Universal Polarization for Processes with Memory

Boaz Shuval and Ido Tal

Andrew and Erna Viterbi Department of Electrical Engineering
Technion — Israel Institute of Technology
Haifa, 32000, Israel

July 2019

Setting

- Communication with uncertainty:
 - ▶ Encoder: Knows channel belongs to a set of channels
 - ▶ Decoder: Knows channel statistics (e.g., via estimation)
- Memory:
 - In channels
 - ▶ In input distribution
- Universal code:
 - Vanishing error probability over set
 - Best rate (infimal information rate over set)

Goal:

Universal Code based on Polarization

Why?

- Polar codes have many good properties
 - rate-optimal (even under memory!)
 - vanishing error probability
 - low complexity encoding/decoding/construction
- But...
 - Polar codes must be tailored to the channel at hand
- Sometimes, the channel isn't known apriori to encoder
 - Example: Frequency Selective Fading ⇒ ISI

• **Goal:** Decode X_1^N from Y_1^N

- **Goal:** Decode X_1^N from Y_1^N
- lacktriangle Transform f_{Arikan} is one-to-one and onto
 - recursively defined
- Decoding $X_1^N \iff$ Decoding F_1^N

- Successive-Cancellation decoding:
 - ▶ Compute G_i from decoded F_1^{i-1}
 - Decode F_i from G_i
- **Polarization:** fix $\beta < 1/2$
 - ▶ Low-Entropy set: $\mathcal{L}_N = \{i \mid H(F_i|G_i) < 2^{-N^{\beta}}\}$ ▶ High-Entropy set: $\mathcal{H}_N = \{i \mid H(F_i|G_i) > 1 2^{-N^{\beta}}\}$

 - ► For N large, $|\mathcal{L}_N| + |\mathcal{H}_N| \approx N$
- Coding scheme (simplified):
 - ▶ $i \in \mathcal{L}_N \Rightarrow$ Transmit data
 - ▶ $i \in \mathcal{H}_N \Rightarrow$ Reveal to decoder

$$\begin{array}{c}
X_1^N \\
F_1^N = f_{Arikan}(X_1^N)
\end{array}$$
Channel
$$G_i = (F_1^{i-1}, Y_1^N)$$

- Successive-Cancellation decoding:
 - \triangleright Compute G_i from decoded F_1^{i-1}
 - Decode F_i from G_i
- **Polarization:** fix $\beta < 1/2$

 - ▶ Low-Entropy set: $\mathcal{L}_N = \{i \mid H(F_i|G_i) < 2^{-N^{\beta}}\}$ ▶ High-Entropy set: $\mathcal{H}_N = \{i \mid H(F_i|G_i) > 1 2^{-N^{\beta}}\}$
 - ► For N large, $|\mathcal{L}_N| + |\mathcal{H}_N| \approx N$
- Coding scheme (simplified):
 - ▶ $i \in \mathcal{L}_N \Rightarrow$ Transmit data
 - ▶ $i \in \mathcal{H}_N \Rightarrow$ Reveal to decoder

Not Universal!

 $\mathcal{L}_N, \mathcal{H}_N$ channel-dependent

Previous Work on Universal Polarization

- All for the memoryless case
- Works with memoryless settings similar to ours:
 - ► Hassani & Urbanke 2014
 - Şaşoğlu& Wang 2016 (conference version: 2014)

Previous Work on Universal Polarization

- All for the memoryless case
- Works with memoryless settings similar to ours:
 - ► Hassani & Urbanke 2014
 - Şaşoğlu& Wang 2016 (conference version: 2014)

- Simplified generalization of Şaşoğlu-Wang construction
- Memory at channel and/or input
- Two stages: "slow" and "fast"

- Simplified generalization of Şaşoğlu-Wang construction
- Memory at channel and/or input
- Two stages: "slow" and "fast"

