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Abstract—A transform that is universally polarizing over a set
of channels with memory is presented. Memory may be present
in both the input to the channel and the channel itself. Both
the encoder and the decoder are aware of the input distribution,
which is fixed. However, only the decoder is aware of the actual
channel being used. The transform can be used to design a
universal code for this scenario. The code is to have vanishing error
probability when used over any channel in the set, and achieve
the infimal information rate over the set. The setting considered is,
in fact, more general: we consider a set of processes with memory.
Universal polarization is established for the case where each
process in the set: (a) has memory in the form of an underlying
hidden Markov state sequence that is aperiodic and irreducible,
and (b) satisfies a ‘forgetfulness’ property. Forgetfulness, which
we believe to be of independent interest, occurs when two hidden
Markov states become approximately independent of each other
given a sufficiently long sequence of observations between them.
We show that aperiodicity and irreducibility of the underlying
Markov chain is not sufficient for forgetfulness, and develop a
sufficient condition for a hidden Markov process to be forgetful.

Index Terms—Polar codes, universal polarization, universal
codes, channels with memory, hidden Markov processes

I. INTRODUCTION

IMPERFECT channel knowledge characterizes many prac-
tical communication scenarios. There are various models

for imperfect channel knowledge; see [1] for a comprehensive
discussion. We consider the scenario where the decoder has
full channel information, but the encoder is only aware of a set
to which the actual channel belongs. Both the encoder and the
decoder are aware of the input distribution, which is fixed. We
wish to build a polarization-based code that is universal over
the set: it achieves vanishing error probability for any channel
in the set, and its rate approaches the infimal information rate
over all channels in the set.

In fact, this work tackles a more general setting. The
universal construction in this paper applies both to channel
coding and source coding scenarios. However, to keep the
introduction focused, we concentrate on a channel-coding
scenario. We wish to design polarization-based codes that
achieve vanishing error probability over a set of channels with
memory. The input distribution to all channels in the set is
fixed and known at the encoder and decoder. The encoder only
knows that the channel belongs to the set, while the decoder is
aware of the actual channel used. Examples of channels with
memory are finite-state channels, input-constrained channels,
and intersymbol-interference channels. We show a polar coding
construction that approaches the infimal information rate among
the set of channels under successive-cancellation decoding,
provided that every input-output process in the set satisfies
some mild technical constraints. This construction achieves
vanishing error probability over all processes in this set with
the same exponent as Arıkan’s polar codes [2], [3]. That is,
roughly 2−

√
Λ, where Λ is the codeword length,

The informal statements of the previous paragraph are stated
formally in our main theorem, below. The theorem contains
several terms that will be defined throughout the paper.

Theorem 1. Consider a family of FAIM s/o-processes with
an upper bound on forgetfulness and mixing, where all s/o-
processes share the same input distribution. We consider the
case in which the encoder does not know which 𝑠/𝑜− 𝑝𝑟𝑜𝑐𝑒𝑠𝑠
was used, but the decoder does know. Let 𝐼∗ be the infimal
information rate over the family of s/o-processes. Then, for
any 𝑅 < 𝐼∗ and 𝛽 < 1/2, there exists a sequence of codes with
growing lengths such that the following holds for each code:

1) The code rate is at least 𝑅.
2) The probability of error is upper-bounded by 2−Λ𝛽

, where
Λ is the codeword length. This bound holds universally
for any 𝑠/𝑜 − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 in the family.

3) Both the encoding and decoding complexities are
𝑂 ( |S|3Λ logΛ), where |S| is an upper bound on the
number of states of an s/o-process in the family.

For the proof of the theorem, see the end of Section VI.

A. Prior work on universal polar codes

The study of polar coding for a class of memoryless channels
with full channel knowledge at the decoder was first considered
in [4]. Hassani et al. showed that Arıkan’s polar codes [2],
under successive-cancellation decoding, cannot achieve the
compound capacity [5] of a set of binary-input, memoryless,
and symmetric (BMS) channels. In [6, Proposition 7.1] it was
shown that polar codes are universal over a set of BMS channels
if optimal decoding is employed. Thus, the non-universality
exhibited in [4] is an artifact of using successive-cancellation
decoding. Nevertheless, as described below, coding methods
that are based on polarization and successive-cancellation
decoding have been shown to yield universal codes.

In [7], Hassani and Urbanke present two designs based
on Arıkan’s polar codes that achieve universality over a set
of BMS channels. Their first construction combines Arıkan’s
polar codes and Reed-Solomon codes designed for an erasure
channel. Their second construction may be viewed as a two-
stage method. In the first stage, one forms several Arıkan polar
codes, in which identical channels are combined recursively.
In the second stage, different channels are combined to obtain
universality.

Şaşoğlu and Wang [8] presented another universal polar
coding construction for BMS channels. Their construction is
also a recursive two-stage method. The first stage, called the
slow stage, transforms multiple channel-uses into ones that
universally have high-entropy and ones that universally have
low-entropy. The second stage, invoked once sufficient polar-
ization is obtained, combines the channels that are universally
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low-entropy using Arıkan’s polar codes to yield vanishing
error probability. The construction presented in this paper is a
simplified variation of the Şaşoğlu-Wang construction.

We briefly mention other works concerning universality of
polar codes. Universal polar codes for families of ordered
BMS channels or memoryless sources, with full decoder side
information, was considered in [9]. See also [10] for the case of
universal polar source codes, with specialization to the binary
case. Universal source polarization was studied in [11], in which
polar-based codes were used to compress a memoryless source
to be losslessly recovered by multiple users, each observing
different local side information on the source sequence. Finally,
universal polar coding for certain classes of BMS channels
with channel knowledge at the encoder was considered in [12].

B. Overview of this paper

We present our universal construction in Section III. It
consists of two stages, a slow stage, described in Section III-B,
followed by a fast stage, described in Section III-C. Both
stages are recursive and use Arıkan transforms as building
blocks. The fast stage consists of multiple applications of
Arıkan transforms as in the seminal paper [2]. The slow stage
uses Arıkan transforms in a different manner. Properties of the
slow stage, as well as a variation of it that will be useful for
our proof of universality, are presented in Section IV. When
used over a set of BMS channels and specialized appropriately,
this universal construction is functionally equivalent to the one
presented in [8]. Our goal, however, is to use it over a set of
processes with memory.

Polar codes were shown to achieve vanishing error prob-
ability for processes with memory in [13] and [14]. It was
shown in [13] that a large class of processes with memory
polarizes under Arıkan’s polar transform. This result extended
Şaşoğlu’s earlier findings in [6, Chapter 5]. It was further
shown in [13] that the Bhattacharyya parameter polarizes fast
to 0 for this class. Later, it was shown in [14] that for processes
with an underlying hidden Markov structure, the Bhattacharyya
parameter also polarizes fast to 1. Combined, the results of [13]
and [14] enable information-rate-achieving polar codes for such
processes with memory. A practical, low-complexity, decoding
algorithm for processes with memory with an underlying hidden
Markov structure was described in [15] and [16]. This algorithm
is a variation of successive-cancellation decoding that takes
into account the hidden state.

One drawback of polar codes for processes with memory
using the strategy in the previous paragraph is that they must
be tailored for the process. For example, to design a polar code
for a channel with intersymbol interference, one must know the
exact transfer function of the channel. In a practical scenario,
it is reasonable to assume that the decoder has full channel
knowledge, obtained, for example, by channel estimation based
on a reference sequence [17]. However, the assumption that the
encoder also has full channel knowledge before transmission
may be unrealistic. This is where universal polar codes come
into play.

In the universal setting we consider, the encoder has partial
information: it knows that the process belongs to some set of

processes with memory. The exact process is known only to
the decoder, at the time of decoding. The encoder must employ
a code that will enable vanishing error probability no matter
which process in the set is used. We wish to design a universal
code with the highest possible rate over the entire set. Thus,
the code is to approach the infimal information rate over the
entire set.

This is indeed what we achieve in this work. We show
that our polarization-based construction is universal over
sets of processes with memory. We prove universality when
the sets contain processes with memory that satisfy two
technical constraints, presented in detail in Section V-A. Briefly,
the processes have an underlying hidden finite-state Markov
structure that is regular (aperiodic and irreducible); and they
have a property we call forgetfulness, which we believe is of
independent interest.

Forgetfulness is a property we now describe informally. In
a hidden Markov process, we are given a sequence of obser-
vations that are known to be probabilistic functions of some
Markov chain called the state process. The process is called
forgetful if, given a long-enough sequence of observations, the
state at the time of the first observation and the state at the
time of the last observation become approximately independent.
Surprisingly, regularity of the underlying Markov chain is not
sufficient to ensure forgetfulness. We note that forgetfulness
was not required in the non-universal setting of [13], [14], yet
in our proof of the universal case it plays a key role.

Hochwald and Jelenković [18] considered a property similar
to forgetfulness under the restrictive assumption that there
is a positive probability of transitioning between any two
states in one step. Leveraging ideas from Kaijser [19], who
considered a related setting for hidden Markov processes, we
lift this restrictive assumption and prove, in Sections IX and X,
a sufficient condition for forgetfulness of a hidden Markov
model. This condition, which we call Condition K, takes into
account both the transition matrix of the state process as well
as the probabilistic function that generates the observations.
Specifically, we use mutual information as a measure for
independence, and show that under Condition K, the mutual
information between the states at the beginning and end of a
block, given the observations in between, vanishes with the
length of the block.

The slow stage of the construction is the one responsible
for its universality. The proof of universality is given in
Sections V-B and V-C. Low complexity decoding of the
universal polar codes is based on the successive-cancellation
trellis decoding of [16]; details are given in Section VI.
In Section VII we explain how to construct universal polar
codes for a given family of processes. Numerical results for a
particular universal polar code, constructed using the method
of Section VII and used over several different channels with
and without memory, can be found in Section VIII.

C. Paper Roadmap

There are several ways to read this paper, with increasing
levels of detail. A map of the various paths is shown in Figure 1.
All readers are advised to familiarize themselves with the
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Fig. 1. Roadmap of the various ways to read this paper. All paths start at
Section II and end at Section VIII.

notations and definitions of Section II. In it, we introduce the
notion of a symbol/observation pair, which generalizes the
concept of a channel and allows for simultaneous description
of channel and source coding. Section III is also recommended
for all readers, for it introduces the details of the universal
construction. At this point, there are several options.

• A practitioner who wishes to understand and implement
the construction, without getting bogged down with the
proofs, is advised to skip to Section V-A, and read
it up to Example 4. This introduces the assumptions
on the processes for which we can prove universality.
Examples 3 and 4 are important as they illustrate that
forgetfulness does not follow from regularity (aperiodicity
and irreducibility) of the underlying Markov chain. Then,
the practitioner may skip straight to the decoding process
in Section VI. The practitioner is also well-advised to
read Sections VII and VIII to understand how to construct
universal polar codes in practice, and to realize the benefits
of using list decoding to decode these universal polar
codes. We note that some definitions from Section V-C
are required to follow Section VII, but we refer to the
relevant equations as the need arises.

• A reader who is interested in understanding why the
construction is universal is advised to turn to Sections IV
and V after Section III. These sections contain a detailed
proof of universality of the construction, provided that
one takes on faith that forgetful processes exist.

• A sufficient condition for the existence of forgetful pro-
cesses is developed in Sections IX and X. The interested
reader is advised to read them following Section V-A.

Sections IX and X are written for a general hidden Markov
model and may be read independently.

II. NOTATION AND BASIC DEFINITIONS

A discrete set of elements is denoted as a list in braces, e.g.,
{1, 2, . . . , 𝐿}, usually denoted with a calligraphic letter, e.g.,
A. The number of elements in a discrete set A is denoted by
|A|. We denote 𝑦𝑘

𝑗
=

[
𝑦 𝑗 𝑦 𝑗+1 · · · 𝑦𝑘

]
for 𝑗 < 𝑘 . If 𝑗 = 𝑘

then 𝑦𝑘
𝑗
= 𝑦 𝑗 and if 𝑗 > 𝑘 then 𝑦𝑘

𝑗
is a null vector.

We use boldface to denote vectors, and, unless stated
otherwise, vectors are assumed to be column vectors. The
transpose of a column vector x is the row vector x𝑇 . The 𝑖th
element of a vector x is denoted by (x)𝑖 (usually, and unless
stated otherwise, (x)𝑖 = 𝑥𝑖). Special vectors are the all-ones
vector 1, all-zeros vector 0, and the unit vector e𝑖 , which has 1
in its 𝑖th entry and zero in all other entries. We further define
the norm

∥x∥1 =
∑︁
𝑖

|𝑥𝑖 |.

An inequality involving vectors is assumed to be element-wise.
Therefore, if 𝑎 is a scalar and b is a vector, x ≥ 𝑎 implies
that 𝑥𝑖 ≥ 𝑎 for all 𝑖, and x ≥ b implies that 𝑥𝑖 ≥ 𝑏𝑖 for all
𝑖. For two vectors (possibly of different lengths) a and b we

write a
𝑓
≡ b if there is a one-to-one mapping 𝑓 between a

and b; usually, 𝑓 is clear from the context, so we omit it and
simply write a ≡ b. The support 𝜎(x) of a vector x is the set
of indices 𝑖 such that 𝑥𝑖 ≠ 0. A vector is said to be nonzero if
it has a non-empty support.

Matrices are denoted using capital letters in sans-serif font,
e.g., M. The 𝑖, 𝑗 element of a matrix M is denoted by (M)𝑖, 𝑗 .
The 𝑖th row of M is denoted by (M)𝑖,: and the 𝑗 th column of M
is denoted by (M):, 𝑗 . The identity matrix is denoted by I. For
matrix M, we denote its set of nonzero rows1 by Nr (M) and
its set of nonzero columns by Nc (M). The support 𝜎(M) of a
matrix M is the set of index pairs (𝑖, 𝑗) such that 𝑖 ∈ Nr (M)
and 𝑗 ∈ Nc (M).

The probability of an event 𝐴 is denoted by P(𝐴). Random
variables are usually denoted using upper-case letters, e.g., 𝑋 ,
and their realizations using lower-case letters, e.g., 𝑥. The
distribution of random variable 𝑋 is denoted by 𝑃𝑋. The
expectation of 𝑋 is denoted by E [𝑋]. When 𝑋𝑛 is a sequence
of random variables and b =

[
𝑏1 𝑏2 · · · 𝑏𝑚

]
is a vector

of indices, then 𝑋b = (𝑋𝑏1 , 𝑋𝑏2 , . . . , 𝑋𝑏𝑚 ).
Let 𝑋 and 𝑌 be two discrete random variables taking values

in alphabets X and Y, respectively. We define 𝐻 (𝑋), the entropy
of 𝑋 , and 𝐻 (𝑋 |𝑌 ), the conditional entropy of 𝑋 given 𝑌 , by

𝐻 (𝑋) = −
∑︁
𝑥∈X

𝑃𝑋 (𝑥) log 𝑃𝑋 (𝑥),

𝐻 (𝑋 |𝑌 ) = −
∑︁
𝑦∈Y

∑︁
𝑥∈X

𝑃𝑋,𝑌 (𝑥, 𝑦) log 𝑃𝑋 |𝑌 (𝑥 |𝑦),

where we follow the usual convention that 0 · log 0 = 0.
Logarithms are base 2 unless stated otherwise. The binary
entropy function ℎ2 : [0, 1] → [0, 1] is defined by

ℎ2 (𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥). (1)

1A row or column is nonzero if it has at least one nonzero element.
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The mutual information between 𝑋 and 𝑌 , denoted 𝐼 (𝑋;𝑌 )
is defined by

𝐼 (𝑋;𝑌 ) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑌 ).

Let 𝑄 be an additional discrete random variable; the conditional
mutual information of 𝑋 and 𝑌 given 𝑄 is 𝐼 (𝑋;𝑌 |𝑄) =

𝐻 (𝑋 |𝑄) − 𝐻 (𝑋 |𝑌,𝑄).
The following variation of the data processing inequality

will be useful. Let 𝑋,𝑌, 𝑄,𝑊 be four random variables. We
introduce the notation 𝑋 −◦− (𝑌,𝑄) −◦− 𝑊 whenever 𝑋 and 𝑊
are independent given 𝑌 and 𝑄. We then have the following
variation of the data processing inequality:

𝑋 −◦− (𝑌,𝑄) −◦− 𝑊 ⇒ 𝐼 (𝑋;𝑌 |𝑄) ≥ 𝐼 (𝑋;𝑊 |𝑄). (2)

Indeed, on the one hand, 𝐼 (𝑋; (𝑌,𝑊) |𝑄) = 𝐼 (𝑋;𝑌 |𝑄) +
𝐼 (𝑋;𝑊 |𝑌,𝑄) = 𝐼 (𝑋;𝑌 |𝑄), where the last equality is by
conditional independence. On the other hand 𝐼 (𝑋; (𝑌,𝑊) |𝑄) =
𝐼 (𝑋;𝑊 |𝑄) + 𝐼 (𝑋;𝑌 |𝑊,𝑄) ≥ 𝐼 (𝑋;𝑊 |𝑄), since mutual infor-
mation is nonnegative.

The following definition generalizes the concept of a channel.
This generalization allows us to describe polarization transforms
for channel coding and source coding in one fell swoop.

Definition 1 (s/o-pair). A symbol-observation pair, or s/o-pair
in short, is a pair of dependent random variables 𝑋 and 𝑌 . The
random variable 𝑋 is called the symbol and the random variable
𝑌 is called the observation. We use the notation 𝑋 ↣ 𝑌 to
denote an s/o-pair whose symbol is 𝑋 and whose observation is
𝑌 . The joint distribution of the s/o-pair is given by 𝑃𝑋,𝑌 (𝑥, 𝑦) =
𝑃𝑋 (𝑥)𝑃𝑌 |𝑋 (𝑦 |𝑥). The conditional entropy of an s/o-pair 𝑋 ↣ 𝑌

is 𝐻 (𝑋 |𝑌 ).

We emphasize that an s/o-pair is specified using the joint
distribution of 𝑋 and 𝑌 . This is in contrast to a channel that is
specified using only the conditional distribution of the output
given its input. A channel with input 𝑋 and output 𝑌 becomes
an s/o-pair once the input distribution is specified. Another
example of an s/o-pair is a source 𝑋 with distribution 𝑃𝑋 (𝑥)
to be estimated based on dependent observation 𝑌 distributed
according to 𝑃𝑌 |𝑋 (𝑦 |𝑥).

