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The wiretap channel
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Wiretap channel essentials

® Reliability: lim Pr{ll # U} = 0
n—oo

@ Security: lim 1u;z)

n—co n
@ Random bits: In order to achieve the above, Alice sends and Bob
receives r random bits, r/n = I(Wgye).

=0




Semantic security

Information theoretic security, revisited
@ Assumption: input U is uniform.

e Assumption: figure of merit is mutual information, I(U; Z) /n.

Semantic security

We achieve ¢ bits of semantic security if:
@ For all distributions on the message set of Alice
@ For all functions f of the message
@ For all strategies Eve might employ

@ The probability of Eve guessing the value of f correctly increases
by no more than 277 between the case in which Eve does not have
access to the output of W and the case that she does.

@ That is, having access to W hardly helps Eve, for sufficiently large
0.




Notation

The channel model
@ Denote W = Wgye.
@ Let W: X — ) be a memoryless channel.
@ Finite input alphabet X’
@ Finite output alphabet )V
@ The channel W is symmetric:

e The output alphabet ) can be partitioned into V4,5, ..., Vr.

o Let Ay = W(y|x)|sex yey,
e Each row (column) of A; is a permutation of the first row (column).




The BT scheme
The function ¥

(W) L log, |+ Y W(y|0) log, W(y|0),
yeY
= log, |V| - H(Y|X) .

Theorem (The BT scheme)

Let W: X — Y be the SDMC from Alice to Eve. Then, the BT scheme
achieves at least o bits of semantic security with a codeword length of n and r
random bits, provided that

r=2(c+1)+vnlog,(|Y| +3)1/2(c +3) +n-F¥(W).

M. Bellar, S. Tessaro, Polynomial-Time, Semantically-Secure
Encryption Achieving the Secrecy Capacity, arXiv:1201.3160



The function ¥

Asymptotics
r=2(c+1)+vnlog,(|Y|+3)1/2(c +3) +n- ¥ (W) .
Thus, the asymptotic number of random bits we need to transmit is

lim r/n=Y(W) .

n—00

Y versus [

(W) Elog, |V| + Zy W(y|0) log, W(y[0) ,
ye
— log, |V| — H(Y|X) > H(Y) — H(Y|X) = (W)

How can we “make” ¥ (W) close to I(W)?




Equivalent channels

Degraded channel

ADMCW : X — Y is (stochastically) degraded with respect to a
DMC Q: X — Z,denoted W =< Q, if there exists an intermediate
channel P : Z — ) such that

W(ylx) = ) Q(zlx) - P(ylz) .

zEZ
original another
channel | » channel >
Q P

degraded channel W

Equivalent channel

IfW <Qand Q X W, then W and Q are equivalent, W = Q.




Letter Splitting

Splitting function
@ Letan SDMC W : X — Y be given.

@ Denote the corresponding partition as V1, s, ..., Vr.
@ A functions: Y — IN is an output letter split of W if

o s(y) =s(y)foralll1 <t < Tandally,y € V.
e By abuse of notation, define s(});).

Resulting channel

Applying sto W gives Q: X — Z
e Outputalphabet: Z = Uycy {y1,y2,---,¥s | s =s(y)}-
e Transition probabilities: Q(y;|x) = W(y|x)/s(y)

e Namely, each letter y is duplicated s(y) times. The conditional
probability of receiving each copy is simply 1/s(y) times the

original probability in W.




@ Since W is symmetric, so is Q.

e W=0Q.

For a positive integer M > 1, define

s(y) = [M-W(y)] , where W(y ZX ).

Let Q : X — Z be the resutling channel. Then,

¥(Q) —1(W) = ¥(Q) - 1(Q) < log, (1+ 2,

and |Z| < M+ |Y).




The number of random bits needed to achieve semantic security is at most

r=2(c+1)+vnlog,(M+|Y| +3)1/2(c +3)+
n- (I(W)-l—log2 <1+|Ml|>) .

@ Setting, say, M = n and taking n — oo gives us

lim ~ = I(W).

n—oo 11

@ What about the finite M and n case?




Greedy algorithm

Algorithm A: Greedy algorithm to find optimal splitting function

input :Channel W: X — ), a partition ), )%, ..., Yr where each
subset is of size y, a positive integer M which is a multiple of u
output: A letter-splitting function s such that ), <y s(y) = M and ¥(Q)

is minimal
// Initialization
s(V)=s5Qr)=---=5r)=1;

// Main loop

forizl,Z,...,%—Tdo

L = argmaxi<i<t Lyey, W(y) log, (“95+) ;
s(W) =s(V) +1;

return s;




Greedy algorithm

Theorem

Given a valid input to Algorithm A, the output is a valid letter-splitting

function s, such that }-,cy s(y) = M and the resulting channel Q is such
that ¥ (Q) is minimized.

