
List Decoding of Lee Metric Codes

Ido Tal

List Decoding of Lee Metric Codes

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Ido Tal

Submitted to the Senate of
the Technion — Israel Institute of Technology

Tamuz 5763 Haifa July 2003

The research thesis was done under the supervision of Prof. Ronny Roth in
the Computer Science Department.

I sincerely thank Prof. Ronny Roth for coming up with an interesting problem
for me to pursue, for our discussions which were very helpful in obtaining
the research results, for all that I have learned from him, and — last but not
least — for his patience and optimism along the way.

A special thank to my wife Smadar for her love and encouragement.

The generous financial help of the Technion is gratefully acknowledged.

Contents

Abstract 1

Abbreviations and Notations 2

1 Introduction 3
1.1 List-ℓ decoders . 4
1.2 Hamming and Lee metrics . 6
1.3 GRS and alternant codes . 7
1.4 List decoding through bivariate polynomials 7
1.5 A Johnson-type bound . 10

1.5.1 A Johnson-type bound for the Lee metric 11
1.6 Organization of this work . 12

2 A List Decoder for the Lee Metric 13
2.1 Introduction . 13
2.2 Bounding r∗ and ∆∗ . 16
2.3 Maximizing R, for a given ∆ 18

2.3.1 An implicit formula for r∆ 19
2.3.2 Finding λ∆ . 21
2.3.3 Conclusion for fixed ∆ 22

2.4 Finding the linear intervals of R(θ, ℓ) 22
2.4.1 Preliminary claims and definitions 24

2.5 Further tightening the bounds 27
2.5.1 Non-tight bounds . 28
2.5.2 A tight bound . 28

3 Asymptotics 32
3.1 An implicit formula for w∗ 33

i

3.2 Finding Λ(w∗) . 35
3.3 Conclusion for the asymptotic case 35

4 Justification for the Score Selection 38

5 Notes 45
5.1 Code and bijection selection 45
5.2 Other decoders . 46

A Proof of Proposition 2.16 49
A.1 The λ∆ = λ∆+1 case . 49
A.2 The λ∆ = λ∆+1 + 1 case . 50
A.3 The λ∆ ≥ λ∆+1 + 2 case . 51

B Proof of Lemma A.8 54
B.1 ‘Mathematica’ input for the λ 6= q/2 case 55
B.2 ‘Mathematica’ input for the λ = q/2 case 57

Abstract in Hebrew d

ii

List of Figures

1.1 Generic bivariate polynomial decoding algorithm for C. 9

2.1 Curve θ 7→ R∆(θ, ℓ) for ℓ = 5, q = 9, and ∆ = 1, 2, 3, 4, 5. . . . 23
2.2 R(θ, ℓ, r, ∆, λ) for different values of r. 25
2.3 Graphical proof of Lemma 2.20. 26
2.4 Graphical proof of Lemma 2.21. 27
2.5 Curve θ 7→ R(θ, ℓ) for q = 9 and ℓ = 7, 8. 29
2.6 x 7→ r − x∆ versus x 7→ r′ − x∆′. 30

3.1 Curve θ 7→ R(θ, ℓ) and the Johnson bound for q = 5 and
ℓ = 7,∞. 37

4.1 Graph of µ versus µ′ in Lemma 4.5. 43
4.2 Graph of µ versus µ′ in Lemma 4.7. 44

5.1 Comparison of decoding radii, for GRS codes. 47
5.2 Comparison of decoding radii, for alternant codes. 48

iii

iv

Abstract

Let F be a finite field and let C be a subset of F n, termed a code. A codeword
c ∈ C is transmitted over a noisy channel and distorted by an error vector e.
We are given y, which is the distorted word (y = c+ e) and wish to find out
what c was.

A list-ℓ decoder D : F n → 2C of decoding radius τ with respect to a given
metric d : F n × F n → R is a generalization of classical decoding. Given a
received word y, the output of the list-ℓ decoder, D(y), is a list of at most
ℓ codewords. This list is guaranteed to contain all codewords in the sphere
of radius τ centered at y. Under the assumption that no more than τ errors
occurred in y, we are assured that c is in D(y), and this is regarded as a
decoding success.

In this work, we concentrate on coding for the Lee metric, which appears
in applications such as phase shift keying (PSK) modulation. A polynomial-
time list decoder in this metric is presented and analyzed for alternant codes,
which are subfield sub-codes of generalized Reed-Solomon codes (GRS). We
show a formula for the decoding radius as a function of ℓ and the parameters
of the underlying GRS code.

We also show that unlike the Hamming metric counterpart, the decoding
radius of our list decoder is generally strictly larger than what one gets from
the Lee metric version of the Johnson bound.

1

Abbreviations and Notations

N — nonnegative integers (including 0)
Zq — ring of integers modulo q
ℓ — maximal list size
c — codeword
y — received word
e — error word
n — code length
k — dimension of an underlying GRS code
d — code minimum distance (in the metric discussed)
C — code
D — decoder
GF(q) — Galois field of size q
α1, α2, . . . , αn — code locators of a GRS or alternant code
v1, v2, . . . , vn — column multipliers of a GRS or alternant code
F — base field of an alternant code
Φ — extension field of an underlying GRS code
Φk[x] — set of all polynomials with degree less than k over Φ
Q(x, z) — bivariate interpolation polynomial
degµ,ν Q(x, z) — (µ, ν)-weighted degree of Q(x, z)
〈·〉 — fixed bijection, 〈·〉 : F → Zq

[n] — the set {1, 2, . . . , n}
M — multiplicity matrix
SM(c) — the score of codeword c with respect to M

2

Chapter 1

Introduction

Suppose we want to transmit information over a noisy channel. The channel
typically models a communication line or a storage device. Let F be a finite
field. The channel receives as input a vector x ∈ F n and outputs a vector
y = x + e ∈ F n. That is, y is sometimes a corrupted version of x, where e
— termed the error vector — has a certain probability distribution.

Fix a metric d : F n×F n → N, where N is the set of nonnegative integers.
An (n, M, d) (block) code over F is a nonempty subset C of size M of F n,
where d = minc1,c2∈C:c1 6=c2 d(c1, c2) is the minimum distance of the code.
If C is a vector space over F , it is termed a linear code with parameters
[n, k, d], where k = log|F | M is the code dimension. Elements of C are called
codewords.

A code is used to transmit information over the noisy channel. An infor-
mation word u∗ is encoded via a one-to-one function into a codeword c∗ ∈ C
and c∗ is sent over the channel. As stated, at the other end of the channel,
the output is a received word y = c∗ + e. Given y, we now need to make an
educated guess at the receiving end as to what codeword was sent, and from
this — which information word was transmitted.

It is a well-known theorem in coding theory that a sphere in F n (with
respect to the metric d) of radius (d− 1)/2 that is centered at y will contain
at most one codeword [16, Chapter 1]. Therefore, we may define the function
D : F n → C ∪ {‘e’} as

D(y) =

{

c if there exists c ∈ C such that d(c,y) ≤ d−1
2

‘e’ otherwise
.

Note that if Prob(d(c∗,y) > (d−1)/2) is sufficiently small, we have a reliable

3

means to transmit information over the noisy channel: Upon receiving y, we
output D(y), where ‘e’ is the “decoding-error” symbol. Since Prob(d(c∗,y) >
(d − 1)/2) is sufficiently small, D(y) will likely be equal to the transmitted
codeword c∗. That is, in most cases, our guess will be correct. We call this
method of decoding classical decoding.

1.1 List-ℓ decoders

List decoders were introduced by Elias and Wozencraft (see [7]). A list-ℓ
decoder D : F n → 2C of decoding radius τ is a generalization of classical
decoding. As before, the input to a list-ℓ decoder is the received word y.
However, the output of a list-ℓ decoder is now a set (list) of codewords. This
list is guaranteed to contain all codewords in the sphere of radius τ centered
at y, namely,

D(y) ⊇ {c ∈ C : d(c,y) ≤ τ} .

Also, the list is guaranteed to contain no more than ℓ codewords, i.e.,

|D(y)| ≤ ℓ .

Under the assumption that no more than τ errors occurred in y, we are
assured that c∗ ∈ D(y).

It will sometimes be convenient to characterize a list-ℓ decoder by its
relative decoding radius θ. A list-ℓ decoder D : F n → 2C has a relative
decoding radius θ if

D(y) ⊇ {c ∈ C : d(c,y) < nθ} ,

and the list size is at most ℓ. Thus, for a codeword c ∈ C, if d(y, c) < nθ, then
c ∈ D(y). Note that these two characterizations are essentially equivalent: A
list-ℓ decoder has a relative decoding radius θ if and only if it has a decoding
radius τ = ⌈nθ⌉ − 1.

What practical uses do we have for a list-ℓ decoder? To answer this
question, let us first define two more decoders. For y ∈ F n, define

{DNCD, DMLD} : F n → C

as follows:

4

Nearest Codeword Decoding: DNCD(y) = c, where c ∈ C is such that
d(y, c) is minimal. A nearest codeword decoder is defined in [5, page
10] as a “complete decoder”.

Maximum Likelihood Decoding: DMLD(y) = c, where c ∈ C is such
that Prob(y received | c sent) is maximal. For further reference see [8,
page 120].

In case of ties, we pick one codeword according to some rule (for instance,
the first codeword in some lexicographic order).

Suppose we know the value of y and the probability distribution of the
channel, but nothing else. That is, we have no side information, and thus,
DMLD(y) is the “best guess” as to the value of c∗. We say that the dis-
tance function d accurately models the channel if Prob(y received | c sent)
is a monotonically decreasing function of d(y, c). If this is the case, then
DNCD(y) = DMLD(y) (for example, this happens when the distance function
used is the Hamming metric and the channel is the q-ary symetric channel
with crossover probabilty less than 1 − 1/q). Therefore, an efficient imple-
mentation of DNCD, or at least something “close to it” is desirable. Let
D : F n → 2C be a list-ℓ decoder, with decoding radius τ . Define the function
Dτ

NCD : F n → C as

Dτ
NCD(y) = c, where c ∈ D(y) is such that d(c,y) is minimal .

Thus, by the definition of D, we have that Dτ
NCD(y) = DNCD(y) whenever

d(DNCD(y),y) ≤ τ . Specifically, the latter is true if no more than τ errors
occurred in the transmission of c∗.

It might also be the case that we do have some side information. For
example, suppose we are transmitting text. In that case, some sequences
of codewords results in gibberish, while others do not. A related example:
we might know the a posteriori codeword distribution, that is, we know
Prob(c transmitted) for every c ∈ C. A list-ℓ decoder could be utilized for
these cases as well: we choose from D(y) the most probable codeword. If d is
chosen wisely and the decoding radius τ is large enough, we would generally
not be limiting ourselves by considering only the codewords in D(y), as
opposed to all the codewords in C.

5

1.2 Hamming and Lee metrics

Denote by [n] the set {1, 2, . . . , n}. The Hamming distance between two
elements x, y in F is simply

dH(x, y) ,

{

1 if x 6= y
0 otherwise

.

Thus, the Hamming distance between two words x = (xi)i∈[n] and y =
(yi)i∈[n] in F n is simply the number of indexes where the two words are
different, that is,

dH(x,y) ,
∑

i∈[n]

dH(xi, yi) = |{i : xi 6= yi}| .

The Hamming metric is by far the most studied metric in error correcting
codes.

A lesser used distance function is the Lee metric [14]. Recall that F =
GF(q), and let Zq denote the ring of integers modulo q. Denote by 1 the
multiplicative unity in Zq. The Lee weight of an element a ∈ Zq, denoted |a|,
is defined as the smallest nonnegative integer s such that s ·1 ∈ {a,−a}. Fix
a bijection 〈·〉 : F → Zq and define the Lee distance dL between two elements
x, y in F as

dL(x, y) , |〈x〉 − 〈y〉| .

The Lee distance between two words x = (xi)i∈[n] and y = (yi)i∈[n] (over F)
is defined as

dL(x,y) ,

n
∑

i=1

dL(xi, yi) .

The distance function to be used in a specific case is usually selected
based on the characteristics of the channel, as well as the type of modulation
used. The Lee metric is a very natural one for an additive white Gaussian
noise channel (AWGN), when a phase shift keying modulation is used (PSK)
[2, Chapter 8]. One might also consider the Lee metric for use in noisy
runlength-limited (RLL) (d, k)-constrained channels, or in channels where
spectral-null constraints are desired [22].

6

1.3 GRS and alternant codes

We will now define the codes which will be used in this work. Fix F = GF(q)
and Φ = GF(qm), and denote by Φk[x] the set of all polynomials over Φ
with degree less than k. Hereafter in this work, we fix CGRS to be an [n, k]
GRS code over Φ with distinct code locators α1, α2, . . . , αn ∈ Φ and nonzero
column multipliers v1, v2, . . . , vn ∈ Φ, that is,

CGRS = {c = (v1u(α1) v2u(α2) . . . vnu(αn)) : u(x) ∈ Φk[x]} .

We let Calt be the respective alternant code over F , namely, Calt = CGRS∩F n.
In the Hamming metric, many efficient classical decoding algorithms are

known for GRS and alternant codes [26],[5],[17],[25]. In the Lee metric, a
classical decoder for normalized (vj = αj , j ∈ [n]) alternant and normal-
ized GRS codes is presented in [22]. One should also mention the negacyclic
codes [2, Chapter 9], introduced by Berlekamp. Berlekamp presented a clas-
sical decoding algorithm for negacyclic codes in the Lee metric.

1.4 List decoding through bivariate polyno-

mials

The Welch-Berlekamp algorithm [26] is a classical (list-1) decoder for GRS
codes in the Hamming metric, which makes use of bivariate polynomials (see
also Berlekamp [3], Blackburn [4], Dabiri and Blake[6], and Ma and Wang
[15] for related work). The methods introduced in this section grew out of the
1997 seminal paper by Sudan [24], which generalized the Welch-Berlekamp
algorithm. In 1999, Sudan’s earlier results were improved by Guruswami and
Sudan [10], and further improved in 2000 by Koetter and Vardy [12]. The
issue of list decoding for a more general metric is discussed by Koetter and
Vardy in [13], which appeared in 2002.

Denote the quantity (k − 1)/n as the modified code rate. Note that
(k − 1)/n is approximately the code rate of CGRS for large n. However,
our discussion will mainly focus on Calt.

The polynomial-time list-ℓ decoder for Calt in [10], [12] is based on the
next lemma. Let M = (Mγ,j)γ∈F,j∈[n] be a q × n matrix over N, whose
rows are indexed by the elements of F . The matrix M is referred to as a
multiplicity matrix. The score of a codeword c = (cj)j∈[n] ∈ Calt with respect

7

to M is defined by

SM(c) =

n
∑

j=1

Mcj ,j . (1.1)

For a nonzero bivariate polynomial Q(x, z) =
∑

h,i Qh,ix
hzi over Φ, let the

(µ, ν)-weighted degree of Q(x, z) be given by

degµ,ν Q(x, z) = max
h,i : Qh,i 6=0

{hµ + iν} .

Lemma 1.1 Let ℓ and β be positive integers and M be a q×n matrix over N.
Suppose there exists a nonzero bivariate polynomial Q(x, z) =

∑

h,i Qh,ix
hzi

over Φ that satisfies the degree constraints

deg0,1 Q(x, z) ≤ ℓ and deg1,k−1 Q(x, z) < β , (1.2)

and the multiplicity constraints
∑

h,i

(

h
s

)(

i
t

)

Qh,iα
h−s
j (γ/vj)

i−t = 0 , γ ∈ F , j ∈ [n] , 0 ≤ s + t < Mγ,j .

