Constructing Polar Codes for Non-Binary Alphabets and MACs

Ido TalArtyom SharovAlexander VardyUCSDTechnionUCSD

MAC channels and their polarization

t-user MAC

Let $W: \mathcal{X}^t \to \mathcal{Y}$ be a *t*-user MAC

- Input alphabet $\mathcal{X} = \{0, 1, \dots, p-1\}$, where p prime.
- Output alphabet \mathcal{Y} , finite.

Arıkan "-" transform

W[−] channel

Define $W^-: \mathcal{X}^t \to \mathcal{Y}^2$ as follows:

$$W^{-}(y_0, y_1|\mathbf{u}_0) = \sum_{\mathbf{u}_1 \in \mathcal{X}^t} \frac{1}{p^t} W(y_0|\mathbf{u}_0 \oplus_p \mathbf{u}_1) \cdot W(y_1|\mathbf{u}_1) .$$

Arıkan "+" transform

W⁺ channel

Define $W^+: \mathcal{X}^t \to \mathcal{Y}^2 \times \mathcal{X}^t$ as follows:

$$W^+(y_0,y_1,\mathbf{u}_0|\mathbf{u}_1) = \frac{1}{v^t}W(y_0|\mathbf{u}_0 \oplus_p \mathbf{u}_1) \cdot W(y_1|\mathbf{u}_1).$$

Evolving MACs

Recursive definition

Let the underlying MAC be

$$\mathcal{W}_0^{(0)} = \mathbb{W}$$

For $n = 2^m$ and $0 \le i < n$, recursively define

$$\mathcal{W}_{2i}^{(m+1)} = \left(\mathcal{W}_i^{(m)}
ight)^-$$
 , $\mathcal{W}_{2i+1}^{(m+1)} = \left(\mathcal{W}_i^{(m)}
ight)^+$

Theorem [Şaşoğlu, Telatar, Yeh], [Abbe, Telatar]

As $m \to \infty$, almost all MACs

$$W_i^{(m)}$$
, $0 \le i < n = 2^m$

"polarize". Thus, a polar-coding scheme can be implemented*.

*See [Şaşoğlu,Telatar,Yeh: Appendix A] for a simpler implementation.

The problem

Output alphabet grows exponentially in n

Recall that if $W: \mathcal{X}^t \to \mathcal{Y}$, then

$$W^-: \mathcal{X}^t \to \mathcal{Y}^2$$
, $W^+: \mathcal{X}^t \to \mathcal{Y}^2 \times \mathcal{X}^t$.

Thus, the size of the output alphabet of $W_i^{(m)}$ is at least $|\mathcal{Y}|^{2^m} = |\mathcal{Y}|^n$.

Solution

- Instead of calculating $W_i^{(m)}$ exactly, calculate an approximation
- Approximate by a channel having a bounded output alphabet size
- Prove that the approximation is tight

Parameter	Previous	New
Input alphabet $\mathcal X$	{0,1}	$\overline{\{0,1,\ldots,p-1\}}$
Users	single user	t users
Running time, n	O(n)	O(n)
Running time, $q = p^t$	_	exponential in q
Need W symmetric?	yes	no
Main idea in pravious mathed		

Comparison to previous [Tal, Vardy] method

Main idea in previous method

- Find two "closest" output letters
- Merge these two letters into one
- Continue until alphabet is small enough

Main idea in new method

- Place output letters in "bins"
- Merge all letters in the same "bin"

Degradation

MAC degradation

 $Q: \mathcal{X}^t \to \mathcal{Y}'$ is degraded with respect to $W: \mathcal{X}^t \to \mathcal{Y}$ if there exists a single-user channel $P: \mathcal{Y} \to \mathcal{Y}'$ such that

$$Q(y'|\mathbf{u}) = \sum_{y \in \mathcal{Y}} W(y|\mathbf{u}) \cdot P(y'|y) .$$

We denote this as $Q \leq W$.

Lemma [Korada]: Arıkan transforms preserve degradation

Let $Q \leq W$. Then,

$$Q^- \leq W^-$$
 and $Q^+ \leq W^+$.

