On the Construction of Polar Codes for Channels with Moderate Input Alphabet Sizes

Ido Tal

1/19

<u>Problem</u>: Construction of polar (LDPC) codes, for a channel with moderate input alphabet size q. Say, $q \ge 16$.

Punchline: Provably hard*^{†‡§}.

*For a specific channel

[†]under a certain construction model

[‡]deterministically

[§]some more assumptions

Given:

- Underlying channel $\mathcal{W}: \mathcal{X} \to \mathcal{Y}_{und}$
 - $\blacktriangleright |\mathcal{X}| = q$
 - Uniform input distribution is capacity achieving
- Codeword length $n = 2^m$

<u>Goal</u>:

 Assuming uniform input, calculate misdecoding probability of synthesized channels

$$\mathcal{W}_i^{(m)} : \mathcal{X} \to \mathcal{Y}_i , \quad 0 \le i < n$$

Unfreeze channels with very low probability of misdecoding

 $P_{\mathrm{U}(\mathcal{X})} \triangleq$ uniform distribution on input alphabet \mathcal{X}

Algorithm: Naive solution

input : Underlying channel \mathcal{W} , index $i = \langle b_1, b_2, \dots, b_m \rangle_2$ output: $P_e(\mathcal{W}_i^{(m)}, P_{\mathrm{U}(\mathcal{X})})$

$$\begin{split} & \mathsf{W} \leftarrow \mathcal{W} \\ & \text{for } j = 1, 2, \dots, m \text{ do} \\ & & \mathsf{if } b_j = 0 \text{ then} \\ & & \mathsf{I} \quad \mathsf{W} \leftarrow \mathsf{W}^- \\ & & \mathsf{else} \\ & & \mathsf{L} \quad \mathsf{W} \leftarrow \mathsf{W}^+ \\ & \text{return } P_e(\mathsf{W}, P_{\mathrm{U}(\mathcal{X})}) \end{split}$$

<u>Problem</u>: \mathcal{Y}_i grows exponentially with n.

 $P_{\mathrm{U}(\mathcal{X})} \triangleq$ uniform distribution on input alphabet \mathcal{X}

Algorithm: Degrading solution

input : Underlying channel $\mathcal W$, index $i=\langle b_1,b_2,\ldots,b_m\rangle_2$, bound on output alphabet size L

output: Upper bound on $P_e(\mathcal{W}_i^{(m)}, P_{\mathrm{U}(\mathcal{X})})$

```
\begin{array}{l} \mathsf{Q} \leftarrow \texttt{degrading\_merge}(\mathcal{W}, L, P_{\mathrm{U}(\mathcal{X})}) \\ \texttt{for } j = 1, 2, \ldots, m \texttt{ do} \\ & \texttt{if } b_j = 0 \texttt{ then} \\ & \mid \ensuremath{ W \leftarrow Q^-} \\ & \texttt{else} \\ & \ensuremath{ \bigcup \ensuremath{ W \leftarrow Q^+} } \\ & \ensuremath{ Q \leftarrow \texttt{degrading\_merge}(\mathbb{W}, L, P_{\mathrm{U}(\mathcal{X})}) \\ & \texttt{return } P_e(\mathbb{Q}, P_{\mathrm{U}(\mathcal{X})}) \end{array}
```

<u>Question</u>: How good of an approximation to W is degrading_merge(W, $L, P_{U(\mathcal{X})}$)?

Notation:

- $W: \mathcal{X} \to \mathcal{Y}$ generic memoryless channel
- $q = |\mathcal{X}|$ input alphabet size
- P_X input distribution
- $Q: \mathcal{X}
 ightarrow \mathcal{Y}'$ degraded version of W
- ▶ *L* bound on new output alphabet size, $|\mathcal{Y}'| \leq L$
- X input to W or Q
- Y output of W
- Y' output of Q

<u>Goal</u>: degrading_merge (W, L, P_X) must find $Q : \mathcal{X} \to \mathcal{Y}'$ such that

Q degraded with respect to W

$$\blacktriangleright |\mathcal{Y}'| \le L$$

• $\Delta = I(X; Y) - I(X; Y')$ is "small"

An implementation of degrading_merge(W, L, P_X) exists [TalSharovVardy] for which

$$\Delta = I(X;Y) - I(X;Y') \leq O\left(\left(rac{1}{L}
ight)^{1/q}
ight)$$

Apropos: similar behaviour in upgraded case [PeregTal]

Totally useless (at least in theory), for moderate q:

$$q = 16$$
, $\Delta \le 0.01 \implies L \approx 10^{32}$

7/19

Good luck...

