is simply a linear function with slope
—2A/¢. Thus, R(f,() is a piecewise linear function, with at most ¢ linear
intervals. Or, put another way, Ra(6,¢) is the envelope formed by ¢ linear
functions. See Figure 2.1 for a graphical representation.

Let ¢ be fixed. A natural question to ask is: For a given 0 < A < ¢, what
is the interval I (¢) such that

R(0,0) = Ra(0,0) < 0 € Ir(0) .

Note that I (¢) might be empty. The set of intervals I (¢) completely defines
R(#,7), in particular, A*(0, /) is the smallest A for which 6 € Ix(¢), and by
Proposition 2.15, if we know A*, we know r* as well (A* and r* are defined in
Definition 2.1). Thus, we would like a fast method for determining the small-
est A for which 6 € In. For fixed ¢ and 0 < A < ¢, define Oa a41(¢) as the
unique 6 for which the two linear functions 6 +— R (6, () and 6 — Ra,1(0, 1)
intersect. This section is devoted to proving the following proposition:

Proposition 2.16 Let 1 < A < (. Then,

Oanii(0) < Oa_1a(l). (2.16)

Hence, for 1 < A </,

IA(0) = [0a,a41(0),0a-1.(0)] -

Given this, we can find A* by a binary search, which would take O(log ¢)
time. Also, note that we have a closed formula for @a a41(¢), and thus one for
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In(¢) as well. Therefore, we have an explicit characterization of the piecewise
linear function  — R(#, ¢). Conversely, we also have an explicit characteriza-
tion of the inverse function, which maps % to the optimal relative decoding
radius 6.

2.4.1 Preliminary claims and definitions

Fix 0> 1,1 <A</ 1< X< |¢/2], and recall the following four facts
from Subsection 2.3.1: For every r, the function 6 — R(6,¢,r, A, \) is linear
(Equation (2.9)). The univariate function r — R(0,¢,7, A, \) is a N-concave
quadratic polynomial. We've defined £x()) as the integer value of r for
which R(0,¢,r, A, \) is maximized (the smallest such integer, in case of ties).
A formula for {a()) is given by Equation (2.12).

We denote by pa(A) the real value of r for which R(0,¢,r, A, \) is maxi-
mized. By Equation (2.2),

B 0+ AN +1-N)/(2\) if A =¢q/2
pa(V) = { (C+ AN+ X)) +3—A)/(2A+ 1) otherwise (2.17)
Claim 2.17 Let (> 1, 1 <A </{, and 1 < X< |q/2]. Then

R(O7£7 pA()‘)7A7)‘) > R(07€7 gA(A)7A7 /\) :

Proof By definition, the optimization of R over the integers is a restriction
of the more general problem, the optimization of R over the reals. [

Define (a(A) = pa(A) + %7

B (C+AN+1)/(2)) if A\ =q/2
N = { (0 +AMN+)X)+1)/(2\+ 1) otherwise (2.18)
Claim 2.18 Let (> 1, 1 <A</, and 1 < X< |q/2]. Then

R(O7 Ea gA(/\)u A? /\) > R(07 67 CA(/\)u A? /\) :

Proof Recall that r +— R(0,¢,7, A, \) is a N-concave quadratic polynomial,
which takes its maximum at r = pa(A), and £a(A) is the closest integer to
pa(A) (the smaller one, in case of ties). Therefore,

1pa(X) —Ea(N)| < 2 = |pa(A) = Ca(N)],

N —
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R(0,4,m,A,7) R(0,¢,r,A, X)

A

£:§A(>‘)v p:pA(A)v CZCA()‘)

r=CaA(A) r=(A(X) r=pa(}N)

£ P ¢

Figure 2.2: Left: R as a function of r, with all other parameters fixed. The
tick marks on the r-axis designate integers. Right: Three graphs of R as a
function of 6. Each graph has a different r, all other parameters are fixed.

and the proof follows. Claims 2.17 and 2.18 are portrayed in Figure 2.2 (left).
Figure 2.2 (right) follows from Claims 2.17 and 2.18, as well as Equation (2.9).
n

Claim 2.19 Let 1 <A</l and1 <A< Aa. Then

R(O, ﬁ, fA()\), A, )\) 2 R(O, ﬁ, TA, A, )\A) .

Proof We have R(0,¢,EA(N), A N) > R(0,6,7a, A, N) > R(0,4,ra, A, A),
where the second inequality follows from Lemma 2.5. [

For A # A’ and ¢ > 1, define Oa o (¢, 7, 7", A\, X') as the unique real such
that

0 =0an(l,r, ', \N) <= RO, 0,r,A;\)=R(0,0,7, A", X) .

Equivalently,

R(0, 4,7, A, \) — R(0, 6,7, A", X))

6A7A/(£,T,T,)\,)\):€‘ 2(A—A’)

(2.19)

Note that under this definition,
HA,A—FI(E) - QA,A-I—l(g? A TA+1, )\Aa )\A-I—l) .
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Lemmas 2.20 and 2.21 will let us bound 0a a41(¢) from above and be-
low, respectively. These bounds will subsequently be used in the proof of
Proposition 2.16.

Lemma 2.20 Let £ >1 and 1 < A < {. Then

Oans1(0) < Oani1(€,Ca(Aa), pasi(Aat1), Aa, Aatr) -

Proof From Equation (2.19):

Oa.a4+1(0) = Oa,at1(6, A, Tav1, Aa, Aatl) (2.20)
14
= §(R(07€7 TA—|—17A + 17)‘A+1) - R(O7£7 TA7A7 AA))
Oa.a+1(4, Ca(Aa), pat1(Aat1), Aa, Aatr) (2.21)
14

= 5(3(0757 pa+1(Aa+1), A+ 1, Aa41) = R(0,4,Ca(Aa), A, Aa)) -

We must now prove that the RHS of Equation (2.20) is less than or equal
to the RHS of Equation (2.21). This follows from Claims 2.17 and 2.18.
Note that Ea(Aa) = ra and Ear1(Aar1) = ras1. For a graphical proof see
Figure 2.3. [

A= R(97 67 A, A, )\A)

A" =R(0,0,{a(AA), A, AA)

B = R(Q,E, TA+1, A+1, )‘A-‘rl)
B"=R(0,4,pa11(Aat1), A+ 1, a41)

AB =0 a+1(0)

A'B" =0 a41(6,Ca(Aa), par1(Aas1), Aas Aasl))

AB AIB/

Figure 2.3: Graphical proof of Lemma 2.20.