(1.3)
Then, for every codeword c = (vju(αj))j∈[n] ∈ Calt,

SM(c) ≥ β =⇒ (z − u(x)) |Q(x, z) .

Also,
|c ∈ C : SM(c) ≥ β| ≤ ℓ .

Equation (1.2) determines the number of significant coefficients in Q(x, z),
while Equation (1.3) defines a set of linear homogeneous equations in these
coefficients. Clearly, a nonzero solution Q(x, z) exists if the number of coef-
ficients exceeds the number of equations.

Example 1.1 Let F = Φ = GF(5) = Z5, and fix 〈·〉 as the identity function.
Let C be an [n, k] GRS code over F , with n = 4 and k = 2. Fix y = (0100)
as the received word. For ℓ = 6, we define Q(x, z) by the following M and
β: β = 8 and

M =

2












0 1 0 0












1 1 3 1 1
0 3 1 3 3
4 1 0 1 1
3 0 0 0 0

.

8

On the one hand, M implies 4 · (
(

3+1
2

)

+
(

1+1
2

)

+
(

1+1
2

)

) = 32 linear equa-
tions. On the other hand, k = 2, β = 8 and ℓ = 6 imply 35 significant
coefficients. Thus, we can construct a nonzero Q(x, z).

Let c = (1140). Because (SM(c) = 8 ≥ β), we have that c is in the list.

Based on Lemma 1.1, the design of a list-ℓ decoder for Calt in any given
metric can be summarized as follows (see [13]). Find an integer β and a
mapping M : F n → N

q×n such that for the largest possible integer τ , the
following two conditions hold for the matrix M(y) = (Mγ,j)γ∈F,j∈[n] that
corresponds to any received word y, whenever a codeword c ∈ Calt satisfies
d(c,y) ≤ τ :

(C1) SM(y)(c) ≥ β.

(C2) The number of coefficients determined by (1.2) exceeds the number of
equations in (1.3).

The resulting list-ℓ decoding algorithm is stated in Figure 1.1.

Input: received word y ∈ F n, mapping M : F n → N
q×n, constant β,

decoding radius τ , list size ℓ.
Output: list of up to ℓ codewords.

1. Interpolation of Q(x, z): Find Q(x, z) with coefficients from Φ such
that Equations (1.2) and (1.3) are satisfied.

2. Factorization: Compute the set U of all polynomials u(x) ∈ Φk[x]
such that (z − u(x))|Q(x, z).

3. Output: Output all c ∈ C such that d(c,y) ≤ τ and there exists
u(x) ∈ U for which c = (v1u(α1) v2u(α2) vnu(αn)) .

Figure 1.1: Generic bivariate polynomial decoding algorithm for C.

Step 1 of the algorithm may be carried out by Gaussian elimination,
although more efficient algorithms are known for specific cases [21], [1], [18],
[19], [20], [23]. Efficient implementations of Step 2 are known; see for example
[21], which takes expected time O(ℓ2k(β + log2 ℓ log(qm)). A straightforward
implementation of Step 3 takes O(ℓkn) operations. In this work, we aim at

9

finding β and a mapping y 7→ M(y), such that the decoding radius τ , or
alternatively, the relative decoding radius θ, is as large is possible.

1.5 A Johnson-type bound

Fix F = GF(q) and a distance function d over F n. For y ∈ F n, denote C′ as
an (n, M, d; θ,y) code over F if it is an (n, M, d) code over F , and for every
codeword c ∈ C′, we have d(c,y) ≤ θn.

We term J (M, θ, q) a Johnson-type bound [11] for 0 < θ ≤ χ if for every
(n, M, d; θ,y) code over F such that 0 < θ ≤ χ,

d/n ≤ J (M, θ, q) .

We also require that the mapping θ 7→ J (M, θ, q) is non-decreasing for 0 <
θ ≤ χ.

We note that such a bound is usually referred to as a restricted Johnson
bound. It is usually stated for codes C′ such that each codeword c ∈ C′

satisfies d(c,y) = θn. However, we will specify a range 0 < θ ≤ χ such that
both the ≤ θn and the = θn bounds are equal.

However, for the ≤ θn case, the range 0 < θ ≤ χ, is usually chosen so
that no generality is lost in assuming that d(c,y) ≤ θn. That is, the range
of θ is usually chosen such that both bounds are equal.

A Johnson-type bound can also be used to bound from bellow optimal
decoding radii.

Proposition 1.2 Fix F = GF(q) and a distance function d over F n. Let
C be an (n, M, d) code over F . Let J (M, θ, q) be a Johnson-type bound for
0 < θ ≤ χ. For a positive integer 0 < ℓ < M , suppose there exists a smallest
0 < θ ≤ χ such that d/n = J (ℓ + 1, θ, q), and denote it by θ′. Then, there
exists a list-ℓ decoder for C with relative decoding radius θ′.

Proof Let θ∗ be the largest relative decoding radius attainable by a list-ℓ
decoder for C, and let D∗ be the decoder that attains it. If θ∗ ≥ θ′ then we
are done, since D∗ is the promised decoder.

Assume θ∗ < θ′. From the optimality of θ∗, there exists a received word
y ∈ F n such that

|{c ∈ C : d(y, c) ≤ θ∗n}| ≥ ℓ + 1 .

10

Let C′ be a subset of size ℓ + 1 of {c ∈ C : d(y, c) ≤ θn}. Thus, C′ is an
(n, ℓ + 1, d′; θ∗,y) code, where d′ ≥ d. This contradicts the definition of
J (M, θ, q) and θ′.

1.5.1 A Johnson-type bound for the Lee metric

We will now state a Johnson-type bound for the Lee metric. This, in turn,
will let us bound the optimal relative decoding radius, θ∗. For the Lee metric,
define

χL(q) =

{

q/4 if q is even
(q2−1)/(4q) if q is odd

, (1.4)

and

JL(M, θ, q) =
M

M − 1
·

(

2θ −
θ2

χL(q)

)

, 0 < θ ≤ χL(q) . (1.5)

Notice that θ 7→ JL(M, θ, q) is strictly increasing for 0 < θ ≤ χL(q). The
following is a special case of Lemma 13.62 in [2] (note also Theorem 13.49
therein).

Proposition 1.3 Fix F = GF(q), a bijection 〈·〉 : F → Zq, and d = dL as
the Lee metric. For y ∈ F n and 0 < θ ≤ χL(q), let C′ be an (n, M, d; θ,y)
code over F . Then,

d

n
≤ JL(M, θ, q) .

For alternant codes we also have the following:

Proposition 1.4 Fix F = GF(q), a bijection 〈·〉 : F → Zq, and d = dL as
the Lee metric. Let CGRS be an [n, k, d] GRS code over Φ = GF(qm), and
let Calt be the alternant code CGRS ∩ F n (over F). Let ℓ > 0, and suppose
0 < θ′ ≤ χL(q) is such that

R =
k − 1

n
= 1 −JL(ℓ + 1, θ′, q) .

Then, there exists a list-ℓ decoder for Calt with relative decoding radius θ′.

Proof Denote by d′ the minimum distance of Calt. One can easily prove that
the minimum Lee distance of a code is always greater than or equal to its

11

minimum Hamming distance. It is a well-known theorem that the minimum
Hamming distance of an [n, k] GRS code is n − k + 1 [16, page 304]. So, if
d = dL and CGRS is an [n, k, d] GRS code, then d′ ≥ d ≥ n − k + 1. We may
now apply Propositions 1.2 and 1.3.

Also, note that for fixed code locators α1, α2, . . . , αn, there exist nonzero
column multipliers v1, v2, . . . , vn such that d′ = d = n − k + 1.

1.6 Organization of this work

In this work, we present a polynomial-time list-ℓ decoder for alternant codes
over F = GF(q) in the Lee metric. For this decoder, we derive a formula for
the relative decoding radius θ as a function of the list size ℓ, the code length
n, the field size q, and the underlying GRS code dimension k. We also show
that unlike the Hamming metric counterpart, the decoding radius of our list
decoder is generally strictly larger than what one gets from the Lee metric
version of the Johnson bound.

Chapter 2 contains the definition and analysis of our list decoder for the
case where ℓ is finite. Chapter 3 is devoted to the asymptotic analysis of
the results obtained in Chapter 2, when ℓ → ∞. Chapter 3 also contains
an asymptotic comparison of the decoding radius obtained by our algorithm
and the decoding radius promised by the Lee metric version of the Johnson
bound. In Chapter 4, we partially justify the choice of the score matrix
made in Chapter 2. Chapter 5 discuses what codes one might choose, and
also compares the performance of our decoder to that of other decoders.

12

Chapter 2

A List Decoder for the Lee
Metric

2.1 Introduction

Recall from Section 1.3 that F = GF(q) and Φ = GF(qm). Define C as the
alternant code:

C = Calt = {c = (v1u(α1) v2u(α2) . . . vnu(αn)) : u(x) ∈ Φk[x]} ∩ F n .

We now wish to present a list-ℓ decoder for C over the Lee metric, based
on the general framework outlined in Section 1.4. Let ℓ be the list size, and
let r and ∆ be positive integers such that 0 < ∆ ≤ r. Let y be the received
word. The mapping y = (yj)j∈[n] 7→ M(y) = (Mγ,j)γ∈F,j∈[n], referred to in
Section 1.4, is defined here as

Mγ,j = max{0, r − dL(yj, γ) · ∆} , γ ∈ F , j ∈ [n] . (2.1)

The choice of this mapping will be justified in Chapter 4. Note that Exam-
ple 1.1 is consistent with this mapping, for r = 3 and ∆ = 2

For as yet unspecified parameters λ and θ, define

R(θ, ℓ, r, ∆, λ) = (2.2)
1

(

ℓ+1
2

)

(

(ℓ+1)(r−θ∆)−
(

r+1
2

)

(2λ+1)+
(

λ+1
2

)

∆(1+2r− (2λ+1)
3

∆)+T
)

,

where

T = T (r, ∆, λ) =

{ (

r−λ∆+1
2

)

if λ = q/2
0 otherwise

, (2.3)

13

and an expression of the form
(

a
2

)

is shorthand for a(a − 1)/2 (later on,
we wil let the parameters of Equation 2.2 range over the reals). Note that
R(θ, ℓ, r, ∆, λ) is a linear function of θ. The following proposition is the
basis for our decoder: it provides a choice for β, which, along with the
mapping y 7→ M(y) in Equation (2.1), satisfies conditions (C1) and (C2) in
Section 1.4.

Proposition 2.1 For integers ℓ > 0 and 0 < ∆ ≤ r, define

Λ(r, ∆) = min {⌊r/∆⌋, ⌊q/2⌋} , (2.4)

and let θ = θ(ℓ, r, ∆) be the unique real such that

k − 1

n
= R(θ, ℓ, r, ∆, Λ(r, ∆)) .

Given any nonnegative integer τ < nθ, conditions (C1) and (C2) are satisfied
for

β = rn − τ∆ ,

and the mapping y = (yj)j∈[n] 7→ M(y) = (Mγ,j)γ∈F,j∈[n] defined in Equa-
tion (2.1).

Recall that in Example 1.1 we had ℓ = 6, q = 5, n = 4, r = 3, and ∆ = 2.
A short calculation shows that Λ(r, ∆) = 1, and θ(ℓ, r, ∆) = 0.55. Thus, we
choose τ = 2 < nθ, and β = rn − τ∆ = 8. To sum up, in Example 1.1 we
can correct up to 2 errors in the Lee metric.

Note that Λ(r, ∆), and hence R(θ, ℓ, r, ∆, Λ(r, ∆)), are functions of q.
However, for the sake of brevity, we will not write this explicitly. The proof
of Proposition 2.1 follows from the next three claims.

Claim 2.2 Fix r, ∆, τ , β, and the mapping y = (yj)j∈[n] 7→ M(y) =
(Mγ,j)γ∈F,j∈[n] as in Proposition 2.1. Let c ∈ C be a codeword and y =
(yj)j∈[n] be a received word such that dL(c,y) ≤ τ . Then, SM(y)(c) ≥ rn −
τ∆ = β.

Proof Consider the matrix M′(y) = (M′
γ,j)γ∈F,j∈[n],

M′
γ,j = r − dL(yj, γ) · ∆ .

Obviously, M′
γ,j ≤ Mγ,j for all γ ∈ F and j ∈ [n], and so SM′(y)(c) ≤

SM(y)(c). Notice, however, that SM′(y)(c) = rn − dL(c,y)∆, and the proof
follows.

14

Claim 2.3 Fix constants r, ∆, and the mapping y = (yj)j∈[n] 7→ M(y) =
(Mγ,j)γ∈F,j∈[n] as in Proposition 2.1. Let λ = Λ(r, ∆) and T = T (r, ∆, λ) be
as defined in Equations (2.4) and (2.3), and let y be a received word. The
number of constraints implied by M(y) in Equation (1.3) is

n

((

r + 1

2

)

(2λ + 1) −

(

λ + 1

2

)

∆(1 + 2r −
(2λ + 1)

3
∆) − T

)

. (2.5)

Proof Notice that the number of integer pairs (s, t) such that 0 ≤ s+ t < m
is
(

m+1
2

)

. Thus, the number of constraints implied in Equation (1.3) is

∑

γ∈F, j∈[n]

(

Mγ,j + 1

2

)

= n

(

(

r + 1

2

)

− T + 2

λ
∑

i=1

(

r − i∆ + 1

2

)

)

.

A straightforward simplification of the sum on the RHS yields the required
result.

Claim 2.4 The number of significant coefficients implied by β = rn− τ∆ in
Equation (1.2) is at least

(rn − τ∆)(ℓ + 1) − (k − 1)

(

ℓ + 1

2

)

. (2.6)

Proof From Equation (1.2) we see that the number of significant coefficients
is at least

ℓ
∑

i=0

(β − (k − 1)i) ,

and the proof follows.

We are now able to prove Proposition 2.1.

Proof of Proposition 2.1 Claim 2.2 ensures that condition (C1) holds.
Since τ < nθ,

n

(

(r − θ∆)(ℓ + 1) −
k − 1

n

(

ℓ + 1

2

))

(2.7)

is less than Equation (2.6). Note that by the way θ = θ(ℓ, r, ∆) is defined,
Equation (2.7) is equal to Equation (2.5). Thus, Equation (2.6) is greater
than Equation (2.5), and so, condition (C2) holds as well.

15

In light of Proposition 2.1, we now have a method for constructing a list-ℓ
decoder for the Lee metric: given the list size ℓ an alternant code C whose
underlying GRS code has modified rate k−1

n
, pick 0 < ∆ ≤ r and let θ be

such that k−1
n

= R(θ, ℓ, r, ∆, Λ(r, ∆)). By Proposition 2.1, we are assured a
decoding radius τ ≥ ⌈nθ⌉ − 1. Because we aim at getting a decoding radius
that is as large as possible, we will optimize over r and ∆.

We will, however, find it easier to optimize the inverse function, that is,
given ℓ and θ, find r and ∆ that maximize R(θ, ℓ, ∆, Λ(r, ∆)). The rest of
this chapter is devoted to the latter optimization.