Definition 2 (s/o-process). A sequence of s/o-pairs 𝑋𝑖 ↣ 𝑌𝑖 ,
𝑖 = 1, 2, . . . is called a symbol-observation process, or s/o-
process in short. We use the notation 𝑋★ ↣ 𝑌★.

Definition 3 (s/o-block). A sequence of 𝑁 consecutive s/o-
pairs of an s/o-process is called an s/o-block. We use the
notation 𝑋𝑁

1 ↣ 𝑌𝑁
1 . An s/o-block has a natural indexing:

𝑋 𝑗 ↣ 𝑌 𝑗 is s/o-pair 𝑗 of s/o-block 𝑋𝑁
1 ↣ 𝑌𝑁

1 . The joint
distribution of an s/o-block is given by 𝑃𝑋𝑁

1 ,𝑌𝑁
1
(𝑥𝑁1 , 𝑦

𝑁
1 ) =

𝑃𝑋𝑁
1
(𝑥𝑁1 )𝑃𝑌𝑁

1 |𝑋
𝑁
1
(𝑦𝑁1 |𝑥

𝑁
1 ).

Generally, the s/o-pairs in an s/o-block are dependent; that is,
there is memory in the process. In this paper, we assume that
s/o-processes are stationary. In particular, this implies that for
an s/o-block 𝑋𝑁

1 ↣ 𝑌𝑁
1 , the s/o-pairs 𝑋𝑖 ↣ 𝑌𝑖 are identically

distributed for all 𝑖.

The conditional entropy rate of a stationary s/o-process
𝑋★ ↣ 𝑌★ is

H(𝑋★ |𝑌★) ≜ lim
𝑁→∞

1
𝑁
𝐻 (𝑋𝑁

1 |𝑌
𝑁
1 )

= lim
𝑁→∞

1
𝑁
𝐻 (𝑋𝑁

1 , 𝑌
𝑁
1 ) − lim

𝑁→∞

1
𝑁
𝐻 (𝑋𝑁

1 ).

The limits on the right-hand side exist due to stationarity (see,
e.g., [20, Theorem 4.2.1]).

For simplicity, we assume throughout that s/o-pairs have
binary symbols and that their observations are over a finite
alphabet. Extension to the case where symbols are non-binary
over an alphabet of prime size is possible using the techniques
of [6, Chapter 3]. This entails replacing modulo-2 addition
with modulo-|X| addition, where |X| is the symbol alphabet
size, and replacing binary entropies with non-binary entropies.

III. UNIVERSAL POLAR TRANSFORM

In this section we describe the universal polar transform,
which is based on [8]. The transform described in [8] was
used to construct a universal code over memoryless symmetric
channels subject to a capacity constraint. In this work, we
extend the transform of [8] for s/o-processes with memory.

This section is focused on describing the transform. Proper-
ties of the transform and proof of its universality are presented
in Sections IV and V. The decoding operation is described in
Section VI.

A. Overview of the Transform

In this section, we provide a general overview of the universal
polar transform. It is a type of H-transform, a concept that we
now define.

Definition 4 (H-transform). A one-to-one and onto mapping
𝑓 between two symbol vectors of length 𝑁 is called an H-
transform.

Moreover, when we say that s/o-block 𝑋𝑁
1 ↣ 𝑌𝑁

1 is
transformed to s/o-block 𝐹𝑁

1 ↣ 𝐺𝑁
1 by H-transform 𝑓 , we

mean that:
1) 𝐹𝑁

1 = 𝑓 (𝑋𝑁
1 );

2) 𝐺𝑖 = (𝐹𝑖−1
1 , 𝑌𝑁

1 ), for any 𝑖.

Example 1. Arıkan’s polar codes [2] are based on H-transforms.
In this case, the mapping 𝑓 is given by 𝐹𝑁

1 = 𝑓 (𝑋𝑁
1 ) =

B𝑁G⊗𝑛2 𝑋𝑁
1 , where 𝑁 = 2𝑛, B𝑁 is the 𝑁 × 𝑁 bit-reversal

matrix, G2 =
[ 1 0

1 1
]
, and ⊗ denotes a Kronecker product.

The name “H-transform” is motivated by the equality

𝐻 (𝑋𝑁
1 |𝑌

𝑁
1 ) = 𝐻 (𝐹

𝑁
1 |𝑌

𝑁
1 ) =

𝑁∑︁
𝑖=1

𝐻 (𝐹𝑖 |𝐺𝑖). (3)

The right-most equality follows from the chain rule for
entropies and the definition of 𝐺𝑖 . Typically, the 𝑓 of an
H-transform is defined recursively.

Consider an s/o-block 𝑋𝑁
1 ↣ 𝑌𝑁

1 , with H-transform 𝐹𝑁
1 ↣

𝐺𝑁
1 . We wish to recover the symbols 𝑋𝑁

1 from the observations
𝑌𝑁

1 . We denote the recovered symbols with a hat, ( ·̂ ). That is,
�̂�𝑁

1 = Φ(𝑌𝑁
1 ), where Φ(·) is the algorithm for recovery. We
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assess Φ by its error probability, P( �̂�𝑁
1 ≠ 𝑋𝑁

1 ). H-transforms,
thanks to (3), naturally give rise to a sequential algorithm
called successive cancellation.

Rather than computing �̂�𝑁
1 from 𝑌𝑁

1 directly, we may com-
pute �̂�𝑁

1 from 𝑌𝑁
1 . By the properties of the H-transform, there

exists a mapping 𝑓 , with inverse 𝑓 −1, such that 𝑋𝑁
1 = 𝑓 −1 (𝐹𝑁

1 ).
Any algorithm for recovering 𝐹𝑁

1 from 𝑌𝑁
1 is equivalent to an

algorithm for recovering 𝑋𝑁
1 from 𝑌𝑁

1 . For, if �̂�𝑁
1 = Φ(𝑌𝑁

1 )
we can define �̂�𝑁

1 = 𝑓 −1 (�̂�𝑁
1 ) = 𝑓 −1 (Φ(𝑌𝑁

1 )) and vice versa.
Since P(�̂�𝑁

1 ≠ 𝐹𝑁
1 ) = P( �̂�𝑁

1 ≠ 𝑋𝑁
1 ), we concentrate on an

algorithm to recover 𝐹𝑁
1 .

One approach is to compute �̂�𝑁
1 sequentially as follows. Let

Φ𝑖 be a maximum-likelihood decoder of 𝐹𝑖 from 𝐺𝑖 . Compute
�̂�1 = Φ1 (�̂�1), where �̂�1 = 𝐺1 = 𝑌𝑁

1 ; then, assuming that
�̂�1 = 𝐹1, form �̂�2 = (�̂�1, 𝑌

𝑁
1 ) and compute �̂�2 = Φ2 (�̂�2), and

so on, culminating with �̂�𝑁 = Φ𝑁 (�̂�𝑁 ). This is tantamount to
the successive-cancellation decoding described in [2], and we
will use the name “successive cancellation” to describe this
algorithm.

It is well known [6, Proposition 2.1] that the error probability
of recovering �̂�𝑁

1 sequentially from �̂�𝑁
1 using successive

cancellation as described above is the same as if a genie
had replaced �̂�𝑖 with 𝐺𝑖 at every step. That is,

P
( (
Φ𝑖 (�̂�𝑖)

)𝑁
𝑖=1 ≠

(
𝐹𝑖

)𝑁
𝑖=1

)
= P

( (
Φ𝑖 (𝐺𝑖)

)𝑁
𝑖=1 ≠

(
𝐹𝑖

)𝑁
𝑖=1

)
.

(To see this, observe that if Φ𝑖 (𝐺𝑖) = 𝐹𝑖 for all 𝑖 < 𝑖0 and
Φ𝑖0 (𝐺𝑖0 ) ≠ 𝐹𝑖0 then we must also have Φ𝑖 (�̂�𝑖) = 𝐹𝑖 for all
𝑖 < 𝑖0 and Φ𝑖0 (�̂�𝑖0 ) ≠ 𝐹𝑖0 .) Therefore, when assessing the
performance of successive cancellation, we may assume that
at step 𝑖, 𝐺𝑖 (in contrast to �̂�𝑖) is known.

Definition 5 (Monopolarizing H-transform). Let 𝜂 > 0 and let
L,H ⊆ {1, 2, . . . , 𝑁} be two index sets. An H-transform 𝑓 is
(𝜂, L, H)-monopolarizing for a family of s/o-processes if for
any s/o-block 𝑋𝑁

1 ↣ 𝑌𝑁
1 in the family, either 𝐻 (𝐹𝑖 |𝐺𝑖) ≤ 𝜂

for all 𝑖 ∈ L or 𝐻 (𝐹𝑖 |𝐺𝑖) ≥ 1−𝜂 for all 𝑖 ∈ H, where s/o-block
𝐹𝑁

1 ↣ 𝐺𝑁
1 denotes the transformed s/o-block.

Monopolarizing H-transforms are useful because they make
the process of recovering �̂�𝑖 from 𝐺𝑖 very easy whenever
𝐻 (𝐹𝑖 |𝐺𝑖) ≈ 0, because then 𝐹𝑖 is approximately a deterministic
function of 𝐺𝑖 . On the other hand, if 𝐻 (𝐹𝑖 |𝐺𝑖) ≈ 1 we know
that 𝐹𝑖 is essentially a result of a uniform coin flip, independent
of 𝐺𝑖 .

The universal transform is a moniker for a family of H-
transforms with increasing lengths. It comprises two stages:
a slow polarization stage and a fast polarization stage. Each
is an H-transform that is constructed recursively. Our goal
is to show that, as the blocklength increases, they become
monopolarizing.

Recursive construction of an H-transform begins with an
initial H-transform 𝑓0 of length 𝑁0. Then, at step 𝑛+1 we take
step-𝑛 H-transforms of consecutive symbol vectors to generate
a step-(𝑛 + 1) H-transform of a single, larger, symbol vector.
A typical case is as follows. Let 𝑓𝑛 be an H-transform of
length 𝑁𝑛 that results from step 𝑛, and let 𝜑𝑛+1 be a one-to-
one and onto mapping from two length 𝑁𝑛 vectors to a vector
of length 𝑁𝑛+1 = 2𝑁𝑛. Apply 𝑓𝑛 to two consecutive symbol

𝐹1 𝑈 𝑄

𝐹2 𝑉 𝑅

‘−’ I+

‘+’ II

Arıkan Transform

Fig. 2. Illustration of an Arıkan transform. It transforms two input symbols,
𝑈 (input-I) and 𝑉 (input-II) to two output symbols, 𝐹1 (output ‘−’) and 𝐹2
(output ‘+’).

vectors: 𝑈𝑁𝑛

1 = 𝑓𝑛 (𝑋𝑁𝑛

1 ) and 𝑉𝑁𝑛

1 = 𝑓𝑛 (𝑋2𝑁𝑛

𝑁𝑛+1). Then, form
𝐹
𝑁𝑛+1
1 = 𝜑𝑛+1 (𝑈𝑁𝑛

1 , 𝑉
𝑁𝑛

1 ) = 𝑓𝑛+1 (𝑋𝑁𝑛+1
1 ).

A basic building block is the Arıkan transform [2], illustrated
in Figure 2. It operates on two input symbols: input-I: 𝑈
(with observation 𝑄) and input-II: 𝑉 (with observation 𝑅) and
transforms them to two new symbols: a ‘−’ symbol 𝐹1 (with
observation 𝐺1) and a ‘+’ symbol 𝐹2 (with observation 𝐺2),
where 𝐹1 = 𝑈 + 𝑉 , 𝐺1 = (𝑄, 𝑅) and 𝐹2 = 𝑉 , 𝐺2 = (𝐹1, 𝑄, 𝑅).
Schematically, the Arıkan transform is as follows:

{
I : 𝑈 ↣ 𝑄

II : 𝑉 ↣ 𝑅
⇒


‘−’ : 𝑈 +𝑉︸︷︷︸

𝐹1

↣ (𝑄, 𝑅)︸ ︷︷ ︸
𝐺1

‘+’ : 𝑉︸︷︷︸
𝐹2

↣ (𝐹1, 𝑄, 𝑅)︸      ︷︷      ︸
𝐺2

.

It is evident that an Arıkan transform is an H-transform of
length 2.

For an Arıkan transform, we obtain

𝐻 (𝐹1 |𝐺1) + 𝐻 (𝐹2 |𝐺2) = 𝐻 (𝐹2
1 |𝑄, 𝑅)

= 𝐻 (𝑈,𝑉 |𝑄, 𝑅) ≤ 𝐻 (𝑈 |𝑄) + 𝐻 (𝑉 |𝑅).

The inequality is because the s/o-pairs 𝑈 ↣ 𝑄 and 𝑉 ↣
𝑅 are generally dependent. Informally, Arıkan transforms
facilitate polarization if one can show that 𝐻 (𝐹1 |𝐺1) ≥
max{𝐻 (𝑈 |𝑄), 𝐻 (𝑉 |𝑅)} and that the inequality is strict unless
either 𝐻 (𝑈 |𝑄) or 𝐻 (𝑉 |𝑅) is extremal. This was the strategy
of obtaining polarization for standard (Arıkan’s) polar codes,
with and without memory. See, for example, [2], [6], [13]. We
will also pursue such a strategy.

B. Slow Polarization Stage

In this subsection we describe the slow polarization stage.
We will focus on describing a slow stage transform called a
basic slow transform (BST). It is an extension of the transform
shown in [8, Section II].

The basic slow transform is constructed recursively. We
call each step in the construction a level. Each level is an
H-transform of length 𝑁𝑛 = 2𝐿𝑛 + 𝑀𝑛. We will specify how
to compute 𝐿𝑛 and 𝑀𝑛 later in (8). We call the transformed
s/o-block a level-𝑛 block.
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We define the following index sets for a level-𝑛 block, 𝑛 ≥ 0.
See Figure 3 for an illustration.

[lat1 (𝑛)] ≜ {𝑖 | 1 ≤ 𝑖 ≤ 𝐿𝑛}, (4a)
[lat2 (𝑛)] ≜ {𝑖 | 𝐿𝑛 + 𝑀𝑛 + 1 ≤ 𝑖 ≤ 𝑁𝑛}, (4b)
[lat(𝑛)] ≜ [lat1 (𝑛)] ∪ [lat2 (𝑛)], (4c)

[med− (𝑛)] ≜ {𝑖 | 𝑖 = 𝐿𝑛 + 2𝑘 − 1, 1 ≤ 𝑘 ≤ 𝑀𝑛/2}, (4d)
[med+ (𝑛)] ≜ {𝑖 | 𝑖 = 𝐿𝑛 + 2𝑘, 1 ≤ 𝑘 ≤ 𝑀𝑛/2}, (4e)
[med(𝑛)] ≜ [med− (𝑛)] ∪ [med+ (𝑛)] . (4f)

In words, the sets [lat1 (𝑛)] and [lat2 (𝑛)] are, respectively, the
first 𝐿𝑛 and last 𝐿𝑛 indices in a level-𝑛 block. Then, the remain-
ing 𝑀𝑛 indices alternate between [med− (𝑛)] and [med+ (𝑛)],
starting with [med− (𝑛)] and ending with [med+ (𝑛)].

We classify symbols in an s/o-block according to their indices
as follows:
• 𝑖 ∈ [lat(𝑛)] ⇒ symbol 𝑖 is lateral;
• 𝑖 ∈ [med(𝑛)] ⇒ symbol 𝑖 is medial;

We will sometimes classify s/o-pairs based on the classification
of the indices. For example, we say that s/o-pair 𝑖 is lateral if
symbol 𝑖 is lateral.

The construction is initialized with integer parameters 𝐿0
and 𝑀0. We assume that 𝑀0 is even.2

• The parameter 𝐿0 determines, informally, “how much
memory” in the s/o-process the transform can handle; see
Section V for more details. For a memoryless process, it
may be set to 0.

• The parameter 𝑀0 has a dual role:
– Informally, it is set large enough so that two s/o-pairs

that are 𝑀0 time-indices apart may be considered almost
independent. See Section V for more details.

– It controls the fraction of medial symbols in an s/o-
block. See Lemma 3 for details.

The initial step 𝑓0, which generates a level-0 block, is an
H-transform of length 𝑁0 = 2𝐿0 +𝑀0. We set 𝑓0 as the identity
mapping. Thus, the initial step transforms an s/o-block 𝑋𝑁0

1 ↣
𝑌
𝑁0
1 into an s/o-block 𝐹𝑁0

1 ↣ 𝐺
𝑁0
1 , where, for 1 ≤ 𝑖 ≤ 𝑁0,

𝐹𝑖 = 𝑋𝑖 , (5a)
𝐺𝑖 = (𝐹𝑖−1

1 , 𝑌
𝑁0
1 ). (5b)

We now construct a level-(𝑛 + 1) BST from two level-𝑛
BSTs. Denote by 𝑓𝑛 a BST of length 𝑁𝑛. We will define 𝑓𝑛+1
using a one-to-one and onto mapping 𝜑𝑛+1 from two length-𝑁𝑛

vectors to a single length-𝑁𝑛+1 = 2𝑁𝑛 vector. The mapping
𝜑𝑛+1 is defined in (9) and (10) below.

The BSTs of the two consecutive level-𝑛 s/o-blocks are

𝑈
𝑁𝑛

1 = 𝑓𝑛 (𝑋𝑁𝑛

1 ), 𝑄𝑖 = (𝑈𝑖−1
1 , 𝑌

𝑁𝑛

1 ), 1 ≤ 𝑖 ≤ 𝑁𝑛, (6a)

𝑉
𝑁𝑛

1 = 𝑓𝑛 (𝑋2𝑁𝑛

𝑁𝑛+1), 𝑅𝑖 = (𝑉 𝑖−1
1 , 𝑌

2𝑁𝑛

𝑁𝑛+1), 1 ≤ 𝑖 ≤ 𝑁𝑛. (6b)

Denoting 𝑁𝑛+1 = 2𝑁𝑛, we obtain the level-(𝑛 + 1) transformed
s/o-block

𝐹
𝑁𝑛+1
1 = 𝜑𝑛+1 (𝑈𝑁𝑛

1 , 𝑉
𝑁𝑛

1 ) = 𝑓𝑛+1 (𝑋𝑁𝑛+1
1 ), (7a)

𝐺𝑖 = (𝐹𝑖−1
1 , 𝑌

𝑁𝑛+1
1 ), 1 ≤ 𝑖 ≤ 𝑁𝑛+1. (7b)

2This is not necessary, and it is possible to initialize the construction with
odd 𝑀0. However, assuming that 𝑀0 is even ensures that the index sets
defined in (4) hold also for 𝑛 = 0.