Sum-rate as figure of merit

Sum-rate definition

- Let $\mathbf{U} = (U^{(i)})_{i=1}^t$ be uniformly distributed over \mathcal{X}^t
- Let *Y* be the output of $W: \mathcal{X}^t \to \mathcal{Y}$ when the input is **U**.
- Define

$$R(W) = I(\mathbf{U}; Y)$$
.

Lemma

Let $Q \subseteq W$. Define Y' as the output of Q when the input is U. Let $A, B \subseteq \{1, 2, ..., t\}$, where $A \cap B = \emptyset$. Denote

$$\mathbf{U}_A = (U^{(i)})_{i \in A}$$
 and $\mathbf{U}_B = (U^{(i)})_{i \in B}$.

Then,

$$R(Q) \ge R(W) - \varepsilon \implies I(\mathbf{U}_A; \mathbf{U}_B, Y') \ge I(\mathbf{U}_A; \mathbf{U}_B, Y) - \varepsilon$$
.

A bit of notation

The channel

- ullet $W:\mathcal{X}^t o\mathcal{Y}$
 - $\mathbf{U} = (U^{(i)})_{i=1}^t$ uniform on \mathcal{X}^t , input to W

• Y output of W

- The function η

Probabilities

Let

 $\eta(x) = -x \cdot \log_2 x .$

Thus,

R(W) =
$$t \log_2 p - \sum_{y \in \mathcal{Y}} \varphi(y) \sum_{\mathbf{u} \in \mathcal{X}^t} \eta(\varphi(\mathbf{u}|y))$$
.

Quantizing η

Let μ be a fidelity criterion, and let $\widehat{\mu} = \lceil \beta \cdot \mu \rceil$. Define the function $b : [0,1] \to \{1,2,\ldots,2\widehat{\mu}\}$ as follows.

Quantizing η

Let μ be a fidelity criterion, and let $\widehat{\mu} = \lceil \beta \cdot \mu \rceil$. Define the function $b : [0,1] \to \{1,2,\ldots,2\widehat{\mu}\}$ as follows.

Lemma

Let $0 \le x \le 1$ and $0 \le x' \le 1$ be such that b(x) = b(x'). Then,

$$\left|\eta(x) - \eta(x')\right| \le \frac{1}{\mu}.$$

Constructing $Q \leq W$

Output letters in the same bin

We say that two output letters $y_1, y_2 \in \mathcal{Y}$ are in the same bin if for all $\mathbf{u} \in \mathcal{X}^t$ we have

$$b(\varphi(\mathbf{u}|y_1)) = b(\varphi(\mathbf{u}|y_2))$$
.

Constructing Q

• Degrade *W*: rename all the letters $y_1, y_2, ...$ in the same bin to y'.

Lemma

Let $y \in \mathcal{Y}$ be renamed to $y' \in \mathcal{Y}'$. Then, for all $\mathbf{u} \in \mathcal{X}^t$,

$$b(\varphi_W(\mathbf{u}|y)) = b(\varphi_Q(\mathbf{u}|y')) \;.$$

Degrading bound

Theorem

Let *W* be a *t*-user MAC with $\mathcal{X} = \{0, 1, ..., p-1\}$. Degrade *W* to *Q*, using fidelity criterion μ . Then,

$$R(Q) \ge R(W) - \frac{p^t}{u}$$
.

Proof

$$R(W) - R(Q) = \sum_{y' \in \mathcal{Y}'} \sum_{y \in \mathcal{B}(y')} \varphi(y) \sum_{\mathbf{u} \in \mathcal{X}^t} \left[\eta(\varphi_Q(\mathbf{u}|y')) - \eta(\varphi_W(\mathbf{u}|y)) \right]$$

$$< \sum_{y' \in \mathcal{Y}'} \sum_{y \in \mathcal{B}(y')} \varphi(y) \sum_{\mathbf{u} \in \mathcal{X}^t} \frac{1}{-}$$

$$\leq \sum_{y' \in \mathcal{Y}'} \sum_{y \in \mathcal{B}(y')} \varphi(y) \sum_{\mathbf{u} \in \mathcal{X}^t} \frac{1}{\mu}$$
$$= \sum_{y' \in \mathcal{Y}'} \sum_{y \in \mathcal{B}(y')} \varphi(y) \cdot \frac{p^t}{\mu} = \frac{p^t}{\mu} .$$

Bounding the output alphabet size

Lemma

Let W be a t-user MAC with $\mathcal{X} = \{0, 1, ..., p-1\}$. Degrade $W : \mathcal{X}^t \to \mathcal{Y}$ to $Q : \mathcal{X}^t \to \mathcal{Y}'$, using fidelity criterion μ . Denote $q = p^t$. Then,

$$|\mathcal{Y}'| \le (2\widehat{\mu})^q \le (2\mu)^q .$$

Proof

 $(2\hat{\mu})^q$ is an upper-bound on the number of non-empty bins.