Lemma 2.21 Let £ >1 and 1 < A </{. Then

Or—1.A(0) > On_1.a(l, pa_1(Ar), Ca(Ar), Aa, Aa) -
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Proof From Equation (2.19):

On-1,4(0) = Oa—1,a(0,7a-1,7A, Aa—1, M) (2.22)
= g(R(O,E, ra, A A) — R(0,6,ra_1, A —1,Aa_1))

Oa-1,4(0, pa-1(Aa), Ca(Aa), A, Aa) (2.23)
= g(R(O,E, Ca(Aa), Ay AA) — R(0, 4, pa—1(Aa), A —1,A4)) -

We must now prove that the RHS of Equation (2.22) is greater than or
equal to the RHS of Equation (2.23). From Proposition 2.14, Ax_1 > Aa.
The proof follows from Claims 2.17, 2.18, and 2.19. Note that {a(Aa) = 7a
and €a_1(Aa_1) = ra_1. For a graphical proof see Figure 2.4. [ ]

A A B" B B A= R(G,&TA,A,/\A)

A = R(0,0,Ca(Ma), A, Aa)

B= R(97£,7‘A,1,A - 17)\A71)

B' =R(0,0,ra_1,A —1,\a)

B’ = R(G,é, PA—l()\A), A — 1, )\A)

AB =0a_1,A(¢)

A'B" = 0a-1,a(l; pa-1(Aa), Ca(Aa), Aa; Aa))

A/BII AB

Figure 2.4: Graphical proof of Lemma 2.21.

We defer the proof of Proposition 2.16 to Appendix A. The proof involves
three cases, namely: Aa = Aat1, Aa = Aayr + 1, and Ax > Aay1 + 2. The
proof relies on Lemmas 2.20 and 2.21.

2.5 Further tightening the bounds

In this section, we review the bounds used in Section 2.1. In Subsection 2.5.1
we point out that certain bounds are not tight. As we will see, some of this
slackness comes with a price (which is not too high). In Subsection 2.5.2
we show that one of the bounds is tight, when we are dealing with optimal
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values of r and A. Thus, Subsection 2.5.1 deals with directions one might
choose to take in an attempt to improve the results in this thesis, while
Subsection 2.5.2 points out that one direction is a dead-end.

2.5.1 Non-tight bounds

In Claim 2.3 we’ve bounded from above the number of linear constraints
implied by Equation (1.3). Claim 2.3 was subsequently used in the derivation
of R(0,¢,r, A, A(r,A)). The number of linear constraints was bounded by

Z (M%;'—i— 1) ’

YEF, jE[n]

Note that this bound might not be tight. The linear equations might be
linearly dependent. Moreover, a linear constraint of the form

> () ()@l

hi

is identically zero for ¢ > ¢, as implied by Equation (1.2). Thus, it should
not be counted as a linear equation.

On the other hand, in Claim 2.6, which was also used in the derivation
of R(0,¢,r, A, A(r, A)), we’ve bounded from below the number of significant
coefficients implied by Equation (1.2). This bound was

¢
S -1 = e+ vp- -5 1)
i=0
Note that if 5 — (¢ +1)(k+ 1) <0, then the bound is not tight.

We expect R(6,() to increase as ¢ grows (every list-(¢ 4+ 1) decoder is
also a list-¢ decoder), and this is generally the case. However, because of
the non-tight bound on the number of significant coefficients, there are cases
where the opposite happens. As an example, take § = 0.8 and ¢ = 9. For
these values, R(6,¢ = 7) = 0.164, as opposed to R(0,¢ = 8) = 0.1611 (see
Figure 2.5).

2.5.2 A tight bound

The following Lemma will show that the bound used in Claim 2.2 is tight
for optimal values of r and A. If this had not been the case, we might have
been able to use this slackness in order to improve the decoding radius.

28



4 4 4 4 4 4 4 4 4 4
+ + + + + + + + + +

Figure 2.5: Curve 6 — R(0,/() for ¢ =9 and ¢ =7,8.

Lemma 2.22 Fiz C as a length-n alternant code, and let the underlying
GRS code have dimension k. Fix { as the list size. Let 0(,r,A) be as
defined in Proposition 2.1, and fir 0 < A < r < { that mazimize 0({,r, A).
Let  =0(L,r,A), 7= [nf| —1, and B = rn—T1A. Then, for every codeword
c there exists a recewed word y such that d(c,y) =7 and Spy)(c) = 3.

Proof Let y be such that 7 —n|7/n| entries of y are at a distance |7/n]+1
from the respective entries of ¢, and the remaining n — 7 + n|7/n| entries of
y are at a distance |7/n| from the respective entries of c. By this definition,
d(c,y) = 7. We claim that y is such that Syy)(c) = 3.
Assume the contrary, namely, that Syy)(c) > 3. Thus, we must have
that
r—(|lt/n|+1)A <0,

and since # > 0, we must also have that
r—|7/n]A>0.
Define " and A’ as the unique integers for which

r—|7/n|]A=7"—|7/n]A" and ' —(|7/n]+1)A"=0.
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Note the following facts about " and A’ (see also Figure 2.6):
1. 7" and A" are indeed well-defined.
2. 0 < A<y < /.
3. For z < |7/n] we have r — xA > 1" — zA’.

4. For x > |7/n] we have r — xA <71’ — zA'.

Figure 2.6: x +— r — zA versus x — 1’ — zA.

We claim that (¢, A") > 6 = 0(¢,r,A), which is a contradiction. We
will show this by proving that

R(O,0,m, A, A(r,A)) < R(6,¢,r", A", A(r', A")) . (2.24)
By Fact 3 we have that
lr/n) ;A l7/n] :
r’ —1A r— 1A
< .
nZ;( ) ) <n ;(2) , (2.25)

where the LHS of Equation (2.25) is the number of linear equations implied
by " and A’, and the RHS is the number of linear equations implied by r
and A. Note that the number of equations implied by (any) r and A is given
by Equation (2.5) which, after divided by n and preceded by a minus sign,
appears as a sub-expression in Equation (2.2). The other sub-expression
inside the outermost parenthesis of Equation (2.2) is (¢ + 1)(r — Af). Thus,
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in order to prove that Equation (2.24) is true, it remains to be shown that
r—60A < r’"—0A’. This follows from the definition of 7 which implies that
0 > |7/n], and from Fact 4. n
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Chapter 3
Asymptotics

Recall that in the finite ¢ case studied in Chapter 2, we had no closed for-
mula for A* = A*(6, () (although Equation (2.16) is pretty close). In this
chapter, we will take / — oo, and derive a closed asymptotic formula for A*.
Therefore, we will also have closed asymptotic formulas for r* = ra- and
R(0,0) = R(0,¢,r*, A*, A(r*, A¥)).