Level-𝑛 block

lateral s/o-pairs

lateral s/o-pairs

medial s/o-pairs

𝐹1 ↣ 𝐺1

𝐹𝐿𝑛
↣ 𝐺𝐿𝑛

𝐹𝐿𝑛+1 ↣ 𝐺𝐿𝑛+1

𝐹𝐿𝑛+𝑀𝑛
↣ 𝐺𝐿𝑛+𝑀𝑛

𝐹𝐿𝑛+𝑀𝑛+1 ↣ 𝐺𝐿𝑛+𝑀𝑛+1

𝐹𝑁𝑛
↣ 𝐺𝑁𝑛

[med− (𝑛)]

[med+ (𝑛)]

[lat1 (𝑛)]

[lat2 (𝑛)]

[med(𝑛)]

Fig. 3. Index sets in level 𝑛 of the basic slow transform. A Level-𝑛 block
comprises 𝑁𝑛 = 2𝐿𝑛 +𝑀𝑛 s/o-pairs. The first 𝐿𝑛 and the last 𝐿𝑛 s/o-pairs
are lateral s/o-pairs and the remaining 𝑀𝑛 s/o-pairs are medial s/o-pairs.

The level-(𝑛 + 1) block is of length 𝑁𝑛+1 = 2𝐿𝑛+1 + 𝑀𝑛+1,
where

𝐿𝑛+1 = 2𝐿𝑛 + 1 (8a)
𝑀𝑛+1 = 2(𝑀𝑛 − 1). (8b)

Indeed, 𝑁𝑛+1 = 2𝐿𝑛+1 + 𝑀𝑛+1 = 2(2𝐿𝑛 + 𝑀𝑛) = 2𝑁𝑛.

Remark 1. Observe that 𝐿𝑛 is odd and 𝑀𝑛 is even for any
𝑛 ≥ 1. Therefore, by (4), for any 𝑛 ≥ 1, the set [med− (𝑛)] is
the set of even indices of [med(𝑛)] and the set [med+ (𝑛)] is
the set of odd indices of [med(𝑛)].

Lateral symbols of a level-(𝑛 + 1) block are formed by
renaming symbols of level-𝑛 s/o-pairs, as follows:

𝑖 ∈ [lat(𝑛 + 1)] ⇒ 𝐹𝑖 =

{
𝑈 𝑗 , 𝑖 = 2 𝑗 − 1,
𝑉 𝑗 , 𝑖 = 2 𝑗 .

(9)

This is illustrated in Figure 4. Observe that all lateral symbols
of the level-𝑛 blocks become lateral symbols of the level-(𝑛+1)
block. Additionally, note that, by (4), (8), and (9), two medial
symbols of the level-𝑛 blocks become lateral symbols of the
level-(𝑛 + 1) block:

𝐹𝐿𝑛+1 = 𝐹2(𝐿𝑛+1)−1 = 𝑈𝐿𝑛+1

and
𝐹𝐿𝑛+1+𝑀𝑛+1+1 = 𝐹2(𝐿𝑛+𝑀𝑛 ) = 𝑉𝐿𝑛+𝑀𝑛

.

The medial symbols of a level-(𝑛+1) block are formed using
Arıkan transforms, as illustrated in Figure 5. That is, medial
symbols of a level-(𝑛 + 1) block are computed according to:

𝑖 ∈ [med(𝑛 + 1)] ⇒

𝐹𝑖 =


𝑈 𝑗+1 +𝑉 𝑗 , 𝑖 = 2 𝑗 ,
𝑉 𝑗 , 𝑖 = 2 𝑗 + 1, 𝑗 ∈ [med− (𝑛)],
𝑈 𝑗+1, 𝑖 = 2 𝑗 + 1, 𝑗 ∈ [med+ (𝑛)] .

(10)

We emphasize that by (4) and (8),

𝑖 ∈ [med(𝑛 + 1)] ⇔
{⌊
𝑖

2

⌋
,

⌊
𝑖

2

⌋
+ 1

}
∈ [med(𝑛)] . (11)
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lateral

lateral

𝑈 ↣ 𝑄

lateral

lateral

𝑉 ↣ 𝑅

lateral

lateral

𝐹 ↣ 𝐺

𝐿𝑛

𝑀𝑛

𝐿𝑛

𝐿𝑛

𝑀𝑛

𝐿𝑛

𝐿𝑛+1 = 2𝐿𝑛 + 1

𝑀𝑛+1 = 2(𝑀𝑛 − 1)

𝐿𝑛+1 = 2𝐿𝑛 + 1

Level-𝑛 block

Level-𝑛 block

Level-(𝑛 + 1) block

Fig. 4. A schematic description of forming lateral s/o-pairs of a level-(𝑛 + 1)
block from two level-𝑛 blocks.

lateral

lateral

𝑈 ↣ 𝑄

lateral

lateral

𝑉 ↣ 𝑅

𝑈𝐿𝑛+1
𝑈𝐿𝑛+2
𝑈𝐿𝑛+3

𝑈𝐿𝑛+𝑀𝑛−1
𝑈𝐿𝑛+𝑀𝑛

𝑉𝐿𝑛+1
𝑉𝐿𝑛+2

𝑉𝐿𝑛+𝑀𝑛−1
𝑉𝐿𝑛+𝑀𝑛

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

+

+

+

+

𝐹2𝐿𝑛+2

𝐹2𝐿𝑛+3
𝐹2𝐿𝑛+4

𝐹2𝐿𝑛+5

𝐹2𝐿𝑛+2𝑀𝑛−4

𝐹2𝐿𝑛+2𝑀𝑛−3
𝐹2𝐿𝑛+2𝑀𝑛−2

𝐹2𝐿𝑛+2𝑀𝑛−1

Level-𝑛 block

Level-𝑛 block

[med(𝑛 + 1)]

Fig. 5. Forming the medial symbols of level 𝑛+1 of the basic slow transform.
Arıkan transforms are used with a symbol from [med+ (𝑛) ] of one block as
their input-I and a symbol from [med− (𝑛) ] of the other block as their input-II.
One Arıkan transform is highlighted using thicker edges.

That is, medial symbols of a level-(𝑛+1) BST are generated by
combining medial symbols of level-𝑛 BSTs. This can be seen
either from Figure 5 or from (4), (8), and (10). In particular, (10)
and (11) imply that for any 𝑛 ≥ 0,

𝑖 ∈ [med− (𝑛 + 1)] ⇔ 𝑖 = 2 𝑗 , 𝑗 ∈ [med(𝑛)], 𝑗 ≠ 𝑁𝑛 − 𝐿𝑛,
𝑖 ∈ [med+ (𝑛 + 1)] ⇔ 𝑖 = 2 𝑗 + 1, 𝑗 ∈ [med(𝑛)], 𝑗 ≠ 𝑁𝑛 − 𝐿𝑛.

Figure 5 makes it clear that the medial symbols of a level-
(𝑛 + 1) block are formed in pairs. Overall, 𝑀𝑛 − 1 Arıkan

transforms are performed in forming the medial symbols of a
level-(𝑛 + 1) block. Recall that an Arıkan transform has two
inputs, I and II, see Figure 2. In each Arıkan transform, input-I
is a symbol from [med+ (𝑛)] of one level-𝑛 block and input-II
is a symbol from [med− (𝑛)] of the other level-𝑛 block. The
blocks alternate between successive Arıkan transforms: look
at 𝐹2𝐿𝑛+2, 𝐹2𝐿𝑛+3, 𝐹2𝐿𝑛+4, and 𝐹2𝐿𝑛+5 in Figure 5.

We saw above that the first medial symbol of the first level-𝑛
block and the last medial symbol of the second level-𝑛 block
become lateral symbols of the level-(𝑛 + 1) block; they do
not participate in forming medial symbols of the level-(𝑛 + 1)
block. This explains why the index of 𝑈 leads by one the index
of 𝑉 in (10).

By (10), when 2 𝑗 ∈ [med(𝑛 + 1)], 𝐹2 𝑗 and 𝐹2 𝑗+1 are the
outputs of an Arıkan transform of 𝑈 𝑗+1 and 𝑉 𝑗 . The expression
for 𝐹2 𝑗 is always the same: 𝐹2 𝑗 = 𝑈 𝑗+1 + 𝑉 𝑗 . The expression
for 𝐹2 𝑗+1 depends on which of 𝑈 𝑗+1 or 𝑉 𝑗 is input-II of the
Arıkan transform. One of 𝑗 and 𝑗 + 1 is in [med− (𝑛)] and the
other is in [med+ (𝑛)]. Since we form medial symbols using
Arıkan transforms with input-II symbols from [med− (𝑛)] of a
level-𝑛 block, 𝐹2 𝑗+1 is assigned according to the classification
of 𝑗 . Observe that for any 𝑛 ≥ 1, by Remark 1, the condition
“ 𝑗 ∈ [med− (𝑛)]” is the same as “ 𝑗 is even”, and the condition
“ 𝑗 ∈ [med+ (𝑛)]” is the same as “ 𝑗 is odd.”

We pause momentarily to introduce some terminology that
will be useful in the sequel.

Definition 6 (Ancestors and Base-ancestors). An Arıkan
transform — see Figure 2 — maps two symbols, 𝑈 and 𝑉 ,
into two transformed symbols, 𝐹1 and 𝐹2. Medial symbols
are generated by Arıkan transforms, as evident by Figure 5
and (10). Let 𝑖 = 2 𝑗 ∈ [med(𝑛+1)]. Then, 𝑖+1 ∈ [med(𝑛+1)]
as well, see (4) and Remark 1. Medial symbols 𝐹𝑖 and 𝐹𝑖+1,
by (10), are generated by an Arıkan transform of 𝑈 𝑗+1 and 𝑉 𝑗 .
Symbol 𝑈 𝑗+1 is in the first level-𝑛 block and symbol 𝑉 𝑗 is in
the second level-𝑛 block. Hence, we define the (immediate)
ancestors of both medial symbols 𝐹𝑖 and 𝐹𝑖+1 as 𝑈 𝑗+1 and 𝑉 𝑗 .
Since the immediate ancestors are of level 𝑛, we may also call
them level-𝑛 ancestors.

Each medial symbol of level 𝑛, in turn, has two level-(𝑛−1)
medial symbols as its immediate ancestors, see the discussion
following (11). Thus, we say that a medial symbol in level
𝑛 + 1 has four level-(𝑛 − 1) ancestors, all medial symbols
from four different level-(𝑛 − 1) blocks. Continuing in this
manner, a level-(𝑛 + 1) symbol has 2𝑛+1 level-0 ancestors, all
medial symbols from 2𝑛+1 different level-0 blocks. The level-0
ancestors of a symbol are called base-ancestors.

Equations (9) and (10) form a one-to-one and onto mapping
from (𝑈𝑁𝑛

1 , 𝑉
𝑁𝑛

1 ) to 𝐹𝑁𝑛+1
1 . We define the function 𝜑𝑛+1 of (7)

using these equations. While the level-(𝑛+1) BST is completely
specified by (7), the following lemma provides a direct method
of computing 𝐺𝑁𝑛+1

1 from 𝑄
𝑁𝑛

1 and 𝑅𝑁𝑛

1 .

Lemma 2. Consider the BST defined by (7), where 𝜑𝑛+1 is
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defined according to (9) and (10). Then, for any 𝑛 ≥ 0,

𝑖 ∈ [lat(𝑛 + 1)] ⇒ 𝐺𝑖 ≡

(𝑄 𝑗 , 𝑅 𝑗 ), 𝑖 = 2 𝑗 − 1,
(𝑄 𝑗+1, 𝑅 𝑗 ), 𝑖 = 2 𝑗 ≠ 2𝑁𝑛,

(𝐹𝑖−1, 𝑄𝑁𝑛
, 𝑅𝑁𝑛

), 𝑖 = 2𝑁𝑛

(12)
and

𝑖 ∈ [med(𝑛 + 1)] ⇒ 𝐺𝑖 ≡
{
(𝑄 𝑗+1, 𝑅 𝑗 ), 𝑖 = 2 𝑗 ,
(𝐹𝑖−1, 𝑄 𝑗+1, 𝑅 𝑗 ), 𝑖 = 2 𝑗 + 1.

(13)

Proof: By construction, for 1 ≤ 𝑗 ≤ 𝑁𝑛, we have

𝑄 𝑗 = (𝑈 𝑗−1
1 , 𝑌

𝑁𝑛

1 ), 𝑅 𝑗 = (𝑉 𝑗−1
1 , 𝑌

2𝑁𝑛

𝑁𝑛+1).
Since

𝐺𝑖 = (𝐹𝑖−1
1 , 𝑌

2𝑁𝑛

1 ),
we need only show that there is a one-to-one mapping between
the non-𝑌 portions of the right-hand-sides of (12) and (13)
to 𝐹𝑖−1

1 . We proceed in cases, based on the index 𝑖 in the
level-(𝑛 + 1) block.

Case 1: 𝑖 ∈ [lat1 (𝑛 + 1)] — the first half of the lateral set,
see (4a).
In this case, to show (12) it suffices to establish

𝐹𝑖−1
1 ≡

{
(𝑈 𝑗−1

1 , 𝑉
𝑗−1

1 ), 𝑖 = 2 𝑗 − 1,
(𝑈 𝑗

1 , 𝑉
𝑗−1

1 ), 𝑖 = 2 𝑗 .
(14)

By (9), if 𝑖 = 2 𝑗−1 we have 𝐹𝑖−1
1 ≡ (𝑈 𝑗−1

1 , 𝑉
𝑗−1

1 ). If 𝑖 = 2 𝑗 then
𝐹𝑖−1

1 ≡ (𝑈 𝑗

1 , 𝑉
𝑗−1

1 ). Thus, (14) holds for any 𝑖 ∈ [lat1 (𝑛 + 1)].
Case 2: 𝑖 ∈ [med(𝑛 + 1)] — the medial set, see (4f).

In this case, to show (13) it suffices to establish

𝐹𝑖−1
1 ≡

{
(𝑈 𝑗

1 , 𝑉
𝑗−1

1 ), 𝑖 = 2 𝑗 ,
(𝐹𝑖−1,𝑈

𝑗

1 , 𝑉
𝑗−1

1 ), 𝑖 = 2 𝑗 + 1.
(15)

By (8a), if 𝑖 is the first medial index, 𝑖 = 𝐿𝑛+1 + 1 = 2(𝐿𝑛 + 1).
Hence, 𝑖−1 is odd and lateral, so by (9), 𝐹𝑖−1

1 ≡ (𝑈𝐿𝑛+1
1 , 𝑉

𝐿𝑛

1 ),
and trivially 𝐹𝑖

1 ≡ (𝐹𝑖 ,𝑈
𝐿𝑛+1
1 , 𝑉

𝐿𝑛

1 ). This implies (15) for the
first two medial indices. We continue by induction. Assume
that for 𝑖 = 2 𝑗 ∈ [med(𝑛 + 1)] we have 𝐹2 𝑗−1

1 ≡ (𝑈 𝑗

1 , 𝑉
𝑗−1

1 ).
Trivially, 𝐹2 𝑗

1 ≡ (𝐹2 𝑗 ,𝑈
𝑗

1 , 𝑉
𝑗−1

1 ); hence (15) holds for 𝑖 + 1 as
well. By (10),

𝐹
2( 𝑗+1)−1
1 ≡ (𝐹2 𝑗−1

1 , 𝐹2 𝑗 , 𝐹2 𝑗+1)
≡ (𝐹2 𝑗−1

1 ,𝑈 𝑗+1, 𝑉 𝑗 )
≡ (𝑈 𝑗+1

1 , 𝑉
𝑗

1 ), (16)

where for the last equivalence we used the induction assumption.
This implies (15) for 𝑖 + 2.

Observe that when 𝑖 = 2(𝐿𝑛 + 𝑀𝑛 − 1) ∈ [med(𝑛 + 1)], that
is, when 𝑖 is the last even index in [med(𝑛 + 1)], then 𝑖 + 2 is
the first lateral index in [lat2 (𝑛 + 1)]. Equation (16) still holds
for 𝑖 + 2 = 2(𝐿𝑛 + 𝑀𝑛).

Case 3: 𝑖 ∈ [lat2 (𝑛 + 1)] — the second half of the lateral
set, see (4b).
In this case, to show (12) it suffices to establish

𝐹𝑖−1
1 ≡


(𝑈 𝑗−1

1 , 𝑉
𝑗−1

1 ), 𝑖 = 2 𝑗 − 1,
(𝑈 𝑗

1 , 𝑉
𝑗−1

1 ), 𝑖 = 2 𝑗 ≠ 2𝑁𝑛,

(𝐹𝑖−1,𝑈
𝑁𝑛−1
1 , 𝑉

𝑁𝑛−1
1 ), 𝑖 = 2𝑁𝑛.

(17)

If 𝑖 is the first lateral index in [lat2 (𝑛 + 1)], by (8) we have
𝑖 = 𝐿𝑛+1 +𝑀𝑛+1 + 1 = 2(𝐿𝑛 +𝑀𝑛). Thus, by the observation at
the end of case 2, 𝐹2(𝐿𝑛+𝑀𝑛 )−1

1 ≡ (𝑈𝐿𝑛+𝑀𝑛

1 , 𝑉
𝐿𝑛+𝑀𝑛−1
1 ). For

any other index 𝑖 ∈ [lat2 (𝑛 + 1)], by (9) indeed (17) holds,
similar to case 1.

We conclude this section by computing the fraction of medial
symbols out of all symbols in a level-𝑛 block. To this end,
denote

𝛼𝑛 ≜
𝑀𝑛

2𝐿𝑛 + 𝑀𝑛

. (18)

Lemma 3. Consider a BST initialized with parameters 𝐿0 ≥ 0
and 𝑀0, and let 0 < 𝛼 < 1. If

𝑀0 ≥
⌈
2(1 + 𝛼𝐿0)

1 − 𝛼

⌉
,

then 𝛼𝑛 ≥ 𝛼 for any 𝑛 ≥ 0.