Definition 2.1 For fixed ℓ and θ, we define the pair (r∗, ∆∗), where r∗ =
r∗(θ, ℓ) and ∆∗ = ∆∗(θ, ℓ), as the pair (r, ∆) which maximizes the function
R(θ, ℓ, r, ∆, Λ(r, ∆)), subject to 0 < ∆ ≤ r. For the sake of uniqueness, in
case of ties (several pairs of r and ∆ for which the maximum is attained), we
pick the pair for which ∆ is the smallest, and for that ∆, r is the smallest.
Thus, we denote the maximum value of R for given θ and ℓ as

R(θ, ℓ) = R(θ, ℓ, r∗, ∆∗, Λ(r∗, ∆∗)) . (2.8)

For the rest of this chapter, let ℓ and θ be fixed. We still need to prove
that the above definition is indeed well-defined, i.e., that ∆∗ and r∗ are
bounded. This will follow from the analysis in Section 2.2, where we show
that these optimal values satisfy 0 < ∆∗ ≤ r∗ ≤ ℓ. In Section 2.3, we will
find a closed formula for the optimal value of r for a fixed ∆. This, in turn,
will allow us to identify the interval of values of θ for which ∆∗(θ, ℓ) equals
a given value ∆. In particular, we show that θ 7→ R(θ, ℓ) is piecewise linear
and characterize the intervals where it is linear. Also, in Section 3 we will
calculate the asymptotic values of the optimal r and ∆ as ℓ → ∞.

2.2 Bounding r∗ and ∆∗

We will now prove two lemmas, which will lead to the inequality

(0 < ∆∗ ≤) r∗ ≤ ℓ .

As a by-product, we will conclude that r∗ and ∆∗ are indeed well-defined.
For fixed ℓ and θ, define R(r, ∆, λ) = R(θ, ℓ, r, ∆, λ).

16

Lemma 2.5 Let λ be an integer such that 2 ≤ λ ≤ ⌊q/2⌋. Then,

R(r, ∆, λ − 1) ≥ R(r, ∆, λ) .

Proof We have two cases to consider:

Case 1 λ = q/2: In this case,

R(r, ∆, λ − 1) − R(r, ∆, λ) =
2

ℓ(ℓ + 1)
(r − λ∆ + 1)(r − λ∆) ,

which is negative if and only if λ∆ − 1 < r < λ∆. This completes the
proof in this case, since r, ∆, and λ are all integers.

Case 2 λ < q/2: In this case,

R(r, ∆, λ − 1) − R(r, ∆, λ) =
1

ℓ(ℓ + 1)
(r − λ∆ + 1)(r − λ∆) .

Up to a factor of 2, this is exactly the same expression as in Case 1,
and the proof follows.

Lemma 2.6 Let r and ∆ be such that 0 < ∆ ≤ r and r > ℓ. Then there
exist 0 < r′ < r and 0 < ∆′ ≤ min {r′, ∆} such that R(r′, ∆′, Λ(r′, ∆′)) ≥
R(r, ∆, Λ(r, ∆)), where Λ(·, ·) is given by Equation (2.4).

Proof Denote λ = Λ(r, ∆), λ′ = Λ(r′, ∆′), and i = r − ℓ − 1. There are two
cases to consider:

Case 1 ∆ ≤ r − 1: Let r′ = r − 1 and ∆′ = ∆. We will first prove that
R(r′, ∆′, λ) ≥ R(r, ∆, λ).

• If λ = q/2, then

R(r′, ∆′, λ) − R(r, ∆, λ)

=
2

ℓ(ℓ + 1)
(i + 2iλ + λ(2 − ∆ + 2ℓ − λ∆))

≥
2

ℓ(ℓ + 1)
(iλ + (λ − 1) + ℓ(λ − 1))

≥ 0 ,

where the first inequality follows from λ∆ ≤ r.

17

• On the other hand, if λ < q/2, then

R(r′, ∆′, λ) − R(r, ∆, λ)

=
2

ℓ(ℓ + 1)
(−1 − ℓ + 2(1 + i)λ + 2ℓλ − (1 + i + ℓ)λ)

≥
2

ℓ(ℓ + 1)
(iλ + (λ − 1) + ℓ(λ − 1))

≥ 0 .

From the fact that λ′ ≤ λ and Lemma 2.5 we conclude that

R(r′, ∆′, λ′) ≥ R(r′, ∆′, λ) ≥ R(r, ∆, λ) .

Case 2 ∆ = r: Let r′ = r− 1 and ∆′ = ∆− 1. Note that λ = λ′ = 1. Thus,

R(r′, ∆′, λ′) − R(r, ∆, λ) =
2

ℓ(ℓ + 1)
(i + θ + ℓθ) .

This expression is obviously nonnegative, and the proof follows.

From Lemma 2.6 we conclude that r∗ and ∆∗ are indeed well-defined, or,
more specifically, that:

Corollary 2.7 For a specified θ and ℓ, 0 < ∆∗ ≤ r∗ ≤ ℓ.

Thus, we have a finite search space.

2.3 Maximizing R, for a given ∆

As stated earlier, we wish to maximize R(r, ∆, Λ(r, ∆)), subject to 0 < ∆ ≤ r.
Unfortunately, we have no closed formulas for the maximizing values r∗ and
∆∗. However, if we fix ∆, we can state a “fixed ∆” version of the above-
mentioned optimization problem, which we do know how to solve. Since ∆∗

is such that 0 < ∆∗ ≤ ℓ, we will be able to solve the non-fixed optimization
problem (finding ∆∗ and r∗) in O(ℓ) time. Building on these results, in
Section 2.4 we will obtain a full characterization of the linear intervals of
the piecewise linear function R(θ, ℓ). This characterization will enable us to
solve the non-fixed optimization problem in O(log ℓ) time. The “fixed case”
counterpart of the above-mentioned optimization problem is as follows:

18

Definition 2.2 For fixed ℓ, θ, and ∆ > 0, we define r∆ = r∆(θ, ℓ, ∆) as
the value of r that maximizes R(θ, ℓ, r, ∆, Λ(r, ∆)), subject to 0 < ∆ ≤ r.
For the sake of uniqueness, in case of ties (several values of r for which the
maximum is attained), we pick the smallest value of r.

Note that by Equation (2.4), Λ(r, ∆) =
⌊

q
2

⌋

for r ≥ ∆
⌊

q
2

⌋

. Note also that
R(r, ∆,

⌊

q
2

⌋

) is a convex quadratic polynomial when viewed as a function of
r, by Equation (2.2). Therefore, r∆ is indeed well-defined. Also, note that
the above-mentioned “fixed ∆” optimization problem isn’t actually affected
by the value of θ, again by Equation (2.2).

Suppose for what follows that ∆ is fixed. We will find r∆ and λ∆ =
Λ(r∆, ∆). We will do this in two steps: we will first find the value of λ∆,
and from this deduce r∆. The order of exposition, however, will be reversed:
we will first find r∆, as a function of λ∆; from this derivation of r∆, we will
deduce λ∆.

Lemma 2.8 Let ∆ be such that ∆ ≤ ℓ. Then r∆ ≤ ℓ.

Proof Assume that r∆ > ℓ, the rest of the proof is very much along the
same lines as Case 1 of Lemma 2.6.

2.3.1 An implicit formula for r∆

Fix ℓ ≥ 1, 1 ≤ ∆ ≤ ℓ, 1 ≤ λ ≤ ⌊q/2⌋, and recall that for every r, the function
θ 7→ R(θ, ℓ, r, ∆, λ) is linear, specifically,

R(θ, ℓ, r, ∆, λ) = R(0, ℓ, r, ∆, λ) −
2∆

ℓ
θ . (2.9)

From Equation (2.2) we obtain that the mapping r 7→ R(0, ℓ, r, ∆, λ) is a
∩-concave quadratic polynomial. Denote by ξ∆(λ) the integer value of r for
which R(0, ℓ, r, ∆, λ) is maximized (the smallest such integer, in case of ties).
From the definition of ξ∆(λ) and the ∩-concavity of r 7→ R(0, ℓ, r, ∆, λ), we
have the following:

Lemma 2.9 Fix ℓ ≥ 1, 1 ≤ ∆ ≤ ℓ, 1 ≤ λ ≤ ⌊q/2⌋. Let r be an integer.
Then,

R(r + 1, ∆, λ) ≤ R(r, ∆, λ) ⇐⇒ r ≥ ξ∆(λ) , (2.10)

and
R(r − 1, ∆, λ) < R(r, ∆, λ) ⇐⇒ r ≤ ξ∆(λ) . (2.11)

19

We can also derive a closed formula for ξ∆(λ):

ξ∆(λ) =

{

⌊(ℓ + ∆λ2)/(2λ)⌋ if λ = q/2
⌊(ℓ + ∆(λ2 + λ))/(2λ + 1)⌋ otherwise

. (2.12)

We will now prove that r∆ = ξ∆(λ∆), for 0 < ∆ ≤ ℓ.

Lemma 2.10 For ∆ ≥ 1, we have r∆ ≥ ξ∆(λ∆)

Proof Let λ = λ∆. Define γ as the largest value of r′ for which λ = Λ(r′, ∆).
Note that γ might be ∞, namely γ = ∞ if and only if λ = ⌊q/2⌋.

Let r = r∆. We will first prove that R(r + 1, ∆, λ) ≤ R(r, ∆, λ).

• If r < γ, then, by the definition of r∆, R(r + 1, ∆, λ) ≤ R(r, ∆, λ).

• if r = γ (namely, λ < ⌊q/2⌋ and r = (λ+1)∆− 1), then, by the defini-
tion of r∆, R(r+1, ∆, λ+1) ≤ R(r, ∆, λ). But from Equation (2.2), for
any integers r, ∆ > 0, and 0 < λ < ⌊q/2⌋, such that r = (λ + 1)∆− 1,
we have that R(r + 1, ∆, λ) = R(r + 1, ∆, λ + 1).

Finally, it follows Equation (2.10) that r ≥ ξ∆(λ).

Lemma 2.11 For 1 ≤ ∆ ≤ ℓ, we have r∆ ≤ ξ∆(λ∆).

Proof Let λ = λ∆. Define β as the smallest value of r′ for which λ =
Λ(r′, ∆). We will first prove that R(r − 1, ∆, λ) < R(r, ∆, λ).

• If r > β, then, by the definition of r∆, R(r − 1, ∆, λ) < R(r, ∆, λ).

• If r = β and r > ∆ (and so, λ ≥ 2), then, by the definition of r∆,
R(r − 1, ∆, λ − 1) < R(r, ∆, λ). But from Lemma 2.5 we readily get
that R(r − 1, ∆, λ − 1) ≥ R(r − 1, ∆, λ).

• If r = β and r = ∆ (and so, λ = 1), then

R(r, ∆, λ) − R(r − 1, ∆, λ) =
2

ℓ(ℓ + 1)
(1 + ℓ − r) .

From Lemma 2.8 we get that R(r − 1, ∆, λ) < R(r, ∆, λ).

Finally, it follows Equation (2.11) that r ≤ ξ∆(λ).

Proposition 2.12 For ∆ ≤ ℓ, let λ = λ∆. Then

r∆ =

{

⌊(ℓ + ∆λ2)/(2λ)⌋ if λ = q/2
⌊(ℓ + ∆(λ2 + λ))/(2λ + 1)⌋ otherwise

. (2.13)

Proof Immediate from Equation (2.12), and Lemmas 2.10 and 2.11.

20

2.3.2 Finding λ∆

We will now use Proposition 2.12 to find λ∆.

Lemma 2.13 For every integer a > 0 and real x

⌊

⌊x⌋

a

⌋

=
⌊x

a

⌋

.

Proof This is a special case of Equation (3.11) on page 72 of [9].

Proposition 2.14 For every 0 < ∆ ≤ ℓ,

λ∆ = min
{⌊

√

ℓ/∆
⌋

, ⌊q/2⌋
}

.

Proof Let λ = λ∆ and r = r∆. Define

λ̄ = ⌊r/∆⌋ ,

and recall that λ = min
{

λ̄, ⌊q/2⌋
}

.
We now have two cases to consider:

Case 1 λ < ⌊q/2⌋, and so, λ̄ = λ: In this case, r =
⌊

ℓ+∆(λ2+λ)
2λ+1

⌋

and

λ = ⌊r/∆⌋. Thus,

λ =

⌊

�
ℓ+∆(λ2+λ)

2λ+1

�
∆

⌋

m

λ =

⌊

ℓ+∆(λ2+λ)
2λ+1

∆

⌋

m

λ ≤ ℓ+∆(λ2+λ)
∆(2λ+1)

< λ + 1

m

λ ≤
√

ℓ
∆

< λ + 1

m

λ =
⌊

√

ℓ/∆
⌋

.

Note that the first “if and only if” is explained by Lemma 2.13.

21

Case 2 λ = ⌊q/2⌋, and so, λ̄ ≥ λ: Note that in this case we have that

r =
⌊

ℓ+∆(λ2+λ)
2λ+1

⌋

if q is odd and r =
⌊

ℓ+∆λ2

2λ

⌋

if q is even. Either way,

by a derivation similar to the one in Case 1, we have that the following
holds:

λ ≤ ⌊r/∆⌋
m

λ ≤
⌊

√

ℓ/∆
⌋

.

In both Case 1 and Case 2 we have that λ = min
{⌊

√

ℓ/∆
⌋

, ⌊q/2⌋
}

.

2.3.3 Conclusion for fixed ∆

Propositions 2.12 and 2.14 lead to the following result.

Proposition 2.15 For any fixed 0 < ∆ ≤ ℓ, let

λ = min
{⌊

√

ℓ/∆
⌋

, ⌊q/2⌋
}

.

Then

r∆ =

{ ⌊

(ℓ + ∆λ2)/(2λ)
⌋

if λ = q/2
⌊(ℓ + ∆(λ2+λ))/(2λ+1)⌋ otherwise

(2.14)

and

λ∆ = λ . (2.15)

2.4 Finding the linear intervals of R(θ, ℓ)

Recall that

R(θ, ℓ) = max
r,∆

{R(θ, ℓ, r, ∆, Λ(r, ∆)) : 0 < ∆ ≤ r} .

Also, for fixed ∆ > 0, define R∆(θ, ℓ) = R(θ, ℓ, r∆, ∆, λ∆), where r∆ and
λ∆ are defined in Equation (2.14) and Equation (2.15), respectively. From
Proposition 2.15 we arrive at the following simplification for R(θ, ℓ) :

R(θ, ℓ) = max
∆

{R∆(θ, ℓ) : 0 < ∆ ≤ ℓ} .

22

R

θ

1

1

Figure 2.1: Curve θ 7→ R∆(θ, ℓ) for ℓ = 5, q = 9, and ∆ = 1, 2, 3, 4, 5.

Note that for fixed ℓ, R∆(θ, ℓ) is simply a linear function with slope
−2∆/ℓ. Thus, R(θ, ℓ) is a piecewise linear function, with at most ℓ linear
intervals. Or, put another way, R∆(θ, ℓ) is the envelope formed by ℓ linear
functions. See Figure 2.1 for a graphical representation.

Let ℓ be fixed. A natural question to ask is: For a given 0 < ∆ ≤ ℓ, what
is the interval I∆(ℓ) such that

R(θ, ℓ) = R∆(θ, ℓ) ⇐⇒ θ ∈ I∆(ℓ) .

