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Big picture first

A polar coding scheme for the deletion channel where the:

» Deletion channel has constant deletion probability §
» Fix a hidden-Markov input distribution?.

» Code rate converges to information rate
>

Error probability decays like 27", where v < % and A is the
codeword length

v

Decoding complexity is at most O(A!*+37)

» Achieves hidden-Markov capacity!

li.e., a function of an aperiodic, irreducible, finite-state Markov chain 1/21
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Big picture first

A polar coding scheme for the deletion channel where the:

>

>
>
>

v

Deletion channel has constant deletion probability §
Fix a hidden-Markov input distribution?.
Code rate converges to information rate

Error probability decays like 27", where v < % and A is the
codeword length

Decoding complexity is at most O(A!*+37)
Achieves hidden-Markov capacity! Equals true capacity?

Key ideas:

» Polarization operations defined for trellises
» Polar codes modified to have guard bands of ‘0" symbols

li.e., a function of an aperiodic, irreducible, finite-state Markov chain 1/21



A brief history of the binary deletion channel

v

Early Work: Levenshtein [Lev66] and Dobrushin [Dob67]

v

LDPC Codes + Turbo Equalization: Davey-MacKay [DMO1]

v

Coding and Capacity Bounds by Mitzenmacher [Mit09] and
many more: [FD10], [MTL12], [CK15], [RD15], [Chel9]

> Polar codes: [TTVM17], [TFVL17], [TFV18]

» Our Contributions:
» Proof of weak polarization for constant deletion rate
» Strong polarization for constant deletion rate with guard bands

» Our trellis perspective also establishes weak polarization for
channels with insertions, deletions, and substitutions
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Hidden-Markov input process

Example: (1,00) Run-Length Constraint

L0

0
» Input process is (X;), j € Z
» Marginalization of (S;, Xj), j € Z
» State (Sj), j € Z, is Markov, stationary, irreducible, aperiodic

» For all j, it holds that

Ps. x1si1 xit = Ps;x1s

[e')
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Code rate

The code rate of our scheme approaches

1 1
I(X; Y) = lim ~H(X)~ lim SHXY)

N—oo

» X =(Xi,...,Xn) is hidden-Markov input
» Y is the deletion channel output
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Theorem (Strong polarization)

Fix a regular hidden-Markov input process. For any fixed

v € (0,1/3), the rate of our coding scheme approaches the
mutual-information rate between the input process and the
deletion channel output. For large enough blocklength A\, the
probability of error is at most 2~ .
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Uniform input process

P It is known that a memoryless input distribution is suboptimal

» To keep this talk simple, we will however assume that the
input process is uniform, and thus memoryless

» That is, the X; are i.i.d. and Ber(1/2)
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The polar transform

> Let x = (x1,...,xn) € {0,1}N be a vector of length N = 2"

» Define
» minus transform: x[% £ (x1 @ x2, X3 D Xqy ..., XN—1 D XN)
» plus transform: x[ £ ( X, X4, .-, Xn)

» Both are vectors of length N /2

» Define x[P1:02::b] recursively:

7 — xlb1:b2,bx 1] 7 x[br:b2,-,bx] S [ba]

» The polar transform of x is u = (u1, ua, ..., uy), where for

n
i=1+) b2/
j=1

we have

U,' — X[b17b27~~~,bn]
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Polarization of trellises

» The decoder sees the received sequence y

> Ultimately, we want an efficient method of calculating
P(U; = ;U =071 Y =)

» Towards this end, let us first show an efficient method of
calculating the joint probability

P(X=x,Y =Yy)

» Generalizes the SC trellis decoder of Wang et. al. [WLH14],
and the polar decoder for deletions by Tian et. al. [TFVL17]
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Deletion channel trellis

Xj X X X X,
y;\ 1 2 3 _i
=
=0
N
y2=1
e
y3=1 A .

€I The e
> Example: N = 4 inputs with length-3 output 011

» Edge labels: blue x; =0 and red x; = 1

» Direction: diagonal = no deletion and horizontal = deletion
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Deletion channel trellis

> Example: N = 4 inputs with length-3 output 011
» Edge labels: blue x; =0 and red x; = 1

» Direction: diagonal = no deletion and horizontal = deletion
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Deletion channel trellis and the minus operation

X1 D X2 X3 D X4
® . .
° ° ®

» Half as many sections representing twice the channel uses
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Deletion channel trellis and the minus operation

X1 X X3 Xa X1 D Xo X3 D Xy

» Half as many sections representing twice the channel uses

» Edge weight is product of edge weights along length-2 paths
> Edge label (i.e., color) is the xor of labels along length-2 paths
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Weak polarization

Theorem
For any € > 0,

A}i&o% H, e [N]| H(U| Uit Y) € [e,1 — e]}‘ —0
The proof follows along similar lines as the seminal proof:

» Define a tree process

» Show that the process is a submartingale

» Show that the submartingale can only converge to 0 or 1
All the above follow easily, once we notice the following

