
Introduction 2-D Constraints Encoding Scheme Finding D

On Row-by-Row Coding for 2-D Constraints

Ido Tal Tuvi Etzion Ron M. Roth

Computer Science Department
Technion, Haifa 32000, Israel

Introduction 2-D Constraints Encoding Scheme Finding D

Graph Representable Constraint

1-D Constraints
Let G(V,E, L) be an edge labeled graph, L : E → Σ.
Example:

0 0 0 0 0

1 1 1 1

S = S(G) is the set of all words that are generated by
paths in G.
The capacity of S is given by

cap(S) = lim
`→∞

(1/`) · log2

∣∣∣S ∩ Σ`
∣∣∣ .

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).

At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.
Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).

At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.
Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).
At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.

Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).
At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.

Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).
At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.

Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).
At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.

Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).
At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.
Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Encoding

An M -track, rate R, parallel encoder for a constraint S ⊆ Σ∗

We write to M tracks (columns).
At each time slot, a symbol is written to each track (we
produce a row).
The row written is a function of the state of the encoder
and of the current M ·R information bits.
Each track must contain an element of S.

g
(0)
1 g

(0)
2 · · · g

(0)
k · · · g

(0)
M

g
(1)
1 g

(1)
2 · · · g

(1)
k · · · g

(1)
M

...
... . . .

... . . .
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

∈ S

Introduction 2-D Constraints Encoding Scheme Finding D

Parallel Decoding

An M -track (m, a)-SBD decoder

At time slot t, the respective input bits are recovered from
rows t−m, t−m + 1, . . . , t + a

...
... · · ·

... · · ·
...

g
(t−m)
1 g

(t−m)
2 · · · g

(t−m)
k · · · g

(t−m)
M

...
... · · ·

... · · ·
...

g
(t)
1 g

(t)
2 · · · g

(t)
k · · · g

(t)
M

...
... · · ·

... · · ·
...

g
(t+a)
1 g

(t+a)
2 · · · g

(t+a)
k · · · g

(t+a)
M

...
... · · ·

... · · ·
...

Introduction 2-D Constraints Encoding Scheme Finding D

Main Results

Main results of our parallel encoding/decoding scheme

We approach cap(S(G)) as the number of tracks, M , grows.
The vertical size of the decoding window is constant in M .
For a constant graph size, encoding and decoding time is
O(M log2 M log log M).

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints

Consider as an example the square
constraint [WeeksBlahut98]:
The elements are all the binary
arrays in which an entry may equal
‘1’ only if all its eight neighbors are
‘0’.

1 0 0 1
0 0 0 0
0 1 0 0
0 0 0 1

A graph which produces all `× 4
arrays that satisfy this constraint:
Thus, if the number of columns is
reasonably small, we can reduce our
2-D constraint to a 1-D constraint.

0000 0001

01000010

1000

1010 1001 0101

The label of an
edge is given by
the label of the
vertex it exits.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.
Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.

M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.
Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.
Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.

Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.
Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.

We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.
Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.

Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.

Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.

Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.

Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.

Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

2-D Constraints (Cont.)

We use this as follows:
Partition the 2-D array into two alternating type strips:

M data strips of width 4.
M − 1 merging strips of width 1.

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Think of each of the data strips as a track.
Fill all the merging strips with ‘0’ bits.
We may now use an M -track parallel encoder in order to
encode information to the array in a row-by-row manner.
Enlarging the width of the data strips gives a better
encoding rate, at the expense of the encoder’s complexity.

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Definition

Multiplicity Matrix
The description of our M -track parallel encoder for
S = S(G) is defined by its respective multiplicity matrix D:
Let AG = (ai,j) be the adjacency matrix of G.
A nonnegative integer matrix D = (di,j)i,j∈V is a valid
multiplicity matrix with respect to G and M if

1 ·D · 1T ≤ M , (1)

1 ·D = 1 ·DT , and (2)
di,j > 0 only if ai,j > 0 . (3)

Our aim is to find a multiplicity matrix such that the
respective encoder has rate close to cap(S).

Introduction 2-D Constraints Encoding Scheme Finding D

For the sake of exposition, assume that G does not contain
parallel edges.
Let PD : E → [0, 1] be the Markov chain on G defined as
follows:

PD(i → j) = di,j/(1 ·D · 1T) .

Since we required that 1 ·D = 1 ·DT , we have that PD is
stationary.
Essentially, the encoder “mimics” PD.
The rate of the encoder approaches cap(S) when 1 ·D · 1T

approaches M and PD is close to the maxentropic Markov
chain on G.

