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Our Results

• A refined analysis of the algorithm in [KV00] to finite list sizes.

• The decoding radius obtained for alternant codes in the

Hamming metric is precisely the one guaranteed by an

(improved) version of one of the Johnson bounds.

• A list decoder for alternant codes in the Lee metric.

• Unlike the Hamming metric counterpart, the decoding radius

of our list decoder is generally strictly larger than what one

gets from the Lee-metric Johnson bound.
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List Decoding

Let F be a finite field, and let d be a metric over Fn. Let C be an

(n, M, d) code over F .

• A list-ℓ decoder of decoding radius τ is a function D : Fn → 2C

such that

– Each received word y ∈ Fn is mapped to a set (list) of

codewords.

– The list is guaranteed to contain all codewords in the sphere

of radius τ centered at y,

D(y) ⊇ {c ∈ C : d(c,y) ≤ τ} .

– The list is guaranteed to contain no more than ℓ codewords,

|D(y)| ≤ ℓ .

• For a fixed ℓ, the bigger τ is, the better.
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GRS and Alternant Codes

• Fix F = GF(q) and Φ = GF(qm).

• Denote by Φk[x] the set of all polynomials in the indeterminate

x with degree less than k over Φ.

• Hereafter, fix CGRS as an [n, k] GRS code over Φ with distinct

code locators α1, α2, . . . , αn ∈ Φ, and nonzero multipliers

v1, v2, . . . , vn ∈ Φ, that is

CGRS = {c = (v1u(α1) v2u(α2) . . . vnu(αn)) : u(x) ∈ Φk[x]} .

• Fix Calt as the respective alternant code over F ,

Calt = CGRS ∩ Fn .
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Score of a Codeword

• Define [n] = {1, 2, . . . , n}.

• Let M = (mγ,j)γ∈F,j∈[n] be a q × n matrix over the set N of

nonnegative integers. The score of a codeword

c = (cj)
n
j=1 ∈ Calt with respect to M is defined by

SM(c) =
n

∑

j=1

mcj ,j .

• Example:

M =

2

1

0

4

3





















0 1 0 0

1 4 1 1

4 1 4 4

1 0 1 1

0 0 0 0





















, c = (0, 1, 2, 3) , SM(c) = 8 .
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Lemma 1

The next lemma is the basis of the list decoder in [KV00],[KV02].

Lemma 1 [KV00] Let ℓ and β be positive integers and M be a

q × n matrix over N. Suppose there exists a nonzero bivariate

polynomial Q(x, z) =
∑

h,i Qh,ix
hzi over Φ that satisfies

(i) deg0,1 Q(x, z) ≤ ℓ and deg1,k−1 Q(x, z) < β,

(ii) for all γ ∈ F , j ∈ [n] and 0 ≤ s + t < mγ,j ,

∑

h,i

(

h
s

)(

i
t

)

Qh,iα
h−s
j (γ/vj)

i−t = 0 .

Then for every c = (vju(αj))
n
j=1 ∈ Calt,

SM(c) ≥ β =⇒ (z − u(x)) |Q(x, z) .
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Design Process of a List Decoder for Calt

Fix some metric d : Fn × Fn → R and ℓ. Find an integer β and a

mapping M : Fn → N
q×n such that for the largest possible integer

τ , the following two conditions hold for the matrix M(y) that

corresponds to any received word y, whenever a codeword c ∈ Calt

satisfies d(c,y) ≤ τ :

(C1) SM(y)(c) ≥ β.

(C2) There exists a nonzero Q(x, z) =
∑

h,i Qh,ix
hzi over Φ that

satisfies

(i) deg0,1 Q(x, z) ≤ ℓ and deg1,k−1 Q(x, z) < β,

(ii) for all γ ∈ F , j ∈ [n] and 0 ≤ s + t < mγ,j ,

∑

h,i

(

h
s

)(

i
t

)

Qh,iα
h−s
j (γ/vj)

i−t = 0 .

8



The Mapping MH(y)

• Let r and r̄ be positive integers such that 0 ≤ r̄ < r ≤ ℓ.

• Define the mapping y = (yj)j∈[n] 7→ MH(y) = (mγ,j)γ∈F,j∈[n],

as

mγ,j =







r if yj = γ

r̄ otherwise
, γ ∈ F , j ∈ [n] .

• Example: F = GF(5), n = 4, y = (0100), r = 7, r̄ = 4.

MH =

2
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




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





4 4 4 4
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7 4 7 7

4 4 4 4

4 4 4 4





















.
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A Decoder for the Hamming Metric

Until further notice, assume that d(·, ·) is the Hamming metric.

Proposition 2 For integers 0 ≤ r̄ < r ≤ ℓ, let θ be the unique real

such that

RH =
k−1

n
= 1 −

1
(

ℓ+1
2

)

(

(r−r̄)(ℓ+1)θ +
(

ℓ+1−r
2

)

+
(

r̄+1
2

)

(q−1)
)

.