Repeated application of our method

Algorithm A: A high level description of the degrading procedure

```
input : An underlying MAC W, a fidelity parameter \mu, an index i = \langle b_1, b_2, \dots, b_m \rangle_2.
```

output: A MAC that is degraded with respect to $W_i^{(m)}$.

```
\mathbf{Q} \leftarrow \mathtt{degrading\_merge}(\mathbf{W}, \mu);

\mathbf{for} j = 1, 2, \dots, m \ \mathbf{do}

\mid \mathbf{if} \ b_j = 0 \ \mathbf{then}

\mid \mathbf{W} \leftarrow (\mathbf{Q})^-

\mathbf{else}
```

 $| W \leftarrow (Q)^+$

 $\mathsf{Q} \leftarrow \mathsf{degrading_merge}(\mathsf{W}, \mu);$

return Q;

Average error

Theorem

Let an underlying t-user MAC $W: \mathcal{X}^t \to \mathcal{Y}$ be given, where $\mathcal{X} = \{0, 1, \dots, p-1\}$ and p is prime. Denote by $\mathcal{Q}_i^{(m)}$ the channel returned by running Algorithm A with parameters i and μ . Then,

$$\frac{1}{n} \sum_{0 \le i \le n} \left(R(\mathcal{W}_i^{(m)}) - R(\mathcal{Q}_i^{(m)}) \right) \le \frac{m \cdot p^t}{\mu} .$$

Proof sketch

Follows easily from the error bound for a single round, and from the fact that

$$2R(W) = R(W^{-}) + R(W^{+})$$
.

Can we do better?

Re-grouping R(W) - R(Q)

$$R(W) - R(Q) = \sum_{y' \in \mathcal{Y}'} \varphi_{Q}(y') \sum_{\mathbf{u} \in \mathcal{X}^{t}} \left(\eta \left[\sum_{y \in \mathcal{B}(y')} \frac{\varphi_{W}(y)}{\varphi_{Q}(y')} \cdot \varphi_{W}(\mathbf{u}|y) \right] - \left[\sum_{y \in \mathcal{B}(y')} \frac{\varphi_{W}(y)}{\varphi_{Q}(y')} \eta(\varphi_{W}(\mathbf{u}|y)) \right] \right).$$

For a given $y' \in \mathcal{Y}'$ and $\mathbf{u} \in \mathcal{X}^t$, the value of $b(\eta(\varphi_W(\mathbf{u}|y)))$ is the same for all $y \in \mathcal{B}(y')$. Denote the interval that gets mapped to this value as

$$I_{y'} = \{x : b(x) = b(\varphi_W(\mathbf{u}|y))\}$$
 , where $y \in \mathcal{B}(y')$.

Can we do better?

Lemma

Let $a = \inf I_{\nu'}$, $b = \sup I_{\nu'}$. Then,

$$\eta \left[\sum_{y \in \mathcal{B}(y')} \frac{\varphi_W(y)}{\varphi_Q(y')} \cdot \varphi_W(\mathbf{u}|y) \right] - \left[\sum_{y \in \mathcal{B}(y')} \frac{\varphi_W(y)}{\varphi_Q(y')} \eta(\varphi_W(\mathbf{u}|y)) \right]$$

is at most

$$\max_{0 \le \theta \le 1} \left\{ \eta \left[\theta \cdot a + (1 - \theta) \cdot b \right] - \left[\theta \cdot \eta(a) + (1 - \theta) \cdot \eta(b) \right] \right\},\,$$

where

$$\theta_{\max} = \frac{b - \frac{1}{e} \cdot 2^{\frac{-(\eta(b) - \eta(a))}{b - a}}}{b - a}.$$

Can we do better?