Proof: Plugging 𝑛 = 0 in (18) yields 𝛼0 = 𝑀0/(2𝐿0+𝑀0).
It is straightforward to show from (8) that for any 𝑛 ≥ 0,

𝐿𝑛 = 2𝑛 (𝐿0 + (1 − 2−𝑛)) (19a)
𝑀𝑛 = 2𝑛 (𝑀0 − 2(1 − 2−𝑛)). (19b)

Therefore, recalling that 𝑁0 = 2𝐿0 + 𝑀0,

𝛼𝑛 =
𝑀𝑛

2𝐿𝑛 + 𝑀𝑛

=
𝑀0 − 2(1 − 2−𝑛)

2𝐿0 + 𝑀0
= 𝛼0 −

2(1 − 2−𝑛)
𝑁0

.

This implies that

𝛼𝑛 ≥ 𝛼0 −
2
𝑁0

=
𝑀0 − 2
𝑀0 + 2𝐿0

.

The right-hand side is an increasing function of 𝑀0, since its
derivative with respect to 𝑀0 is 2(1 + 𝐿0)/(2𝐿0 + 𝑀0)2 > 0.
It remains to find 𝑚0 such that (𝑚0 − 2)/(𝑚0 + 2𝐿0) = 𝛼.
Then, for any 𝑀0 ≥ ⌈𝑚0⌉, we will have 𝛼𝑛 ≥ 𝛼. The proof is
complete by noting that 𝑚0 = 2(1 + 𝛼𝐿0)/(1 − 𝛼).
Discussion. The transform presented in [8], henceforth referred
to as the Şaşoğlu-Wang transform (SWT), is the basis for the
BST. The first two levels of the SWT (levels 1 and 2 in [8])
differ from the first two levels of the BST (levels 0 and 1 here).
After that, the construction of the two transforms coincide
(compare our Figure 5 with [8, Figure 5]). The BST is simpler
and more streamlined than the SWT, since all levels of the
BST share the same construction. In the memoryless case one
can verify that the SWT and BST (with 𝐿0 = 0) have the same
performance.

We will see in Section V that the BST is effective also for
processes with memory, by taking 𝐿0 > 0.

In Section V we will show that for an appropriate 𝜂 and
family of s/o-processes, the BST is (𝜂,L,H)-monopolarizing,
with L = [med+ (𝑛)] and H = [med− (𝑛)], where 𝑛 is the level
number of the BST. In particular, this implies that |L| = |H|,
which limits to 1/2 the achievable rates the universal code can
yield. It is possible to generate slow stage transforms for which
L and H are of different sizes. One way to achieve this is by
cascading multiple BSTs. This idea originates in [8, Section
III]; a brief description on how this is accomplished follows.
After a BST, all symbols in [med− (𝑛)] have approximately the
same conditional entropy; the same is true for all symbols in
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[med+ (𝑛)]. If 𝑛 is sufficiently large, one set will have polarized
(e.g., the conditional entropies of s/o-pairs in [med− (𝑛)] are
all very close to 1). By applying a BST to multiple copies of
the other set, we divide its s/o-pairs into two new sets of equal
size, one of which will have polarized. This operation can
be repeated to tailor the size of the polarized set. For further
details, see Section V-D.

An alternative strategy to modify the sizes of L and H is
to form medial symbols with kernels other than the Arıkan
transform. A family of kernels are introduced in [8, Section
III]. They can also be adapted to our construction, and we
leave this to the interested reader.

C. Fast Polarization Stage

We will show in Section V that the BST is (𝜂,L,H)-
monopolarizing for a suitable family of s/o-processes with
memory. This is also true for a cascade of BSTs, see
Section V-D. Moreover, the sets L and H are predetermined
and independent of the s/o-process. However, even in the
memoryless case [8], the speed of polarization is too slow to
enable a successive-cancellation decoder to succeed. Therefore,
as in [8], we append a fast polarization stage to the BST cascade
that facilitates error-free successive-cancellation decoding.

The fast polarization stage is based on Arıkan’s seminal
transform [2], which is known to polarize fast also under mem-
ory [13], [14]. One strategy to incorporate a fast polarization
stage, suggested in [8], is as follows.

As in the proof of Theorem 1, we fix a sufficiently small 𝜂,
which determines the back-off from extremality that the BST
cascade will achieve. This value, as shown in Appendix A,
is set small enough to ensure fast polarization of this stage.
Further following the proof of Theorem 1, we set the BST
cascade parameters. These include the BST parameters 𝐿0,
𝑀0, 𝑛, as well parameters 𝑡 and c defining the cascade, to be
discussed in Section V-D. These parameters ensure that the
BST cascade in (𝜂,L,H)-monopolarizing and that |H|/𝑁 is
sufficiently close to the infimal conditional entropy rate of the
family of s/o-processes.

For the fast stage, take �̂� = 2�̂� copies of the BST cascade of
length 𝑁 . Apply multiple copies of Arıkan’s seminal transform
(“fast transform”) of length �̂� , as illustrated in Figure 6. In
words, the 𝑗 th fast transform operates on the 𝑗 th s/o-pair from
each copy of the BST cascade.

As shown in the proof of Theorem 1, this construction is
universal over the family of s/o-processes. That is, the code is
the same for any s/o-process in the family. Recall that when
decoding, we assume that the s/o-process is known at the
decoder side.

IV. PROPERTIES OF THE BST AND A VARIATION

In this section we explore some of the properties of the BST.
We also introduce a variation of the BST, the Observation-
truncated BST. We will call upon these when analyzing the
BST in Section V-C.

BST
cascade

BST
cascade

BST
cascade

BST
cascade

s/o-process
blocks

�̂� copies

𝑁
Fast

transform�̂�

Fast
transform

𝑗

𝑗

𝑗

𝑗

Fast
transform

𝑁 copies

Fig. 6. Illustration of the slow and fast stages. First, �̂� length-𝑁 blocks of
the s/o-process are transformed using BST cascades of length 𝑁 (denoted in
green ). Then, 𝑁 fast transforms of length �̂� are applied (denoted in orange

). The 𝑗th fast transform (in bold) operates on the 𝑗th s/o-pair in each BST
cascade.

A. Properties of the BST

We now explore some properties of the BST that will be
useful in the sequel. To this end, throughout this section we
assume that BSTs are initialized with parameters 𝐿0 and 𝑀0.
A level-0 BST is thus of length 𝑁0 = 2𝐿0 + 𝑀0, and a level-𝑛
BST is of length 𝑁𝑛 = 2𝑛𝑁0.

Since 𝑁𝑛 = 2𝑛𝑁0, we say that a level-𝑛 BST is formed from
2𝑛 level-0 BSTs. We call each level-0 BST a b-block,3 and we
number them sequentially. The b-block numbered ℓ contains
s/o-pairs with indices (ℓ−1)𝑁0+ 𝑘 , 1 ≤ 𝑘 ≤ 𝑁0. The following
definition names both ℓ and 𝑘 .

Definition 7 (b-block number and b-index). In a level-𝑛 BST,
an index 𝑗 is a number between 1 and 𝑁𝑛. We write it in the
form

𝑗 = (ℓ − 1)𝑁0 + 𝑘, 1 ≤ ℓ ≤ 2𝑛, 1 ≤ 𝑘 ≤ 𝑁0. (20)

We call ℓ the b-block number and 𝑘 the b-index that correspond
to index 𝑗 .

Recall from Definition 6 that each medial level-𝑛 symbol
has 2𝑛 medial level-0 indices as its base-ancestors. These base-
ancestors are a subvector of 𝑋𝑁𝑛

1 . Each of these level-0 indices
has a different b-block number, computed via (20). We collect
the sorted indices of these symbols in a vector as follows. From
this point onwards, we use the term ‘ancestor’ to apply to both
the symbol and its index; it will be clear from the context if
we refer to the symbol or to its index.

3The letter ‘b’ here and also in the name b-index below stands for ‘base,’ as
the BST may be thought of as consisting of 2𝑛 “base blocks” of length 𝑁0.
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Definition 8 (Base-vector and modulo-base-vector). The base-
vector b of a medial index 𝑖 is a row vector whose ℓth entry
is the base-ancestor of 𝑖 from b-block ℓ. Therefore,

(b)ℓ = (ℓ − 1)𝑁0 + 𝑘 (21)

for some 𝐿0 + 1 ≤ 𝑘 ≤ 𝑁0 − 𝐿0.
The modulo-base-vector b̄ of 𝑖 is defined by

(b̄)ℓ = (b)ℓ − (ℓ − 1)𝑁0, 1 ≤ ℓ ≤ 2𝑛, (22)

where 𝑛 is the level of 𝑖. This vector contains in its ℓth entry
the b-index of 𝑖’s base-ancestor in the ℓth b-block. That is, 𝑘
in (21).

Remark 2. We only define base-vectors for medial indices.
While it is possible to extend the definition to apply to lateral
indices, this will not be of interest to us. This is afforded
because the ancestors of medial indices can only be medial
indices, so we will not need to consider lateral indices. In
particular, equation (23) below is well-defined because each
vector on the right-hand side is a modulo-base-vector of a
medial index.

To motivate the definition of the base-vector, assume
momentarily that the s/o-process being transformed were
memoryless. If we tried to recover some transformed symbol
𝐹𝑖 using successive-cancellation decoding, we could discard
all observations except for those whose indices are in the
base-vector. That is, in the memoryless case

P
(
𝐹𝑖 = 0

�� 𝐹𝑖−1
1 , 𝑌

𝑁𝑛

1

)
= P

(
𝐹𝑖 = 0

�� 𝐹𝑖−1
1 , 𝑌b

)
,

where 𝑌b = {𝑌(b)1 , 𝑌(b)2 , . . . , 𝑌(b)2𝑛 }. We emphasize that the
aforementioned assumption of a memoryless process was made
solely for the purpose of motivating the base-vector. In fact,
the base-vector is a product of the BST itself, and has nothing
to do with the s/o-process being transformed. Henceforth, in
this section we look at a BST as a transformation between two
vectors, and study some of its properties.

To compute the base-vector of an index, we first compute
its modulo-base-vector, and then use (22). The modulo-base-
vectors are constructed recursively. To this end, we augment
the notation for base- and modulo-base-vectors with the index
and level specification. Thus, for 𝑖 ∈ [med(𝑛)], we use b(𝑛)

𝑖

and b̄(𝑛)
𝑖

to denote the base-vector and modulo-base-vector,
respectively.

For a level-0 BST, the modulo-base-vector for medial index
𝐿0 + 1 ≤ 𝑖 ≤ 𝑁0 − 𝐿0 contains just one index:

b̄(0)
𝑖

=
[
𝑖
]
.

For higher levels, by Definition 6, the modulo-base-vectors are
constructed by

b̄(𝑛+1)
𝑖

=

[
b̄(𝑛)
𝑗+1 b̄(𝑛)

𝑗

]
, 𝑗 =

⌊
𝑖

2

⌋
. (23)

Recall from Remark 1 that if 𝑖 ∈ [med− (𝑛+1)], then 𝑖 is even,
so 𝑖 and 𝑖 + 1 share the same base-vector.

Example 2. Consider a BST initialized with 𝐿0 = 3, 𝑀0 = 6.
A level-0 BST is of length 𝑁0 = 2𝐿0 + 𝑀0 = 12. A level-1

+

+

+

+

6

(6)

5

(17)

5

(29)

4

(40)

5

(53)

4

(64)

5

(77)

4

(88)

+

+

10

9

8

9

+ 17

1835

34

level-0

level-1

level-2level-3

Fig. 7. A portion of a level-3 BST, initialized with 𝐿0 = 3, 𝑀0 = 6. The
base-vector b(3)34 = b(3)35 is illustrated. The rectangles denote level-0 BSTs.
Level-1 BSTs are delimited with dashed lines (in red) and level-2 BSTs are
delimited with dash-dotted lines (in blue). Above each line, we show its index
with respect to its relevant-level BST (the rightmost are level-0). The level-0
indices are also b-indices; below them we noted in parentheses (in green) their
respective indices in a level-3 BST.

BST is of length 𝑁1 = 2𝑁0 = 24. The first medial index is
𝐿1 + 1 = (2𝐿0 + 1) + 1 = 8. We have

b̄(1)8 = b̄(1)9 =
[
5 4

]
, b̄(1)10 = b̄(1)11 =

[
6 5

]
,

and so on. A level-2 BST is of length 𝑁2 = 2𝑁1 = 48, and its
first medial index is 𝐿2 + 1 = (2𝐿1 + 1) + 1 = 16. Thus,

b̄(2)16 = b̄(2)17 =
[
5 4 5 4

]
, b̄(2)18 = b̄(2)19 =

[
6 5 5 4

]
.

A level-3 BST is of length 𝑁3 = 2𝑁2 = 96, its first medial
index is 𝐿3 + 1 = (2𝐿2 + 1) + 1 = 32, and

b̄(3)32 = b̄(3)33 =
[
5 4 5 4 5 4 5 4

]
,

b̄(3)34 = b̄(3)35 =
[
6 5 5 4 5 4 5 4

]
.

Computing a base-vector, say b(3)35 , is easily done using (22):

b(3)35 =
[
6 17 29 40 53 64 77 88

]
.

In Figure 7 we illustrate a portion of a level-3 BST and show
the base-vector b(3)34 = b(3)35 .

Let 𝑛 ≤ 𝑚. Fix some 𝑖 ∈ [med(𝑚)] and apply (23)
recursively 𝑚−𝑛 times. This expresses the modulo-base-vector
of 𝑖 as a concatenation of 2𝑚−𝑛 level-𝑛 modulo-base-vectors.
These are the modulo-base-vectors of the level-𝑛 ancestors of
this level-𝑚 index. In particular, the modulo-base-vector of any
level-𝑛 ancestor of 𝑖 is a sub-vector of 𝑖’s modulo-base-vector.
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Example 2 (Continued). We can express the modulo-base-
vector of level-3 index 34 as a concatenation of the modulo-
base-vectors of its level-1 ancestors:

b̄(3)34 =
[ [

6 5
] [

5 4
] [

5 4
] [

5 4
] ]

=

[
b̄(1)10 b̄(1)9 b̄(1)9 b̄(1)8

]
.

Observe that in Example 2, the modulo-base-vectors of
medial indices contain at least two and at most three distinct
b-indices, and these b-indices are consecutive. This is not a
coincidence, as the corollary to the following two lemmas will
show.

Lemma 4. For any 𝑖, 𝑖 + 1 ∈ [med(𝑛)] and any 1 ≤ ℓ ≤ 2𝑛
we have

(b̄(𝑛)
𝑖+1 )ℓ ≥ (b̄

(𝑛)
𝑖
)ℓ . (24)

Proof: This follows from (23) by straightforward induction.
Specifically, note that if the index 𝑖 on the left-hand-side of
(23) increases, the indices 𝑗 and 𝑗 + 1 on the right-hand-side
cannot decrease.

Lemma 5. For any 𝑖 ∈ [med(𝑛)] and any 1 ≤ ℓ ≤ 2𝑛 we have⌊
𝑖

2𝑛

⌋
= (b̄(𝑛)

𝑖
)2𝑛 ≤ (b̄(𝑛)𝑖

)ℓ ≤ (b̄(𝑛)𝑖
)1 = 1 +

⌈
𝑖 − 1
2𝑛

⌉
. (25)

In words, for any medial index 𝑖, the first element of b̄(𝑛)
𝑖

is its maximal, which equals 1 + ⌈(𝑖 − 1) · 2−𝑛⌉, and the last
element of b̄(𝑛)

𝑖
is its minimal, which equals ⌊𝑖 · 2−𝑛⌋.

Proof: The proof consists of several steps, all proved
using induction. First, we prove claim 1: (b̄(𝑛)

𝑖
)1 ≥ (b̄(𝑛)𝑖

)ℓ ≥
(b̄(𝑛)

𝑖
)2𝑛 for any 𝑖 ∈ [med(𝑛)] and 1 ≤ ℓ ≤ 2𝑛. Then, we

will establish the formulas for computing the values of these
elements.

Proof of Claim 1: For 𝑛 = 0 claim 1 is trivially true, as for any
𝑖 ∈ [med(0)], b̄(0)

𝑖
is a singleton. Assume that claim 1 holds

for some 𝑛 ≥ 0; we will establish that it is true also for 𝑛 + 1.
Let 𝑖 ∈ [med(𝑛 + 1)]. Then, by (23), b̄(𝑛+1)

𝑖
=

[
b̄(𝑛)
𝑗+1 b̄(𝑛)

𝑗

]
,

where 𝑗 = ⌊𝑖/2⌋. By the induction hypothesis,

(b̄(𝑛+1)
𝑖
)1 = (b̄(𝑛)

𝑗+1)1 ≥ (b̄
(𝑛)
𝑗+1)ℓ ≥ (b̄

(𝑛)
𝑗+1)2𝑛 ,

(b̄(𝑛)
𝑗
)1 ≥ (b̄(𝑛)𝑗

)ℓ ≥ (b̄(𝑛)𝑗
)2𝑛 = (b̄(𝑛+1)

𝑖
)2𝑛+1

for any 1 ≤ ℓ ≤ 2𝑛. By Lemma 4, (b̄(𝑛)
𝑗+1)ℓ ≥ (b̄

(𝑛)
𝑗
)ℓ for any

1 ≤ ℓ ≤ 2𝑛. Therefore,

(b̄(𝑛+1)
𝑖
)1 ≥ (b̄(𝑛+1)𝑖

)ℓ ≥ (b̄(𝑛+1)𝑖
)2𝑛+1

for any 1 ≤ ℓ ≤ 2𝑛+1, thereby proving claim 1.
Proof of the right-hand side of (25): For 𝑛 = 0 and any

𝑖 ∈ [med(0)], trivially (b̄(0)
𝑖
)1 = 1+ ⌈(𝑖 − 1) · 2−0⌉ = 𝑖. Assume

that the right-hand side of (25) holds for some 𝑛 ≥ 0; we will
show it holds for 𝑛 + 1 as well. Let 𝑖 ∈ [med(𝑛 + 1)]; by (23),
(b̄(𝑛+1)

𝑖
)1 = (b̄(𝑛)

𝑗+1)1, where 𝑗 = ⌊𝑖/2⌋. Now, observe that for
natural 𝑖, ⌊

𝑖

2

⌋
=

⌈
𝑖 − 1

2

⌉
.