For as yet unspecified integer A and real w € [0, 1], define

N 3+ (622 —1220)w— (222 +2H)w? i\ = q/2
R(e, w, /\) = 3+(6>\+6>\26912Azfz§‘r3(>\+2>\2+2>\3+>\4)w2 otherwise (3'1)
Also, define

A(w):{ minﬂ\/l/TUJ,LQ/%} O<w<1

La/2] w=0

Note that A(w), and hence R(6,r, A(w)), are functions of ¢. However, for
the sake of brevity, we will not write this explicitly.

Lemma 3.1 For>0,¢>0and 1 <A</, let w=A/l. Then,

Ra(0,0) = R(0,0,ra, A As) = R(0,w, A(w)) + O(1/0) .

Proof Note that for w = A/{, we have A(w) = Aa. Let A = Ay = A(w)
and r = ra. Define a(6,¢,r, A, \) by

(0, 0,7, A, \) = (g"g 1) R0, 6,1, A, N) .
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We will soon prove that R(6,¢,r,A;\) < 1. But given this we have that
a(, 0,7, A, \) = O(f%), and we can write

R(O.6,7, A, N) = %a(@,f, r AN+ O(1)0)
We can now replace r by the RHS of Equation (2.13). Removing the floors
added by this substitution contributes a factor of O(1/¢). Rearranging yields
the required result.

We will now prove that R(6,¢,r,A;\) < 1. By Lemma 2.5 it suffices to
prove that R(0,¢,r,A,;1) < 1. Since R(0,¢,r,A,1) is a strictly decreasing
function of 6, it suffices to prove that R(0,¢,r,A,1) < 1. If ¢ = 2, we have
that

A — A2+ 2Ar + 20r — 2r?

R(0,4,m, A1) = W

substituting A by r — 7 yields

—r? 4+ (204 1)r — 7 — 72

R(0,¢,7, A1) = W

(3.2)

Since A < r, we have 7 > 0. Substituting the worst case value of 0 for 7 in
Equation 3.2 yields
—r?+ (20 + 1)r

0+ 02 ’
which is equal to 1 for r = £, £+ 1, and is less than 1 for all other values of r.
The proof for the ¢ > 2 case is quite similar. [ ]

Let us now discard the O(1/¢) factor and optimize w — R(6,w, A(w))
over w.

3.1 An implicit formula for w*

Note that the function w +— R(@, w, A(w)) is a piecewise quadratic polyno-
mial. One can also easily verify that it is continuous, and has a continuous
derivative. Thus, w — R(6,w, A(w)) is N-concave, and therefore, it attains
a (single) maximum for some optimal 0 < w*(¢) < 1.

We will now find a formula for w* = w*(#), as a function of A(w*) and 6.
Recall that x.(q) is defined in Equation (1.4).
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Proposition 3.2 For 0 <6 < x.(q), let A = A(w*(6)). Then,

3\—60 Zf A — q/2
o (0) = { b | 3.3

Moo Otherwise

Proof Fix 6 and A, and denote w* = w*(#). Consider the function w —

R(6,w, \). One can easily prove that the RHS of Equation (3.3) is the value
of w for which 2222 — 1 Note that
OR(6,w, \)
ow

w=w*

because w — R(0,w, A(w)) is continuous, and has a continuous derivative.
We have three cases to consider:

Case 1 : In this case,

OR(0,w, \)
p— O 5
ow B
and the proof follows.
Case 2 : In this case,
OR
ow e

Thus, w* = 0, and therefore, A = ng For A = L%J? the fact that the
RHS of Equation (3.3) is < 0 contradicts the fact that 6 < x.(q).

Case 3 : In this case,

OR(0,w, \)

> 0.
ow

w=w*

Thus, w* = 1, and therefore, A = 1. For A = 1, the fact that the RHS
of Equation (3.3) is > 0 contradicts the fact that 6 > 0.

34



3.2 Finding A(w")

Equation (3.3) gives us w*, as a function of A(w*) (which is yet unknown)
and 6. We will now derive an explicit formula for A(w*).

Pr0p031t10n 3.3 Let 0 < 0 < xc(q). Denote by L the unique integer such

that L 1 <0< 3%;% Then A(w*) = min{L, |q/2]}.

Proof Fix A = A(w*). There are two cases to consider:

Case 1 X < |¢/2]: In this case, we have that A\ = L\/l/w*J. By Proposi-

tion 3.2, and a stralghtforward algebraic manipulation, we see that this

1 AZ42)
is equivalent to 2=t < 6 < 501"

Case 2 X\ = [¢/2]: Now we have that A < b/l/w*J. A short calculation
shows that this yields —1 < 0.

3.3 Conclusion for the asymptotic case

We can now derive the asymptotic optimal modified rate formula. Inserting
Equation (3.3) into Equation (3.1), along with Proposition 3.3, yield the
following:

Pr0p031t10n 3.4 For 0 < 0 < xc(q), denote by L the unique integer such
that L 1 <0< L2 - und et A = min{L, |q/2]}. Then,

3(L+1)”
14+2X2 6204662 : _
L+2)° 620466 if A =q/2
R(0,00) = lim R(6,¢ 224\ 3.4
( ) P ( ) { A+3,\2+2,)\\172§,;i(;;>\l§392(1+2>\) otherwise ( )

Proposition 3.4 gives us the asymptotic value of the optimal R, for a
given 6. Conversely, we can look at the inverse function of R to derive the
asymptotic value of 6, for a given R. Thus, we now have a means to (asymp-
totically) compare the modified decoding radius obtained by our algorithm
to that promised by Proposition 1.4. Define

02
xc(q)

Telo0.6,9) = lim Je(£,6,q) = (29— ) C0<8<xelo).
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Proposition 3.5 For 0 < 0 < x.(q), if ¢ = 2 or ¢ = 3, then R(0,00) =
1 —Jr(0,0,q). Otherwise, R(0,00) > 1 — Jz(00,0,q)

Proof Define the function f(0, \) as the RHS of Equation (3.4). Fix some
0o, such that 0 < 6y < x.(¢), and let A be as defined in Proposition 3.4 for
0 = 6y. Note that X is fixed.