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0



1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11

1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11

1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α

β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ

a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ

a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓

b↓ b↓ b↓ c↓ c↓ d↓ e↓

α α α α

β β β α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓

c↓ c↓ d↓ e↓

α α α α β β β

α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1)

= 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α α γ α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1) = 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α α γ α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1) = 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α α γ α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1) = 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α α γ α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1) = 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ c↓ d↓ e↓
α α α α β β β α α γ α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1) = 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ c↓ d↓ c↓ e↓
α α α α β β β α γ α α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1) = 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

)

M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ d↓ c↓ c↓ e↓
α α α α β β β γ α α α

Introduction 2-D Constraints Encoding Scheme Finding D

Encoder Example

α β

γ

a
b

c

de AG =

 1 1 0
1 0 1
1 0 0

 D =

 4 3 0
2 0 1
1 0 0


1 ·D · 1T = 11
1 ·DT = (7, 3, 1) = 1 ·D

∆ =
(∏

i∈V ri!
)/(∏

i,j∈V di,j ! · a
−di,j

i,j

) M = 12

α α α α α α α β β β γ
a↓ a↓ a↓ a↓ b↓ b↓ b↓ d↓ c↓ c↓ e↓
α α α α β β β γ α α α

Introduction 2-D Constraints Encoding Scheme Finding D

Maxentropic Distribution

Let P∗ : E → [0, 1] be the maxentropic stationary Markov
chain on G.
For an as yet unspecified M ′, define:

P = (pi,j) , pi,j = M ′P∗(i → j) .

Introduction 2-D Constraints Encoding Scheme Finding D

Halevy and Roth’s Solution

If, when taking M ′ = M , all the entries of P were integers,
then we could take D = P .
We would have R(D) = log2 ∆

M −−−−→
M→∞

cap(S(G)).

Solution [HalevyRoth]: Perturb a related matrix such that
its entries are rational, and take M = M ′ large enough.
Problem: M unrealistically large.

Introduction 2-D Constraints Encoding Scheme Finding D

Take M ′ = M − b|V |diam(G)/2c.
We say that an integer matrix P̃ = (p̃i,j) is a good
quantization of P = (pi,j) if

M ′ =
∑

i,j∈V pi,j =
∑

i,j∈V p̃i,j , (4)⌊∑
j∈V pi,j

⌋
≤
∑

j∈V p̃i,j ≤
⌈∑

j∈V pi,j

⌉
, (5)

bpi,jc ≤ p̃i,j ≤ dpi,je , and— (6)⌊∑
i∈V pi,j

⌋
≤
∑

i∈V p̃i,j ≤
⌈∑

i∈V pi,j

⌉
. (7)

Introduction 2-D Constraints Encoding Scheme Finding D

Lemma

There exists a matrix P̃ which is a good quantization of P .
Furthermore, such a matrix can be found by an efficient
algorithm.

Partial Proof.
Formulate the above as an integer flow problem.
A fractional solution exists.
Thus, an integer solution exists.

Introduction 2-D Constraints Encoding Scheme Finding D

Example

uσuω

u′
α u′

β u′
γ

u′′
α u′′

β u′′
γ

uτ

(9, 9)

(5, 6) (2, 3) (0, 1)

(5, 6) (2, 3) (0, 1)

(3, 4)

(2, 3) (1, 2)

(0, 1)

(0, 1)

M = 12

M ′ = 9

AG =

 1 1 0
1 0 1
1 0 0



P =

 3.05 2.53 0
1.64 0 0.89
0.89 0 0



P̃ =

 4 2 0
2 0 1
0 0 0



Introduction 2-D Constraints Encoding Scheme Finding D

Example

uσuω

u′
α u′

β u′
γ

u′′
α u′′

β u′′
γ

uτ

(9, 9)

(5, 6) (2, 3) (0, 1)

(5, 6) (2, 3) (0, 1)

(3, 4)

(2, 3) (1, 2)

(0, 1)

(0, 1)

M = 12 M ′ = 9

AG =

 1 1 0
1 0 1
1 0 0



P =

 3.05 2.53 0
1.64 0 0.89
0.89 0 0



P̃ =

 4 2 0
2 0 1
0 0 0



Introduction 2-D Constraints Encoding Scheme Finding D

Example

uσuω

u′
α u′

β u′
γ

u′′
α u′′

β u′′
γ

uτ

(9, 9)

(5, 6) (2, 3) (0, 1)

(5, 6) (2, 3) (0, 1)