Therefore,

(b̄(𝑛+1)
𝑖
)1 = (b̄(𝑛)⌊𝑖/2⌋+1)1

(a)
= 1 +

⌈
⌊𝑖/2⌋

2𝑛

⌉
= 1 +

⌈
⌈(𝑖 − 1)/2⌉

2𝑛

⌉
(b)
= 1 +

⌈
(𝑖 − 1)/2

2𝑛

⌉
= 1 +

⌈
𝑖 − 1
2𝑛+1

⌉
,

where (a) is by the induction assumption and (b) is by [21,
equation 3.11].

Proof of the left-hand side of (25): For 𝑛 = 0 and any
𝑖 ∈ [med(0)], trivially (b̄(0)

𝑖
)20 = ⌊𝑖 · 2−0⌋ = 𝑖. Assume that

the left-hand side of (25) holds for some 𝑛 ≥ 0; we will show
it holds for 𝑛 + 1 as well. Let 𝑖 ∈ [med(𝑛 + 1)]; by (23),
(b̄(𝑛+1)

𝑖
)2𝑛+1 = (b̄

(𝑛)
𝑗
)2𝑛 , where 𝑗 = ⌊𝑖/2⌋. Therefore,

(b̄(𝑛+1)
𝑖
)2𝑛+1 = (b̄

(𝑛)
⌊𝑖/2⌋)2𝑛

(a)
=

⌊
⌊𝑖/2⌋

2𝑛

⌋
(b)
=

⌊
𝑖/2
2𝑛

⌋
=

⌊
𝑖

2𝑛+1

⌋
,

where (a) is by the induction assumption and (b) is by [21,
equation 3.11].

Corollary 6. If 𝑛 ≥ 1 then for any 𝑖 ∈ [med(𝑛)],

1 ≤ max
ℓ
(b̄(𝑛)

𝑖
)ℓ −min

ℓ
(b̄(𝑛)

𝑖
)ℓ ≤ 2.

Proof: This is an immediate consequence of Lemma 5.
Specifically, if ⌊𝑖/2𝑛⌋ = 𝑟 then

𝑟 ≤ 𝑖

2𝑛
< 𝑟 + 1 ⇒ 𝑟 − 1

2𝑛
≤ 𝑖 − 1

2𝑛
< 𝑟 + 1 − 1

2𝑛
.

The ceiling operation ⌈·⌉ is monotonically increasing. Thus,
we apply it to the three terms on the right-hand side to yield
𝑟 ≤ ⌈(𝑖 − 1)/2𝑛⌉ ≤ 𝑟 + 1.

B. The Observation-Truncated BST

The Observation-Truncated BST (OT-BST in short) is a
variation on the BST that will be useful for analysis. It is
defined recursively, just like the BST, but with a different
initialization.

The BST may be looked at as a recursively-defined sequence
of functions. Let 𝐹𝑁𝑛

1 ↣ 𝐺
𝑁𝑛

1 be the output of a level-𝑛 BST
with parameters 𝐿0 and 𝑀0 of s/o-block 𝑋

𝑁𝑛

1 ↣ 𝑌
𝑁𝑛

1 . Recall
that 𝑋𝑖 ∈ X = {0, 1} and 𝑌𝑖 ∈ Y for any 𝑖, where Y is some
finite alphabet. For any 𝑖 ∈ [med(𝑛)] there exist functions

𝑓𝑛,𝑖 : X𝑁𝑛 → X,

𝑔𝑛,𝑖 : X𝑁𝑛 × Y𝑁𝑛 → X𝑖−1 × Y𝑁𝑛 ,

such that 𝑓𝑛,𝑖 (𝑋𝑁𝑛

1 ) = 𝐹𝑖 and 𝑔𝑛,𝑖 (𝑋𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ) = 𝐺𝑖 .
From (5), (10), and (13), they are recursively defined as follows.
Initialization for any 𝑖 ∈ [med(0)]:

𝑓0,𝑖 (𝑋𝑁0
1 ) = 𝑋𝑖 , (26a)

𝑔0,𝑖 (𝑋𝑁0
1 , 𝑌

𝑁0
1 ) = (𝑋

𝑖−1
1 , 𝑌

𝑁0
1 ). (26b)

Recursion for 𝑓𝑛+1,𝑖 for any 𝑖 ∈ [med(𝑛 + 1)]:

𝑓𝑛+1,𝑖 (𝑋𝑁𝑛+1
1 )

=


𝑓𝑛, 𝑗+1 (𝑋𝑁𝑛

1 ) + 𝑓𝑛, 𝑗 (𝑋
2𝑁𝑛

𝑁𝑛+1), 𝑖 = 2 𝑗 ,
𝑓𝑛, 𝑗 (𝑋2𝑁𝑛

𝑁𝑛+1), 𝑖 = 2 𝑗 + 1, 𝑗 ∈ [med− (𝑛)],
𝑓𝑛, 𝑗+1 (𝑋𝑁𝑛

1 ), 𝑖 = 2 𝑗 + 1, 𝑗 ∈ [med+ (𝑛)] .
(27)
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Recursion for 𝑔𝑛+1,𝑖 for any 𝑖 ∈ [med(𝑛 + 1)]:

𝑔𝑛+1,𝑖 (𝑋𝑁𝑛+1
1 , 𝑌

𝑁𝑛+1
1 )

=



(
𝑔𝑛, 𝑗 (𝑋2𝑁𝑛

𝑁𝑛+1, 𝑌
2𝑁𝑛

𝑁𝑛+1), 𝑔𝑛, 𝑗+1 (𝑋
𝑁𝑛

1 , 𝑌
𝑁𝑛

1 )
)
,

𝑖 = 2 𝑗 ,
𝑗 ∈ [med− (𝑛)],(

𝑔𝑛, 𝑗+1 (𝑋𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ), 𝑔𝑛, 𝑗 (𝑋
2𝑁𝑛

𝑁𝑛+1, 𝑌
2𝑁𝑛

𝑁𝑛+1)
)
,

𝑖 = 2 𝑗 ,
𝑗 ∈ [med+ (𝑛)],(

𝑓𝑛+1,𝑖−1 (𝑋𝑁𝑛+1
1 ), 𝑔𝑛+1,𝑖−1 (𝑋𝑁𝑛+1

1 , 𝑌
𝑁𝑛+1
1 )

)
, 𝑖 = 2 𝑗 + 1.

(28)

In the recursion for 𝑔𝑛+1,𝑖 (𝑋𝑁𝑛+1
1 , 𝑌

𝑁𝑛+1
1 ) where 𝑖 = 2 𝑗 we dif-

ferentiate between the cases 𝑗 ∈ [med− (𝑛)] and 𝑗 ∈ [med+ (𝑛)]
to ensure that, for even 𝑖, the first part of the observation is
an observation from [med− (𝑛)] and the second part is an
observation from [med+ (𝑛)]. This is an artifact of the medial
indices alternating between blocks, see Figure 5. This subtlety
will be important for a technicality in the proof of Lemma 13
below. For all other purposes, the reader is encouraged to
disregard this rather technical distinction.

We concentrate here only on medial indices, because our
analysis will focus on medial indices. The recursion (27), (28)
is well-defined, as medial indices are only ever generated from
medial indices (see Remark 2), so nowhere in the recursion
will a non-medial index appear.

The observation-truncated BST is also a recursively-defined
sequence of functions 𝑓𝑛,𝑖 and �̃�𝑛,𝑖 . The recursion for these
functions is given by (27) and (28), and is governed by the
same two parameters, 𝐿0 and 𝑀0, as the BST. However, the
OT-BST has a different initialization than that of the BST. The
initialization for the OT-BST is, for any 𝑖 ∈ [med(0)],

𝑓0,𝑖 (𝑋𝑁0
1 ) = 𝑋𝑖 , (29a)

�̃�0,𝑖 (𝑋𝑁0
1 , 𝑌

𝑁0
1 ) = (𝑋

𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0
). (29b)

By comparing (26) and (29), two observations are made.
First, 𝑓𝑛,𝑖 = 𝑓𝑛,𝑖 for any 𝑖 ∈ [med(𝑛)]. Second, there
exists a mapping 𝛾𝑛,𝑖 from 𝑔𝑛,𝑖 to �̃�𝑛,𝑖 . That is, given
𝐺𝑖 = 𝑔𝑛,𝑖 (𝑋𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ), one may compute

�̃�𝑛,𝑖 (𝑋𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ) = 𝛾𝑛,𝑖 (𝑔𝑛,𝑖 (𝑋
𝑁𝑛

1 , 𝑌
𝑁𝑛

1 )) = 𝛾𝑛,𝑖 (𝐺𝑖).

This is clear from the initialization step, and for the remaining
steps it follows from the recursive definition (28) and since
𝑓𝑛,𝑖 = 𝑓𝑛,𝑖 .

The domains for 𝑓𝑛,𝑖 , 𝑓𝑛,𝑖 , 𝑔𝑛,𝑖 , �̃�𝑛,𝑖 are over specified. Not
all inputs of these functions are relevant. The relevant domain
of these functions may be expressed using the base-vector of
𝑖. To this end, we recall the following notation. For any vector
of indices i =

[
𝑖1 𝑖2 · · · 𝑖𝑘

]
, natural numbers 𝐿, 𝑀 , and a

sequence of random variables 𝑋 𝑗 , we denote

𝑋i = (𝑋𝑖1 , 𝑋𝑖2 , . . . , 𝑋𝑖𝑘 ), (30a)
𝑋i−𝐿 = (𝑋𝑖1−𝐿 , 𝑋𝑖2−𝐿 , . . . , 𝑋𝑖𝑘−𝐿), (30b)

𝑋 i+𝑀
i−𝐿 = (𝑋 𝑖1+𝑀

𝑖1−𝐿 , 𝑋
𝑖2+𝑀
𝑖2−𝐿 , . . . , 𝑋

𝑖2+𝑀
𝑖𝑘−𝐿 ). (30c)

Now, let b be the base-vector of level-𝑛 index 𝑖. Then, 𝑓𝑛,𝑖
and 𝑓𝑛,𝑖 are actually functions of 𝑋b. This follows from the

recursive definitions of the functions and the base-vector. With
some abuse of notation we henceforth write

𝑓𝑛,𝑖 (𝑋𝑁𝑛

1 ) = 𝑓𝑛,𝑖 (𝑋b).

Similarly, by (26b), (28), and (29b),

𝑔𝑛,𝑖 (𝑋𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ) = 𝑔𝑛,𝑖 (𝑋
b
a , 𝑌

z
a ),

�̃�𝑛,𝑖 (𝑋𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ) = �̃�𝑛,𝑖 (𝑋
b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
),

where we denoted

a =
[
1 𝑁0 + 1 2𝑁0 + 1 · · · (2𝑛 − 1)𝑁0 + 1

]
,

z =
[
𝑁0 2𝑁0 3𝑁0 · · · 2𝑛𝑁0

]
.

Note that 𝑌 z
a = 𝑌

𝑁𝑛

1 .

Example 2 (Continued). For a level-3 BST initialized with
𝐿0 = 3, 𝑀0 = 6, consider 𝑓3,34 and 𝑓3,35. The base-vector for
either index 34 or 35 is

b =
[
6 17 29 40 53 64 77 88

]
.

We have (see Figure 7):

𝐹34 = 𝑓3,34 (𝑋b) = 𝑋6 + 𝑋17 + 𝑋40 + 𝑋77 + 𝑋88,

𝐹35 = 𝑓3,35 (𝑋b) = 𝑋6 + 𝑋17 + 𝑋40.

Recall that b is the base-vector of level-𝑛 index 𝑖. From
the recursive definition (28), we observe that we can compute
𝑋b−1

b−𝐿0
from �̃�𝑛,𝑖 (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
). This is easily shown by in-

duction. It is trivially true for 𝑛 = 0. Assume that this holds
for 𝑛 ≥ 0 for any medial index; we will show it holds for
𝑛 + 1 as well. Indeed, write b =

[
b1 b2

]
, where b1 and b2

are of length 2𝑛−1. By the recursive definition of b, (23), the
recursion (28) becomes

�̃�𝑛+1,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
)

=



(
�̃�𝑛, 𝑗 (𝑋b2

b2−𝐿0
, 𝑌

b2+𝐿0
b2−𝐿0

), �̃�𝑛, 𝑗+1 (𝑋b1
b1−𝐿0

, 𝑌
b1+𝐿0
b1−𝐿0

)
)
,

𝑖=2 𝑗 ,
𝑗∈[med− (𝑛) ],(

�̃�𝑛, 𝑗+1 (𝑋b1
b1−𝐿0

, 𝑌
b1+𝐿0
b1−𝐿0

), �̃�𝑛, 𝑗 (𝑋b2
b2−𝐿0

, 𝑌
b2+𝐿0
b2−𝐿0

)
)
,

𝑖=2 𝑗 ,
𝑗∈[med+ (𝑛) ],(

𝑓𝑛+1,𝑖−1 (𝑋b
b−𝐿0
), �̃�𝑛+1,𝑖−1 (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
)
)
, 𝑖 = 2 𝑗 + 1.

By the induction hypothesis, we can compute 𝑋
b1−1
b1−𝐿0

from
�̃�𝑛, 𝑗+1 (𝑋b1

b1−𝐿0
), and 𝑋b2−1

b2−𝐿0
from �̃�𝑛, 𝑗 (𝑋b2

b2−𝐿0
, 𝑌

b2+𝐿0
b2−𝐿0

). In other
words, we can compute 𝑋b−1

b−𝐿0
from �̃�𝑛+1,𝑖 (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
). Of

course, one can also compute 𝑌b+𝐿0
b−𝐿0

from �̃�𝑛,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
).

Therefore, recalling that ‘≡’ between two vectors means that
there is a one-to-one mapping between either one and the other
that is independent of either vector,

�̃�𝑛,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) ≡

(
�̃�𝑛,𝑖 (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
), 𝑋b−1

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0

)
.

(31)
We saw above that given 𝐺𝑖 = 𝑔𝑛,𝑖 (𝑋b

a , 𝑌
z
a ) one can

compute �́�𝑖 = �̃�𝑛,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
). In fact, more is true.

We can compute from 𝐺𝑖 two quantities: �́�𝑖 , which is
a function of (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
), and

´
𝐺𝑖 , which consists of

(𝑋b−𝐿0−1
a , 𝑌

b−𝐿0−1
a , 𝑌 z

b+𝐿0+1). Thus, we may write

𝐺𝑖 = 𝑔𝑛,𝑖 (𝑋b
a , 𝑌

z
a ) ≡ (�́�𝑖 , ´

𝐺𝑖), (32)
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where

�́�𝑖 = �̃�𝑛,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
),

´
𝐺𝑖 = (𝑋b−𝐿0−1

a , 𝑌
b−𝐿0−1
a , 𝑌 z

b+𝐿0+1).

This follows by induction similar to the one above. Indeed,
this is obvious for the initialization step by comparing (26b)
and (29b), and the induction step follows, as above, from the
recursive definition of the base-vector (23) and from (28).
Remark 3. At this point, the reader may be wondering why
we used the notation �́�𝑖 , ´

𝐺𝑖 rather than �̃�𝑖 , ˜
𝐺𝑖 . The reason is

that we reserve the latter notation to the result of the OT-BST
when applied for a different process, the block-independent
process, that we introduce in Section V-B. The notation for
the block-independent process will use tildes. Our main use
of the OT-BST will be for the block-independent process.

We conclude this section with a note on terminology.
The OT-BST is not an H-transform. That said, we bor-
row some terminology from H-transforms and apply it to
the OT-BST. Specifically, for level-𝑛 index 𝑖 with base-
vector b we call 𝑓𝑛,𝑖 (𝑋b) an OT-transformed index. The
conditional entropy of OT-transformed level-𝑛 index 𝑖 is
𝐻 ( 𝑓𝑛,𝑖 (𝑋b) |�̃�𝑛,𝑖 (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
)). Finally, for 𝜂 > 0 and in-

dex sets L,H ⊆ {1, 2, . . . , 𝑁𝑛}, the OT-BST is (𝜂,L,H)-
monopolarizing if either 𝐻 ( 𝑓𝑛,𝑖 (𝑋b) |�̃�𝑛,𝑖 (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
)) < 𝜂

for all 𝑖 ∈ L, or 𝐻 ( 𝑓𝑛,𝑖 (𝑋b) |�̃�𝑛,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
)) > 1 − 𝜂 for

all 𝑖 ∈ H.

V. THE BST IS MONOPOLARIZING

For a suitable family of s/o-processes, the BST is monopo-
larizing. We now describe this family and establish that the
BST is monopolarizing for it.

A. A Probabilistic Model with Memory

The s/o-processes for which we prove that the BST is
monopolarizing share a certain probabilistic structure. That
is, the distribution of the s/o-process 𝑋★ ↣ 𝑌★ has a specific
form: it depends on an underlying Markov sequence, 𝑆 𝑗 , 𝑗 ∈ Z.
We assume throughout that, for any 𝑗 , 𝑋 𝑗 is binary, 𝑌 𝑗 ∈ Y,
and 𝑆 𝑗 ∈ S, where Y, S are finite alphabets.

Definition 9 (FAIM process). A strictly stationary process
(𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ), 𝑗 ∈ Z is called a Finite-State, Aperiodic, Irre-
ducible, Markov (FAIM) process if, for any any 𝑗 ,

𝑃
𝑆 𝑗 ,𝑋 𝑗 ,𝑌𝑗 |𝑆 𝑗−1

−∞ ,𝑋
𝑗−1
−∞ ,𝑌

𝑗−1
−∞

= 𝑃𝑆 𝑗 ,𝑋 𝑗 ,𝑌𝑗 |𝑆 𝑗−1 = 𝑃𝑆 𝑗 |𝑆 𝑗−1 · 𝑃𝑋 𝑗 ,𝑌𝑗 |𝑆 𝑗
,

(33)
and 𝑆 𝑗 , 𝑗 ∈ Z is a finite-state, homogeneous, irreducible, and
aperiodic stationary Markov chain.