We have two cases to consider:

Case 1 X\ = |¢/2]: If ¢ is even then x.(q) = A/2. Otherwise, ¢ is odd, and
xc(@) = W2+ XN)/(2X+1). If g =2 or ¢ = 3, then A = 1 and from
Equation (3.4) we obtain that R(6y, 00) = f(0y,A) =1 — T(00, 09, q).

Otherwise, for A > 1 and 0 < 6 < x.(q), f(0,00) — 14+ Jr(00,0,q) is

a N-concave quadratic polynomial in 6. Since % < by < xe(q), it
suffices to prove that for A > 1, we have f(0,\) — 1+ Jz(c0,6,q) >0
for 6 = % and 0 = x,(¢). This is indeed so.
Case 2 A < |¢/2]: In this case, we have y.(qg) > 2%, Thus, it suffices to
show that 5
fOAN)—1+20— —~ (3.5)

(%)

2

is positive for § = 6. Equation (3.5) is #?/2 for A = 1 and N-concave
22

for A > 1, as a function of #. Since 3—;1 < ) < %, it suffices
to show that for A > 1, Equation (3.5) is positive for 0 = % and
0= Q(Q/\Jffs. This is indeed so.

|

Figure 3.1 plots R(0, () versus 1 — J.(00, 8, q) for specific ¢ and ¢.

Since 1 — Jr (00,0, q) is strictly decreasing for 0 < 6 < x.(q), we conclude
from Proposition 3.5 that when ¢ — oo, the decoding algorithm achieves a
relative decoding radius which is generally better than the one promised by
Proposition 1.4. Note that this holds regardless of the column multipliers
(vi)ien)- This is somewhat surprising; in the Hamming metric, the bound
implied by a Johnson-type bound turns out to be exactly the relative decod-
ing radius achieved by Koetter and Vardy [12]. Note that ¢ = 2 and ¢ = 3
are the two values for which the Hamming and Lee metrics are the same.
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Johnson, ¢ =7

Johnson, ¢ = oo

1

Figure 3.1: Curve 6 — R(6,{) and the Johnson bound for ¢ = 5 and ¢ = 7, cc.
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Chapter 4

Justification for the Score
Selection

At the start of Chapter 2, we introduced a mapping y — M(y), defined in
Equation (2.1). We will call this mapping and everything derived from it
the distance-linear score method. The rest of the chapter was dedicated to
the optimization of that mapping over » and A, in order to get the largest
possible decoding radius 7. Chapter 3 was dedicated to further analysis of
this mapping.

However, it is certainly possible that a mapping y +— M(y) not of the
form of Equation (2.1) (along with a respective 3) would yield a better decod-
ing radius than what we could achieve from the distance-linear score method.

This chapter is dedicated to justifying Chapters 2 and 3 (partially). We
will show that after some relaxation — essentially assuming a certain sym-
metry in the mapping y — M(y) and moving from integers to rationals —
the distance-linear score method is optimal. Thus, one would expect that
the distance-linear score method is not too far from the optimum.

Consider a related setup. For ease of notation, denote

I={0,1,...,]q/2]}.

We are given two parameters. The first parameter is the vector p = (1;)ier,
termed the multiplicity vector, over the nonnegative rationals. We also re-
quire that, for two indexes ¢ and j, if ¢ < j then p; > p;. The second
parameter is the critical score (3, which is also over the nonnegative ratio-
nals. We call a rational vector § = (9;);c; an error distribution if ., 6; = 1,
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and 0; > 0. For an error distribution § we define the weight of § as
w(d) =n-» id;.
icl
The score of § with respect to p is defined as
iel
We call 8 a critical error distribution with respect to a multiplicity vector
p and critical score 3, when the following three conditions are met:

1. Su(6)=p.

2. If &' is an error distribution such that w(d’) < w(d), then S,,(8") > 3.

3. For all 7 such that 7 > w(d), there exists an error distribution &' such
that w(d) < w(d’) < 7 and S,(8") < S.

How are all these definitions connected to what we’ve been doing so far?
Let y = (y;) e[ be the received word. Suppose we were only interested in
mappings y — M(y) = (M, j)rer,jefn of the form

M, ;= Hd g (y; ) - (4.1)

for some vector p = (p;)ier, With nonincreasing entries. For a codeword ¢
define d(c,y) = (0;)ies as

s el delym =it w2

)
n

Then, under these definitions,

Smy)(€) = 5u(d(c,y))
and

dC(Ca y) = W((S(Ca y)) :
Recall that Spy(c) is defined in Equation (1.1).

For ease of analysis we will let u and 3 be defined over the nonnegative
rationals (and not the nonnegative integers). Let & be a critical vector with
respect to g and 5. The value of w(d) is our best estimate for the decoding
radius implied by p and 3. That is, for all §" such that w(d") < w(d) we have
Su(8") > 3. Moreover, an error distribution ¢’ such that w(d’) > w(d) does
not have this property. In addition, § realizes the critical score, S,,(d) = 3.

For the above model we have the following:
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Proposition 4.1 Let p = (11;)ier be a multiplicity vector and (3 be a critical
score. Let & be a critical error distribution with respect to u and (3. Then,
there exists a multiplicity vector p' = (p)icr and rationals v and A such that

w; = max {r —iA, 0} < pu; ,
and & is a critical error distribution with respect to p' and 3.

Proposition 4.1 states that under the model introduced in this chapter,
we do not lose anything by assuming that p; is of the form max {r —iA, 0}.
Also, note that p) < p; is important in connection with Condition (C2),
introduced on page 9. Namely, if we were dealing with integers, and not
with rationals, and Condition (C2) held for the mapping induced by p and
B (Equation (4.1)), then it would also hold for the mapping induced by p'
and [3.

Recall that our definition of a multiplicity vector g = (u);e; required that
it j,k € I are such that j < k, then p; > p. This might be a good time
to state that we do not lose any generality in this definition. Specifically, let
= (@)ier be a vector for which there exists j < k such that p; < pg. Let
B be a critical score and let § = (J;);e; be a critical error distribution with
respect to 3 and p. Define the vector p' = (u})ies as

Hi= 1\ 1 otherwise

Note that we can continue this process until we are left with a legitimate
multiplicity vector. We claim that § is a critical error distribution with
respect to p’ and 5. Assume this is not the case, namely, that pgd, > (u), =
14;)0k. Define the error distribution 8’ = (¢§'); € I as

8+ 0, ifi=j
(0"); = 0 ifi =~k
0; otherwise

We have w(d') < w(d), but S,(8") = S, (8") < S.(d), contradicting the fact
that & is a critical error distribution with respect to 5 and p. Note that for
all i € I we have that u; < u;, and as was the case in the previous paragraph,
this is important in connection with Condition (C2).