(3, 4)

(2, 3) (1, 2)

(0, 1)

(0, 1)

M = 12 M ′ = 9

AG =

 1 1 0
1 0 1
1 0 0


P =

 3.05 2.53 0
1.64 0 0.89
0.89 0 0



P̃ =

 4 2 0
2 0 1
0 0 0



Introduction 2-D Constraints Encoding Scheme Finding D

Example

uσuω

u′
α u′

β u′
γ

u′′
α u′′

β u′′
γ

uτ

(9, 9)

(5, 6) (2, 3) (0, 1)

(5, 6) (2, 3) (0, 1)

(3, 4)

(2, 3) (1, 2)

(0, 1)

(0, 1)

M = 12 M ′ = 9

AG =

 1 1 0
1 0 1
1 0 0


P =

 3.05 2.53 0
1.64 0 0.89
0.89 0 0



P̃ =

 4 2 0
2 0 1
0 0 0



Introduction 2-D Constraints Encoding Scheme Finding D

Example

uσuω

u′
α u′

β u′
γ

u′′
α u′′

β u′′
γ

uτ

(9, 9)
9

(5, 6) (2, 3) (0, 1)
5.58

2.53
0.89

(5, 6) (2, 3) (0, 1)
5.58

2.53
0.89

(3, 4) 3.05

(2, 3)
2.53 (1, 2)

1.64

(0, 1)
0.89

(0, 1)
0.89

M = 12 M ′ = 9

AG =

 1 1 0
1 0 1
1 0 0


P =

 3.05 2.53 0
1.64 0 0.89
0.89 0 0



P̃ =

 4 2 0
2 0 1
0 0 0



Introduction 2-D Constraints Encoding Scheme Finding D

Example

uσuω

u′
α u′

β u′
γ

u′′
α u′′

β u′′
γ

uτ

(9, 9)
9

(5, 6) (2, 3) (0, 1)
6

3
0

(5, 6) (2, 3) (0, 1)
6

2
1

(3, 4) 4

(2, 3)
2 (1, 2)

2

(0, 1)
1

(0, 1)
0

M = 12 M ′ = 9

AG =

 1 1 0
1 0 1
1 0 0


P =

 3.05 2.53 0
1.64 0 0.89
0.89 0 0



P̃ =

 4 2 0
2 0 1
0 0 0



Introduction 2-D Constraints Encoding Scheme Finding D

Example

uσuω

u′
α u′

β u′
γ

u′′
α u′′

β u′′
γ

uτ

(9, 9)
9

(5, 6) (2, 3) (0, 1)
6

3
0

(5, 6) (2, 3) (0, 1)
6

2
1

(3, 4) 4

(2, 3)
2 (1, 2)

2

(0, 1)
1

(0, 1)
0

M = 12 M ′ = 9

AG =

 1 1 0
1 0 1
1 0 0


P =

 3.05 2.53 0
1.64 0 0.89
0.89 0 0



P̃ =

 4 2 0
2 0 1
0 0 0



Introduction 2-D Constraints Encoding Scheme Finding D

P̃ is an integer matrix (a good quantization of P).
However, P̃ is generally not a valid multiplicity matrix:
We might have that 1 · (P̃)T 6= 1 · P̃ (the respective Markov
chain is not stationary).

Introduction 2-D Constraints Encoding Scheme Finding D

Theorem

Let P̃ = (p̃i,j) be a good quantization of P . There exists a
multiplicity matrix D = (di,j) with respect to G and M , such
that

1 di,j ≥ p̃i,j for all i, j ∈ V , and—
2 M ′ − b|V |diam(G)/2c ≤ 1 ·D · 1T ≤ M

(where M ′ = M − b|V |diam(G)/2c). Moreover, the matrix D
can be found by an efficient algorithm.

Proof makes use of network flow as well.

Introduction 2-D Constraints Encoding Scheme Finding D

Main Theorem

Theorem

Let G be a deterministic graph with memory m. For M
sufficiently large, one can efficiently construct an M -track
(m, 0)-SBD parallel encoder for S = S(G) at a rate R such that

R ≥ cap(S(G))
(
1− |V |diam(G)

2M

)
−O

(
|V |2 log (M · amax/amin)

M − |V |diam(G)/2

)
,

where amin (respectively, amax) is the smallest (respectively,
largest) nonzero entry in AG.

Proof makes use of the multiplicity matrix guaranteed by
previous theorem.

	Introduction
	2-D Constraints
	Encoding Scheme
	Finding D