Note that I∆(ℓ) might be empty. The set of intervals I∆(ℓ) completely defines
R(θ, ℓ), in particular, ∆∗(θ, ℓ) is the smallest ∆ for which θ ∈ I∆(ℓ), and by
Proposition 2.15, if we know ∆∗, we know r∗ as well (∆∗ and r∗ are defined in
Definition 2.1). Thus, we would like a fast method for determining the small-
est ∆ for which θ ∈ I∆. For fixed ℓ and 0 < ∆ < ℓ, define θ∆,∆+1(ℓ) as the
unique θ for which the two linear functions θ 7→ R∆(θ, ℓ) and θ 7→ R∆+1(θ, ℓ)
intersect. This section is devoted to proving the following proposition:

Proposition 2.16 Let 1 < ∆ < ℓ. Then,

θ∆,∆+1(ℓ) ≤ θ∆−1,∆(ℓ) . (2.16)

Hence, for 1 < ∆ < ℓ,

I∆(ℓ) = [θ∆,∆+1(ℓ), θ∆−1,∆(ℓ)] .

Given this, we can find ∆∗ by a binary search, which would take O(log ℓ)
time. Also, note that we have a closed formula for θ∆,∆+1(ℓ), and thus one for

23

I∆(ℓ) as well. Therefore, we have an explicit characterization of the piecewise
linear function θ 7→ R(θ, ℓ). Conversely, we also have an explicit characteriza-
tion of the inverse function, which maps k−1

n
to the optimal relative decoding

radius θ.

2.4.1 Preliminary claims and definitions

Fix ℓ ≥ 1, 1 ≤ ∆ ≤ ℓ, 1 ≤ λ ≤ ⌊q/2⌋, and recall the following four facts
from Subsection 2.3.1: For every r, the function θ 7→ R(θ, ℓ, r, ∆, λ) is linear
(Equation (2.9)). The univariate function r 7→ R(0, ℓ, r, ∆, λ) is a ∩-concave
quadratic polynomial. We’ve defined ξ∆(λ) as the integer value of r for
which R(0, ℓ, r, ∆, λ) is maximized (the smallest such integer, in case of ties).
A formula for ξ∆(λ) is given by Equation (2.12).

We denote by ρ∆(λ) the real value of r for which R(0, ℓ, r, ∆, λ) is maxi-
mized. By Equation (2.2),

ρ∆(λ) =

{

(ℓ + ∆λ2 + 1 − λ)/(2λ) if λ = q/2
(ℓ + ∆(λ2 + λ) + 1

2
− λ)/(2λ + 1) otherwise

. (2.17)

Claim 2.17 Let ℓ ≥ 1, 1 ≤ ∆ ≤ ℓ, and 1 ≤ λ ≤ ⌊q/2⌋. Then

R(0, ℓ, ρ∆(λ), ∆, λ) ≥ R(0, ℓ, ξ∆(λ), ∆, λ) .

Proof By definition, the optimization of R over the integers is a restriction
of the more general problem, the optimization of R over the reals.

Define ζ∆(λ) = ρ∆(λ) + 1
2
,

ζ∆(λ) =

{

(ℓ + ∆λ2 + 1)/(2λ) if λ = q/2
(ℓ + ∆(λ2 + λ) + 1)/(2λ + 1) otherwise

. (2.18)

Claim 2.18 Let ℓ ≥ 1, 1 ≤ ∆ ≤ ℓ, and 1 ≤ λ ≤ ⌊q/2⌋. Then

R(0, ℓ, ξ∆(λ), ∆, λ) ≥ R(0, ℓ, ζ∆(λ), ∆, λ) .

Proof Recall that r 7→ R(0, ℓ, r, ∆, λ) is a ∩-concave quadratic polynomial,
which takes its maximum at r = ρ∆(λ), and ξ∆(λ) is the closest integer to
ρ∆(λ) (the smaller one, in case of ties). Therefore,

|ρ∆(λ) − ξ∆(λ)| ≤
1

2
= |ρ∆(λ) − ζ∆(λ)| ,

24

r

R(0, ℓ, r,∆, λ)

ρξ ζ

ξ=ξ∆(λ), ρ=ρ∆(λ), ζ=ζ∆(λ)

θ

R(θ, ℓ, r,∆, λ)

r=ρ∆(λ)r=ζ∆(λ) r=ξ∆(λ)

Figure 2.2: Left: R as a function of r, with all other parameters fixed. The
tick marks on the r-axis designate integers. Right: Three graphs of R as a
function of θ. Each graph has a different r, all other parameters are fixed.

and the proof follows. Claims 2.17 and 2.18 are portrayed in Figure 2.2 (left).
Figure 2.2 (right) follows from Claims 2.17 and 2.18, as well as Equation (2.9).

Claim 2.19 Let 1 ≤ ∆ ≤ ℓ and 1 ≤ λ ≤ λ∆. Then

R(0, ℓ, ξ∆(λ), ∆, λ) ≥ R(0, ℓ, r∆, ∆, λ∆) .

Proof We have R(0, ℓ, ξ∆(λ), ∆, λ) ≥ R(0, ℓ, r∆, ∆, λ) ≥ R(0, ℓ, r∆, ∆, λ∆),
where the second inequality follows from Lemma 2.5.

For ∆ 6= ∆′ and ℓ ≥ 1, define θ∆,∆′(ℓ, r, r′, λ, λ′) as the unique real such
that

θ = θ∆,∆′(ℓ, r, r′, λ, λ′) ⇐⇒ R(θ, ℓ, r, ∆, λ) = R(θ, ℓ, r′, ∆′, λ′) .

Equivalently,

θ∆,∆′(ℓ, r, r′, λ, λ′) = ℓ ·
R(0, ℓ, r, ∆, λ) − R(0, ℓ, r′, ∆′, λ′)

2(∆ − ∆′)
. (2.19)

Note that under this definition,

θ∆,∆+1(ℓ) = θ∆,∆+1(ℓ, r∆, r∆+1, λ∆, λ∆+1) .

25

Lemmas 2.20 and 2.21 will let us bound θ∆,∆+1(ℓ) from above and be-
low, respectively. These bounds will subsequently be used in the proof of
Proposition 2.16.

Lemma 2.20 Let ℓ ≥ 1 and 1 ≤ ∆ < ℓ. Then

θ∆,∆+1(ℓ) ≤ θ∆,∆+1(ℓ, ζ∆(λ∆), ρ∆+1(λ∆+1), λ∆, λ∆+1) .

Proof From Equation (2.19):

θ∆,∆+1(ℓ) = θ∆,∆+1(ℓ, r∆, r∆+1, λ∆, λ∆+1) (2.20)

=
ℓ

2
(R(0, ℓ, r∆+1, ∆ + 1, λ∆+1) − R(0, ℓ, r∆, ∆, λ∆))

θ∆,∆+1(ℓ, ζ∆(λ∆), ρ∆+1(λ∆+1), λ∆, λ∆+1) (2.21)

=
ℓ

2
(R(0, ℓ, ρ∆+1(λ∆+1), ∆ + 1, λ∆+1) − R(0, ℓ, ζ∆(λ∆), ∆, λ∆)) .

We must now prove that the RHS of Equation (2.20) is less than or equal
to the RHS of Equation (2.21). This follows from Claims 2.17 and 2.18.
Note that ξ∆(λ∆) = r∆ and ξ∆+1(λ∆+1) = r∆+1. For a graphical proof see
Figure 2.3.

θ

R

AB A′B′

AA′BB′ A = R(θ, ℓ, r∆,∆, λ∆)

A′ = R(θ, ℓ, ζ∆(λ∆),∆, λ∆)

B = R(θ, ℓ, r∆+1,∆ + 1, λ∆+1)

B′ = R(θ, ℓ, ρ∆+1(λ∆+1),∆ + 1, λ∆+1)

AB = θ∆,∆+1(ℓ)

A′B′ = θ∆,∆+1(ℓ, ζ∆(λ∆), ρ∆+1(λ∆+1), λ∆, λ∆+1))

Figure 2.3: Graphical proof of Lemma 2.20.

Lemma 2.21 Let ℓ ≥ 1 and 1 < ∆ ≤ ℓ. Then

θ∆−1,∆(ℓ) ≥ θ∆−1,∆(ℓ, ρ∆−1(λ∆), ζ∆(λ∆), λ∆, λ∆) .

26

Proof From Equation (2.19):

θ∆−1,∆(ℓ) = θ∆−1,∆(ℓ, r∆−1, r∆, λ∆−1, λ∆) (2.22)

=
ℓ

2
(R(0, ℓ, r∆, ∆, λ∆) − R(0, ℓ, r∆−1, ∆ − 1, λ∆−1))

θ∆−1,∆(ℓ, ρ∆−1(λ∆), ζ∆(λ∆), λ∆, λ∆) (2.23)

=
ℓ

2
(R(0, ℓ, ζ∆(λ∆), ∆, λ∆) − R(0, ℓ, ρ∆−1(λ∆), ∆ − 1, λ∆)) .

We must now prove that the RHS of Equation (2.22) is greater than or
equal to the RHS of Equation (2.23). From Proposition 2.14, λ∆−1 ≥ λ∆.
The proof follows from Claims 2.17, 2.18, and 2.19. Note that ξ∆(λ∆) = r∆

and ξ∆−1(λ∆−1) = r∆−1. For a graphical proof see Figure 2.4.

θ

R

ABA′B′′

A A′ BB′B′′ A = R(θ, ℓ, r∆,∆, λ∆)

A′ = R(θ, ℓ, ζ∆(λ∆),∆, λ∆)

B = R(θ, ℓ, r∆−1,∆ − 1, λ∆−1)

B′ = R(θ, ℓ, r∆−1,∆ − 1, λ∆)

B′′ = R(θ, ℓ, ρ∆−1(λ∆),∆ − 1, λ∆)

AB = θ∆−1,∆(ℓ)

A′B′′ = θ∆−1,∆(ℓ, ρ∆−1(λ∆), ζ∆(λ∆), λ∆, λ∆))

Figure 2.4: Graphical proof of Lemma 2.21.

We defer the proof of Proposition 2.16 to Appendix A. The proof involves
three cases, namely: λ∆ = λ∆+1, λ∆ = λ∆+1 + 1, and λ∆ ≥ λ∆+1 + 2. The
proof relies on Lemmas 2.20 and 2.21.

2.5 Further tightening the bounds

In this section, we review the bounds used in Section 2.1. In Subsection 2.5.1
we point out that certain bounds are not tight. As we will see, some of this
slackness comes with a price (which is not too high). In Subsection 2.5.2
we show that one of the bounds is tight, when we are dealing with optimal

27

values of r and ∆. Thus, Subsection 2.5.1 deals with directions one might
choose to take in an attempt to improve the results in this thesis, while
Subsection 2.5.2 points out that one direction is a dead-end.

2.5.1 Non-tight bounds

In Claim 2.3 we’ve bounded from above the number of linear constraints
implied by Equation (1.3). Claim 2.3 was subsequently used in the derivation
of R(θ, ℓ, r, ∆, Λ(r, ∆)). The number of linear constraints was bounded by

∑

γ∈F, j∈[n]

(

Mγ,j + 1

2

)

.

Note that this bound might not be tight. The linear equations might be
linearly dependent. Moreover, a linear constraint of the form

∑

h,i

(

h
s

)(

i
t

)

Qh,iα
h−s
j

is identically zero for t > ℓ, as implied by Equation (1.2). Thus, it should
not be counted as a linear equation.

On the other hand, in Claim 2.6, which was also used in the derivation
of R(θ, ℓ, r, ∆, Λ(r, ∆)), we’ve bounded from below the number of significant
coefficients implied by Equation (1.2). This bound was

ℓ
∑

i=0

(β − (k − 1)i) = (ℓ + 1)β − (k − 1)

(

ℓ + 1

2

)

.

Note that if β − (ℓ + 1)(k + 1) < 0, then the bound is not tight.
We expect R(θ, ℓ) to increase as ℓ grows (every list-(ℓ + 1) decoder is

also a list-ℓ decoder), and this is generally the case. However, because of
the non-tight bound on the number of significant coefficients, there are cases
where the opposite happens. As an example, take θ = 0.8 and q = 9. For
these values, R(θ, ℓ = 7) = 0.164, as opposed to R(θ, ℓ = 8) = 0.1611 (see
Figure 2.5).

2.5.2 A tight bound

The following Lemma will show that the bound used in Claim 2.2 is tight
for optimal values of r and ∆. If this had not been the case, we might have
been able to use this slackness in order to improve the decoding radius.

28

R(θ, ℓ)

θ0

0.2

0.4

0.6

0.8

1

0.1 0.8 1

Figure 2.5: Curve θ 7→ R(θ, ℓ) for q = 9 and ℓ = 7, 8.

Lemma 2.22 Fix C as a length-n alternant code, and let the underlying
GRS code have dimension k. Fix ℓ as the list size. Let θ(ℓ, r, ∆) be as
defined in Proposition 2.1, and fix 0 < ∆ ≤ r ≤ ℓ that maximize θ(ℓ, r, ∆).
Let θ = θ(ℓ, r, ∆), τ = ⌈nθ⌉−1, and β = rn− τ∆. Then, for every codeword
c there exists a received word y such that d(c,y) = τ and SM(y)(c) = β.

Proof Let y be such that τ −n⌊τ/n⌋ entries of y are at a distance ⌊τ/n⌋+1
from the respective entries of c, and the remaining n− τ + n⌊τ/n⌋ entries of
y are at a distance ⌊τ/n⌋ from the respective entries of c. By this definition,
d(c,y) = τ . We claim that y is such that SM(y)(c) = β.

Assume the contrary, namely, that SM(y)(c) > β. Thus, we must have
that

r − (⌊τ/n⌋ + 1)∆ < 0 ,

and since β > 0, we must also have that

r − ⌊τ/n⌋∆ > 0 .

Define r′ and ∆′ as the unique integers for which

r − ⌊τ/n⌋∆ = r′ − ⌊τ/n⌋∆′ and r′ − (⌊τ/n⌋ + 1)∆′ = 0 .

29

Note the following facts about r′ and ∆′ (see also Figure 2.6):

1. r′ and ∆′ are indeed well-defined.

2. 0 < ∆′ ≤ r′ ≤ ℓ.

3. For x ≤ ⌊τ/n⌋ we have r − x∆ ≥ r′ − x∆′.

4. For x > ⌊τ/n⌋ we have r − x∆ < r′ − x∆′.

x
⌊

τ
n

⌋ ⌊

τ
n

⌋

+ 1

r − x∆ r′ − x∆′

Figure 2.6: x 7→ r − x∆ versus x 7→ r′ − x∆′.

We claim that θ(ℓ, r′, ∆′) > θ = θ(ℓ, r, ∆), which is a contradiction. We
will show this by proving that

R(θ, ℓ, r, ∆, Λ(r, ∆)) < R(θ, ℓ, r′, ∆′, Λ(r′, ∆′)) . (2.24)

By Fact 3 we have that

n





⌊τ/n⌋
∑

i=0

(

r′ − i∆′

2

)



 ≤ n





⌊τ/n⌋
∑

i=0

(

r − i∆

2

)



 , (2.25)

where the LHS of Equation (2.25) is the number of linear equations implied
by r′ and ∆′, and the RHS is the number of linear equations implied by r
and ∆. Note that the number of equations implied by (any) r and ∆ is given
by Equation (2.5) which, after divided by n and preceded by a minus sign,
appears as a sub-expression in Equation (2.2). The other sub-expression
inside the outermost parenthesis of Equation (2.2) is (ℓ + 1)(r −∆θ). Thus,

30

in order to prove that Equation (2.24) is true, it remains to be shown that
r − θ∆ < r′ − θ∆′. This follows from the definition of τ which implies that
θ > ⌊τ/n⌋, and from Fact 4.