The proof of Proposition 4.1 will be deferred to the end of this chapter.
We will first prove some lemmas.
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Lemma 4.2 Let the multiplicity vector pu = (p;)icr be of the form
p; = max {r — Ai,0} |
and let & be an error distribution such that w(d) = 7. Then,
Su(6) >rn— At .

Proof Denote § = (§;);c;. We have

iel
> n Z(r — A);
iel
= nr-— Anz 10;
iel

= nr—Aw(é),
where the penultimate equality follows from ), , d; = 1. [

Lemma 4.3 Fiz a multiplicity vector p and a critical score 3. Let § be a
critical error distribution with respect to p and 3. Then, there exists &' that
15 also a critical error distribution with respect to p and 8 such that at most
two entries of 8 are nonzero.

Proof Denote § = (8;)ic;. Let a < b < ¢ be indexes for which d,, 0, d. are
all positive (if no such indexes exist then 8’ = §). For as yet an unspecified
¢, consider the error distribution &' = (8});er,

O — eg%z ifi=a
Op + € ifi=25
Oc — elc’:—z ifi=c

0; otherwise

5 = (4.3)

Note that for a rational € such that —d, < ¢ < min {% O, — (56}, we have

that & is a valid error distribution. One can also prove that, w(d’) = w(d),
and

ne

Su(8) = Su(8) = ——— (—ptalc —b) + ps(c — @) = plb—a)) . (44)

cC—a
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Next we show that —pu,(c — b) + (¢ — a) — pe(b — a) = 0. Otherwise,
assume that it is negative (resp., positive). For a small enough € > 0 (resp.,
€ < 0), we have that &' is a valid error distribution with w(d) = w(é’) and
Su(8") < B, contradicting the fact that § is a critical error distribution.

Therefore, if we take € = —0;, the number of positive entries in ¢’ would
be one less than those in §. We can continue this process until we are left
with a vector with two positive entries. [

Lemma 4.4 Let p = (pi)icr be a multiplicity vector, and 3 be a critical
score. Suppose & = (0;)ier 18 a critical error distribution such that d,+ 0. = 1
for two indexes a < ¢, and both 6, and 6. are positive. Let b € I be an index
different from a and c. Then,

—ta(c =) + p(c — a) — pe(b—a) 2 0.

Proof Suppose a < b < c¢. Define §' as in Equation (4.3), with ¢ =
min { <% - §,, &2 - 6.}. We have w(d) = w(d’). Since & is a critical error
distribution we have S,(8") > S,,(8). Thus, by Equation (4.4), our result
follows. The case b < a < c is quite similar, we define §’ as in Equation (4.3),
up to the substitution a — b, b — a, and take e = —¢,. The case a < c < b

is similar as well. ]

Lemma 4.5 Let p = (1;)ie; be a multiplicity vector and (3 be a critical score.
Suppose & = (0;)ier 18 a critical error distribution error such that 6, + . = 1
for two indexes a < ¢, and both d, and d. are positive.

Define p' = (115)ier as

W = max{'ua(c — 1)+ peli = a),()}
c—a
= max{r —iA,0} ,

where r = Bkt gnd A = Fe=le Then, 8 is a critical error distribution

with respect to ' and [3.

Proof Let 7 = w(8) = n(ad, +cd.). Notice that u!, = p, and pl, = .. Thus,
rn— 1A = S,/(8) = S,(8) = . Therefore, from Lemma 4.2, for all §’ such
that w(d") < w(d), we have S, () > (.

On the other hand, from Lemma 4.4 we have that u; < u,, for all ¢ € I.
Thus, for every error distribution &', we have S,/ (") < S,,(8"). Specifically,
this applies to any error distribution §" such that w(d") > w(d). u
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Figure 4.1: Graph of p versus g/ in Lemma 4.5.

For a graphical representation of Lemma 4.5, see Figure 4.1.

Lemma 4.6 Let p = (p;)icr be a multiplicity vector, and (3 be a critical
score. Let § = (0;)ier be a critical error distribution with respect to p and (3,
such that &, = 1 for an index 0 < b < |q/2]. Fiz indexes a and ¢ such that
a <b<c. Then,

—ta(c = b) + pp(c —a) = pre(b—a) < 0.

Proof Assume the contrary, and define §' as in Equation (4.3), for € = —d,.
We have w(d) = w(d’), and by Equation (4.4) we get that S(d") < S(9).
This contradicts the fact that d is a critical error distribution. [

Lemma 4.7 Let p = (p;)icr be a multiplicity vector, and (3 be a critical
score. Let § = (0;)ier be a critical error distribution with respect to p and (3,
such that &, = 1 for an index 0 < b < |q/2|. Fiz a < b as an index such that
forallad <b
Har — Mo > Ha — b
b—a — b—a
Define the multiplicity vector p' = (1;)ier as
W, = max {,ua(b —D+m(iza) ; O}
b—a
= max{r — Ai,0} ,

where r = % and A = B=Eb - Then, p; < p; fori € I, and 6 is a critical
error distribution with respect to p' and 3.
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Proof We must first prove that for all indexes c,
—pia(c = b) + py(c — a) = pe(b—a) <0

For ¢ = b this is obvious. For ¢ > b this follows from Lemma 4.6. For ¢ < b
this follows from the definition of a. The rest of the proof is very similar to
Lemma 4.5. ]

For a graphical representation of Lemma 4.7, see Figure 4.2.
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Figure 4.2: Graph of p versus p’ in Lemma 4.7.

We are now able to prove Proposition 4.1.

Proof of Proposition 4.1 By Lemma 4.3, if § is a critical error distribu-
tion, then we can assume w.l.o.g. that § has either one or two nonzero entries.
If & has two nonzero entries, the claim is proved by Lemma 4.5. Otherwise,
d has one nonzero entry, and the claim is proved by Lemma 4.7. ]
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Chapter 5

Notes

This chapter contains two sections. In the first section we discuss what code
C and bijection (-) : F' — Z, a designer might choose when working with our
decoder. Specifically, we cite previous results about “good codes” for the Lee
metric. In the second section we compare the decoding radius of our decoder
to the decoding radii of other known decoders for the Lee metric.