An s/o-process 𝑋★ ↣ 𝑌★ whose joint distribution is derived
from a FAIM process (𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ) is called a FAIM-derived
s/o-process.

Equation (33) implies that conditioned on 𝑆 𝑗−1, the random
variables 𝑆𝑘 , 𝑋𝑘 , 𝑌𝑘 are independent of 𝑆𝑙−1, 𝑋𝑙 , 𝑌𝑙 , for any
𝑙 < 𝑗 ≤ 𝑘 . Furthermore, 𝑋 𝑗 , 𝑌 𝑗 are a function (possibly
probabilistic) of 𝑆 𝑗 . FAIM processes are described in detail
in [14].

Remark 4. The definition of FAIM processes in [14] did not
include the rightmost equality of (33). However, by suitably
redefining the state of the process (for example, take (𝑆 𝑗 , 𝑆 𝑗−1)
as the state at time 𝑗),4 we may obtain the rightmost equality
of (33) from its leftmost equality. Therefore, there is no loss
of generality in the definition of a FAIM process given here
as compared to the one in [14].

In the following lemma we prove an important property of
FAIM processes. Informally, it implies that two s/o-blocks that
are sufficiently far apart — that is, the last index of the first
s/o-block is sufficiently less than the first index of the second
s/o-block— are approximately independent.

Lemma 7. If 𝑋★ ↣ 𝑌★ is a FAIM-derived s/o-process, there
exist sequences 𝜓𝑘 , 𝜙𝑘 , 𝑘 ≥ 0, such that for any 𝐿 ≤ 𝑀 ∈ Z,

𝑃𝑋𝐿
−∞ ,𝑌

𝐿
−∞ ,𝑋

∞
𝑀+1 ,𝑌

∞
𝑀+1
≤ 𝜓𝑀−𝐿 · 𝑃𝑋𝐿

−∞ ,𝑌
𝐿
−∞
· 𝑃𝑋∞

𝑀+1 ,𝑌
∞
𝑀+1
, (34a)

𝑃𝑋𝐿
−∞ ,𝑌

𝐿
−∞ ,𝑋

∞
𝑀+1 ,𝑌

∞
𝑀+1
≥ 𝜙𝑀−𝐿 · 𝑃𝑋𝐿

−∞ ,𝑌
𝐿
−∞
· 𝑃𝑋∞

𝑀+1 ,𝑌
∞
𝑀+1
. (34b)

The sequence 𝜓𝑘 is nonincreasing and the sequence 𝜙𝑘 is
nondecreasing. Both 𝜓𝑘 and 𝜙𝑘 tend to 1 exponentially fast
as 𝑘 →∞.

The sequences 𝜓𝑘 and 𝜙𝑘 are called mixing sequences. Part
of the lemma, namely (34a), was established in [14, Lemma
5], and the proof for (34b) is similar. For completeness, we
provide a proof in Appendix B. We note at this point that for
𝑘 ≥ 1 we may take

𝜓𝑘 = max
𝑠,𝜎

P (𝑆0 = 𝑠, 𝑆𝑘 = 𝜎)
P (𝑆0 = 𝑠) P (𝑆𝑘 = 𝜎) ,

𝜙𝑘 = min
𝑠,𝜎

P (𝑆0 = 𝑠, 𝑆𝑘 = 𝜎)
P (𝑆0 = 𝑠) P (𝑆𝑘 = 𝜎)

in (34). These are well-defined because the Markov chain 𝑆 𝑗 ,
𝑗 ∈ Z is finite-state, irreducible, and aperiodic. As a result, its
stationary distribution is positive: P (𝑆𝑘 = 𝑠) > 0 for any 𝑠 ∈ S
and 𝑘 ∈ Z, [22, Theorem 4.2].

It is immediately evident that for any 𝑘 ≥ 1, 1 ≤ 𝜓𝑘 < ∞
and 0 ≤ 𝜙𝑘 ≤ 1. It is possible, however, that for small values
of 𝑘 , we will have 𝜙𝑘 = 0. Nevertheless, Lemma 7 ensures that
if 𝑘 is large enough, 𝜙𝑘 will be positive; in fact, by increasing
𝑘 it can be as close to 1 as desired.

Lemma 7 ensures that s/o-blocks of a FAIM-derived process
become almost independent when sufficiently far apart. We will
need a separate property that explores what happens when a
single s/o-block of a FAIM process is large enough. Specifically,
we will be interested in FAIM processes that, in a sense, “forget”
their past. In a forgetful FAIM process, the initial and final states
of a sufficiently large s/o-block are almost independent both
when given just the observations or when given the symbols
and observations jointly. A precise definition of a forgetful
FAIM process follows.

4Indeed, the redefined Markov chain remains finite-state, aperiodic,
and irreducible. The redefined state �̄� 𝑗 takes values in alphabet S̄ =

{ (𝑠 𝑗 , 𝑠 𝑗−1 ) | 𝑠 𝑗 , 𝑠 𝑗−1 ∈ S, 𝑃𝑆 𝑗 |𝑆 𝑗−1 (𝑠 𝑗 |𝑠 𝑗−1 ) > 0}. It assumes the value
𝑆 𝑗 = (𝑠 𝑗 , 𝑠 𝑗−1 ) whenever 𝑆 𝑗 = 𝑠 𝑗 , 𝑆 𝑗−1 = 𝑠 𝑗−1. Since |S | < ∞, so is
|S̄ | < ∞. The original Markov chain is aperiodic and irreducible if and only
if there exists 𝑘 > 0 such that 𝑃𝑆𝑘 |𝑆0 (𝑠𝑘 |𝑠0 ) > 0 for any 𝑠0, 𝑠𝑘 ∈ S. For
this 𝑘 and any 𝑠0 = (𝑠0, 𝑠−1 ) ∈ S̄ and 𝑠𝑘+1 = (𝑠𝑘+1, 𝑠𝑘 ) ∈ S̄, we have
𝑃�̄�𝑘+1 |�̄�0

(𝑠𝑘+1 |𝑠0 ) > 0. Thus, the redefined Markov process remains finite-
state, aperiodic, and irreducible.
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Definition 10 (Forgetful FAIM process). A FAIM process
(𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ), 𝑗 ∈ Z is said to be forgetful if for any 𝜖 > 0 there
exists a natural number 𝜆 such that if 𝑘 ≥ 𝜆 then

𝐼 (𝑆1; 𝑆𝑘 |𝑋 𝑘
1 , 𝑌

𝑘
1 ) ≤ 𝜖, (35a)

𝐼 (𝑆1; 𝑆𝑘 |𝑌 𝑘
1 ) ≤ 𝜖 . (35b)

For a given 𝜆, the infimal 𝜖 satisfying the above is called the
𝜆-forgetfulness of the s/o-process, and is denoted 𝜖𝜆. Clearly,
𝜖𝜆 is nonincreasing with 𝜆 and converges to 0. Conversely, for
a given 𝜖 , the minimal 𝜆 is called the 𝜖-recollection of the
process.

We say that FAIM-derived s/o-process 𝑋★ ↣ 𝑌★ is forgetful
if it is derived from a forgetful FAIM process.

Several remarks are in order.
1) A sufficient condition for a FAIM process to be forgetful

(Condition K), as well as how to compute the recollection
for a given 𝜖 , are detailed in Section X (see also Example 7
in that section). In particular, forgetful FAIM processes
do exist.

2) Somewhat unintuitively, a FAIM process need not to be
forgetful. See Example 3 below for an example of a FAIM
process that is not forgetful.

3) Both conditions (35a) and (35b) are required: neither con-
dition implies the other. We demonstrate this unintuitive
fact in Example 4 below.

4) In Lemma 8 below, we show that (35) together with the
Markov property (33) imply that for any 𝑘 ≥ 𝜆, ℓ ≤ 1,
and 𝑚 ≥ 𝑘 ,

𝐼 (𝑆ℓ ; 𝑆𝑚 |𝑋 𝑘
1 , 𝑌

𝑘
1 ) ≤ 𝜖, (36a)

𝐼 (𝑆ℓ ; 𝑆𝑚 |𝑌 𝑘
1 ) ≤ 𝜖 . (36b)

The following lemma is proved in Appendix B.

Lemma 8. Let (𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ), 𝑗 ∈ Z be a FAIM process. Then,
for any ℓ ≤ 1 and 𝑚 ≥ 𝑘 ≥ 𝜆 ≥ 1, we have

𝐼 (𝑆1; 𝑆𝜆 |𝑋𝜆
1 , 𝑌

𝜆
1 ) ≥ 𝐼 (𝑆ℓ ; 𝑆𝑚 |𝑋 𝑘

1 , 𝑌
𝑘
1 ); (37a)

𝐼 (𝑆1; 𝑆𝜆 |𝑌𝜆
1 ) ≥ 𝐼 (𝑆ℓ ; 𝑆𝑚 |𝑌 𝑘

1 ). (37b)

Example 3. This example is due to [19, Section 10]. In Figure 8
we illustrate the process (𝑆 𝑗 , 𝑌 𝑗 ). Specifically, the Markov chain
𝑆 𝑗 has transition matrix

M =


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 0 1/2
0 1/2 1/2 0

 ,
and the observation 𝑌 𝑗 is given by

𝑌 𝑗 =

{
𝑎, if 𝑆 𝑗 ∈ {1, 2},
𝑏, if 𝑆 𝑗 ∈ {3, 4}.

(38)

In this example we will not be interested in 𝑋 𝑗 . This is a
FAIM process: the Markov chain 𝑆 𝑗 is finite-state, aperiodic,
and irreducible; indeed, M3 > 0.

From the observation 𝑌 𝑗 we can infer whether state 𝑆 𝑗 is in
the top half or the bottom half of Figure 8. For two consecutive
observations to differ, the process must transition from a state

1 2

3 4

𝑎

𝑏

Fig. 8. The Markov chain 𝑆 𝑗 has four states. The possible transitions are
depicted using arrows; the probability of choosing any transition is 1/2. The
observation 𝑌𝑗 is ‘𝑎’ if 𝑆 𝑗 ∈ {1, 2} or ‘𝑏’ if 𝑆 𝑗 ∈ {3, 4}.

in one half of Figure 8 to the other. Given a sequence of
observations, our best guess for the next state is equi-probable
among two states. For example, given the observation sequence
𝑌1 = 𝑎,𝑌2 = 𝑏, . . . , 𝑌𝑘 = 𝑏, we know that 𝑆𝑘 ∈ {3, 4}, but 𝑆𝑘
could be either 3 or 4 with equal probability.

Assume now that, in addition to the observation sequence,
we are told the state at time 1. Say, 𝑆1 = 1 (accordingly,
𝑌1 = 𝑎). The observations are tied to transitions from one half
of Figure 8 to the other half, so that one can trace the state:
𝑌2 = 𝑎 implies that 𝑆2 = 1. Then, 𝑌3 = 𝑏 implies that 𝑆3 = 3,
and so on. In this manner, we are able to find 𝑆𝑘 precisely.

We have demonstrated that in this example, 𝐼 (𝑆1; 𝑆𝑘 |𝑌 𝑘
1 )

cannot vanish with 𝑘 , so this process is not forgetful.

Example 4. Let 𝑆 𝑗 be as in Example 3. We now construct two
FAIM processes. For the first process, 𝐼 (𝑆1; 𝑆𝑘 |𝑋 𝑘

1 , 𝑌
𝑘
1 ) will

vanish with 𝑘 but 𝐼 (𝑆1; 𝑆𝑘 |𝑌 𝑘
1 ) will not. For the second process,

𝐼 (𝑆1; 𝑆𝑘 |𝑋 𝑘
1 , 𝑌

𝑘
1 ) will not vanish with 𝑘 but 𝐼 (𝑆1; 𝑆𝑘 |𝑌 𝑘

1 ) will.

• Let 𝑋 𝑗 = 𝑆 𝑗 and 𝑌 𝑗 as in (38). Then, 𝐼 (𝑆1; 𝑆𝑘 |𝑋 𝑘
1 , 𝑌

𝑘
1 ) =

𝐼 (𝑆1; 𝑆𝑘 |𝑆𝑘1 ) = 0 trivially. On the other hand, as shown in
Example 3, 𝐼 (𝑆1; 𝑆𝑘 |𝑌 𝑘

1 ) does not vanish for any 𝑘 .
• Let 𝑋 𝑗 be given by (38) (that is, 𝑋 𝑗 = 𝑎 if 𝑆 𝑗 ∈ {1, 2}

and 𝑋 𝑗 = 𝑏 otherwise) and 𝑌 𝑗 = 0. Then, 𝐼 (𝑆1; 𝑆𝑘 |𝑋 𝑘
1 , 𝑌

𝑘
1 )

cannot vanish with 𝑘 , as shown in Example 3. On the other
hand, 𝐼 (𝑆1; 𝑆𝑘 |𝑌 𝑘

1 ) = 𝐼 (𝑆1; 𝑆𝑘) → 0, since the Markov
chain 𝑆 𝑗 is finite-state, aperiodic, and irreducible (see,
e.g., [22, Theorem 4.3]).

Assume we have a forgetful FAIM process, and we apply
to it a level-0 BST (i.e. (5)), initialized with 𝐿0 that is greater
than its 𝜖-recollection. We expect that in this case, all medial
s/o-pairs will have approximately the same conditional entropy.
This is indeed the case, as we will soon show in Lemma 11.
Moreover, we will see in Corollary 12 that this conditional
entropy cannot veer much from the conditional entropy rate
of the s/o-process. First, however, we require an additional
lemma.

Lemma 9. Let (𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ) be a forgetful FAIM process. Then,
for every 𝜖 > 0 there exists a natural number 𝜆 such that for
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any integers 𝑚, ℓ, 𝑘 such that min{𝑚, ℓ} ≥ 𝑘 ≥ 𝜆 we have

𝐼 (𝑆0; 𝑆−𝑘 , 𝑆𝑘 |𝑋−1
−ℓ , 𝑌

𝑚
−ℓ) ≤ 2𝜖 . (39)

This is a consequence of (35). To prove it, we take 𝜆 as the
𝜖-recollection of the process, and make multiple uses of (2),
which are possible due to the Markov property (33). A detailed
proof can be found in Appendix B.

Lemma 9 shows that the mutual information between a state
and two surrounding states vanishes when given a sequence
of observations between the surrounding states. The following
corollary shows that this is also the case when considering
the mutual information between a sequence of states and a
sequence of surrounding states. This will be useful in the
sequel.

Corollary 10. Let (𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ) be a forgetful FAIM process.
Then, for every 𝜖 > 0 there exists a natural number 𝜆 such
that for any positive natural numbers 𝑘 , 𝑖1, 𝑖2, . . . , 𝑖𝑘 , and 𝐿0
that satisfy 𝐿0 ≥ 𝜆 and

𝑖1 − 𝐿0 ≤ 𝑖1 ≤ 𝑖1 + 𝐿0 ≤ 𝑖2 − 𝐿0 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘 ≤ 𝑖𝑘 + 𝐿0

we have

𝐼 (𝑆i; 𝑆i−𝐿0 , 𝑆i+𝐿0 |𝑋 i−1
i−𝐿0

, 𝑌
i+𝐿0
i−𝐿0
) ≤ 𝑘 · 2𝜖,

where
i =

[
𝑖1 𝑖2 · · · 𝑖𝑘

]
.

In the statement of the corollary, we used the notation of (30).
The proof of the corollary is relegated to Appendix B.

In the next lemma, we show that, for a forgetful FAIM-
derived s/o-process, all medial s/o-pairs in a level-0 BST have
approximately the same conditional entropy,

H̃ ≜ 𝐻 (𝑋𝑖 |𝑋 𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0
). (40)

By stationarity, H̃ is indeed independent of 𝑖.

Lemma 11. Let 𝑋★ ↣ 𝑌★ be a forgetful FAIM-derived s/o-
process with 𝜖-recollection 𝜆. Let 𝐿0 ≥ 𝜆 and 𝑀0 ≥ 1, and
denote 𝑁0 = 2𝐿0 +𝑀0. Then, for any 𝐿0 + 1 ≤ 𝑖 ≤ 𝐿0 +𝑀0 we
have

0 ≤ H̃ − 𝐻 (𝑋𝑖 |𝑋 𝑖−1
1 , 𝑌

𝑁0
1 ) ≤ 2𝜖 . (41)

Proof: Observe that

H̃ − 𝐻 (𝑋𝑖 |𝑋 𝑖−1
1 , 𝑌

𝑁0
1 )

= 𝐻 (𝑋𝑖 |𝑋 𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0
) − 𝐻 (𝑋𝑖 |𝑋 𝑖−1

1 , 𝑌
𝑁0
1 )

= 𝐼

(
𝑋𝑖;

(
𝑋
𝑖−𝐿0−1
1 , 𝑌

𝑖−𝐿0−1
1 , 𝑌

𝑁0
𝑖+𝐿0+1

) ��𝑋 𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0

)
.

This right-hand side is nonnegative. It remains to upper-bound
it by 2𝜖 to establish (41).

Let (𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ) be the FAIM process from which 𝑋★ ↣ 𝑌★
is derived. By stationarity and Lemma 9, for any 𝑚, ℓ, 𝑘 such
that min{𝑚, ℓ} ≥ 𝑘 ≥ 𝜆,

𝐼 (𝑆𝑖; 𝑆𝑖−𝑘 , 𝑆𝑖+𝑘 |𝑋 𝑖−1
𝑖−ℓ , 𝑌

𝑖+𝑚
𝑖−ℓ ) ≤ 2𝜖 . (42)

Setting ℓ = 𝑚 = 𝑘 = 𝐿0 in (42) yields

𝐼 (𝑆𝑖; 𝑆𝑖−𝐿0 , 𝑆𝑖+𝐿0 |𝑋 𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0
) ≤ 2𝜖 .

By (33) and the data processing inequality (2) used twice,
we obtain

2𝜖 ≥ 𝐼
(
𝑆𝑖; 𝑆𝑖−𝐿0 , 𝑆𝑖+𝐿0 |𝑋 𝑖−1

𝑖−𝐿0
, 𝑌

𝑖+𝐿0
𝑖−𝐿0

)
(a)
≥ 𝐼

(
𝑋𝑖; 𝑆𝑖−𝐿0 , 𝑆𝑖+𝐿0 |𝑋 𝑖−1

𝑖−𝐿0
, 𝑌

𝑖+𝐿0
𝑖−𝐿0

)
(b)
≥ 𝐼

(
𝑋𝑖; 𝑋 𝑖−𝐿0−1

1 , 𝑌
𝑖−𝐿0−1
1 , 𝑌

𝑁0
𝑖+𝐿0+1 |𝑋

𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0

)
.