> Let X ® X’ be two concatenated inputs to the channel

» Denote the corresponding output Y ® Y’

» Then,
H(AIB,Y ®Y') > H(A|B,Y,Y)
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Strong polarization

no=|vy-n] and n=[(1—-7)-n]
» Define

Ng = 2™ and Ny =2™m
Let Xy, X, ..., X, by i.i.d. blocks of length Np
Suppose the channel input is X1 ©@ Xo @ - -+ © Xp,
Decoder sees Y1 © Yo @ --- © Yy,

If only we had a genie to “punctuate” the output to
Y1,Y2,...,Yn,, proving strong polarization would be easy. ..

vvyyy
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A “good enough” genie

» We would like this:
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A “good enough” genie

» We would like this:

» We will settle for this:

» No head...
» No tail...
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A “good enough” genie

» Decoder sees
Y1O0Y20:--OYpy

» Decoder wants a genie to punctuate the above into

Y1,Y2,..., YN,

» Our “good enough” genie will give the decoder

* * *
1, 125---5 T\

where Y7 is Y;, with leading and trailing ‘0" symbols removed

> Asymptotically, we have sacrificed nothing because

Z(XY) =Z(X; YY)
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Building our genie

» Guard bands added at the encoder
» Denote x = x; ® xq1 € X", where X = {0,1} and
2n—1

2n—1 on
X y XII = Xpn-141 eX

x| = an_l
» That is, instead of transmitting x, we transmit, g(x), where
X if n < ng
A 0,
g(x) = . |
g(x1) ©00...00g(x1) if n> no,

0. 2 pl-9(n-1))

> cis a ‘small’ constant
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The genie in action

> Zis Y with leading and trailing ‘0’ symbols removed

>

>

X ) X1 STl )
G — G / /GA Gn
Y | Y1 | Ya Y1

z | Z; | ZA Zy

Guard band Za removed by splitting Z in half, and then
removing leading and trailing 0 symbols from each half

Genie successful if the middle of Z falls in the guard band
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Conclusions

» Strong polarization for the deletion channel with constant
deletion probability §

» Error rate 2=\" comes from balancing strong polarization and
guard-band failure

> If capacity of deletion channel achievable by hidden-Markov
inputs, then we can achieve capacity!

17 /21



References |

[Che19]

[CK15]

[DMO1]

[Dob67]

Mahdi Cheraghchi.
Capacity upper bounds for deletion-type channels.
Journal of the ACM (JACM), 66(2):9, 2019.

Jason Castiglione and Aleksandar Kavcic.

Trellis based lower bounds on capacities of channels with
synchronization errors.

In Information Theory Workshop, pages 24-28, Jeju, South Korea,
2015. IEEE.
Matthew C Davey and David JC MacKay.

Reliable communication over channels with insertions, deletions,
and substitutions.

IEEE Transactions on Information Theory, 47(2):687-698, 2001.

Roland L'vovich Dobrushin.
Shannon’s theorems for channels with synchronization errors.
Problemy Peredachi Informatsii, 3(4):18-36, 1967.

18 /21



References |l

[FD10] Dario Fertonani and Tolga M Duman.
Novel bounds on the capacity of the binary deletion channel.
IEEE Transactions on Information Theory, 56(6):2753-2765, 2010.

[Lev66] V. |. Levenshtein.

Binary codes capable of correcting deletions, insertions and
reversals.

Soviet Physics - Doklady, 10(8):707-710, February 1966.

[Mit09] Michael Mitzenmacher.

A survey of results for deletion channels and related
synchronization channels.

Probability Surveys, 6:1-33, 2009.

[MTL12]  Hugues Mercier, Vahid Tarokh, and Fabrice Labeau.

Bounds on the capacity of discrete memoryless channels corrupted
by synchronization and substitution errors.

IEEE Transactions on Information Theory, 58(7):4306—4330, 2012.

19/21



References Il|

[RD15]

[TFV18]

[TFVL17]

[TTVM17]

Mojtaba Rahmati and Tolga M Duman.

Upper bounds on the capacity of deletion channels using channel
fragmentation.

IEEE Transactions on Information Theory, 61(1):146-156, 2015.

Kuangda Tian, Arman Fazeli, and Alexander Vardy.
Polar coding for deletion channels: Theory and implementation.

In IEEE International Symposium on Information Theory, pages
1869-1873, 2018.

Kuangda Tian, Arman Fazeli, Alexander Vardy, and Rongke Liu.
Polar codes for channels with deletions.

In 55th Annual Allerton Conference on Communication, Control,
and Computing, pages 572-579, 2017.

E. K. Thomas, V. Y. F. Tan, A. Vardy, and M. Motani.

Polar coding for the binary erasure channel with deletions.
IEEE Communications Letters, 21(4):710-713, April 2017.

20 / 21



References IV

[WLH14]  Runxin Wang, Rongke Liu, and Yi Hou.

Joint successive cancellation decoding of polar codes over
intersymbol interference channels.

arXiv preprint arXiv:1404.3001, 2014.

21 /21