Proof

@ Prooving ) cys(y) = M:
o After the initialization step, Y, cys(y) = pu - T
e Each iteration increments the sum by u
e So,intheend, Y cys(y) = M.
@ Prooving optimality:
e Since Q = W, we have I(Q) = I(W).
e Minimizing ¥ (Q) is equivalent to maximizing

_ vy WY _
1-¥@- T Wiw)log, (5 ) ~log, M.



Greedy algorithm

Proof, continued

@ Clearing away constant terms, maximize

EW ) log, s(y) -
yeY

@ We now recast the optimization problem. Define the set

A= M/LVJ_T{é(y,i) = W(y) log, <Zf1>} :

yey i=1

e Finding the optimal s(y) is equivalent to choosing M/yu — T
numbers from the set A such that
e Their sum is maximal, and
e if 5(y, 1) was picked and i > 1, then 6(y,i — 1) must be picked as
well.

@ The last constraint is redundant. The proof follows.




Infinite output alphabet

e What would we do if the output alphabet of W is infinite?
@ To begin with, in this case, ¥ is not even defined.

@ Solution: Repalce W by a channel Q which is upgraded and has a
finite output alphabet.

@ A channel Q is upgraded with respect to Wif W < Q.

upgraded another
channel [ channel -
Q P

original channel W
e A method to upgrade W to Q was previously presented by the
authors in “How to Construct Polar Codes”.

@ The method we now show is better, with respect to Y.




Notation

Assumptions

@ Assume the input alphabet is binary, and denote X = {1, —1}.
@ Let the output alphabet be the reals, ) = RR.

e Symmetry: f(y|1) = f(—y[ —1).

@ Positive value more likely when x = 1
fyl) 2fyl-1), y=0.
e Liklihood increasing in y:

fonlD) . FGll)
Fol =1 = Flyl - 1)’

—00 <Y <Yy <00,




The channel Q

Paritioning R
@ Let the channel W and a positive integer M be given.
@ Initialization: Define yy = 0.

@ Recursively define, for 1 < i < M the number y; as such that

—Yi-1 Yi 1
[ ey + [ pwindy = o
—Yi Yi-1

e Lastly, “define” yp; = oo.

e For 1 <i < M, the regions

Ai={y : =i <y < —vyia1}U{y : yi1 <y <y}
form a partition of IR, which is equiprobable with respect to f(-|1)
and f(-| —1)
f(Al) =f(A] —1)=1/M.




The channel Q

The likelihood ratios A;
@ Recall the partition

Ai={y : —¥i<y<—vyi1}U{y 1 yia <y <uy},
which is equiprobable
fAiL) = f(Ai] —1) =1/M.
@ Define the likelihood ratios

flyil =1)°

@ By our previous assumptions,

N {7 R L N
Pt =i -1 =P Fe - =M




The channel Q

@ The channel Q : X — Z is defined as follows.

@ Input alphabet: X = {—1,1}.

@ Output alphabet: Z = {z1,21,22,22,...,2M,ZM}-
e Conditional probability:

Mo fz=zand A; # oo,
Q1) = ﬁ ifz=2zand A; # oo,

ifz=z;and A; = o0,

SRR

ifz=2Zz;and A; = o0,

and
Q(zi| —1) =Q(z[1), Q& -1)=0Q(z1).
@ For1 <i < M, the liklihood ratio of z; is Q(z|1) /Q(z;| — 1) = A;.




Properties of Q
e Finite output alphabet: | Z| = 2M.
e Optimal ¥: ¥(Q) = I(Q), since Q(z;) = Q(Z) = 5.
@ Qis upgraded with respect to W, W < Q.
e Key question: What is I(Q) — I(W)?

The channel Q'
@ Define Q' : X — Z as a “shifted version” of Q.

Al

Q/(Z‘l) — {M()\i11+1)

M(Aj_1+1)

ifz=z,
ifz= Zi
and
Q@l-1)=0Q'@I), Q@E&l-1)=Q@l).
e Q' is degraded with respectto W, Q' < W.

@ To sum up,
Q=<W=Q.




Theorem

Let W : X — Y be a continuous channel as defined above. For a given
integer M, let Q : X — Z be the upgraded channel described previously.
Then, | Z| = 2M and

¥(Q) ~ I(W) < -
Proof.
We know that
Y(Q) =1(Q),
and that

1(Q) < I(W) < I(Q) .

Thus, it suffices to prove that

) 1
Q) -1(Q) < -

Because Q' is a “shifted version” of Q, the above difference telescopes
tol/M. []




	Introduction and motivation