We now detail the Markov chains used for the inequalities,
both using (33). Inequality (a) is due to

(𝑆𝑖−𝐿0 , 𝑆𝑖+𝐿0 ) −◦− (𝑆𝑖 , 𝑋 𝑖−1
𝑖−𝐿0

, 𝑌 𝑖−1
𝑖−𝐿0
) −◦− 𝑋𝑖 ,

and inequality (b) is due to

𝑋𝑖 −◦− (𝑆𝑖−𝐿0 , 𝑆𝑖+𝐿0 , 𝑋
𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0
) −◦− (𝑋 𝑖−𝐿0−1

1 , 𝑌
𝑖−𝐿0−1
1 , 𝑌

𝑁0
𝑖+𝐿0+1).

This completes the proof.
The following corollary shows that, for a forgetful FAIM-

derived s/o-process, H̃ is approximately equal to the conditional
entropy rate of the s/o-process.

Corollary 12. Under the same setting as Lemma 11,��H(𝑋★ |𝑌★) − H̃�� ≤ 2𝜖, (43)

Proof: For any 𝜉 > 0, let 𝑁 = 𝑁 (𝜉) > 2𝐿0 be large enough
so that |H(𝑋★ |𝑌★) − 𝐻 (𝑋𝑁

1 |𝑌
𝑁
1 )/𝑁 | ≤ 𝜉/2 and 2𝐿0/𝑁 ≤ 𝜉/2.

Then,

|H(𝑋★ |𝑌★) − H̃|
(a)
≤

����H(𝑋★ |𝑌★) − 1
𝑁
𝐻 (𝑋𝑁

1 |𝑌
𝑁
1 )

���� + ���� 1
𝑁
𝐻 (𝑋𝑁

1 |𝑌
𝑁
1 ) − H̃

����
(b)
≤ 𝜉

2
+ 1
𝑁

𝑁∑︁
𝑖=1

��𝐻 (𝑋𝑖 |𝑋 𝑖−1
1 , 𝑌𝑁

1 ) − H̃
��

(c)
≤ 𝜉

2
+ 2𝐿0
𝑁
+ 1
𝑁

𝑁−𝐿0∑︁
𝑖=𝐿0+1

��𝐻 (𝑋𝑖 |𝑋 𝑖−1
1 , 𝑌𝑁

1 ) − H̃
��

(d)
≤ 𝜉 + 𝑁 − 2𝐿0

𝑁
2𝜖

≤ 2𝜖 + 𝜉,

where (a) and (b) are by the triangle inequality; (c) is because
|𝐻 (𝑋𝑖 |𝑋 𝑖−1

1 , 𝑌𝑁
1 )−H̃| ≤ max{H̃, 𝐻 (𝑋𝑖 |𝑋 𝑖−1

1 , 𝑌𝑁
1 )} ≤ 1, where

the latter inequality holds since 𝑋𝑖 is binary; finally, (d) is by
Lemma 11, with 𝑁0 replaced with 𝑁 . The above holds for any
𝜉 > 0, so it holds for 𝜉 = 0 as well.

B. The Block-Independent Process

We will prove in Section V-C that the BST is monopolarizing
with the help of another process, the block-independent process,
that we now introduce. We will show that an OT-BST is
monopolarizing when applied to the block-independent process.
It turns out that the result of an OT-BST applied to the block-
independent process is approximately the same as the result of
a BST applied to a forgetful FAIM-derived process, provided
that the transform parameters are carefully chosen. Therefore,
monopolarization of the OT-BST of the block-independent
process will be of vital importance in proving that the BST is
monopolarizing.
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Let 𝑁𝑛 = 2𝑛𝑁0, where 𝑁0 = 2𝐿0 + 𝑀0. Denote by
𝑃
𝑋

𝑁𝑛
1 ,𝑌

𝑁𝑛
1

the joint distribution of (𝑋𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ). By marginaliz-
ing 𝑃

𝑋
𝑁𝑛
1 ,𝑌

𝑁𝑛
1

, we obtain the distribution of a single b-block,
𝑃
𝑋
ℓ𝑁0
(ℓ−1)𝑁0+1

,𝑌
ℓ𝑁0
(ℓ−1)𝑁0+1

, which, by stationarity, is independent of

ℓ.

Definition 11 (Block-Independent Process). The block-
independent process (BI-process) �̃�★ ↣ 𝑌★ with parameter 𝑁0,
is distributed according to

( �̃�𝑁𝑛

1 , 𝑌
𝑁𝑛

1 ) ∼
2𝑛∏
ℓ=1

𝑃
𝑋
ℓ𝑁0
(ℓ−1)𝑁0+1

,𝑌
ℓ𝑁0
(ℓ−1)𝑁0+1

.

That is, b-blocks of length 𝑁0 are independent in this distribu-
tion.

If b =
[
𝑏1 𝑏2 · · · 𝑏2𝑛

]
is the base-vector of a level-𝑛

medial index, we have

( �̃�b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) ∼

2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

, (44)

where 𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

is obtained from 𝑃
𝑋
ℓ𝑁0
(ℓ−1)𝑁0+1

,𝑌
ℓ𝑁0
(ℓ−1)𝑁0+1

by marginalization. Note that since each 𝑏ℓ is medial,
(𝑋𝑏ℓ

𝑏ℓ−𝐿0
, 𝑌

𝑏ℓ+𝐿0
𝑏ℓ−𝐿0

) is wholly contained in a b-block with b-block
number ℓ.

Remark 5. Observe that the RHS of (44) consists of a product of
distributions of “windows” of the same size. Each window, by
stationarity, has the same distribution. Moreover, each window
is in a different b-block. By block-independence, therefore,
the RHS of (44) is independent of b. Put another way, these
windows are i.i.d. This is the crux of the results that follow:
the transforms operate on an i.i.d. process.5 In fact, the results
of this section hold also for a BST operating on i.i.d. s/o-pairs.
This observation will be useful in Section V-D, where we
consider a cascade of BSTs, in which a step of the cascade
operates on such s/o-pairs.

Throughout this section index 𝑖 ∈ [med(𝑛)] has base-vector
b =

[
𝑏1 𝑏2 · · · 𝑏2𝑛

]
, and index 𝑗 ∈ [med(𝑛)] has base-

vector d =
[
𝑑1 𝑑2 · · · 𝑑2𝑛

]
. We also denote

a =
[
1 𝑁0 + 1 2𝑁0 + 1 · · · (2𝑛 − 1)𝑁0 + 1

]
,

z =
[
𝑁0 2𝑁0 3𝑁0 · · · 2𝑛𝑁0

]
.

Recalling the definitions of 𝑓𝑛,𝑖 and �̃�𝑛,𝑖 at the beginning of
Section IV-B, we define

�̃�𝑖 = 𝑓𝑛,𝑖 ( �̃�b), �̃�𝑖 = �̃�𝑛,𝑖 ( �̃�b
b−𝐿0

.𝑌
b+𝐿0
b−𝐿0
). (45a)

�̃�𝑗 = 𝑓𝑛, 𝑗 ( �̃�d), �̃� 𝑗 = �̃�𝑛, 𝑗 ( �̃�d
d−𝐿0

, 𝑌
d+𝐿0
d−𝐿0
). (45b)

The joint distribution of ( �̃�b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) is given by (44) with b

as the base-vector of 𝑖. The joint distribution of ( �̃�d
d−𝐿0

, 𝑌
d+𝐿0
d−𝐿0
)

is given by (44) with b set to d, the base-vector of 𝑗 .
Recall from (40) that we denoted H̃ = 𝐻 (𝑋𝑖 |𝑋 𝑖−1

𝑖−𝐿0
, 𝑌

𝑖+𝐿0
𝑖−𝐿0
),

which, by stationarity, is independent of 𝑖. We wish to show
that there exists 𝛿𝑛 ≥ 0, independent of 𝑖, such that if 𝑖 ∈
[med− (𝑛)] then 𝐻 (�̃�𝑖 |�̃�𝑖) = H̃+ 𝛿𝑛 and if 𝑖 ∈ [med+ (𝑛)] then

5In [8], the underlying process was i.i.d. to begin with; here, where there is
memory, we need more intricate mechanics: the OT-BST and the BI-process.

𝐻 (�̃�𝑖 |�̃�𝑖) = H̃ − 𝛿𝑛. This will follow as a corollary to the
following lemma.

Lemma 13. Suppose that either 𝑖, 𝑗 ∈ [med− (𝑛)] or 𝑖, 𝑗 ∈
[med+ (𝑛)]. Then, the joint distribution of (�̃�𝑖 , �̃�𝑖) is the same
as the joint distribution of (�̃�𝑗 , �̃� 𝑗 ).

Proof: We use induction. For 𝑛 = 0, the claim is true by
stationarity and the initialization of the OT-BST, (29). Indeed,
in this case, �̃�𝑖 = �̃�𝑖 , �̃�𝑗 = �̃� 𝑗 , �̃�𝑖 = ( �̃� 𝑖−1

𝑖−𝐿0
, 𝑌

𝑖+𝐿0
𝑖−𝐿0
), and �̃� 𝑗 =

( �̃� 𝑗−1
𝑗−𝐿0

, 𝑌
𝑗+𝐿0
𝑗−𝐿0
). Stationarity implies that the joint distribution

of (�̃�𝑖 , �̃�𝑖) is the same as the joint distribution of (�̃�𝑗 , �̃� 𝑗 ).
Assume the claim is true for some 𝑛 − 1 ≥ 0. We now show

it holds for 𝑛.
Denote 𝑖′ = ⌊𝑖/2⌋ and 𝑗 ′ = ⌊ 𝑗/2⌋. We write b =

[
b1 b2

]
and d =

[
d1 d2

]
, where b1, b2, d1, d2 are vectors of length

2𝑛−1. Then, b1 is the base-vector of 𝑖′ + 1, and b2 is the base-
vector of 𝑖′, see (23). Similarly, d1 is the base-vector of 𝑗 ′ + 1,
and d2 is the base-vector of 𝑗 ′. Denote

�̃�𝑖′+1 = 𝑓𝑛−1,𝑖′+1 ( �̃�b1 ), �̃�𝑖′+1 = �̃�𝑛−1,𝑖′+1 ( �̃�b1
b1−𝐿0

, 𝑌
b1+𝐿0
b1−𝐿0

), (46a)

�̃�𝑖′ = 𝑓𝑛−1,𝑖′ ( �̃�b2 ), �̃�𝑖′ = �̃�𝑛−1,𝑖′ ( �̃�b2
b2−𝐿0

, 𝑌
b2+𝐿0
b2−𝐿0

). (46b)

Of the two s/o-pairs �̃�𝑖′+1 ↣ �̃�𝑖′+1 and �̃�𝑖′ ↣ �̃�𝑖′ , one is in
[med− (𝑛 − 1)] and the other in [med+ (𝑛 − 1)]. We denote by
𝑇−
𝑖

the pair that is in [med− (𝑛 − 1)] and by 𝑇+
𝑖

the pair that
is in [med+ (𝑛 − 1)]. That is,

𝑇−𝑖 =

{
(�̃�𝑖′ , �̃�𝑖′ ), 𝑖′ ∈ [med− (𝑛 − 1)],
(�̃�𝑖′+1, �̃�𝑖′+1), 𝑖′ ∈ [med+ (𝑛 − 1)]

and

𝑇+𝑖 =

{
(�̃�𝑖′+1, �̃�𝑖′+1), 𝑖′ ∈ [med− (𝑛 − 1)],
(�̃�𝑖′ , �̃�𝑖′ ), 𝑖′ ∈ [med+ (𝑛 − 1)] .

We similarly define �̃� 𝑗′+1, �̃� 𝑗′ , �̃� 𝑗′+1, �̃� 𝑗′ , 𝑇−𝑗 , and 𝑇+
𝑗

(with
b replaced with d and 𝑖′ replaced with 𝑗 ′).

For the BI-process, b-blocks are independent. In particular,
by (44), ( �̃�b1

b1−𝐿0
, 𝑌

b1+𝐿0
b1−𝐿0

) is independent of ( �̃�b2
b2−𝐿0

, 𝑌
b2+𝐿0
b2−𝐿0

).
Hence, 𝑇−

𝑖
and 𝑇+

𝑖
are independent. Similarly, 𝑇−

𝑗
and 𝑇+

𝑗
are

independent. By the induction hypothesis, 𝑇−
𝑖

and 𝑇−
𝑗

have
the same distribution; 𝑇+

𝑖
and 𝑇+

𝑗
are also equi-distributed. By

block-independence, the joint distribution of (𝑇−
𝑖
, 𝑇+

𝑖
) is the

same as the joint distribution of (𝑇−
𝑗
, 𝑇+

𝑗
).

Assume first that 𝑖, 𝑗 ∈ [med− (𝑛)]. We then have, by (27)
and (28),

�̃�𝑖 = �̃�𝑖′+1 + �̃�𝑖′ , �̃�𝑖 =

{
(�̃�𝑖′ , �̃�𝑖′+1), 𝑖′ ∈ [med− (𝑛 − 1)],
(�̃�𝑖′+1, �̃�𝑖′ ), 𝑖′ ∈ [med+ (𝑛 − 1)],

(47)
and

�̃�𝑗 = �̃� 𝑗′+1+�̃� 𝑗′ , �̃� 𝑗 =

{
(�̃� 𝑗′ , �̃� 𝑗′+1), 𝑗 ′ ∈ [med− (𝑛 − 1)],
(�̃� 𝑗′+1, �̃� 𝑗′ ), 𝑗 ′ ∈ [med+ (𝑛 − 1)] .

(48)
Comparing (47) and (48), the mapping from (𝑇−

𝑖
, 𝑇+

𝑖
) to

(�̃�𝑖 , �̃�𝑖) is the same as the mapping from (𝑇−
𝑗
, 𝑇+

𝑗
) to (�̃�𝑗 , �̃� 𝑗 ).

We conclude that the joint distribution of (�̃�𝑖 , �̃�𝑖) is the same
as the joint distribution of (�̃�𝑗 , �̃� 𝑗 ).
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For the case where 𝑖, 𝑗 ∈ [med+ (𝑛)], we have by (27),

�̃�𝑖 =

{
�̃�𝑖′ , 𝑖′ ∈ [med− (𝑛 − 1)],
�̃�𝑖′+1, 𝑖′ ∈ [med+ (𝑛 − 1)] .

Observe that �̃�𝑖 is always a symbol in [med− (𝑛 − 1)]. Further
recall from (27) that, since 𝑖 − 1 ∈ [med− (𝑛)], we have �̃�𝑖−1 =

�̃�𝑖′+1 + �̃�𝑖′ , so that �̃�𝑖 + �̃�𝑖−1 is a symbol from [med+ (𝑛 − 1)].
By (27) and (28),

(�̃�𝑖 , �̃�𝑖) = (�̃�𝑖 , �̃�𝑖−1, �̃�𝑖−1) ≡ (�̃�𝑖 , �̃�𝑖 + �̃�𝑖−1, �̃�𝑖−1), (49)

Similarly,

(�̃�𝑗 , �̃� 𝑗 ) = (�̃�𝑗 , �̃�𝑗−1, �̃� 𝑗−1) ≡ (�̃�𝑗 , �̃�𝑗 + �̃�𝑗−1, �̃� 𝑗−1). (50)

The mappings on the right-hand sides of (49) and (50)
are the same. Moreover, by (28), the mapping between
(�̃�𝑖 , �̃�𝑖 + �̃�𝑖−1, �̃�𝑖−1) and (𝑇−

𝑖
, 𝑇+

𝑖
) is the same as the mapping

between (�̃�𝑗 , �̃�𝑗 + �̃�𝑗−1, �̃� 𝑗−1) and (𝑇−
𝑗
, 𝑇+

𝑗
). Since (𝑇−

𝑖
, 𝑇+

𝑖
)

and (𝑇−
𝑗
, 𝑇+

𝑗
) are equi-distributed, so are (�̃�𝑖 , �̃�𝑖) and (�̃�𝑗 , �̃� 𝑗 ).

Corollary 14. There exists a nondecreasing sequence 𝛿𝑛 ≥ 0,
independent of 𝑖, such that if 𝑖 ∈ [med− (𝑛)] then 𝐻 (�̃�𝑖 |�̃�𝑖) =
H̃ + 𝛿𝑛 and 𝐻 (�̃�𝑖+1 |�̃�𝑖+1) = H̃ − 𝛿𝑛.

Observe from (4d) and (4e) that Corollary 14 implies that
there exists a nondecreasing sequence 𝛿𝑛 ≥ 0 such that

𝐻 (�̃�𝑖 |�̃�𝑖) =
{
H̃ + 𝛿𝑛, 𝑖 ∈ [med− (𝑛)],
H̃ − 𝛿𝑛, 𝑖 ∈ [med+ (𝑛)] .

(51)

Further observe that Corollary 14 implies that for any 𝑖 ∈
[med− (𝑛)] and 𝑗 ∈ [med+ (𝑛)] we have

𝐻 (�̃�𝑖 |�̃�𝑖) + 𝐻 (�̃�𝑗 |�̃� 𝑗 ) = 2H̃. (52)

Proof: We show this using induction. The claim is true
for 𝑛 = 0 with 𝛿0 = 0. For 𝑛 > 0, we assume the claim is true
for 𝑛 − 1 and show it also holds for 𝑛.