31

Chapter 3

Asymptotics

Recall that in the finite ℓ case studied in Chapter 2, we had no closed for-
mula for ∆∗ = ∆∗(θ, ℓ) (although Equation (2.16) is pretty close). In this
chapter, we will take ℓ → ∞, and derive a closed asymptotic formula for ∆∗.
Therefore, we will also have closed asymptotic formulas for r∗ = r∆∗ and
R(θ, ℓ) = R(θ, ℓ, r∗, ∆∗, Λ(r∗, ∆∗)).

For as yet unspecified integer λ and real w ∈ [0, 1], define

R̃(θ, w, λ) =

{

3+(6λ2−12λθ)w−(2λ2+λ4)w2

6λ
if λ = q/2

3+(6λ+6λ2−6θ−12λθ)w−(λ+2λ2+2λ3+λ4)w2

6λ+3
otherwise

. (3.1)

Also, define

Λ(w) =

{

min
{⌊

√

1/w
⌋

, ⌊q/2⌋
}

0 < w ≤ 1

⌊q/2⌋ w = 0
.

Note that Λ(w), and hence R̃(θ, r, Λ(w)), are functions of q. However, for
the sake of brevity, we will not write this explicitly.

Lemma 3.1 For θ > 0, ℓ > 0 and 1 ≤ ∆ ≤ ℓ, let w = ∆/ℓ. Then,

R∆(θ, ℓ) = R(θ, ℓ, r∆, ∆, λ∆) = R̃(θ, w, Λ(w)) + O(1/ℓ) .

Proof Note that for w = ∆/ℓ, we have Λ(w) = λ∆. Let λ = λ∆ = Λ(w)
and r = r∆. Define α(θ, ℓ, r, ∆, λ) by

α(θ, ℓ, r, ∆, λ) =

(

ℓ + 1

2

)

R(θ, ℓ, r, ∆, λ) .

32

We will soon prove that R(θ, ℓ, r, ∆, λ) < 1. But given this we have that
α(θ, ℓ, r, ∆, λ) = O(ℓ2), and we can write

R(θ, ℓ, r, ∆, λ) =
2

ℓ2
α(θ, ℓ, r, ∆, λ) + O(1/ℓ) .

We can now replace r by the RHS of Equation (2.13). Removing the floors
added by this substitution contributes a factor of O(1/ℓ). Rearranging yields
the required result.

We will now prove that R(θ, ℓ, r, ∆, λ) < 1. By Lemma 2.5 it suffices to
prove that R(θ, ℓ, r, ∆, 1) < 1. Since R(θ, ℓ, r, ∆, 1) is a strictly decreasing
function of θ, it suffices to prove that R(0, ℓ, r, ∆, 1) ≤ 1. If q = 2, we have
that

R(0, ℓ, r, ∆, 1) =
∆ − ∆2 + 2∆r + 2ℓr − 2r2

ℓ + ℓ2

substituting ∆ by r − r̄ yields

R(0, ℓ, r, ∆, 1) =
−r2 + (2ℓ + 1)r − r̄ − r̄2

ℓ + ℓ2
. (3.2)

Since ∆ ≤ r, we have r̄ ≥ 0. Substituting the worst case value of 0 for r̄ in
Equation 3.2 yields

−r2 + (2ℓ + 1)r

ℓ + ℓ2
,

which is equal to 1 for r = ℓ, ℓ+1, and is less than 1 for all other values of r.
The proof for the q > 2 case is quite similar.

Let us now discard the O(1/ℓ) factor and optimize w 7→ R̃(θ, w, Λ(w))
over w.

3.1 An implicit formula for w∗

Note that the function w 7→ R̃(θ, w, Λ(w)) is a piecewise quadratic polyno-
mial. One can also easily verify that it is continuous, and has a continuous
derivative. Thus, w 7→ R̃(θ, w, Λ(w)) is ∩-concave, and therefore, it attains
a (single) maximum for some optimal 0 ≤ w∗(θ) ≤ 1.

We will now find a formula for w∗ = w∗(θ), as a function of Λ(w∗) and θ.
Recall that χL(q) is defined in Equation (1.4).

33

Proposition 3.2 For 0 < θ ≤ χL(q), let λ = Λ(w∗(θ)). Then,

w∗(θ) =

{

3λ−6θ
2λ+λ3 if λ = q/2

3(λ+λ2−θ−2λθ)
λ+2λ2+2λ3+λ4 otherwise

. (3.3)

Proof Fix θ and λ, and denote w∗ = w∗(θ). Consider the function w 7→
R̃(θ, w, λ). One can easily prove that the RHS of Equation (3.3) is the value

of w for which ∂R̃(θ,w,λ)
∂w

= 0. Note that

∂R̃(θ, w, λ)

∂w

∣

∣

∣

∣

∣

w=w∗

=
∂R̃(θ, w, Λ(w))

∂w

∣

∣

∣

∣

∣

w=w∗

,

because w 7→ R̃(θ, w, Λ(w)) is continuous, and has a continuous derivative.
We have three cases to consider:

Case 1 : In this case,

∂R̃(θ, w, λ)

∂w

∣

∣

∣

∣

∣

w=w∗

= 0 ,

and the proof follows.

Case 2 : In this case,

∂R̃(θ, w, λ)

∂w

∣

∣

∣

∣

∣

w=w∗

< 0 .

Thus, w∗ = 0, and therefore, λ =
⌊

q
2

⌋

. For λ =
⌊

q
2

⌋

, the fact that the
RHS of Equation (3.3) is < 0 contradicts the fact that θ ≤ χL(q).

Case 3 : In this case,

∂R̃(θ, w, λ)

∂w

∣

∣

∣

∣

∣

w=w∗

> 0 .

Thus, w∗ = 1, and therefore, λ = 1. For λ = 1, the fact that the RHS
of Equation (3.3) is > 0 contradicts the fact that θ > 0.

34

3.2 Finding Λ(w∗)

Equation (3.3) gives us w∗, as a function of Λ(w∗) (which is yet unknown)
and θ. We will now derive an explicit formula for Λ(w∗).

Proposition 3.3 Let 0 < θ ≤ χL(q). Denote by L the unique integer such
that L2−1

3L
≤ θ < L+2L

3(L+1)
. Then Λ(w∗) = min{L, ⌊q/2⌋}.

Proof Fix λ = Λ(w∗). There are two cases to consider:

Case 1 λ < ⌊q/2⌋: In this case, we have that λ =
⌊

√

1/w∗
⌋

. By Proposi-

tion 3.2, and a straightforward algebraic manipulation, we see that this
is equivalent to λ2−1

3λ
≤ θ < λ2+2λ

3(λ+1)
.

Case 2 λ = ⌊q/2⌋: Now we have that λ ≤
⌊

√

1/w∗
⌋

. A short calculation

shows that this yields λ2−1
3λ

≤ θ.

3.3 Conclusion for the asymptotic case

We can now derive the asymptotic optimal modified rate formula. Inserting
Equation (3.3) into Equation (3.1), along with Proposition 3.3, yield the
following:

Proposition 3.4 For 0 < θ ≤ χL(q), denote by L the unique integer such
that L2−1

3L
≤ θ < L2+2L

3(L+1)
, and let λ = min{L, ⌊q/2⌋}. Then,

R(θ,∞) = lim
ℓ→∞

R(θ, ℓ)=

{

1+2λ2−6λθ+6θ2

2λ+λ3 if λ = q/2
λ+3λ2+2λ3−6λθ(1+λ)+3θ2(1+2λ)

λ+2λ2+2λ3+λ4 otherwise
. (3.4)

Proposition 3.4 gives us the asymptotic value of the optimal R, for a
given θ. Conversely, we can look at the inverse function of R to derive the
asymptotic value of θ, for a given R. Thus, we now have a means to (asymp-
totically) compare the modified decoding radius obtained by our algorithm
to that promised by Proposition 1.4. Define

JL(∞, θ, q) = lim
ℓ→∞

JL(ℓ, θ, q) =

(

2θ −
θ2

χL(q)

)

, 0 < θ ≤ χL(q) .

35

Proposition 3.5 For 0 < θ ≤ χL(q), if q = 2 or q = 3, then R(θ,∞) =
1 −JL(∞, θ, q). Otherwise, R(θ,∞) > 1 −JL(∞, θ, q)

Proof Define the function f(θ, λ) as the RHS of Equation (3.4). Fix some
θ0, such that 0 < θ0 ≤ χL(q), and let λ be as defined in Proposition 3.4 for
θ = θ0. Note that λ is fixed.

We have two cases to consider:

Case 1 λ = ⌊q/2⌋: If q is even then χL(q) = λ/2. Otherwise, q is odd, and
χL(q) = (λ2 + λ)/(2λ + 1). If q = 2 or q = 3, then λ = 1 and from
Equation (3.4) we obtain that R(θ0,∞) = f(θ0, λ) = 1 − JL(∞, θ0, q).

Otherwise, for λ > 1 and 0 < θ ≤ χL(q), f(θ,∞) − 1 + JL(∞, θ, q) is
a ∩-concave quadratic polynomial in θ. Since λ2−1

3λ
≤ θ0 ≤ χL(q), it

suffices to prove that for λ > 1, we have f(θ, λ) − 1 + JL(∞, θ, q) > 0
for θ = λ2−1

3λ
and θ = χL(q). This is indeed so.

Case 2 λ < ⌊q/2⌋: In this case, we have χL(q) ≥ λ+1
2

. Thus, it suffices to
show that

f(θ, λ) − 1 + 2θ −
θ2

(

λ+1
2

) (3.5)

is positive for θ = θ0. Equation (3.5) is θ2/2 for λ = 1 and ∩-concave
for λ > 1, as a function of θ. Since λ2−1

3λ
≤ θ0 < λ2+2λ

3(λ+1)
, it suffices

to show that for λ > 1, Equation (3.5) is positive for θ = λ2−1
3λ

and

θ = λ2+2λ
3(λ+1)

. This is indeed so.

Figure 3.1 plots R(θ, ℓ) versus 1 − JL(∞, θ, q) for specific q and ℓ.
Since 1−JL(∞, θ, q) is strictly decreasing for 0 < θ ≤ χL(q), we conclude

from Proposition 3.5 that when ℓ → ∞, the decoding algorithm achieves a
relative decoding radius which is generally better than the one promised by
Proposition 1.4. Note that this holds regardless of the column multipliers
(vi)i∈[n]. This is somewhat surprising; in the Hamming metric, the bound
implied by a Johnson-type bound turns out to be exactly the relative decod-
ing radius achieved by Koetter and Vardy [12]. Note that q = 2 and q = 3
are the two values for which the Hamming and Lee metrics are the same.

36

ℓ = 7

Johnson, ℓ = 7

ℓ = ∞

Johnson, ℓ = ∞

θ

R(θ, ℓ)

0

1

1

Figure 3.1: Curve θ 7→ R(θ, ℓ) and the Johnson bound for q = 5 and ℓ = 7,∞.

37

Chapter 4

Justification for the Score
Selection

At the start of Chapter 2, we introduced a mapping y 7→ M(y), defined in
Equation (2.1). We will call this mapping and everything derived from it
the distance-linear score method. The rest of the chapter was dedicated to
the optimization of that mapping over r and ∆, in order to get the largest
possible decoding radius τ . Chapter 3 was dedicated to further analysis of
this mapping.

However, it is certainly possible that a mapping y 7→ M(y) not of the
form of Equation (2.1) (along with a respective β) would yield a better decod-
ing radius than what we could achieve from the distance-linear score method.

This chapter is dedicated to justifying Chapters 2 and 3 (partially). We
will show that after some relaxation — essentially assuming a certain sym-
metry in the mapping y 7→ M(y) and moving from integers to rationals —
the distance-linear score method is optimal. Thus, one would expect that
the distance-linear score method is not too far from the optimum.

Consider a related setup. For ease of notation, denote

I = {0, 1, . . . , ⌊q/2⌋} .

We are given two parameters. The first parameter is the vector µ = (µi)i∈I ,
termed the multiplicity vector, over the nonnegative rationals. We also re-
quire that, for two indexes i and j, if i < j then µi ≥ µj. The second
parameter is the critical score β, which is also over the nonnegative ratio-
nals. We call a rational vector δ = (δi)i∈I an error distribution if

∑

i∈I δi = 1,

38

and δi ≥ 0. For an error distribution δ we define the weight of δ as

w(δ) = n ·
∑

i∈I

iδi .

The score of δ with respect to µ is defined as

Sµ(δ) = n ·
∑

i∈I

µiδi .

We call δ a critical error distribution with respect to a multiplicity vector
µ and critical score β, when the following three conditions are met:

1. Sµ(δ) = β.

2. If δ′ is an error distribution such that w(δ′) ≤ w(δ), then Sµ(δ′) ≥ β.

3. For all τ such that τ > w(δ), there exists an error distribution δ′ such
that w(δ) < w(δ′) < τ and Sµ(δ′) < β.

How are all these definitions connected to what we’ve been doing so far?
Let y = (yj)j∈[n] be the received word. Suppose we were only interested in
mappings y 7→ M(y) = (Mγ,j)γ∈F,j∈[n] of the form

Mγ,j = µdL(yj ,γ) . (4.1)

for some vector µ = (µi)i∈I , with nonincreasing entries. For a codeword c
define δ(c,y) = (δi)i∈I as

δi =
|{j ∈ [n] : dL(yj, γ) = i}|

n
. (4.2)

Then, under these definitions,

SM(y)(c) = Sµ(δ(c,y))

and
dL(c,y) = w(δ(c,y)) .

Recall that SM(c) is defined in Equation (1.1).
For ease of analysis we will let µ and β be defined over the nonnegative

rationals (and not the nonnegative integers). Let δ be a critical vector with
respect to µ and β. The value of w(δ) is our best estimate for the decoding
radius implied by µ and β. That is, for all δ′ such that w(δ′) ≤ w(δ) we have
Sµ(δ′) ≥ β. Moreover, an error distribution δ′ such that w(δ′) > w(δ) does
not have this property. In addition, δ realizes the critical score, Sµ(δ) = β.

For the above model we have the following:

39

Proposition 4.1 Let µ = (µi)i∈I be a multiplicity vector and β be a critical
score. Let δ be a critical error distribution with respect to µ and β. Then,
there exists a multiplicity vector µ′ = (µ′

i)i∈I and rationals r and ∆ such that

µ′
i = max {r − i∆, 0} ≤ µi ,

and δ is a critical error distribution with respect to µ′ and β.

Proposition 4.1 states that under the model introduced in this chapter,
we do not lose anything by assuming that µi is of the form max {r − i∆, 0}.
Also, note that µ′

i ≤ µi is important in connection with Condition (C2),
introduced on page 9. Namely, if we were dealing with integers, and not
with rationals, and Condition (C2) held for the mapping induced by µ and
β (Equation (4.1)), then it would also hold for the mapping induced by µ′

and β.
Recall that our definition of a multiplicity vector µ = (µ)i∈I required that

if j, k ∈ I are such that j < k, then µj ≥ µk. This might be a good time
to state that we do not lose any generality in this definition. Specifically, let
µ = (µ)i∈I be a vector for which there exists j < k such that µj < µk. Let
β be a critical score and let δ = (δi)i∈I be a critical error distribution with
respect to β and µ. Define the vector µ′ = (µ′

i)i∈I as

µ′
i =

{

µj if i = k
µi otherwise

.

