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I Well known: polarization occurs for a memoryless process

I Our setting: a process with memory

I Mild assumption: (ψ-mixing, ψ0 <∞)

I New: both weak and fast polarization occur under mild
assumption

I New: example of a stationary periodic process that does not
polarize
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Process:

I (Xj ,Yj , Sj)
∞
j=−∞

I Polarization applied to Xj : UN
1 = XN

1 GN

I Yj channel output/side information

I Sj process state (usually hidden)

Entropy:

HX |Y = lim
N→∞

1

N
H(XN

1 |Y N
1 )
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Theorem (Weak polarization)

If process is ψ mixing with ψ0 <∞, then for all ε > 0

lim
N→∞

1

N

∣∣{i : H(Ui |U i−1
1 Y N

1 ) > 1− ε
}∣∣ = HX |Y ,

lim
N→∞

1

N

∣∣{i : H(Ui |U i−1
1 Y N

1 ) < ε
}∣∣ = 1−HX |Y .

Theorem (Fast polarization)

If process is ψ mixing with ψ0 <∞, then for all β < 1/2

lim
N→∞

1

N

∣∣{i : Z (Ui |U i−1
1 Y N

1 ) < 2−N
β}∣∣ = 1−HX |Y .
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Missing: Fast polarization to entropy 1. . .

Even so: Above theorems =⇒
I polar coding transmission scheme for the Gilbert-Elliot channel

BSC(pg) BSC(pb)

qb

qg

1−qb 1−qg

I polar coding lossless compression scheme for sources with
memory

Ber(pg) Ber(pb)

qb

qg

1−qb 1−qg

See also: R. Wang, J. Honda, H. Yamamoto, R. Liu, and Y. Hou,
“Construction of polar codes for channels with memory,” in Proc.
IEEE Inform. Theory Workshop (ITW’2015), Jeju Island, Korea,
2015, pp. 187–191.
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Theorem (Periodic processes may not polarize)

The stationary periodic Markov process

S = 0

X ∼ Ber(1/2)

S = 1

X ∼ Ber(1/2)

S = 2

X = 0

S = 3

X = 0

does not polarize. Indeed, for all 5N
8 < i ≤ 6N

8 ,∣∣∣∣H(Ui |U i−1
1 )− 1

2

∣∣∣∣ ≤ εN , lim
N→∞

εN = 0 .
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S = 0

X ∼ Ber(1/2)

S = 1

X ∼ Ber(1/2)

S = 2

X = 0

S = 3

X = 0

Lemma
Consider the stationary Markov process depicted in the figure.
Then, for N ≥ 8, the following holds.

For all
5N

8
< i ≤ 6N

8
we have that

H(Ui |U i−1
1 ,S1 = s1) =

{
0 if s1 ∈ {1, 3}
1 if s1 ∈ {0, 2}

=⇒ H(Ui |U i−1
1 , S1) =

1

2
.
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(U2,U4) (U1,U3,U5)

S1 = 0 U4 = 0
S1 = 1 i.i.d. U5 = U3

S1 = 2 U4 = U2

S1 = 3 i.i.d. U5 = U3 + U1

S = 0

X ∼ Ber(1/2)

S = 1

X ∼ Ber(1/2)

S = 2

X = 0

S = 3

X = 0

I Table: distribution of U5
1 for N = 8 and the four possible

initial states

I First column: differentiate between S1 = 0, S1 = 2,
S1 ∈ {1, 3}

I Second column: differentiate between S1 = 1 and S1 = 3
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S = 0

X ∼ Ber(1/2)

S = 1

X ∼ Ber(1/2)

S = 2

X = 0

S = 3

X = 0

I Counter-examples for other periods p?

I Specifically, is it important that p|2?
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A process Tj = (Xj ,Yj , Sj) is ψ-mixing if there is a sequence

ψ0, ψ1, . . . , limψk = 1 ,

such that
Pr(A ∩ B) ≤ ψk Pr(A) Pr(B)

for all A ∈ σ(T 0
−∞) and B ∈ σ(T∞k+1).

Graphically:

· · ·T−2T−1T0T1T2 · · ·Tk−1TkTk+1Tk+2Tk+3 · · ·

i.i.d./aperiodic Markov/aperiodic hidden Markov =⇒ ψ0 <∞.
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I Let N = 2n and 1 ≤ i ≤ N.