5.1 Code and bijection selection

In [22], length-n normalized (v; = «; for all i € [n]) alternant codes are
analyzed for F' = GF(p), where p is prime. If we take (-) : F — Z, as the
identity function, the minimum Lee distance of these codes, d, satisfies

2(n—k), forn—k<(p—1)/2
dz{p, for(p+1)/2p§n—k<p ’ (5.1)

where k is the dimension of the underlying (normalized) GRS code.

Normalized [n, k] GRS codes are also analyzed in [22]. Let & = F =
GF(p), where p is prime, and let () : ' — Z, be the identity function. Fix
C as an [n, k] GRS code, and denote r = n — k. The minimum Lee distance
of C, d, satisfies the following three bounds:

d > 2r, (5.2)
r+1 (r+1)°
d > 5.3
-2 +4(p—1—7")’ (5:3)
1
2 -1 -r-2p). (54
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where Equation (5.4) is due to Mazur [?].

Thus, it might be beneficial to choose a normalized alternant or GRS
code, and to choose (-) : F' — Z, as the identity function.

On the other hand, it is well-known that the minimum Hamming distance
of a GRS code is n — k + 1. Let F', ®, the bijection (-) : ' — Z,, and the
code locators (ai)ie[n} be given. Note that we could choose column multipliers
(Vi)ien) such that the minimum Lee distance of the resulting code satisfies
d=mn—k -+ 1. But we can do no worse than this.

In Section 1.2, we fixed a bijection (-) : ' — Z,. Different choices of ()
generally lead to different minimum Lee distances of the codes. Moreover,
we could just as well have n fixed bijections, one for each coordinate. Thus,
when constructing a code, the mapping(s) (-) are a design consideration.
Note that our algorithm generalizes to the case where different mappings
are chosen for different coordinates: When specifying column j of the score
matrix (Equation (2.1)), use the mapping associated with coordinate j.

5.2 Other decoders

Suppose F' = GF(p), where p is prime, and (-) : ' — Z, is the identity
function. When seeking a decoder for a normalized alternant or a normalized
GRS code over F', the decoding radius promised by our decoder should be
compared to that obtained in [22]. The latter is 7 =n — k — 1 (for £ = 1),
whenever the 2(n — k) lower bound on d applies (recall Equations (5.1) and
(5.2)). One can also extend the decoding algorithm in [22] to T =n—k — 1
when n — k < p [?, Chapter 10]. This results in a list-2 decoder.

Let F and (-) : F' — Z, be as in the previous paragraph. Suppose F' = @,
and let C be an [n, k] normalized GRS code. Thus, Equations (5.2)—(5.4) ap-
ply, with » = n — k. Denote by d5.2, d5.3, d5.4theRH Sof Equations (5.2),
(5.3), and (5.4), respectively. These equations imply the existence of a clas-
sical (list-1) decoder, with decoding radius

| [max {d

5.2,d5.3,d5.4 —1mAlthough this result is non-algorithmic, we will com-

pare ourselves to it.
Figure 5.1 plots decoding radii of three decoders: Our decoder, the Roth
& Siegel decoder, and the non-algorithmic decoder (Equation (5.5)), for a
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normalized GRS code. Figure 5.2 plots the decoding radii of our decoder,
and the Roth & Siegel decoder, for a normalized alternant code.

T

104tD
85- O

50 x our decoder
« Roth & Siegel

o non-algorithmic

45
40
35
30
251"« o

20 =

15 x

10 ®

Figure 5.1: Let F' = ® = GF(29), and let (-) : ' — Z, be the identity
function. Fix C as an [n, k] normalized GRS code, with n = 28. For a
specified k (x-axis), we compare the decoding radii, 7, of three decoders: Our
decoder (with ¢ = 10), the Roth & Siegel decoder, and the non-algorithmic
decoder (Equation (5.5)).
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Figure 5.2: Let F' = GF(5), ® = GF(25), and let (-) : ' — Z, be the identity
function. Fix C as an [n, k| normalized alternant code, with n = 24. For a
specified k (z-axis), we compare the decoding radius, 7, of our decoder (with
¢ =10) to that of the Roth & Siegel decoder. Note that two or more values
of k may result in the same alternant code. Values of k which result in the

same code are grouped by a brace. The left-most brace corresponds to the
trivial code C = {0"}.
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Appendix A

Proof of Proposition 2.16

A.1 The Ax = Apy1 case

As stated in the beginning of Section 2.4, our goal is to prove that if 1 <
A < {, then Oa a41(¢) < 0a_1.A(¢). In this subsection, we will prove this for
the case where Aa = Aays1.

Claim A.1 Let ¢ > 1. Then,
6(0+ 1)0a as1 (7", A N)
is an integer for every integer r, r’', X, and \.
Proof Follows directly from the definition of R in Equation (2.2). ]

Lemma A.2 Let (> 1,1 <A</, and 1 < X< |q/2|. Then

0A—1,A(£7 pA—l(A)u CA(A)v )‘7 )‘) - 6A7A+1(€7 CA()‘>7 pA-l-l()‘)? )‘7 )‘) > ﬁil) :

Proof A short calculation gives

QA—LA (Ev pA—l(A)v CA(A)v )‘7 )‘) - 6A7A+1(€7 CA()‘>7 pA-l—l()‘)? )‘7 )‘>

A(N2-1) ey
_ { Gy if A =gq/2
—3-8A—4AZ 48344\ .
12(€+1)(—{+2)\—)’— otherwise
This expression is obviously positive for A > 1. For A =1 and ¢ = 2 it is
O.For)\zlandq#QitisWil). ]
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Lemma A.3 Let £ > 1 and 1 < A < { be such that Ax = Aay1. Then
Orant1(0) <Oa_1a(l) .
Proof From Lemmas 2.20, 2.21, and A.2 we get
1200+ 1)(0a—1.a(0) = Oansi(0)) > —1;

furthermore, from Claim A.1 we conclude that the LHS is even and, so,
nonnegative. [

A.2 The Ay = Aay1 + 1 case

In this section, we prove that Oaar1(€) < Oa_1a(¢), for 1 < A < £ and
AA = /\A+1 + 1.

Lemma A.4 Let £ > 1 and 1 < A < { be such that Ax > Aay1. Then
l
A= {_J |
A4
Proof Fix A = Ap. From Proposition 2.14 we conclude that A is the largest

integer for which
A< L\/K/AJ .

This inequality is satisfied if and only if A < 4/¢/A or

l
A < YR
The largest value of A for which the latter inequality holds is obviously
A=), .