Note that we can continue this process until we are left with a legitimate
multiplicity vector. We claim that δ is a critical error distribution with
respect to µ′ and β. Assume this is not the case, namely, that µkδk > (µ′

k =
µj)δk. Define the error distribution δ′ = (δ′)i ∈ I as

(δ′)i =







δj + δk if i = j
0 if i = k
δi otherwise

.

We have w(δ′) < w(δ), but Sµ(δ′) = Sµ′(δ′) < Sµ(δ), contradicting the fact
that δ is a critical error distribution with respect to β and µ. Note that for
all i ∈ I we have that µ′

i ≤ µi, and as was the case in the previous paragraph,
this is important in connection with Condition (C2).

The proof of Proposition 4.1 will be deferred to the end of this chapter.
We will first prove some lemmas.

40

Lemma 4.2 Let the multiplicity vector µ = (µi)i∈I be of the form

µi = max {r − ∆i, 0} ,

and let δ be an error distribution such that w(δ) = τ . Then,

Sµ(δ) ≥ rn − ∆τ .

Proof Denote δ = (δi)i∈I . We have

Sµ(δ) = n
∑

i∈I

µiδi

≥ n
∑

i∈I

(r − ∆i)δi

= nr − ∆n
∑

i∈I

iδi

= nr − ∆w(δ) ,

where the penultimate equality follows from
∑

i∈I δi = 1.

Lemma 4.3 Fix a multiplicity vector µ and a critical score β. Let δ be a
critical error distribution with respect to µ and β. Then, there exists δ′ that
is also a critical error distribution with respect to µ and β such that at most
two entries of δ′ are nonzero.

Proof Denote δ = (δi)i∈I . Let a < b < c be indexes for which δa, δb, δc are
all positive (if no such indexes exist then δ′ = δ). For as yet an unspecified
ǫ, consider the error distribution δ′ = (δ′i)i∈I ,

δ′i =















δa − ǫ c−b
c−a

if i = a

δb + ǫ if i = b
δc − ǫ b−a

c−a
if i = c

δi otherwise

. (4.3)

Note that for a rational ǫ such that −δb ≤ ǫ ≤ min
{

c−a
c−b

· δa,
c−a
b−a

· δc

}

, we have

that δ′ is a valid error distribution. One can also prove that, w(δ′) = w(δ),
and

Sµ(δ′) − Sµ(δ) =
nǫ

c − a
(−µa(c − b) + µb(c − a) − µc(b − a)) . (4.4)

41

Next we show that −µa(c − b) + µb(c − a) − µc(b − a) = 0. Otherwise,
assume that it is negative (resp., positive). For a small enough ǫ > 0 (resp.,
ǫ < 0), we have that δ′ is a valid error distribution with w(δ) = w(δ′) and
Sµ(δ′) < β, contradicting the fact that δ is a critical error distribution.

Therefore, if we take ǫ = −δb, the number of positive entries in δ′ would
be one less than those in δ. We can continue this process until we are left
with a vector with two positive entries.

Lemma 4.4 Let µ = (µi)i∈I be a multiplicity vector, and β be a critical
score. Suppose δ = (δi)i∈I is a critical error distribution such that δa +δc = 1
for two indexes a < c, and both δa and δc are positive. Let b ∈ I be an index
different from a and c. Then,

−µa(c − b) + µb(c − a) − µc(b − a) ≥ 0 .

Proof Suppose a < b < c. Define δ′ as in Equation (4.3), with ǫ =
min

{

c−a
c−b

· δa,
c−a
b−a

· δc

}

. We have w(δ) = w(δ′). Since δ is a critical error

distribution we have Sµ(δ′) ≥ Sµ(δ). Thus, by Equation (4.4), our result
follows. The case b < a < c is quite similar, we define δ′ as in Equation (4.3),
up to the substitution a → b, b → a, and take ǫ = −δa. The case a < c < b
is similar as well.

Lemma 4.5 Let µ = (µi)i∈I be a multiplicity vector and β be a critical score.
Suppose δ = (δi)i∈I is a critical error distribution error such that δa + δc = 1
for two indexes a < c, and both δa and δc are positive.

Define µ′ = (µ′
i)i∈I as

µ′
i = max

{

µa(c − i) + µc(i − a)

c − a
, 0

}

= max {r − i∆, 0} ,

where r = µac−µca
c−a

and ∆ = µa−µc

c−a
. Then, δ is a critical error distribution

with respect to µ′ and β.

Proof Let τ = w(δ) = n(aδa +cδc). Notice that µ′
a = µa and µ′

c = µc. Thus,
rn − τ∆ = Sµ′(δ) = Sµ(δ) = β. Therefore, from Lemma 4.2, for all δ′ such
that w(δ′) ≤ w(δ), we have Sµ′(δ) ≥ β.

On the other hand, from Lemma 4.4 we have that µ′
i ≤ µi, for all i ∈ I.

Thus, for every error distribution δ′, we have Sµ′(δ′) ≤ Sµ(δ′). Specifically,
this applies to any error distribution δ′ such that w(δ′) > w(δ).

42

i

µi, µ
′

i

a c

µ′

i

µi

Figure 4.1: Graph of µ versus µ′ in Lemma 4.5.

For a graphical representation of Lemma 4.5, see Figure 4.1.

Lemma 4.6 Let µ = (µi)i∈I be a multiplicity vector, and β be a critical
score. Let δ = (δi)i∈I be a critical error distribution with respect to µ and β,
such that δb = 1 for an index 0 < b < ⌊q/2⌋. Fix indexes a and c such that
a < b < c. Then,

−µa(c − b) + µb(c − a) − µc(b − a) ≤ 0 .

Proof Assume the contrary, and define δ′ as in Equation (4.3), for ǫ = −δb.
We have w(δ) = w(δ′), and by Equation (4.4) we get that S(δ′) < S(δ).
This contradicts the fact that δ is a critical error distribution.

Lemma 4.7 Let µ = (µi)i∈I be a multiplicity vector, and β be a critical
score. Let δ = (δi)i∈I be a critical error distribution with respect to µ and β,
such that δb = 1 for an index 0 < b < ⌊q/2⌋. Fix a < b as an index such that
for all a′ < b

µa′ − µb

b − a′
≥

µa − µb

b − a
.

Define the multiplicity vector µ′ = (µi)i∈I as

µ′
i = max

{

µa(b − i) + µb(i − a)

b − a
, 0

}

= max {r − ∆i, 0} ,

where r = µab−µba
b−a

and ∆ = µa−µb

b−a
. Then, µ′

i ≤ µi for i ∈ I, and δ is a critical
error distribution with respect to µ′ and β.

43

Proof We must first prove that for all indexes c,

−µa(c − b) + µb(c − a) − µc(b − a) ≤ 0 .

For c = b this is obvious. For c > b this follows from Lemma 4.6. For c < b
this follows from the definition of a. The rest of the proof is very similar to
Lemma 4.5.

For a graphical representation of Lemma 4.7, see Figure 4.2.

i

µi, µ
′

i

a b

µ′

i

µi

Figure 4.2: Graph of µ versus µ′ in Lemma 4.7.

We are now able to prove Proposition 4.1.

Proof of Proposition 4.1 By Lemma 4.3, if δ is a critical error distribu-
tion, then we can assume w.l.o.g. that δ has either one or two nonzero entries.
If δ has two nonzero entries, the claim is proved by Lemma 4.5. Otherwise,
δ has one nonzero entry, and the claim is proved by Lemma 4.7.

44

Chapter 5

Notes

This chapter contains two sections. In the first section we discuss what code
C and bijection 〈·〉 : F → Zp a designer might choose when working with our
decoder. Specifically, we cite previous results about “good codes” for the Lee
metric. In the second section we compare the decoding radius of our decoder
to the decoding radii of other known decoders for the Lee metric.

5.1 Code and bijection selection

In [22], length-n normalized (vi = αi for all i ∈ [n]) alternant codes are
analyzed for F = GF(p), where p is prime. If we take 〈·〉 : F → Zp as the
identity function, the minimum Lee distance of these codes, d, satisfies

d ≥

{

2(n − k), for n − k ≤ (p − 1)/2
p, for (p + 1)/2 ≤ n − k < p

, (5.1)

where k is the dimension of the underlying (normalized) GRS code.
Normalized [n, k] GRS codes are also analyzed in [22]. Let Φ = F =

GF(p), where p is prime, and let 〈·〉 : F → Zp be the identity function. Fix
C as an [n, k] GRS code, and denote r = n − k. The minimum Lee distance
of C, d, satisfies the following three bounds:

d ≥ 2r , (5.2)

d ≥
r + 1

2
+

(r + 1)2

4(p − 1 − r)
, (5.3)

d ≥
1

4

(

p2 − 1 − (p − r − 2) · p3/2
)

, (5.4)

45

where Equation (5.4) is due to Mazur [?].
Thus, it might be beneficial to choose a normalized alternant or GRS

code, and to choose 〈·〉 : F → Zp as the identity function.
On the other hand, it is well-known that the minimum Hamming distance

of a GRS code is n − k + 1. Let F , Φ, the bijection 〈·〉 : F → Zp, and the
code locators (αi)i∈[n] be given. Note that we could choose column multipliers
(vi)i∈[n] such that the minimum Lee distance of the resulting code satisfies
d = n − k + 1. But we can do no worse than this.

In Section 1.2, we fixed a bijection 〈·〉 : F → Zq. Different choices of 〈·〉
generally lead to different minimum Lee distances of the codes. Moreover,
we could just as well have n fixed bijections, one for each coordinate. Thus,
when constructing a code, the mapping(s) 〈·〉 are a design consideration.
Note that our algorithm generalizes to the case where different mappings
are chosen for different coordinates: When specifying column j of the score
matrix (Equation (2.1)), use the mapping associated with coordinate j.

5.2 Other decoders

Suppose F = GF(p), where p is prime, and 〈·〉 : F → Zp is the identity
function. When seeking a decoder for a normalized alternant or a normalized
GRS code over F , the decoding radius promised by our decoder should be
compared to that obtained in [22]. The latter is τ = n − k − 1 (for ℓ = 1),
whenever the 2(n − k) lower bound on d applies (recall Equations (5.1) and
(5.2)). One can also extend the decoding algorithm in [22] to τ = n − k − 1
when n − k ≤ p [?, Chapter 10]. This results in a list-2 decoder.

Let F and 〈·〉 : F → Zp be as in the previous paragraph. Suppose F = Φ,
and let C be an [n, k] normalized GRS code. Thus, Equations (5.2)–(5.4) ap-
ply, with r = n − k. Denote by d5.2, d5.3, d5.4theRHSofEquations (5.2),
(5.3), and (5.4), respectively. These equations imply the existence of a clas-
sical (list-1) decoder, with decoding radius

⌊⌈max {d

5.2,d5.3,d5.4 −1
2 .(5.5)

Although this result is non-algorithmic, we will com-

pare ourselves to it.
Figure 5.1 plots decoding radii of three decoders: Our decoder, the Roth

& Siegel decoder, and the non-algorithmic decoder (Equation (5.5)), for a

46

normalized GRS code. Figure 5.2 plots the decoding radii of our decoder,
and the Roth & Siegel decoder, for a normalized alternant code.

τ

k

our decoder

Roth & Siegel

non-algorithmic

5

10

15

20

25

30

35

40

45

50

85

104

5 10 15 20 25

Figure 5.1: Let F = Φ = GF(29), and let 〈·〉 : F → Zp be the identity
function. Fix C as an [n, k] normalized GRS code, with n = 28. For a
specified k (x-axis), we compare the decoding radii, τ , of three decoders: Our
decoder (with ℓ = 10), the Roth & Siegel decoder, and the non-algorithmic
decoder (Equation (5.5)).

47

τ

k

our decoder

Roth & Siegel

5

10

15

20

25

30

35

40

5 10 15 20

Figure 5.2: Let F = GF(5), Φ = GF(25), and let 〈·〉 : F → Zp be the identity
function. Fix C as an [n, k] normalized alternant code, with n = 24. For a
specified k (x-axis), we compare the decoding radius, τ , of our decoder (with
ℓ = 10) to that of the Roth & Siegel decoder. Note that two or more values
of k may result in the same alternant code. Values of k which result in the
same code are grouped by a brace. The left-most brace corresponds to the
trivial code C = {0n}.

48

Appendix A

Proof of Proposition 2.16

A.1 The λ∆ = λ∆+1 case

As stated in the beginning of Section 2.4, our goal is to prove that if 1 <
∆ < ℓ, then θ∆,∆+1(ℓ) ≤ θ∆−1,∆(ℓ). In this subsection, we will prove this for
the case where λ∆ = λ∆+1.

Claim A.1 Let ℓ ≥ 1. Then,

6(ℓ + 1)θ∆,∆+1(ℓ, r, r
′, λ, λ′)

is an integer for every integer r, r′, λ, and λ′.

Proof Follows directly from the definition of R in Equation (2.2).

Lemma A.2 Let ℓ ≥ 1, 1 < ∆ < ℓ, and 1 ≤ λ ≤ ⌊q/2⌋. Then

θ∆−1,∆(ℓ, ρ∆−1(λ), ζ∆(λ), λ, λ) − θ∆,∆+1(ℓ, ζ∆(λ), ρ∆+1(λ), λ, λ) ≥
−1

12(ℓ + 1)
.

Proof A short calculation gives

θ∆−1,∆(ℓ, ρ∆−1(λ), ζ∆(λ), λ, λ) − θ∆,∆+1(ℓ, ζ∆(λ), ρ∆+1(λ), λ, λ)

=

{

λ(λ2−1)
6(ℓ+1)

if λ = q/2
−3−8λ−4λ2+8λ3+4λ4

12(ℓ+1)(1+2λ)
otherwise

.

This expression is obviously positive for λ > 1. For λ = 1 and q = 2 it is
0. For λ = 1 and q 6= 2 it is −1

12(ℓ+1)
.

49

Lemma A.3 Let ℓ ≥ 1 and 1 < ∆ < ℓ be such that λ∆ = λ∆+1. Then

θ∆,∆+1(ℓ) ≤ θ∆−1,∆(ℓ) .

Proof From Lemmas 2.20, 2.21, and A.2 we get

12(ℓ + 1)(θ∆−1,∆(ℓ) − θ∆,∆+1(ℓ)) ≥ −1 ;

furthermore, from Claim A.1 we conclude that the LHS is even and, so,
nonnegative.

A.2 The λ∆ = λ∆+1 + 1 case

In this section, we prove that θ∆,∆+1(ℓ) ≤ θ∆−1,∆(ℓ), for 1 < ∆ < ℓ and
λ∆ = λ∆+1 + 1.

Lemma A.4 Let ℓ ≥ 1 and 1 ≤ ∆ < ℓ be such that λ∆ > λ∆+1. Then

∆ =

⌊

ℓ

λ2
∆

⌋

.

Proof Fix λ = λ∆. From Proposition 2.14 we conclude that ∆ is the largest
integer for which

λ ≤
⌊

√

ℓ/∆
⌋

.