An inherent difficulty?

What can be said about

$$DC(q,L) \triangleq \sup_{W,P_X} \quad \min_{\substack{Q:Q \prec W, \\ |out(Q)| \leq L}} (I(W) - I(Q)) .$$

We already know that

$$\mathrm{DC}(q,L) \leq O\left(\left(\frac{1}{L}\right)^{1/q}\right)$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > = Ξ

8/19

<u>Need</u>: a lower bound on DC(q, L)

Cut to the end

$$DC(q, L) \triangleq \sup_{\substack{W, P_X \\ |out(Q)| \leq L}} \min_{\substack{Q : Q \prec W, \\ |out(Q)| \leq L}} (I(W) - I(Q))$$

We will shortly prove that

$$\mathrm{DC} \ge O\left(\left(\frac{1}{L}\right)^{\frac{2}{q-1}}\right)$$

Above attained for

- Uniform input distribution $P_X = P_{U(X)}$
- ▶ Sequence $W_1, W_2, ...$ of "progressively hard channels"
- The capacity achieving input distribution of each W_M is the uniform distribution P_{U(X)}

Consequences: Try and build a polar code for \mathcal{W}_{M} ...

Algorithm: Degrading solution **input** : Underlying channel \mathcal{W} , index $i = \langle b_1, b_2, \dots, b_m \rangle_2$, bound on output alphabet size L **output**: Upper bound on $P_e(\mathcal{W}_i^{(m)}, P_{\mathrm{U}(\mathcal{X})})$ $Q \leftarrow \text{degrading_merge}(\mathcal{W}, L, P_{U(\mathcal{X})})$ for j = 1, 2, ..., m do $\begin{array}{l} \text{if } b_j = 0 \text{ then} \\ \mid \quad \mathsf{W} \leftarrow \mathsf{Q}^- \end{array}$ else $\mathsf{W} \leftarrow \mathsf{Q}^+$ $\mathsf{Q} \leftarrow \texttt{degrading_merge}(\mathsf{W}, L, \mathsf{P}_{\mathrm{U}(\mathcal{X})})$ return $P_e(Q, P_{U(\mathcal{X})})$

Consequences: Try and build a polar code for $\mathcal{W}_{M...}$

Would like number of good channels to be

 $\approx n \cdot I(\mathcal{W}_M)$

However, number of good channels is upper bounded by

$$egin{aligned} n \cdot I \left(ext{degrading_merge}(\mathcal{W}_M, L, \mathcal{P}_{\mathrm{U}(\mathcal{X})})
ight) \ & \geq n \cdot \left(I(\mathcal{W}_M) - O\left(\left(rac{1}{L}
ight)^{rac{2}{q-1}}
ight)
ight) \end{aligned}$$

For q = 16, in order to lose at most 0.01, need $L \approx 10^{15}$

LDPC:

Same problem when trying to design an LDPC code for \mathcal{W}_M

- Pick a code ensamble with rate close to $I(\mathcal{W}_M)$
- Use density evolution to asses code:
 - 1. Initialize
 - Assume all-zero codeword
 - Quantize output letters: letters with close posteriors are grouped together
 - 2. Main loop
 - Already hopeless at this point: main loop is with respect to quantized channel, which has mutual information below design rate

<u>The channel \mathcal{W}_M </u>: For an integer $M \ge 1$, define $\mathcal{W}_M : \mathcal{X} \to \mathcal{Y}_M$ as follows:

- Input alphabet is $\mathcal{X} = \{1, 2, \dots, q\}$
- Output alphabet is

$$\mathcal{Y}_M = \left\{ \langle j_1, j_2, \ldots, j_q \rangle : j_1, j_2, \ldots, j_q \ge 0 , \quad \sum_{x=1}^q j_x = M \right\},$$

where j_x are non-negative integers summing to M

Channel transition probabilities:

$$\mathcal{W}(\langle j_1, j_2, \dots, j_q \rangle | x) = rac{q \cdot j_x}{M\binom{M+q-1}{q-1}}$$

▶ Input distribution unifrom ⇒ all output letters equally likely

The channel \mathcal{W}_M :

Posterior probabilities

$$P(X = x | Y = \langle j_1, j_2, \dots, j_q \rangle) = \frac{j_x}{M}$$

Shorthand: output letter is labelled by posterior probabilities vector

$$\langle j_1, j_2, \ldots, j_q \rangle \triangleq (j_1/M, j_2/M, \ldots, j_q/M)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

14/19

Optimal degrading:

Claim [KurkoskiYagi]:

- Let $W : \mathcal{X} \to \mathcal{Y}$, P_X , and L be given.
- Let Q : X → Z be an optimal degrading of W to a channel Q with |Z| ≤ L.
- That is, I(X, Y) I(X, Y') is minimized.
- ► Then, Q is gotten from W by defining a partition (A_i)^L_{i=1} of 𝒱 and mapping with probability 1 all symbols in A_i to a single symbol z_i ∈ 𝔅

Let $(A_i)_{i=1}^{L}$ be such a partition with respect to \mathcal{W}_M

L₂ squared bound:

Lemma: For $A = A_i$ as above, let $\Delta(A)$ be the drop in mutual information incurred by merging all the letters in A_i into a single letter. Then,

 $\Delta(A) \geq \tilde{\Delta}(A) \; ,$

where

$$ilde{\Delta}(A) = rac{1}{2\binom{M+q-1}{q-1}} \sum_{\mathbf{p}\in A} \|\mathbf{p}-ar{\mathbf{p}}\|_2^2 \ , \quad ar{\mathbf{p}} = \sum_{\mathbf{p}\in A} rac{1}{|A|} \mathbf{p} \ .$$

16/19

Bounding in terms of |A|:

Lemma:

$$\sum_{i=1}^L \Delta(A_i) \geq \sum_{i=1}^L ilde{\Delta}(A_i) \geq \operatorname{const}(q) \cdot \sum_{i=1}^L |A_i|^{rac{q+1}{q-1}} + o(1) \; ,$$

where the o(1) is a function of M alone and goes to 0 as $M o \infty$

Observation: Up to the o(1), expression is convex in $|A_i|$. Thus, sum is lower bounded by setting $|A_i| = |\mathcal{Y}_M|/L$.

Theorem:

$$\mathrm{DC}(q,L) \geq \frac{q-1}{2(q+1)} \cdot \left(\frac{1}{\sigma_{q-1} \cdot (q-1)!}\right)^{\frac{2}{q-1}} \cdot \left(\frac{1}{L}\right)^{\frac{2}{q-1}} ,$$

where σ_{q-1} is the constant for which the volume of a sphere in \mathbb{R}^{q-1} of radius r is $\sigma_{q-1}r^{q-1}$

Backup

- Just how representative is \mathcal{W}_M ?
- What can be done?
- Channels \mathcal{W}_M "converges" to
 - $\blacktriangleright \ \mathcal{W}_{\infty} \colon \mathcal{X} \to \mathcal{X} \times [0,1]^q$
 - Given an input x, the channel picks φ₁, φ₂,..., φ_q, non-negative reals summing to 1. All possible choices are equally likely, Dirichlet(1,1,...,1)
 - Then, the input x is transformed into x + i (with a modulo operation where appropriate) with probability φ_i
 - The transformed symbol along with the vector (φ₁, φ₂,..., φ_q) are the output of the channel