Lemma A.5 Let £ > 1 and 1 < A < { be such that A\n = Aa11+ 1. Denote
A= Aa. Then

On—1,a(0, pa—1(N), Ca(A); A, A) = Oa a1 (6, Ca(N), pari(A = 1), A\, A =1) > 0.
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Proof

Oa—1,a(l, pa—1(N), Ca(N), A, A) —Oa ag1 (4, Ca(N), par1(A=1), A\, A—1) =
(A1)

—BAAZH 1202 ((+1-XA2)A—6((€+1)2 —202%) —3A+2202 —8A3 —10A* +8)° i\ — /2
24(F+ DA (2A—1) LA=4q

—6ATAZH12X2 ((4+1-XA2)A—6((£+1)%2 —2022)+A+1202 813 +4)\°
6((+1)(2A—1)(2A+1)

By Lemma A.4, A = L%J We could plug this value of A into the RHS
of Equation (A.1) and prove that it is nonnegative. However, that would be
messy.

Instead, fix A and ¢, and consider Equation (A.1) as a function of A. This
function is a N-concave quadratic polynomial, whose maximum is attained

otherwise

at w. Since
0—(N—1) { 14 J 14
V" <«
A2 2] T A
it suffices to prove that if we substitute A = é, then the resulting equation

is nonnegative. The latter substitution yields

_6— 2_Qy\3_ 4 5 .
{ 6—3A+22X32—8A3—10A*+8) if A =q/2

24(14+0)A(22—1)
—6+AF1202—8A344)\5

6(011)(2A—1)(2A11) otherwise

which is indeed nonnegative for A > 2. ]

Lemma A.6 Let /> 1 and 1 < A < { be such that A\ = Aay1 + 1. Then
Oani1(0) <Oa_1a(0) .

Proof Immediate from Lemmas 2.20, 2.21, and A.5. [

A.3 The Ay > Aa1 + 2 case

In this subsection, we will prove that Oa a11(€) < Oa_1a(¢), for 1 < A < ¢
and )\A Z /\A—i-l + 2.

Lemma A.7 Let { > 1 and 1 < A < ¢ be such that A\a > Aat1 + 2. Then

1

1 1
Aay1+1)2 A%

l <

o1



Proof By Lemma A.4, A = [¢/A\4]. Thus,
A<l/)]. (A.2)

Also, by Proposition 2.14, Aay1 = { /(A + 1)J Thus,

()\A+1 + 1)2 > ﬁ/(A —+ 1) . (A3)
From Equations (A.2) and (A.3) we deduce
5 l 1
(/\A+1+1)>L+1:>£< T — T
>\A ()\A+1+1)2 )\QA

Lemma A.8 Let { > 1 and 1 < A < { be such that Ax > Aar1 + 2. Denote
A=Aa and A = Aa11. Then

Or—1.a(C, pa—1(X), Ca(N), A\, A) — Oaat1(4, Ca(N), pati(A), A, A) > 0.

The proof of this lemma is quite long, and has thus been deferred to
Appendix B. However, we will give here a proof sketch.

Proof Sketch Let Ay and ¢, be fixed constants such that 1 < Ay < ¥, and
the constants A = Ay, 41 and A = Ap, are such that A > A + 2.
For real A and /¢, denote

t(Aa g) = 6A*1,A(£7 pA—l()\)> CA()\)7 )\a )\) - 6A,A+1(£7 CA()\)a PA+1(A)> )\a A) .

The mapping A — t(A,¢) is a N-concave quadratic polynomial. By
Lemma A.4 we conclude that

lo— (N2 —1) 4y
e el TR
Thus, it suffices to show that

(- (2-1) ¢
(T,g) and tg(g) :t(ﬁ,

are both nonnegative for £ = ¢,. The functions ¢;(¢) and 5(¢) are N-concave
quadratic. By Lemma A.7 we have

t1(6) = t( 0

1
(A+1)2 A2
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Thus, if suffices to prove that

1 1
0(0), til(———7), t(0), to(———7),
(A+1)2 A2 (A+1)2 A2
are all nonnegative. This is indeed so. [ ]

Lemma A.9 Let /> 1 and 1 < A < { be such that A\a > Aay1 + 2. Then
Oani1(0) <Oa_1a(0) .
Proof Immediate from Lemmas 2.20, 2.21, and A.8. [

We can now prove Proposition 2.16.

Proof of Proposition 2.16 Immediate from Lemmas A.3, A.6, and A.9. m
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Appendix B

Proof of Lemma A.8

Proof of Lemma A.8 Let Ay and ¢, be fixed constants such that 1 < Ay <
ly, and the constants A = Aa 41 and A = Aa, are such that A > A + 2. Let
e and € be integers such that A =1+eand A =14+e+2+e€ Since A > 1
and A > 2+ A, we conclude that e > 0 and € > 0. From this point to the
end of the proof, let A be shorthand for 1 + e, and let A be shorthand for
l1+e+2+e

In the course of this proof we will derive expressions of the form

E a; je'e

120,520

where there are a finite number of a; ; # 0. If the above expression satisfies
a; ; > 0and agp > 0, then we will call it a positive-term expression. Similarly,
an expression for which a;; < 0 and agp < 0 will be called negative-term.
Obviously, if an expression is positive-term (negative-term), then it is positive
(negative) when e > 0 and € > 0.

Denote

t(Aa g) = 6A*1,A(£7 pA—l()\)> CA()\)7 )\a )\) - 6A,A+1(£7 CA()\)a PA+1(A)> )\a A) .

We will prove that ¢(Ag, fo) > 0. However, we will not assume that A and ¢
are such that 1 < A < ¢. More so, we will let A and ¢ range over the reals.
Note that this is OK, since all relevant equations ((2.2), (2.3), (2.17), (2.18),
(2.19)) are defined for this general case.
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Let

B 24(3+2e)3+e+e)(1+0) it N\g=gq/2
“a= 12(3 4 2¢)(7+2e+2¢)(1 4+ ¢) otherwise ’

co=Xs, c3=(1+e)(5+2e+¢).
Note that ¢q, c9, and c3 are positive. Denote
t'(A ) =t(A L) - ¢y

The mapping A — t/(A, {y) is a quadratic polynomial. Since the coeffi-
cient of A? in #'(A, /) is negative-term, we conclude that it is a N-concave
quadratic polynomial. From Lemma A.4 we conclude that

lo— (N2 —1) 4y 4y
T Shem s
Thus, it suffices to show that

(- (-1 0
(T),g)‘CQ and tg(f):t(ﬁ,

are both nonnegative for ¢ = ;.