This inequality is satisfied if and only if λ ≤
√

ℓ/∆ or

∆ ≤
ℓ

λ2
.

The largest value of ∆ for which the latter inequality holds is obviously
∆ =

⌊

ℓ
λ2

⌋

.

Lemma A.5 Let ℓ ≥ 1 and 1 ≤ ∆ < ℓ be such that λ∆ = λ∆+1 + 1. Denote
λ = λ∆. Then

θ∆−1,∆(ℓ, ρ∆−1(λ), ζ∆(λ), λ, λ) − θ∆,∆+1(ℓ, ζ∆(λ), ρ∆+1(λ − 1), λ, λ − 1) ≥ 0 .

50

Proof

θ∆−1,∆(ℓ, ρ∆−1(λ), ζ∆(λ), λ, λ) − θ∆,∆+1(ℓ, ζ∆(λ), ρ∆+1(λ−1), λ, λ−1) =

(A.1)










−6λ4∆2+12λ2(ℓ+1−λ2)∆−6((ℓ+1)2−2ℓλ2)−3λ+22λ2−8λ3−10λ4+8λ5

24(ℓ+1)λ(2λ−1)
if λ = q/2

.
−6λ4∆2+12λ2(ℓ+1−λ2)∆−6((ℓ+1)2−2ℓλ2)+λ+12λ2−8λ3+4λ5

6(ℓ+1)(2λ−1)(2λ+1)
otherwise

By Lemma A.4, ∆ =
⌊

ℓ
λ2

⌋

. We could plug this value of ∆ into the RHS
of Equation (A.1) and prove that it is nonnegative. However, that would be
messy.

Instead, fix λ and ℓ, and consider Equation (A.1) as a function of ∆. This
function is a ∩-concave quadratic polynomial, whose maximum is attained

at ℓ−(λ2−1)
λ2 . Since

ℓ − (λ2 − 1)

λ2
≤

⌊

ℓ

λ2

⌋

≤
ℓ

λ2
,

it suffices to prove that if we substitute ∆ = ℓ
λ2 , then the resulting equation

is nonnegative. The latter substitution yields
{

−6−3λ+22λ2−8λ3−10λ4+8λ5

24(1+ℓ)λ(2λ−1)
if λ = q/2

−6+λ+12λ2−8λ3+4λ5

6(ℓ+1)(2λ−1)(2λ+1)
otherwise

,

which is indeed nonnegative for λ ≥ 2.

Lemma A.6 Let ℓ ≥ 1 and 1 ≤ ∆ < ℓ be such that λ∆ = λ∆+1 + 1. Then

θ∆,∆+1(ℓ) ≤ θ∆−1,∆(ℓ) .

Proof Immediate from Lemmas 2.20, 2.21, and A.5.

A.3 The λ∆ ≥ λ∆+1 + 2 case

In this subsection, we will prove that θ∆,∆+1(ℓ) ≤ θ∆−1,∆(ℓ), for 1 < ∆ < ℓ
and λ∆ ≥ λ∆+1 + 2.

Lemma A.7 Let ℓ ≥ 1 and 1 ≤ ∆ < ℓ be such that λ∆ ≥ λ∆+1 + 2. Then

ℓ <
1

1
(λ∆+1+1)2

− 1
λ2
∆

51

Proof By Lemma A.4, ∆ = ⌊ℓ/λ2
∆⌋. Thus,

∆ ≤ ℓ/λ2
∆ . (A.2)

Also, by Proposition 2.14, λ∆+1 =
⌊

√

ℓ/(∆ + 1)
⌋

. Thus,

(λ∆+1 + 1)2 > ℓ/(∆ + 1) . (A.3)

From Equations (A.2) and (A.3) we deduce

(λ∆+1 + 1)2 >
ℓ

ℓ
λ∆

+ 1
=⇒ ℓ <

1
1

(λ∆+1+1)2
− 1

λ2
∆

.

Lemma A.8 Let ℓ ≥ 1 and 1 ≤ ∆ < ℓ be such that λ∆ ≥ λ∆+1 + 2. Denote
λ = λ∆ and Λ = λ∆+1. Then

θ∆−1,∆(ℓ, ρ∆−1(λ), ζ∆(λ), λ, λ) − θ∆,∆+1(ℓ, ζ∆(λ), ρ∆+1(Λ), λ, Λ) ≥ 0 .

The proof of this lemma is quite long, and has thus been deferred to
Appendix B. However, we will give here a proof sketch.

Proof Sketch Let ∆0 and ℓ0 be fixed constants such that 1 ≤ ∆0 ≤ ℓ0, and
the constants Λ = λ∆0+1 and λ = λ∆0 are such that λ ≥ Λ + 2.

For real ∆ and ℓ, denote

t(∆, ℓ) = θ∆−1,∆(ℓ, ρ∆−1(λ), ζ∆(λ), λ, λ) − θ∆,∆+1(ℓ, ζ∆(λ), ρ∆+1(Λ), λ, Λ) .

The mapping ∆ 7→ t(∆, ℓ0) is a ∩-concave quadratic polynomial. By
Lemma A.4 we conclude that

ℓ0 − (λ2 − 1)

λ2
≤ ∆0 =

⌊

ℓ0

λ2

⌋

≤
ℓ0

λ2
.

Thus, it suffices to show that

t1(ℓ) = t(
ℓ − (λ2 − 1)

λ2
, ℓ) and t2(ℓ) = t(

ℓ

λ2
, ℓ)

are both nonnegative for ℓ = ℓ0. The functions t1(ℓ) and t2(ℓ) are ∩-concave
quadratic. By Lemma A.7 we have

0 < ℓ0 <
1

1
(Λ+1)2

− 1
λ2

.

52

Thus, if suffices to prove that

t1(0), t1(
1

1
(Λ+1)2

− 1
λ2

), t2(0), t2(
1

1
(Λ+1)2

− 1
λ2

),

are all nonnegative. This is indeed so.

Lemma A.9 Let ℓ ≥ 1 and 1 ≤ ∆ < ℓ be such that λ∆ ≥ λ∆+1 + 2. Then

θ∆,∆+1(ℓ) ≤ θ∆−1,∆(ℓ) .

Proof Immediate from Lemmas 2.20, 2.21, and A.8.

We can now prove Proposition 2.16.

Proof of Proposition 2.16 Immediate from Lemmas A.3, A.6, and A.9.

53

Appendix B

Proof of Lemma A.8

Proof of Lemma A.8 Let ∆0 and ℓ0 be fixed constants such that 1 ≤ ∆0 ≤
ℓ0, and the constants Λ = λ∆0+1 and λ = λ∆0 are such that λ ≥ Λ + 2. Let
e and ǫ be integers such that Λ = 1 + e and λ = 1 + e + 2 + ǫ. Since Λ ≥ 1
and λ ≥ 2 + Λ, we conclude that e ≥ 0 and ǫ ≥ 0. From this point to the
end of the proof, let Λ be shorthand for 1 + e, and let λ be shorthand for
1 + e + 2 + ǫ.

In the course of this proof we will derive expressions of the form

∑

i≥0,j≥0

ai,je
iǫj ,

where there are a finite number of ai,j 6= 0. If the above expression satisfies
ai,j ≥ 0 and a0,0 > 0, then we will call it a positive-term expression. Similarly,
an expression for which ai,j ≤ 0 and a0,0 < 0 will be called negative-term.
Obviously, if an expression is positive-term (negative-term), then it is positive
(negative) when e ≥ 0 and ǫ ≥ 0.

Denote

t(∆, ℓ) = θ∆−1,∆(ℓ, ρ∆−1(λ), ζ∆(λ), λ, λ) − θ∆,∆+1(ℓ, ζ∆(λ), ρ∆+1(Λ), λ, Λ) .

We will prove that t(∆0, ℓ0) ≥ 0. However, we will not assume that ∆ and ℓ
are such that 1 ≤ ∆ ≤ ℓ. More so, we will let ∆ and ℓ range over the reals.
Note that this is OK, since all relevant equations ((2.2), (2.3), (2.17), (2.18),
(2.19)) are defined for this general case.

54

Let

c1 =

{

24(3 + 2e)(3 + e + ǫ)(1 + ℓ) if λ0 = q/2
12(3 + 2e)(7 + 2e + 2ǫ)(1 + ℓ) otherwise

,

c2 = λ4
0 , c3 = (1 + ǫ)(5 + 2e + ǫ)2 .

Note that c1, c2, and c3 are positive. Denote

t′(∆, ℓ) = t(∆, ℓ) · c1 .

The mapping ∆ 7→ t′(∆, ℓ0) is a quadratic polynomial. Since the coeffi-
cient of ∆2 in t′(∆, ℓ0) is negative-term, we conclude that it is a ∩-concave
quadratic polynomial. From Lemma A.4 we conclude that

ℓ0 − (λ2 − 1)

λ2
≤ ∆0 =

⌊

ℓ0

λ2

⌋

≤
ℓ0

λ2
.

Thus, it suffices to show that

t1(ℓ) = t′(
ℓ − (λ2 − 1)

λ2
, ℓ) · c2 and t2(ℓ) = t′(

ℓ

λ2
, ℓ) · c2

are both nonnegative for ℓ = ℓ0.
The mapping ℓ 7→ t1(ℓ) is yet another quadratic polynomial. The coeffi-

cient of ℓ2 is negative-term. The same goes for ℓ 7→ t2(ℓ).
By Lemma A.7 we have

0 < ℓ0 <
1

1
(Λ+1)2

− 1
λ2

.

Thus, if suffices to prove that

t1(0), t1(
1

1
(Λ+1)2

− 1
λ2

) · c3, t2(0), t2(
1

1
(Λ+1)2

− 1
λ2

) · c3,

are all nonnegative. This is so because they are all positive-term.

B.1 ‘Mathematica’ input for the λ 6= q/2 case

We have not stated the actual expressions referred to in the proof of Lemma
A.8, since they are quite long. However, if the reader would like to validate

55

the proof, he/she may find it useful to run the following on the ‘Mathematica’
software. The input is the series of calculations referred to in the proof of
Lemma A.8, and should be self-explanatory. The output should validate the
proof. The following is the input for the λ 6= q/2 case.

lambdaDelta = 1+e+2+epsilon

lambdaDeltaPlusOne = 1+e

ROdd = 1 / Binomial[l+1,2] ((l+1)(r-theta delta)

- Binomial[r+1,2](2lambda+1)

+ Binomial[lambda+1,2]

delta(1+2r-(2lambda+1)/3 delta))

rhoOdd = (l + delta(lambda^2+lambda) + 1/2 - lambda)

/ (2lambda+1)

zetaOdd = (l + delta(lambda^2+lambda) + 1) / (2lambda+1)

ROddRho = (ROdd /. r->rhoOdd)

ROddZeta = (ROdd /. r->zetaOdd)

RDeltaMinusOne = (ROddRho /. {delta->delta-1,

lambda->lambdaDelta})

RDelta = (ROddZeta /. lambda->lambdaDelta)

RDeltaPlusOne = (ROddRho /. {delta->delta+1,

lambda->lambdaDeltaPlusOne})

Simplify[Solve[RDeltaMinusOne == RDelta, theta]]

thetaDeltaMinusOneDelta = %[[1]][[1]][[2]]

Simplify[Solve[RDeltaPlusOne == RDelta, theta]]

thetaDeltaDeltaPlusOne = %[[1]][[1]][[2]]

thetaDeltaMinusOneDelta - thetaDeltaDeltaPlusOne

t = Simplify[% * (12 (3 + 2 e)

(7 + 2 e + 2 epsilon) (1 + l))]

Limit[%/delta^2, delta -> Infinity]

Expand[%]

t1 = Simplify[Expand[(t /. delta->l/lambdaDelta^2)

* lambdaDelta^4]]

Limit[t1/l^2, l->Infinity]

Expand[%]

t1 /. l->0

Expand[%]

Simplify[(t1 /. l->1/(1/(1+lambdaDeltaPlusOne)^2

- 1/lambdaDelta^2))

* ((1+epsilon)(5+2e + epsilon)^2)]

56

Expand[%]

t2 = Simplify[Expand[(t /. delta->(l - lambdaDelta^2 +1)

/ lambdaDelta^2)*lambdaDelta^4]]

Limit[t2/l^2, l->Infinity]

Expand[%]

t2 /. l->0

Expand[%]

Simplify[(t2 /. l->1/(1/(1+lambdaDeltaPlusOne)^2

- 1/lambdaDelta^2))

* ((1+epsilon)(5+2e + epsilon)^2)]

Expand[%]

B.2 ‘Mathematica’ input for the λ = q/2 case

The following is the input for the λ = q/2 case.
lambdaDelta = 1+e+2+epsilon

lambdaDeltaPlusOne = 1+e

ROdd = 1 / Binomial[l+1,2] ((l+1)(r-theta delta)

- Binomial[r+1,2](2lambda+1)

+ Binomial[lambda+1,2]

delta(1+2r-(2lambda+1)/3 delta))

REven = 1 / Binomial[l+1,2] ((l+1)(r-theta delta)

- Binomial[r+1,2](2lambda+1)

+ Binomial[lambda+1,2]

delta(1+2r-(2lambda+1)/3 delta)

+ Binomial[r - lambda delta + 1, 2])

rhoEven = (l + delta lambda^2 + 1 - lambda)/(2 lambda)

zetaEven = (l + delta lambda^2 + 1)/(2 lambda)

rhoOdd = (l + delta(lambda^2+lambda)

+ 1/2 - lambda) / (2lambda+1)

REvenRho = (REven /. r->rhoEven)

REvenZeta = (REven /. r->zetaEven)

ROddRho = (ROdd /. r->rhoOdd)

RDeltaMinusOne = (REvenRho /. {delta->delta-1,

lambda->lambdaDelta})

RDelta = (REvenZeta /. lambda->lambdaDelta)

RDeltaPlusOne = (ROddRho /. {delta->delta+1,

57

lambda->lambdaDeltaPlusOne})

Simplify[Solve[RDeltaMinusOne == RDelta, theta]]

thetaDeltaMinusOneDelta = %[[1]][[1]][[2]]

Simplify[Solve[RDeltaPlusOne == RDelta, theta]]

thetaDeltaDeltaPlusOne = %[[1]][[1]][[2]]

thetaDeltaMinusOneDelta - thetaDeltaDeltaPlusOne

t = Simplify[Expand[% * 24(3 + 2e)

(3 + e + epsilon)(1 + l)]]

Limit[%/delta^2, delta -> Infinity]

Expand[%]

t1 = Simplify[Expand[(t /. delta->l/lambdaDelta^2)

* lambdaDelta^4]]

Limit[t1/l^2, l->Infinity]

Expand[%]

t1 /. l->0

Expand[%]

Simplify[(t1 /. l->1/(1/(1+lambdaDeltaPlusOne)^2

- 1/lambdaDelta^2))

((1+epsilon)(5+2e + epsilon)^2)]

Expand[%]

t2 = Simplify[Expand[(t /. delta->

(l - lambdaDelta^2 +1)/lambdaDelta^2)

lambdaDelta^4]]

Limit[t2/l^2, l->Infinity]

Expand[%]

t2 /. l->0

Expand[%]

Simplify[(t2 /. l->1/(1/(1+lambdaDeltaPlusOne)^2

- 1/lambdaDelta^2))

((1+epsilon)(5+2e + epsilon)^2)]

Expand[%]

58

Bibliography

[1] D. Augot and L. Pecquet. A Hensel lifting to replace factorization
in list-decoding of algebraic-geometric and Reed-Solomon codes.
IEEE Trans. Inform. Theory, 46:2605–2614, 2000.