I Notation:

UN
1 = XN

1 GN

V N
1 = X 2N

N+1GN

Qi = Y N
1 U i−1

1

Ri = Y 2N
N+1V i−1

1

I Notation, for independent blocks:

I Let X̂ 2N
1 , Ŷ 2N

1 be distributed as PXN
1 Y N

1
· PX 2N

N+1Y
2N
N+1

I Define the corresponding variables Ûi , V̂i , Q̂i , R̂i as above

I Bhattacharyya: for U and Q, define

Z (U|Q) =
∑
q

√
PU,Q(0, q) · PU,Q(1, q) .
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Proof of fast polarization:

Z (Ui + Vi |Qi ,Ri )

=
∑
q,r

√
PUi+Vi ,Qi ,Ri

(0, q, r) · PUi+Vi ,Qi ,Ri
(1, q, r)

≤
∑
q,r

√
ψ0PÛi+V̂i ,Q̂i ,R̂i

(0, q, r) · ψ0PÛi+V̂i ,Q̂i ,R̂i
(1, q, r)

= ψ0 · Z (Ûi + V̂i |Q̂i , R̂i )

≤ ψ0 · 2Z (Ûi |Q̂i )

= ψ0 · 2Z (Ui |Qi )

In a similar manner, we show

Z (Vi |Ui + Vi ,Qi ,Ri ) ≤ ψ0 · Z (Ui |Qi )
2

Now, apply Arıkan and Telatar ISIT 2009, assuming weak
polarization
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Proof of weak polarization:
Recall our notation

UN
1 = XN

1 GN

V N
1 = X 2N

N+1GN

Qi = Y N
1 U i−1

1

Ri = Y 2N
N+1V i−1

1

Lemma: If ψ0 <∞, then for any ε > 0, the fraction of indices i for
which

I (Ui ; Ri |Qi ) < ε

I (Vi ; Qi |Ri ) < ε

I (Ui ; Vi |Qi ,Ri ) < ε

approaches 1 as N →∞.
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Proof:

log(ψ0) ≥ E

[
log

pX 2N
1 Y 2N

1

pXN
1 Y N

1
· pX 2N

N+1Y
2N
N+1

]
= I (XN

1 Y N
1 ; X 2N

N+1Y 2N
N+1)

= I (UN
1 Y N

1 ; V N
1 Y 2N

N+1)

≥ I (UN
1 ; V N

1 Y 2N
N+1|Y N

1 )

=
N∑
i=1

I (Ui ; V N
1 Y 2N

N+1|Y N
1 U i−1

1 )

=
N∑
i=1

I (Ui ; V N
i+1,Vi ,Ri |Qi )

I At most
√

log(ψ0)N terms inside the sum are at most√
log(ψ0)/N

I The ith term is greater than both I (Ui ; Ri |Qi ) and
(Ui ; Vi |Qi ,Ri )
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Lemma: Let (Xi ,Yi ) be stationary and ψ-mixing. For all ξ > 0,
there exists N0 and δ(ξ) > 0 such that for all N > N0 and all
{0, 1}-valued random variables A = f (XN

1 ,Y
N
1 ) and

B = f (X 2N
N+1,Y

2N
N+1)

pA(0) ∈ (ξ, 1− ξ) implies pAB(0, 1) > δ(ξ).
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Proof: Define the random variable C = f (X 3N
2N+1,Y

3N
2N+1). We have

2pAB(0, 1) = pAB(0, 1) + pBC (0, 1)

≥ pABC (0, 1, 1) + pABC (0, 0, 1)

= pAC (0, 1)

= pA(0)− pAC (0, 0)

≥ pA(0)(1− ψNpC (0))

= pA(0)(1− ψNpA(0))

I The first and last equalities are due to stationarity

I Since pA(0) ∈ (ξ, 1− ξ) and ψN → 1, there exists N0 such
that the last term is away from 0 for all N > N0.
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I The above two lemmas are the essence of the proof

I A proof for the case of finite memory was given in the Ph.D.
thesis of Şaşoğlu

I Current proof more general, and easier to follow (there are
similarities)
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