- ▶ f one-to-one and onto, recursively defined
- $(\eta, \mathcal{L}, \mathcal{H})$ -monopolarization: For any $\eta > 0$, there exist N and index sets \mathcal{L}, \mathcal{H} such that either $H(F_i|G_i) < \eta$ for all $i \in \mathcal{L}$ or $H(F_i|G_i) > 1 - \eta$ for all $i \in \mathcal{H}$
- ▶ Universal: \mathcal{L} , \mathcal{H} process independent
- Slow

- Simplified generalization of Şaşoğlu-Wang construction
- Memory at channel and/or input
- Two stages: "slow" and "fast"

- Simplified generalization of Şaşoğlu-Wang construction
- Memory at channel and/or input
- Two stages: "slow" and "fast"

- Simplified generalization of Şaşoğlu-Wang construction
- Memory at channel and/or input
- Two stages: "slow" and "fast"

- Simplified generalization of Şaşoğlu-Wang construction
- Memory at channel and/or input
- Two stages: "slow" and "fast"

- Simplified generalization of Şaşoğlu-Wang construction
- Memory at channel and/or input

A framework for memory

Stationary process:

$$(S_i, X_i, Y_i)_{i=1}^N$$

- ▶ Finite number of states: $S_i \in S$, where $|S| < \infty$
- ▶ Hidden state: S_i is unknown to encoder and decoder
- Markov property:

$$P(s_i, x_i, y_i | \{s_j, x_j, y_j\}_{j < i}) = P(s_i, x_i, y_i | s_{i-1})$$

- FAIM state sequence:
 Finite-state, aperiodic, irreducible Markov chain
- $(X_i, Y_i)_{i=1}^N$ FAIM-derived process
- ► FAIM \Rightarrow mixing: if M-N large enough, $(X_{-\infty}^N, Y_{-\infty}^N)$ and (X_M^∞, Y_M^∞) almost independent

Forgetfulness

- Required for proof of monopolarization
- FAIM process (S_i, X_i, Y_i) is forgetful if for any $\epsilon > 0$ there exists natural λ such that if $k \ge \lambda$,

$$I(S_1; S_k | X_1^k, Y_1^k) \le \epsilon$$
$$I(S_1; S_k | Y_1^k) \le \epsilon$$

- Neither inequality implies the other
- FAIM does not imply forgetfulness
- We have a sufficient condition for forgetfulness
 - ▶ Under it, ϵ decreases exponentially with λ

FAIM Does Not Imply Forgetfulness

$$I(S_1; S_k|Y_1^k) \not\rightarrow 0$$

Why Forgetfulness?

• (S_i, X_i, Y_i) forgetful if for any $\epsilon > 0$ exists λ such that

$$k \geq \lambda \implies \begin{cases} I(S_1; S_k | X_1^k, Y_1^k) \leq \epsilon \\ I(S_1; S_k | Y_1^k) \leq \epsilon \end{cases}$$

• Can show: for any $k + 1 \le i \le N - k$

$$0 \leq H(X_i|X_{i-k}^{i-1},Y_{i-k}^{i+k}) - H(X_i|X_1^{i-1},Y_1^N) \leq 2\epsilon$$

Takeaway point

Only a "window" surrounding i really matters

Slow Stage is Monopolarizing

• FAIM-derived: (X_i, Y_i) derived from (S_i, X_i, Y_i) such that

$$P(s_i, x_i, y_i | \{s_j, x_j, y_j\}_{j < i}) = P(s_i, x_i, y_i | s_{i-1})$$

with S_i finite-state, aperiodic, irreducible, Markov

• Forgetful: for any $\epsilon > 0$ there exists λ such that if $k \geq \lambda$,

$$I(S_1; S_k | X_1^k, Y_1^k) \le \epsilon$$
$$I(S_1; S_k | Y_1^k) \le \epsilon$$

Main Result (simplified)

If process (X_i, Y_i) is FAIM-derived and forgetful, the slow stage is monopolarizing, with universal \mathcal{L}, \mathcal{H} (unrelated to process)