[2] E.R. Berlekamp. Algebraic Coding Theory. Aegean Park Press,
Laguna Hills, California, revised edition, 1984.

[3] E.R. Berlekamp. Bounded distance +1 soft-decision Reed-Solomon
decoding. IEEE Trans. Inform. Theory, 42:704–719, 1996.

[4] S.R. Blackburn. Fast rational interpoloation, Reed-Solomon de-
coding, and the linear complexity profile of sequences. IEEE
Trans. Inform. Theory, 43:537–548, 1997.

[5] R.E. Blahut. Theory and Practice of Error-Control Codes.
Addison-Wesley, Reading, Massachusetts, 1983.

[6] D. Dabiri and I.F. Blake. Fast parallel algorithms for decod-
ing Reed-Solomon codes based on remainder polynomials. IEEE
Trans. Inform. Theory, 41:873–885, 1995.

[7] P. Elias. Error-correcting codes for list decoding. IEEE Trans.
Inform. Theory, 37:5–12, 1991.

[8] R.G. Gallager. Information Theory and Reliable Communications.
John Wiley, New York, 1968.

[9] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Math-
ematics. Addison-Wesley Publishing Company, second edition,
1994.

59

[10] V. Guruswami and M. Sudan. Improved decoding of Reed-
Solomon and algebraic-geometric codes. IEEE Trans. Inform.
Theory, 45:1757–1767, 1999.

[11] S.M. Johnson. A new upper bound for error-correcting codes.
IEEE Trans. Inform. Theory, 8:203–207, 1962.

[12] R. Koetter and A. Vardy. Algebraic soft-decision decoding of Reed-
Solomon codes. preprint, May 2000.

[13] R. Koetter and A. Vardy. Decoding of Reed-Solomon codes for
additive cost functions. In Proc. IEEE Int’l Symp. Inform. Theory
(ISIT’2002), page 313, Lausanne, Switzerland, July 2002.

[14] C.Y. Lee. Some properties of nonbinary error-correcting codes.
IRE Trans. Inform. Theory, 4:77–82, 1958.

[15] X. Ma and X.-M. Wang. On the minimal interpolation problem
and decoding RS codes. IEEE Trans. Inform. Theory, 46:1573–
1580, 2000.

[16] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-
Correcting Codes. North-Holland, Amsterdam, 1977.

[17] J.L. Massey. Shift-register synthesis and BCH decoding. IEEE
Trans. Inform. Theory, 15:122–127, 1969.

[18] L.E. Mazur. Codes correcting errors of large weight in Lee metric.
Problems. Inform. Transm., 9:277–281, 1973.

[19] R.R. Nielsen and T. Høholdt. Decoding Reed-Solomon codes be-
yond half the minimum distance. In J. Buchmann, T. Høholdt,
H. Stichtenoth, and H. Tapia-Recillas, editors, Coding Theory,
Cryptography and Related Areas, pages 221–236. Springer, Berlin,
2000.

[20] H. O’Keeffe and P. Fitzpatrick. Gröbner basis solution of con-
strained interpolation problems. Lin. Alg. Appls., pages 533–551,
2002.

60

[21] V. Olshevsky and M.A. Shokrollahi. A displacement structure
approach to efficient decoding of algebraic geometric codes. In
Proc. 31st ACM Symp. Theory of Computing (STOC’99), pages
235–244, Atlanta, Georgia, USA, 1999. ACM, New York, 1999.

[22] R.M. Roth. Lecture Notes in Coding Theory.

[23] R.M. Roth and G. Ruckenstein. Efficient decoding of Reed-
Solomon codes beyond half the minimum distance. IEEE Trans.
Inform. Theory, 46:246–257, 2000.

[24] R.M. Roth and P.H. Siegel. Lee-metric BCH codes and their appli-
cation to constrained and partial-response channels. IEEE Trans.
Inform. Theory, 40:1083–1096, 1994.

[25] S. Sakata, Y. Numakami, and M. Fujisawa. A fast interpolation
method for list decoding of RS and algebraic-geometric codes. In
Proc. IEEE Int’l Symp. Inform. Theory (ISIT’2000), page 479,
Sorrento, Italy, 2000.

[26] M. Sudan. Decoding of Reed-Solomon codes beyond the error-
correction bound. J. Compl., 13:180–193, 1997.

[27] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa. A
method for solving key equation for decoding Goppa codes. In-
form. Control, 27:87–99, 1975.

[28] L.R. Welch and E.R. Berlekamp. Error correction of algebraic
block codes. US Patenet 4,633,470, 1986.

61

62

Lee zwixhn i
ew xear dniyx-geprt

lh e
r

Lee zwixhn i
ew xear dniyx-geprt
xwgn lr xeaig

x`ez zlawl zeyix
d ly iwlg ielin mylaygnd ir
na mir
nl xhqibn
lh e
r

l`xyil ibelepkh oekn – oeipkhd hpql ybed
2003 ilei dtig b"qyz'd fenz

.aygnd ir
nl dhlewta hex ipex 'text ziigpda dyrp xwgnd

zpiiprn dira ixear `vny jk lr hex ipex 'textl al axwn ze
edl ipevxaiz
nly dn lk lr ,xwgnd ze`vez zbyda ax xfrl eidy mipei
d lr ,xewgl.jx
d jxe`l ely zeinihte`de ezeplaq lr – ezeaiyga `l j` oexg`e ,epnn

.d
e
ire dzad` lr x
nq izy`l z
gein d
ez

.izenlzyda dai
pd zitqkd dkinzd lr oeipkhl d
en ip`

mipiipr okez
1 xivwz2 milnqe mixeviw zniyx3 `ean 14 . ℓ-dniyx gprtn 1.16 Lee zwixhne Hamming zwixhn 1.27 . alternant i
ewe GRS i
ew 1.37 mipzyn ipy ilra minepilet zxfra dniyx-geprt 1.410 . Johnson beqn mqg 1.511 Lee zwixhn xear Johnson beqn mqg 1.5.112 . d
eard dpan 1.613 Lee zwixhn xear dniyx gprtn 213 . `ean 2.116 . ∆∗ -e r∗ zniqg 2.218 oezp ∆ xear R ly divfiniqwn 2.319 . r∆ -l dtiwr dgqep 2.3.121 . λ∆ z`ivn 2.3.222 . reaw ∆ iabl dpwqn 2.3.322 R(θ, ℓ) ly miix`pild mirhwnd z`ivn 2.424 . m
w zex
bde zeprh 2.4.127 . minqgd ly sqep we
id 2.528 . miwe
d mpi`y minqg 2.5.128 . we
d mqg 2.5.232 dwihehtniq` 333 . w∗ -l dtiwr dgqep 3.1`

35 . Λ(w∗) z`ivn 3.235 ihehtniq`d dxwnd iabl dpwqn 3.338 score -d zxigal dw
vd 445 zexrd 545 . r"ggd dn`zdde
ewd zxiga 5.146 . mitqep migprtn 5.249 2.16 dprh zgked A49 . λ∆ = λ∆+1 ea dxwnd A.150 . λ∆ = λ∆+1 + 1 ea dxwnd A.251 . λ∆ = λ∆+1 + 2 ea dxwnd A.354 A.8 dnl zgked B55 λ 6= q/2 ea dxwnd xear ‘Mathematica’ hlw B.157 λ = q/2 ea dxwnd xear ‘Mathematica’ hlw B.2d zixara xivwz

a

mixei` zniyx9 .mipzyn ipya mepilet zxfra C
ew xear ixpb geprt mzixebl` 1.123∆ = 1, 2, 3, 4, 5 -e ,q = 9 ,ℓ = 5 xear θ 7→ R∆(θ, ℓ) dnewrd 2.125r ly mipey mikxr xear R(θ, ℓ, r, ∆, λ) 2.226 .2.20 dnl ly zitxb dgked 2.327 .2.21 dnl ly zitxb dgked 2.429ℓ = 7, 8 -e q = 9 xear θ 7→ R(θ, ℓ) dnewrd 2.530x 7→ r′ − x∆′ -l d`eeyda x 7→ r − x∆ 2.637 . . .ℓ = 7,∞ -e q = 5 xear Johnson mqge θ 7→ R(θ, ℓ) dnewrd 3.143 .4.5 dnla µ′ znerl µ ly sxb 4.144 .4.7 dnla µ′ znerl µ ly sxb 4.247GRS i
ew xear geprt iqei
x z`eeyd 5.148alternant i
ew xear geprt iqei
x z`eeyd 5.2

b

xivwz
c ∈ C
ew zlin .
ew z`xwpd ,F n ly dveaw-zz C idze ,iteq d
y F idi,y z` milawn ep` .e d`iby xehwe i"r zyaeyne ,yrex uexr jx
 zx
eyn.c idn zelbl mivexe ,(y = c + e) zyaeynd dlind `idydpezp dwixhnl qgia τ geprt qei
x lra ℓ-dniyx gprtn D : F n → 2C idizhlwp dlin ozpda ;iq`lw geprt ly dllkd `ed df gprtn .d : F n ×F n → Rzelin ℓ ly dniyx `ed D(y) hltd .ℓ-dniyxd gprtn ly hltd D(y) idi ,yqei
x lra xe
ka
ewd zelin lk z` lelkz ef dniyxy ghaene ,xzeid lkl
ewgxkda zkiiy c ,ze`iby τ xzeid lkl y -a eltpy dgpdd zgz .y efkxny τdlin xegal epilr ,D(y) dniyxd ozpda .geprta dglvd aygiiy dn ,D(y) -ldaexwd dlind zeidl dleki ef dxiga .
ewd zlinl eply yegipk dkezn znieqnzebltzd lr ztqep divnxetpi` epl dre
i m` ,oiteligl .zhlwpd dlinl xzeia.ef dlin zxiga zra da aygzdl mileki ep` ,
ewd zelin.PSK oept` enk mineyiia dritend ,Lee zwixhnl
e
iwa weqrp ef d
earaz` Zq -a onqp ,q l
eba F d
y ozpda .{1, 2, . . . , n} dveawd z` [n]-a onqp
Lee lwyn ,if` .Zq -a ziltkd d
igid z` 1 -a onqpe ,q ele
en minlyd beg-y jk s xzeia ohwd ilily-i`d mlyk x
ben ,|a| oneqnd ,a ∈ Zq xai` ly
Lee wgxn z` xi
bp 〈·〉 : F → Zq dpezp r"gg divwpet xear .s · 1 ∈ {a,−a}

d

-k F -a x, y mixai` ipy oia dL

dL(x, y) , |〈x〉 − 〈y〉| .-k x
ben (F lrn) y = (yi)i∈[n] -e x = (xi)i∈[n] milin izy oia Lee wgxn
dL(x,y) ,

n
∑

i=1

dL(xi, yi) .

,alternant i
ew xear gzepne bven Lee zwixhna inepilet onfa dniyx gprtn-xd d
y Φ idi .Reed-Solomon i
ew ly d
y-zzl mikiiyd ,mi
ew-zz mdy
ew .k -n dphw dlrnn Φ lrn minepiletd lk zveaw Φk[x] idze F ly dag
α1, α2, . . . , αn ∈ Φ ze
enr ipiivn zervn`a x
ben k
nine n jxe` lra GRS.qt`n mipey v1, v2, . . . , vn ∈ Φ ze
enr ilteke mipey

CGRS = {c = (v1u(α1) v2u(α2) . . . vnu(αn)) : u(x) ∈ Φk[x]} .epiid
 ,F d
yd mr GRS -d
ew ly jezigk x
ben Calt alternant -d
ew
. Calt = CGRS ∩ F n

.τ geprtd qei
xl dgqep mi`xn ep` ,ℓ dniyx jxe`e C alternant
ew ozpdami`znd GRS -d
ew ixhnxt ly ,ℓ dniyxd jxe` ly divwpet `id ef dgqepi"r mirawp el` mixhnxt .∆ -e r epneqiy mitqep mixhnxt ipy lye ,C
ewlz` xgap ep` ,geprtd qei
x lr mirityn ∆ -e r mixhnxtdy oeeikn .opkznde

.mxear miilnihte`d mikxrdxear .∆ -e r ly miilnihte`d mikxrd gezipa wqer d
eardn xkip wlgxear ,sqepa .r ly ilnihte`d jxrd aeyigl dgqep mi`xn ep` ∆ ly reaw jxr,dyrnl .C
ewd xear ilnihte` `ed ∆ m` reawl mir
ei ep` ,mipezp ℓ -e ∆xy`k .ilnihte` `ed oezp ∆ mxear C ly mixhnxtd megz z` mir
ei ep`dgqep .∆ -e r ly miilnihte`d mikxrl dxebq dgqep mi`xn ep` ℓ → ∞`ld dxwnd xear mb ,oaenk ,dievx ∆ -e r ly miilnihte`d mikxrl dxebq.z`fk ep`vn `l j` ,ihehtniq`oke Koetter&Vardy ly zen
ew ze
ear lr qqazn eply dniyxd gprtnipzyn-e
 mepilet aeyig lr qqean gprtnd ,hxta .Guruswami&Sudan lymxear Φk[x] -a u(x) minepilet z`ivn xnelk ,ely z iyxey z`ivne Q(x, z)ietind .dniyxa
ewd zelin zveawl dtenn ef miyxey zveaw .Q(x, u(x)) = 0`ed c
ew zlinl u(x) mepilet ly
c = (v1u(α1) v2u(α2) . . . vnu(αn)) .

-lkd dnkqa .zeix`pil ze`eeyn zkxrn i"r rawp ipzyn-e
d mepiletd,(idylk dwixhnl zlaben dppi` ef dnkq) Koetter&Vardy i"r dbvedy zilirevia z` raew jkae ,zeix`pild ze`eeynd zkxrn z` raew gprtnd opkznxear zeix`pil ze`eeyn ly znieqn dgtyna
wnzdl epxga ep` .gprtndzeix`pil ze`eeyn zkxrn dni`zn ∆ -e r ly iweg jxr lkl .Lee zwixhnzkxrn z` dlikn ef dgtyn ,zenieqn zelwd zgz ik mi`xn ep` .ef dgtyna.ilnihte` `ed geprtd qei
x dxear ,zeix`pild ze`eeynd-nihte`d geprtd qei
x z` dhnln meqgl xyt`n Johnson beqn mqg-tnl laben eppi` mqgd .oezp dniyx jxe`e oezp
ew xear biydl ozipy ilf

zwixhna Koetter&Vardy i"r byedy geprtd qei
x .mieqn beqn dniyx igprdne
a `ly ,mle` .dfky mqgn ghaend geprtd qei
x mr
klzn Hamming`ed eply dniyxd gprtn ly geprtd qei
x ,Hamming zwixhna dliawnl.Johnson mqg ly Lee zwixhn zqxbn ghaeny dnn ynn le
b illk ote`adwlg .opkznd zeixg`a md 〈·〉 : F → Zq r"ggd dwzrdde
ewd zxigaoda zewzrde mi
ew mixkfen ,hxta .df `yepa oei
l y
wen d
eard ly oexg`dely ilnipind wgxndn xzei aeh `ed Lee zwixhna
ewd ly ilnipind wgxnd.Hamming zwixhna

g

