Problem: Construction of polar (LDPC) codes, for a channel with moderate input alphabet size q. Say, $q \geq 16$.

Punchline: Provably hard*†‡§.

*For a specific channel
\daggerunder a certain construction model
\ddaggerdeterministically
\Ssome more assumptions
Given:

- Underlying channel $\mathcal{W} : \mathcal{X} \rightarrow \mathcal{Y}_{\text{und}}$
 - $|\mathcal{X}| = q$
 - Uniform input distribution is capacity achieving
- Codeword length $n = 2^m$

Goal:

- Assuming uniform input, calculate misdecoding probability of synthesized channels
 $$\mathcal{W}_i^{(m)} : \mathcal{X} \rightarrow \mathcal{Y}_i , \quad 0 \leq i < n$$
- Unfreeze channels with very low probability of misdecoding
\[P_U(\mathcal{X}) \triangleq \text{uniform distribution on input alphabet } \mathcal{X} \]

Algorithm: Naive solution

input : Underlying channel \(\mathcal{W} \), index \(i = \langle b_1, b_2, \ldots, b_m \rangle_2 \)

output: \(P_e(\mathcal{W}_i^{(m)}, P_U(\mathcal{X})) \)

\[
\begin{align*}
W & \leftarrow \mathcal{W} \\
\text{for } j = 1, 2, \ldots, m \text{ do} \\
\quad \text{if } b_j = 0 \text{ then} \\
\qquad W & \leftarrow W^- \\
\quad \text{else} \\
\qquad W & \leftarrow W^+ \\
\text{return } P_e(W, P_U(\mathcal{X}))
\end{align*}
\]

Problem: \(\mathcal{Y}_i \) grows exponentially with \(n \).
$P_{U(\mathcal{X})} \triangleq$ uniform distribution on input alphabet \mathcal{X}

Algorithm: Degrading solution

input: Underlying channel \mathcal{W}, index $i = \langle b_1, b_2, \ldots, b_m \rangle_2$, bound on output alphabet size L

output: Upper bound on $P_e(\mathcal{W}_i^{(m)}, P_{U(\mathcal{X})})$

$$Q \leftarrow \text{degrading_merge}(\mathcal{W}, L, P_{U(\mathcal{X})})$$

for $j = 1, 2, \ldots, m$ do
 if $b_j = 0$ then
 $W \leftarrow Q^-$
 else
 $W \leftarrow Q^+$
 $Q \leftarrow \text{degrading_merge}(W, L, P_{U(\mathcal{X})})$

return $P_e(Q, P_{U(\mathcal{X})})$

Question: How good of an approximation to W is $\text{degrading_merge}(W, L, P_{U(\mathcal{X})})$?
Notation:

- $W : \mathcal{X} \rightarrow \mathcal{Y}$ — generic memoryless channel
- $q = |\mathcal{X}|$ — input alphabet size
- P_X — input distribution
- $Q : \mathcal{X} \rightarrow \mathcal{Y}'$ — degraded version of W
- L — bound on new output alphabet size, $|\mathcal{Y}'| \leq L$
- X — input to W or Q
- Y — output of W
- Y' — output of Q

Goal: $\text{degrading_merge}(W, L, P_X)$ must find $Q : \mathcal{X} \rightarrow \mathcal{Y}'$ such that

- Q degraded with respect to W
- $|\mathcal{Y}'| \leq L$
- $\Delta = I(X; Y) - I(X; Y')$ is “small”
An implementation of degrading_merge(W, L, P_X) exists [TalSharovVardy] for which
\[
\Delta = I(X; Y) - I(X; Y') \leq O \left(\left(\frac{1}{L} \right)^{1/q} \right)
\]
Apropos: similar behaviour in upgraded case [PeregTal]

Totally useless (at least in theory), for moderate q:
\[
q = 16, \quad \Delta \leq 0.01 \quad \Rightarrow \quad L \approx 10^{32}
\]
Good luck...
An inherent difficulty?

What can be said about

\[DC(q, L) \triangleq \sup_{W, P_X} \min_{Q : Q \preceq W, |\text{out}(Q)| \leq L} (I(W) - I(Q)) . \]

We already know that

\[DC(q, L) \leq O \left(\left(\frac{1}{L} \right)^{1/q} \right) \]

Need: a lower bound on \(DC(q, L) \)
Cut to the end

\[
\text{DC}(q, L) \triangleq \sup_{W, P_X} \min_{Q: Q \prec W, |\text{out}(Q)| \leq L} (I(W) - I(Q))
\]

We will shortly prove that

\[
\text{DC} \geq O \left(\left(\frac{1}{L} \right)^{\frac{2}{q-1}} \right)
\]

Above attained for

- Uniform input distribution \(P_X = P_{U(\mathcal{X})} \)
- Sequence \(\mathcal{W}_1, \mathcal{W}_2, \ldots \) of “progressively hard channels”
- The capacity achieving input distribution of each \(\mathcal{W}_M \) is the uniform distribution \(P_{U(\mathcal{X})} \)
Consequences: Try and build a polar code for \mathcal{W}_M.

Algorithm: Degrading solution

input: Underlying channel \mathcal{W}, index $i = \langle b_1, b_2, \ldots, b_m \rangle_2$, bound on output alphabet size L

output: Upper bound on $P_e(\mathcal{W}_i^{(m)}, P_{U(\mathcal{X})})$

\[
Q \leftarrow \text{degrading_merge}(\mathcal{W}, L, P_{U(\mathcal{X})})
\]

for $j = 1, 2, \ldots, m$ do

<table>
<thead>
<tr>
<th>if $b_j = 0$ then</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \leftarrow Q^-$</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>$W \leftarrow Q^+$</td>
</tr>
</tbody>
</table>

\[
Q \leftarrow \text{degrading_merge}(W, L, P_{U(\mathcal{X})})
\]

return $P_e(Q, P_{U(\mathcal{X})})$
Consequences: Try and build a polar code for \mathcal{W}_M...