Given any positive integer τ < nθ, conditions (C1) and (C2) are

satisfied for

β = r(n−τ) + r̄τ

and

M = MH .
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Maximizing over r and r̄

• Instead of maximizing θ = θ(RH, ℓ, r, r̄) over r and r̄, we find it

easier to maximize RH = RH(θ, ℓ, r, r̄) for a given θ (and ℓ).

• For 0 ≤ θ ≤ 1 − 1
ℓ+1⌈

ℓ+1
q
⌉, the maximizing values are:

r = ℓ+1 − ⌈(ℓ+1)θ⌉ and r̄ = ⌈(ℓ+1)θ/(q−1)⌉ − 1 .

• The decoding radius, τ , obtained in this case is exactly the one

implied by a Johnson-type bound for the Hamming metric.

• As ℓ → ∞, the value RH(θ, ℓ) = maxr,r̄ RH(θ, ℓ, r, r̄) converges

to the expression 1 − 2θ + q
q−1θ2 obtained in [KV00].
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The Lee Metric

• Denote by Zq the integers modulo q.

• The Lee weight of an element a ∈ Zq, denoted |a|, is defined as

the smallest nonnegative integer s such that s · 1 ∈ {a,−a}.

• The Lee distance between two elements a, b ∈ Zq is |a − b|.

• Example: Z8

0
1

2

3
4

5

6

7
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The Lee Metric for F = GF(q)

Let F = GF(q).

• How do we extend the Lee metric to Fn?

• Fix a bijection 〈·〉 : F → Zq.

• Define the Lee distance dL : Fn × Fn → N between two words

(xi)i∈[n] and (yi)i∈[n] (over F ) as

dL ,

n
∑

i=1

|〈xi〉 − 〈yi〉| .
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The Mapping ML(y)

• Let r and ∆ be positive integers such that 0 < ∆ ≤ r.

• Define the mapping y = (yj)j∈[n] 7→ ML(y) = (mγ,j)γ∈F,j∈[n],

as

mγ,j = max{0, r − |(〈yj〉 − 〈γ〉)|∆} , γ ∈ F , j ∈ [n] .

• Example: F = GF(5), 〈·〉 = Identity, n = 4, y = (0100), r = 7,

∆ = 4.

ML =

2

1

0

4

3
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













0 3 0 0
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7 3 7 7

3 0 3 3

0 0 0 0





















.

• If dL(c,y) = τ then SM(c) ≥ rn − τ∆.
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RL(θ, ℓ) for the Lee Metric

Define RL(θ, ℓ) = maxr,∆ RL(θ, ℓ, r, ∆), where

RL(θ, ℓ, r, ∆) =

1

(ℓ+1

2 )

(

(ℓ+1)(r−θ∆)−
(

r+1
2

)

(2Λ+1)+
(

Λ+1
2

)

∆(1+2r− (2Λ+1)
3 ∆)+T

)

,

Λ = min {⌊r/∆⌋, ⌊q/2⌋} ,

and

T =







(

r−Λ∆+1
2

)

if Λ = q/2

0 otherwise
.
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RL(θ, ℓ) for the Lee Metric (Continued)

• For any fixed 0 < ∆ ≤ ℓ, the maximum of RL(θ, ℓ, r, ∆) over r

is attained for

r∆ =







⌊

(ℓ + ∆λ2)/(2λ)
⌋

if λ = q/2
⌊

(ℓ + ∆(λ2+λ))/(2λ+1)
⌋

otherwise
,

where

λ = min
{⌊

√

ℓ/∆
⌋

, ⌊q/2⌋
}

.

• RL(θ, ℓ) is piecewise linear in θ, where the intervals correspond

to the integer values of ∆ ∈ {1, 2, . . . , ℓ}.
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Asymptotic Analysis

Proposition 3 Define χL(q) = ⌊ 1
4q2⌋/q. For 0 < θ ≤ χL(q),

denote by L the unique integer such that L2
−1

3L
≤ θ < L2+2L

3(L+1) , and

let λ = min{L, ⌊q/2⌋}. Then,

RL(θ,∞) = lim
ℓ→∞

RL(θ, ℓ) =






1+2λ2
−6λθ+6θ2

2λ+λ3 if λ = q/2

λ+3λ2+2λ3
−6λθ−6λ2θ+3θ2+6λθ2

λ+2λ2+2λ3+λ4 otherwise
.

• The decoding radius obtained in the asymptotic case (ℓ → ∞)

is generally strictly larger than the one implied by a

Johnson-type bound for the Lee metric.
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ℓ = 7

Johnson, ℓ = 7

ℓ = ∞

Johnson, ℓ = ∞

θ

RL(θ, ℓ)

0

1

1 χL(5)

Figure 1: Curve θ 7→ RL(θ, ℓ) and the Johnson bound for q = 5 and

ℓ = 7,∞.
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