The mapping ¢ — t;(¢) is yet another quadratic polynomial. The coeffi-
cient of ¢ is negative-term. The same goes for £ — t5().

By Lemma A.7 we have

tl(g) = t/( ﬁ) + Co

1
(A+1)Z 22
Thus, if suffices to prove that
1 1
t1(0), ti(———7) 3, t2(0), ta(—g—7) a3,
(A+1)Z 22 (A+1)Z A2
are all nonnegative. This is so because they are all positive-term. [ ]

B.1 ‘Mathematica’ input for the \ # ¢/2 case

We have not stated the actual expressions referred to in the proof of Lemma
A8, since they are quite long. However, if the reader would like to validate
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the proof, he/she may find it useful to run the following on the ‘Mathematica’
software. The input is the series of calculations referred to in the proof of
Lemma A.8, and should be self-explanatory. The output should validate the
proof. The following is the input for the A # ¢/2 case.
lambdaDelta = 1+e+2+epsilon
lambdaDeltaPlusOne = 1+e
ROdd = 1 / Binomial[l+1,2] ( (1+1) (r-theta delta)
- Binomial[r+1,2] (21lambda+1)
+ Binomial[lambda+1,2]
delta(1+2r-(2lambda+1)/3 delta) )
rho0dd = (1 + delta(lambda”2+lambda) + 1/2 - lambda)
/ (2lambda+1)
zetaldd (1 + delta(lambda~2+lambda) + 1) / (2lambda+1)
ROddRho = (ROdd /. r->rho0dd)
ROddZeta = (ROdd /. r->zetaldd)
RDeltaMinusOne = (ROddRho /. {delta—>delta-1,
lambda->lambdaDelta})
RDelta = (ROddZeta /. lambda->lambdaDelta)
RDeltaPlusOne = (ROddRho /. {delta->delta+1,
lambda->lambdaDeltaPlusOne})
Simplify[Solve[RDeltaMinusOne == RDelta, thetall
thetaDeltaMinusOneDelta = % [[1]1][[1]1][[2]]
Simplify[Solve[RDeltaPlusOne == RDelta, theta]]
thetaDeltaDeltaPlusOne = % [[1]1[[1]1][[2]]
thetaDeltaMinusOneDelta - thetaDeltaDeltaPlusOne
t = Simplify[% * (12 (3 + 2 e)
(7 + 2 e + 2 epsilon) (1 + 1))]
Limit[%/delta”2, delta -> Infinity]
Expand [%]
tl = Simplify[Expand[(t /. delta->1/lambdaDelta”2)
* lambdaDelta”4]]
Limit[t1/172, 1->Infinity]
Expand [%]
tl1 /. 1->0
Expand [%]
Simplify[( t1 /. 1->1/(1/(1+lambdaDeltaPlusOne) "2
- 1/lambdaDelta”2) )
* ((1+epsilon) (5+2e + epsilon)~2)]
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Expand [%]
t2 = Simplify[Expand[(t /. delta->(1 - lambdaDelta”2 +1)
/ lambdaDelta”2)*lambdaDelta”4]]

Limit[t2/1°2, 1->Infinity]

Expand [%]

t2 /. 1->0

Expand []

Simplify[( t2 /. 1->1/(1/(1+lambdaDeltaPlusOne) "2
- 1/lambdaDelta”2) )
* ((1+epsilon) (5+2e + epsilon)~2)]

Expand [%]

B.2 ‘Mathematica’ input for the A = ¢/2 case

The following is the input for the A = ¢/2 case.

lambdaDelta = l+e+2+epsilon

lambdaDeltaPlusOne = 1+e

ROdd = 1 / Binomiall[l+1,2] ( (1+1) (r-theta delta)
- Binomial[r+1,2] (21ambda+1)
+ Binomial[lambda+1,2]
delta(1+2r-(2lambda+1)/3 delta) )

REven = 1 / Binomial[1l+1,2] ( (1+1)(r-theta delta)

- Binomial[r+1,2] (21ambda+1)

+ Binomial[lambda+1,2]

delta(1+2r-(2lambda+1)/3 delta)

+ Binomial[r - lambda delta + 1, 2])
rhoEven = (1 + delta lambda”2 + 1 - lambda)/(2 lambda)
zetaEven = (1 + delta lambda”2 + 1)/(2 lambda)
rho0dd = (1 + delta(lambda”2+lambda)

+ 1/2 - lambda) / (2lambda+1)
REvenRho = (REven /. r->rhoEven)
REvenZeta = (REven /. r->zetaEven)
ROddRho = (R0Odd /. r->rho0dd)
RDeltaMinusOne = (REvenRho /. {delta->delta-1,

lambda->lambdaDelta})

RDelta = (REvenZeta /. lambda->lambdaDelta)
RDeltaPlusOne = (ROddRho /. {delta—>delta+1,
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lambda->lambdaDeltaPlusOnel})
Simplify[Solve[RDeltaMinusOne == RDelta, thetall
thetaDeltaMinusOneDelta = %[[1]11[[1]1]1[[2]]
Simplify[Solve[RDeltaPlusOne == RDelta, theta]]
thetaDeltaDeltaPlusOne = %[[1]]1[[1]1]1[[2]]
thetaDeltaMinusOneDelta - thetaDeltaDeltaPlusOne
t = Simplify[Expand[’% * 24(3 + 2e)
(3 + e + epsilon) (1 + 1)]]
Limit[%/delta”2, delta -> Infinity]
Expand [%]
tl = Simplify[Expand[(t /. delta->1/lambdaDelta”2)
* lambdaDelta”4]]
Limit[t1/1°2, 1->Infinity]
Expand [%]
t1 /. 1->0
Expand [%]
Simplify[( t1 /. 1->1/(1/(1+lambdaDeltaPlusOne) "2
- 1/lambdaDelta~2) )
((1+epsilon) (6+2e + epsilon)~2)]
Expand [%]
t2 = Simplify[Expand[(t /. delta->
(1 - lambdaDelta”2 +1)/lambdaDelta”2)
lambdaDelta~4]]
Limit[t2/1°2, 1->Infinity]
Expand [%]
t2 /. 1->0
Expand [%]
Simplify[( t2 /. 1->1/(1/(1+lambdaDeltaPlusOne) "2
- 1/lambdaDelta”2) )
((1+epsilon) (6+2e + epsilon)~2)]
Expand [%]
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