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Big picture first

A polar coding scheme for the deletion channel where the:

I Deletion channel has constant deletion probability δ

I Fix a hidden-Markov input distribution1.

I Code rate converges to information rate

I Error probability decays like 2−Λγ
, where γ < 1

3 and Λ is the
codeword length

I Decoding complexity is at most O(Λ1+3γ)

I Achieves hidden-Markov capacity!

Equals true capacity?

I Key ideas:
I Polarization operations defined for trellises
I Polar codes modified to have guard bands of ‘0’ symbols

1i.e., a function of an aperiodic, irreducible, finite-state Markov chain
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A brief history of the binary deletion channel

I Early Work: Levenshtein [Lev66] and Dobrushin [Dob67]

I LDPC Codes + Turbo Equalization: Davey-MacKay [DM01]

I Coding and Capacity Bounds by Mitzenmacher [Mit09] and
many more: [FD10], [MTL12], [CK15], [RD15], [Che19]

I Polar codes: [TTVM17], [TFVL17], [TFV18]

I Our Contributions:
I Proof of weak polarization for constant deletion rate

I Strong polarization for constant deletion rate with guard bands

I Our trellis perspective also establishes weak polarization for
channels with insertions, deletions, and substitutions
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Hidden-Markov input process

Example: (1,∞) Run-Length Constraint

1

0

0 1−α
1

α

I Input process is (Xj), j ∈ Z
I Marginalization of (Sj ,Xj), j ∈ Z
I State (Sj), j ∈ Z, is Markov, stationary, irreducible, aperiodic

I For all j , it holds that

P
Sj ,Xj |S j−1

−∞,X
j−1
−∞

= PSj ,Xj |Sj−1
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Code rate

The code rate of our scheme approaches

I(X ;Y ) = lim
N→∞

1

N
H(X)− lim

N→∞

1

N
H(X|Y) ,

I X = (X1, . . . ,XN) is hidden-Markov input

I Y is the deletion channel output
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Theorem (Strong polarization)

Fix a regular hidden-Markov input process. For any fixed
γ ∈ (0, 1/3), the rate of our coding scheme approaches the
mutual-information rate between the input process and the
deletion channel output. For large enough blocklength Λ, the
probability of error is at most 2−Λγ

.
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Uniform input process

I It is known that a memoryless input distribution is suboptimal

I To keep this talk simple, we will however assume that the
input process is uniform, and thus memoryless

I That is, the Xi are i.i.d. and Ber(1/2)
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The polar transform

I Let x = (x1, . . . , xN) ∈ {0, 1}N be a vector of length N = 2n

I Define
I minus transform: x[0] , (x1 ⊕ x2, x3 ⊕ x4, . . . , xN−1 ⊕ xN)
I plus transform: x[1] , ( x2, x4, . . . , xN)
I Both are vectors of length N/2

I Define x[b1,b2,...,bλ] recursively:

z = x[b1,b2,...,bλ−1] , x[b1,b2,...,bλ] = z[bλ]

I The polar transform of x is u = (u1, u2, . . . , uN), where for

i = 1 +
n∑

j=1

bj2
n−j

we have
ui = x[b1,b2,...,bn]
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Polarization of trellises

I The decoder sees the received sequence y

I Ultimately, we want an efficient method of calculating

P(Ui = ûi |Ui−1 = ûi−1,Y = y)

I Towards this end, let us first show an efficient method of
calculating the joint probability

P(X = x,Y = y)

I Generalizes the SC trellis decoder of Wang et. al. [WLH14],
and the polar decoder for deletions by Tian et. al. [TFVL17]
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Deletion channel trellis

y1 =0

y2 =1

y3 =1

x1 x2 x3 x4
xj

yi

I Example: N = 4 inputs with length-3 output 011

I Edge labels: blue xj = 0 and red xj = 1

I Direction: diagonal = no deletion and horizontal = deletion
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Deletion channel trellis and the minus operation

x1 x2 x3 x4

δ/2

δ/2
δ/2

δ/2
δ/2

δ/2
δ/2

δ/2

δ/2

δ/2

δ/2

δ/2

δ/2

δ/2

x1 ⊕ x2 x3 ⊕ x4

I Half as many sections representing twice the channel uses

I Edge weight is product of edge weights along length-2 paths

I Edge label (i.e., color) is the xor of labels along length-2 paths
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Weak polarization

Theorem
For any ε > 0,

lim
N→∞

1

N

∣∣∣{i ∈ [N] |H(Ui |U i−1
1 ,Y) ∈ [ε, 1− ε]

}∣∣∣ = 0

The proof follows along similar lines as the seminal proof:

I Define a tree process

I Show that the process is a submartingale

I Show that the submartingale can only converge to 0 or 1

All the above follow easily, once we notice the following

I Let X� X′ be two concatenated inputs to the channel

I Denote the corresponding output Y � Y′

I Then,
H(A|B,Y � Y′) ≥ H(A|B,Y,Y′)
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Strong polarization

I Fix N = 2n,

n0 = bγ · nc and n1 = d(1− γ) · ne

I Define
N0 = 2n0 and N1 = 2n1

I Let X1,X2, . . . ,XN1 by i.i.d. blocks of length N0

I Suppose the channel input is X1 � X2 � · · · � XN1

I Decoder sees Y1 � Y2 � · · · � YN1

I If only we had a genie to “punctuate” the output to
Y1,Y2, . . . ,YN1 , proving strong polarization would be easy. . .
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A “good enough” genie

I We would like this:

I We will settle for this:

I No head. . .

I No tail. . .



13 / 21

A “good enough” genie

I We would like this:

I We will settle for this:

I No head. . .

I No tail. . .



13 / 21

A “good enough” genie

I We would like this:

I We will settle for this:

I No head. . .

I No tail. . .



13 / 21

A “good enough” genie

I We would like this:

I We will settle for this:

I No head. . .

I No tail. . .



14 / 21

A “good enough” genie

I Decoder sees
Y1 � Y2 � · · · � YN1

I Decoder wants a genie to punctuate the above into

Y1,Y2, . . . ,YN1

I Our “good enough” genie will give the decoder

Y?1,Y
?
2, . . . ,Y

?
N1

where Y?i is Yi , with leading and trailing ‘0’ symbols removed

I Asymptotically, we have sacrificed nothing because

I(X; Y) = I(X; Y?)
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Building our genie

I Guard bands added at the encoder

I Denote x = xI � xII ∈ X 2n , where X = {0, 1} and

xI = x2n−1

1 ∈ X 2n−1
, xII = x2n

2n−1+1 ∈ X
2n−1

I That is, instead of transmitting x, we transmit, g(x), where

g(x) ,


x if n ≤ n0

g(xI)�
`n︷ ︸︸ ︷

00 . . . 0�g(xII) if n > n0,

`n , 2b(1−ε)(n−1)c

I ε is a ‘small’ constant
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The genie in action

X XI XII

G GI G4 GII

Y YI Y4 YII

Z ZI Z4 ZII

I Z is Y with leading and trailing ‘0’ symbols removed

I Guard band Z4 removed by splitting Z in half, and then
removing leading and trailing 0 symbols from each half

I Genie successful if the middle of Z falls in the guard band
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Conclusions

I Strong polarization for the deletion channel with constant
deletion probability δ

I Error rate 2−Λγ
comes from balancing strong polarization and

guard-band failure

I If capacity of deletion channel achievable by hidden-Markov
inputs, then we can achieve capacity!
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