Slow Stage

- lacktriangle Presented for the case $|\mathcal{L}| = |\mathcal{H}|$
- Transforms

$$X_1^{N_n} \rightarrowtail Y_1^{N_n} \stackrel{f}{\Rightarrow} F_1^{N_n} \rightarrowtail G_1^{N_n}$$

transmitted received decode F_i from G_i

- Recursively defined
 - ▶ Parameters L_0, M_0
 - ▶ Level 0 length: $N_0 = 2L_0 + M_0$
 - ▶ Level *n* length: $N_n = 2N_{n-1}$
- Index types at level n:
 - ► First *L_n* indices: lateral
 - ▶ Middle M_n indices: medial
 - ▶ Last *L_n* indices: lateral

Slow Stage — Lateral Recursion

- Lateral indices always remain lateral
- Two medial indices become lateral

- Two type of medial indices:
 - **▶** H
 - $ightharpoonup \mathcal{L}$
- Alternating:

$$\mathcal{H}, \mathcal{L}, \mathcal{H}, \mathcal{L}, \dots$$

Two medial become lateral:

$$U_{L_n+1}$$
, $V_{L_n+M_n}$

- Two type of medial indices:
 - **▶** H
 - \blacktriangleright \mathcal{L}
- Alternating:

$$\mathcal{H}, \mathcal{L}, \mathcal{H}, \mathcal{L}, \dots$$

Two medial become lateral:

$$U_{L_n+1}$$
, $V_{L_n+M_n}$

- Two type of medial indices:
 - **▶** H
 - $ightharpoonup \mathcal{L}$
- Alternating:
 ℋ、ℒ、ℋ、ℒ、...
- Two medial become lateral:

$$U_{L_n+1}$$
, $V_{L_n+M_n}$

- Two type of medial indices:
 - **▶** H
 - $ightharpoonup \mathcal{L}$
- Alternating: H. L. H. L. . . .
- Two medial become lateral:

$$U_{L_n+1}$$
, $V_{L_n+M_n}$

- Two type of medial indices:
 - **▶** H
 - \blacktriangleright \mathcal{L}
- Alternating:
 ℋ、ℒ、ℋ、ℒ、...
- Two medial become lateral:

$$U_{L_n+1}$$
, $V_{L_n+M_n}$

Slow Stage is Monopolarizing

Main Result

If process (X_i, Y_i) is FAIM-derived and forgetful, for every $\eta > 0$, there exist L_0 , M_0 , n_{th} such that the slow stage of level at least n_{th} is $(\eta, \mathcal{L}, \mathcal{H})$ -monopolarizing

$$H_{\star}(X|Y) \le 1/2 \Rightarrow H(F_i|G_i) < \eta$$
 for all $i \in \mathcal{L}$
 $H_{\star}(X|Y) \ge 1/2 \Rightarrow H(F_i|G_i) > 1 - \eta$ for all $i \in \mathcal{H}$

Slow Stage is Monopolarizing

Main Result

If process (X_i, Y_i) is FAIM-derived and forgetful, for every $\eta > 0$, there exist L_0 , M_0 , n_{th} such that the slow stage of level at least n_{th} is $(\eta, \mathcal{L}, \mathcal{H})$ -monopolarizing

$$H_{\star}(X|Y) \le 1/2 \Rightarrow H(F_i|G_i) < \eta$$
 for all $i \in \mathcal{L}$
 $H_{\star}(X|Y) \ge 1/2 \Rightarrow H(F_i|G_i) > 1 - \eta$ for all $i \in \mathcal{H}$

Universal: sets \mathcal{L} , \mathcal{H} process independent

Elements of Proof

- Parameters L₀, M₀ related to memory:
 - ► L₀ large if forgetfulness slow
 - ▶ M₀ large if mixing slow
- Step 1:
 - Replace slow stage with a modification
 - Replace process with a block-independent process
 - Establish monopolarization
- Step 2:
 - ▶ Choose suitable L_0 , M_0
 - ➤ Show negligible difference between step 1 replacements and actual process, slow stage
 - Implies main result