- Would like number of good channels to be

\[\approx n \cdot I(\mathcal{W}_M) \]

- However, number of good channels is upper bounded by

\[
n \cdot I(\text{degrading_merge}(\mathcal{W}_M, L, P_{U(X)})) \\
\geq n \cdot \left(I(\mathcal{W}_M) - O \left(\left(\frac{1}{L} \right)^{\frac{2}{q-1}} \right) \right)
\]

For $q = 16$, in order to lose at most 0.01, need $L \approx 10^{15}$
LDPC:
Same problem when trying to design an LDPC code for \mathcal{W}_M

- Pick a code ensemble with rate close to $I(\mathcal{W}_M)$
- Use density evolution to assess code:
 1. Initialize
 - Assume all-zero codeword
 - Quantize output letters: letters with close posteriors are grouped together
 2. Main loop
 - Already **hopeless** at this point: main loop is with respect to quantized channel, which has mutual information below design rate
The channel \mathcal{W}_M:
For an integer $M \geq 1$, define $\mathcal{W}_M : \mathcal{X} \to \mathcal{Y}_M$ as follows:

- **Input alphabet** is $\mathcal{X} = \{1, 2, \ldots, q\}$
- **Output alphabet** is

$$\mathcal{Y}_M = \left\{ \langle j_1, j_2, \ldots, j_q \rangle : j_1, j_2, \ldots, j_q \geq 0, \quad \sum_{x=1}^{q} j_x = M \right\},$$

where j_x are non-negative integers summing to M

- **Channel transition probabilities**:

$$\mathcal{W}(\langle j_1, j_2, \ldots, j_q \rangle | x) = \frac{q \cdot j_x}{M^\left(M+q-1\right)}$$

- **Input distribution uniform \implies all output letters equally likely**
The channel \mathcal{W}_M:

- Posterior probabilities

\[P(X = x | Y = \langle j_1, j_2, \ldots, j_q \rangle) = \frac{j_x}{M} \]

- Shorthand: output letter is labelled by posterior probabilities vector

\[\langle j_1, j_2, \ldots, j_q \rangle \triangleq \left(\frac{j_1}{M}, \frac{j_2}{M}, \ldots, \frac{j_q}{M} \right) \]
Optimal degrading:

Claim [Kurkoski Yagi]:

Let $W : \mathcal{X} \to \mathcal{Y}$, P_X, and L be given.

Let $Q : \mathcal{X} \to \mathcal{Z}$ be an optimal degrading of W to a channel Q with $|\mathcal{Z}| \leq L$.

That is, $I(X, Y) - I(X, Y')$ is minimized.

Then, Q is gotten from W by defining a partition $(A_i)_{i=1}^L$ of \mathcal{Y} and mapping with probability 1 all symbols in A_i to a single symbol $z_i \in \mathcal{Z}$.

Let $(A_i)_{i=1}^L$ be such a partition with respect to \mathcal{W}_M.
Lemma: For \(A = A_i \) as above, let \(\Delta(A) \) be the drop in mutual information incurred by merging all the letters in \(A_i \) into a single letter. Then,

\[
\Delta(A) \geq \tilde{\Delta}(A),
\]

where

\[
\tilde{\Delta}(A) = \frac{1}{2(M+q-1)} \sum_{p \in A} \| p - \bar{p} \|_2^2,
\]

\[
\bar{p} = \sum_{p \in A} \frac{1}{|A|} p.
\]
Bounding in terms of $|A|$:

Lemma:

$$
\sum_{i=1}^{L} \Delta(A_i) \geq \sum_{i=1}^{L} \tilde{\Delta}(A_i) \geq \text{const}(q) \cdot \sum_{i=1}^{L} |A_i|^{\frac{q+1}{q-1}} + o(1),
$$

where the $o(1)$ is a function of M alone and goes to 0 as $M \to \infty$.

Observation: Up to the $o(1)$, expression is convex in $|A_i|$. Thus, sum is lower bounded by setting $|A_i| = |\mathcal{Y}_M|/L$.
Theorem:

\[\text{DC}(q, L) \geq \frac{q - 1}{2(q + 1)} \cdot \left(\frac{1}{\sigma_{q-1} \cdot (q - 1)!} \right)^{\frac{2}{q-1}} \cdot \left(\frac{1}{L} \right)^{\frac{2}{q-1}}, \]

where \(\sigma_{q-1} \) is the constant for which the volume of a sphere in \(\mathbb{R}^{q-1} \) of radius \(r \) is \(\sigma_{q-1} r^{q-1} \).
Backup

- Just how representative is W_M?
- What can be done?
- Channels W_M “converges” to
 - $W_\infty : \mathcal{X} \rightarrow \mathcal{X} \times [0, 1]^q$
 - Given an input x, the channel picks $\varphi_1, \varphi_2, \ldots, \varphi_q$, non-negative reals summing to 1. All possible choices are equally likely, Dirichlet(1,1,...,1)
 - Then, the input x is transformed into $x + i$ (with a modulo operation where appropriate) with probability φ_i
 - The transformed symbol along with the vector $(\varphi_1, \varphi_2, \ldots, \varphi_q)$ are the output of the channel