Let 𝑖 ∈ [med− (𝑛)] with base-vector b. Since 𝑛 ≥ 1, 𝑖 is even
(see Remark 1), and we denote 𝑖′ = 𝑖/2. Let �̃�𝑖 , �̃�𝑖 , as well as
�̃�𝑖+1, �̃�𝑖+1, be defined as in (45a) and let �̃�𝑖′+1, �̃�𝑖′ , �̃�𝑖′+1, �̃�𝑖′
be defined as in (46). We have, by (27) and (28),

𝐻 (�̃�𝑖 |�̃�𝑖) + 𝐻 (�̃�𝑖+1 |�̃�𝑖+1) = 𝐻 (�̃�𝑖 , �̃�𝑖+1 |�̃�𝑖′+1, �̃�𝑖′ )
= 𝐻 (�̃�𝑖′+1, �̃�𝑖′ |�̃�𝑖′+1, �̃�𝑖′ )
= 𝐻 (�̃�𝑖′+1 |�̃�𝑖′+1) + 𝐻 (�̃�𝑖′ |�̃�𝑖′ ), (53)

where the last equality is by block independence. By the
induction assumption and stationarity there exists 𝛿𝑛−1 ≥ 0
such that

𝐻 (�̃�𝑖′ |�̃�𝑖′ ) = 𝐻 (�̃�𝑖′ |�̃�𝑖′ ) =
{
H̃ + 𝛿𝑛−1, 𝑖′ ∈ [med− (𝑛 − 1)],
H̃ − 𝛿𝑛−1, 𝑖′ ∈ [med+ (𝑛 − 1)] .

Thus,
𝐻 (�̃�𝑖 |�̃�𝑖) + 𝐻 (�̃�𝑖+1 |�̃�𝑖+1) = 2H̃. (54)

By (4d) and (4e) and since 𝑖 ∈ [med− (𝑛)], we have 𝑖 + 1 ∈
[med+ (𝑛)]. Recall from Remark 1 that since 𝑛 ≥ 1 then 𝑖 is

even and 𝑖 + 1 is odd. By (27), (28), and since conditioning
reduces entropy, we have

𝐻 (�̃�𝑖+1 |�̃�𝑖+1) ≤ min{𝐻 (�̃�𝑖′+1 |�̃�𝑖′+1), 𝐻 (�̃�𝑖′+1 |�̃�𝑖′+1)}
= H̃ − 𝛿𝑛−1. (55)

From (54) and (55), we conclude that there must exist 𝛿𝑛 ≥
𝛿𝑛−1 ≥ 0 such that 𝐻 (�̃�𝑖 |�̃�𝑖) = H̃ + 𝛿𝑛 and 𝐻 (�̃�𝑖+1 |�̃�𝑖+1) =
H̃ − 𝛿𝑛. Finally, by Lemma 13, 𝛿𝑛 must be independent of 𝑖.

Recall that we wish to prove that the OT-BST is monopo-
larizing for the BI-process. From the proof of Corollary 14
it follows that 𝛿𝑛 ≥ 𝛿𝑛−1 for any 𝑛. This is not sufficient for
monopolarization; to show monopolarization we must show
that, unless we have already monopolarized, 𝛿𝑛 > 𝛿𝑛−1 +Δ for
some Δ > 0 independent of 𝑛. This is the role of Lemma 16
that follows. To this end, we will need an auxiliary lemma.

The binary entropy function ℎ2, defined in (1), is monotone
increasing over [0, 1/2]. Denote the (cyclic) convolution of
two numbers 0 ≤ 𝛼, 𝛽 ≤ 1/2 by

𝛼 ∗ 𝛽 = 𝛼(1 − 𝛽) + 𝛽(1 − 𝛼).

Since
𝛼 ∗ 𝛽 = 𝛼 + 𝛽(1 − 2𝛼) = 𝛽 + 𝛼(1 − 2𝛽), (56)

we have ℎ2 (𝛼 ∗ 𝛽) ≥ ℎ2 (𝛽) for any 𝛼, 𝛽 ∈ [0, 1/2]. More
precisely, we have the following lemma; its proof can be found
in Appendix C.

Lemma 15. Let 0 ≤ 𝛼𝑎, 𝛽𝑏 ≤ 1/2, 𝑎, 𝑏 = 1, 2, . . . , 𝑘 and let
𝑝𝑎, 𝑞𝑏 ≥ 0 such that

∑𝑘
𝑎=1 𝑝𝑎 =

∑𝑘
𝑏=1 𝑞𝑏 = 1. If, for some

𝜉1, 𝜉2 > 0,
𝑘∑︁

𝑎=1
𝑝𝑎ℎ2 (𝛼𝑎) ≥ 𝜉1,

𝑘∑︁
𝑏=1

𝑞𝑏ℎ2 (𝛽𝑏) ≤ 𝜉2, (57)

then there exists Δ(𝜉1, 𝜉2) > 0 such that
𝑘∑︁

𝑎=1

𝑘∑︁
𝑏=1

𝑝𝑎𝑞𝑏 (ℎ2 (𝛼𝑎 ∗ 𝛽𝑏) − ℎ2 (𝛽𝑏)) ≥ Δ(𝜉1, 𝜉2).

Recall that 𝑖 ∈ [med(𝑛)], with base-vector b =
[
b1 b2

]
,

where b1 and b2 are of length 2𝑛−1. Assume further that
𝑖 ∈ [med− (𝑛)], so that 𝑖 is even, and 𝑖′ = 𝑖/2. We define �̃�𝑖 , �̃�𝑖

as in (45a), and �̃�𝑖′+1, �̃�𝑖′ , �̃�𝑖′+1, �̃�𝑖′ as in (46).

Lemma 16. For all 𝜉 > 0, if 𝑖 ∈ [med− (𝑛)] and

𝐻 (�̃�𝑖′+1 |�̃�𝑖′+1), 𝐻 (�̃�𝑖′ |�̃�𝑖′ ) ∈ (𝜉, 1 − 𝜉) (58)

then

𝐻 (�̃�𝑖 |�̃�𝑖) −max{𝐻 (�̃�𝑖′+1 |�̃�𝑖′+1), 𝐻 (�̃�𝑖′ |�̃�𝑖′ )} ≥ Δ(𝜉, 1 − 𝜉).

Proof: There is nothing to prove if 𝜉 ≥ 1/2. Therefore,
we assume that 𝜉 < 1/2. We show the proof for the case where
𝐻 (�̃�𝑖′ |�̃�𝑖′ ) ≥ 𝐻 (�̃�𝑖′+1 |�̃�𝑖′+1). The proof of the other case is
similar and omitted.

We will use the simplified notation

𝑝(𝑢, 𝑣, 𝑞, 𝑟) = P
(
�̃�𝑖′+1 = 𝑢, �̃�𝑖′ = 𝑣, �̃�𝑖′+1 = 𝑞, �̃�𝑖′ = 𝑟

)
.

Since (�̃�𝑖′+1, �̃�𝑖′+1) and (�̃�𝑖′ , �̃�𝑖′ ) are independent, we have

𝑝(𝑢, 𝑣, 𝑞, 𝑟) = 𝑝(𝑢, 𝑞)𝑝(𝑣, 𝑟).
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We also introduce the shorthand

𝛼𝑞 = min
𝑢

P
(
�̃�𝑖′+1 = 𝑢 |�̃�𝑖′+1 = 𝑞

)
= min

𝑢
𝑝(𝑢 |𝑞),

𝛽𝑟 = min
𝑣

P
(
�̃�𝑖′ = 𝑣 |�̃�𝑖′ = 𝑟

)
= min

𝑣
𝑝(𝑣 |𝑟).

Recall that �̃�𝑖′+1, �̃�𝑖′ are binary, so the minimizations are
between two terms. As a result, 0 ≤ 𝛼𝑞 , 𝛽𝑟 ≤ 1/2. With
this notation and by (58) we have

𝐻 (�̃�𝑖′+1 |�̃�𝑖′+1) =
∑︁
𝑞

𝑝(𝑞)ℎ2 (𝛼𝑞) ≥ 𝜉,

𝐻 (�̃�𝑖′ |�̃�𝑖′ ) =
∑︁
𝑟

𝑝(𝑟)ℎ2 (𝛽𝑟 ) ≤ 1 − 𝜉.

Thus, by (47) and the independence of (�̃�𝑖′+1, �̃�𝑖′+1) and
(�̃�𝑖′ , �̃�𝑖′ ), we obtain

𝐻 (�̃�𝑖 |�̃�𝑖) − 𝐻 (�̃�𝑖′ |�̃�𝑖′ ) = 𝐻 (�̃�𝑖′+1 + �̃�𝑖′ |�̃�𝑖′+1, �̃�𝑖′ ) − 𝐻 (�̃�𝑖′ |�̃�𝑖′ )
=

∑︁
𝑞,𝑟

𝑝(𝑞)𝑝(𝑟)
(
ℎ2 (𝛼𝑞 ∗ 𝛽𝑟 ) − ℎ2 (𝛽𝑟 )

)
≥ Δ(𝜉, 1 − 𝜉),

where the inequality is by Lemma 15.
We are now ready to show that the OT-BST is monopolariz-

ing for the BI-process. To this end, recall that H̃ was defined
in (40).

Proposition 17. For every 𝜉 > 0, there exists a threshold
value 𝑛th ≥ 0 such that if 𝑛 ≥ 𝑛th then a level-𝑛 OT-BST
with any parameters 𝐿0, 𝑀0 is (𝜉, [med+ (𝑛)], [med− (𝑛)])-
monopolarizing for any BI-process �̃�★ ↣ 𝑌★ with parameter
𝑁0 = 2𝐿0 + 𝑀0.

Specifically, let �̃�
𝑁𝑛

1 ↣ �̃�
𝑁𝑛

1 be an OT-transformed
s/o-block of a level-𝑛 OT-BST initialized with 𝐿0 and 𝑀0 as
above, where 𝑛 ≥ 𝑛th. Then:
• if H̃ ≤ 1/2 then

– 𝐻 (�̃�𝑖 |�̃�𝑖) < 𝜉, ∀𝑖 ∈ [med+ (𝑛)];
– 𝐻 (�̃�𝑖 |�̃�𝑖) > 2H̃ − 𝜉, ∀𝑖 ∈ [med− (𝑛)];

• if H̃ ≥ 1/2 then
– 𝐻 (�̃�𝑖 |�̃�𝑖) > 1 − 𝜉, ∀𝑖 ∈ [med− (𝑛)];
– 𝐻 (�̃�𝑖 |�̃�𝑖) < 2H̃ − (1 − 𝜉), ∀𝑖 ∈ [med+ (𝑛)].

Proof: We first consider a specific selection of the trans-
form parameters 𝐿0, 𝑀0, and a specific BI-process �̃�★ ↣ 𝑌★
with parameter 𝑁0 = 2𝐿0 + 𝑀0. For these selections we will
find a threshold 𝑛′th. We will then find a global upper bound
𝑛th on 𝑛′th, which is independent of these selections.

Denote the indicator functions

M−𝑛 =

{
1, 𝐻 (�̃�𝑖 |�̃�𝑖) > 1 − 𝜉, ∀𝑖 ∈ [med− (𝑛)],
0, otherwise,

M+𝑛 =

{
1, 𝐻 (�̃�𝑖 |�̃�𝑖) < 𝜉, ∀𝑖 ∈ [med+ (𝑛)],
0, otherwise.

Observe by Corollary 14 that if M−𝑛 = 1 then also 𝐻 (�̃�𝑖 |�̃�𝑖) <
2H̃ − (1 − 𝜉), and if M+𝑛 = 1 then also 𝐻 (�̃�𝑖 |�̃�𝑖) > 2H̃ − 𝜉.

Further denote

M𝑛 =

{
1, M−𝑛 = 1 or M+𝑛 = 1,
0, otherwise.

Observe that M𝑛 = 1 if and only if the OT-BST has
(𝜉, [med+ (𝑛)], [med− (𝑛)])-monopolarized for the BI-process.
Moreover, by Corollary 14, M𝑛 = 1 if and only if the bulleted
items in the claim hold.

We define

𝑛′th = min {𝑛 ∈ N | M𝑛 = 1} ,

the first index 𝑛 for which M𝑛 = 1. We will show that 𝑛′th is
finite by upper-bounding it.

By Corollary 14, there exists a nondecreasing sequence
𝛿𝑛 ≥ 0 such that (51) holds. Since 𝛿𝑛 is a nondecreasing
sequence, M𝑛 = 1 for every 𝑛 ≥ 𝑛′th. The entropy of a binary
random variable is bounded between 0 and 1; thus for any
𝑛, 0 ≤ H̃ − 𝛿𝑛 ≤ H̃ + 𝛿𝑛 ≤ 1. Hence, 𝛿𝑛 ≤ min{H̃, 1 − H̃}.
We conclude that if H̃ ≤ 1/2 and 𝑛 ≥ 𝑛′th then M+𝑛 = 1, and
if H̃ ≤ 1/2 and 𝑛 ≥ 𝑛′th then M−𝑛 = 1. It now remains to
upper-bound 𝑛′th.

If M0 = 1, then we may take 𝑛′th = 0 and we are done.
Otherwise, we assume that M0 = 0.

If, for some 𝑛 ≥ 0, M𝑛 = 0, then by (51) and by definition
of M−𝑛 , M+𝑛, we obtain

𝜉 ≤ H̃ − 𝛿𝑛 ≤ H̃ + 𝛿𝑛 ≤ 1 − 𝜉.

Rearranging, this yields

M𝑛 = 0⇒ 𝛿𝑛 ≤ min{H̃, 1 − H̃} − 𝜉. (59)

On the other hand, by (51) and Lemma 16, if M𝑛−1 = 0 for
some 𝑛 ≥ 1, we have

H̃ + 𝛿𝑛 − (H̃ + 𝛿𝑛−1) ≥ Δ(𝜉, 1− 𝜉) ⇒ 𝛿𝑛 ≥ 𝛿𝑛−1 +Δ(𝜉, 1− 𝜉).

Continuing in this manner and recalling that 𝛿0 = 0, we obtain

M𝑛−1 = 0⇒ 𝛿𝑛 ≥ 𝑛Δ(𝜉, 1 − 𝜉). (60)

Now, let

𝑛1 = 1 +
⌊

min{H̃, 1 − H̃} − 𝜉
Δ(𝜉, 1 − 𝜉)

⌋
, (61)

and assume to the contrary that 𝑛′th > 𝑛1. In particular, M𝑛1 =

M𝑛1−1 = 0. Thus, by (59) and (60) we obtain

𝑛1Δ(𝜉, 1 − 𝜉) ≤ 𝛿𝑛1 ≤ min{H̃, 1 − H̃} − 𝜉.

Since Δ(𝜉, 1 − 𝜉) > 0, we rearrange and obtain

𝑛1 ≤
min{H̃, 1 − H̃} − 𝜉

Δ(𝜉, 1 − 𝜉) ,

which contradicts (61) (see, e.g., [21, Equation 3.3]). We
conclude that we must have 𝑛′th ≤ 𝑛1.

We have found an upper bound for 𝑛′th, which is given by
the RHS of (61). Note that this bound is indeed positive, thus
it holds for both cases of M0 discussed above. Next, observe
that

1 +
⌊

min{H̃, 1 − H̃} − 𝜉
Δ(𝜉, 1 − 𝜉)

⌋
≤ 1 +

⌊
1/2 − 𝜉

Δ(𝜉, 1 − 𝜉)

⌋
.

Thus, defining

𝑛th = 1 +
⌊

1/2 − 𝜉
Δ(𝜉, 1 − 𝜉)

⌋
(62)
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suffices.

Remark 6. Note that if H̃ is given to us, then 𝑛th can be taken
as the RHS of (61).

The following corollary is a restatement of Proposition 17
that will be useful in the sequel for proving Proposition 29.

Corollary 18. Let H̃, 𝐻 (�̃�𝑖 |�̃�𝑖), 𝜉 and 𝑛 ≥ 𝑛th be as in
Proposition 17. Define

𝛼(H̃) = min{2H̃, 1},
𝛼′ (H̃) = 𝛼(H̃) − 𝜉,
𝛽(H̃) = max{2H̃ − 1, 0},
𝛽′ (H̃) = 𝛽(H̃) + 𝜉.

Then,

𝐻 (�̃�𝑖 |�̃�𝑖) ∈


(
𝛼′ (H̃), 𝛼(H̃)

]
𝑖 ∈ [med− (𝑛)] (63a)[

𝛽(H̃), 𝛽′ (H̃)
)

𝑖 ∈ [med+ (𝑛)] . (63b)

Proof: Observe that 𝛼(H̃) + 𝛽(H̃) = 2H̃, by considering
separately the cases H̃ ≤ 1/2 and H̃ ≥ 1/2. Clearly, 𝛼′ (H̃) +
𝛽′ (H̃) = 2H̃ as well. This implies, by (52), that if (63a) holds
for some H̃ then (63b) also holds, and vice versa.

Consider first the case H̃ ≤ 1/2 and let 𝑖 ∈ [med+ (𝑛)]. In
this case

𝛽(H̃) = 0, 𝛽′ (H̃) = 𝜉.

By Proposition 17, 𝐻 (�̃�𝑖 |�̃�𝑖) ∈ [𝛽(H̃), 𝛽′ (H̃)). Hence, in this
case (63b) holds, and by the discussion above (63a) must also
hold for this case.

Next, consider the case H̃ ≥ 1/2 and let 𝑖 ∈ [med− (𝑛)]. In
this case

𝛼(H̃) = 1, 𝛼′ (H̃) = 1 − 𝜉.

By Proposition 17, 𝐻 (�̃�𝑖 |�̃�𝑖) ∈ (𝛼′ (H̃), 𝛼(H̃)]. Hence, in this
case (63a) holds, and by the discussion above (63b) must also
hold for this case.

The following corollarly will be used in the proof of Theo-
rem 21.

Corollary 19. For a given 𝜉 > 0, let 𝐿0, 𝑀0, and 𝑛th be as in
Proposition 17. Then, under the same setting as Proposition 17,
for any 0 ≤ 𝜁 ≤ 1 and 𝑛 ≥ 𝑛th we have

• if H̃ ≤ 1+𝜁
2 then 𝐻 (�̃�𝑖 |�̃�𝑖) < 𝜉 + 𝜁 , ∀𝑖 ∈ [med+ (𝑛)],

• if H̃ ≥ 1−𝜁
2 then 𝐻 (�̃�𝑖 |�̃�𝑖) > 1 − 𝜉 − 𝜁 , ∀𝑖 ∈ [med− (𝑛)].

Proof: This corollary follows from Proposition 17 and
Corollary 14. Recall that by Corollary 14, there exists 𝛿𝑛 ≥ 0
such that (51) holds.

We only prove the corollary for the case where H̃ ≤ (1+𝜁)/2.
The case H̃ ≥ (1 − 𝜁)/2 is similar and omitted.

If H̃ ≤ 1/2, we are done by Proposition 17. Otherwise,
H̃ ≥ 1/2, so by Proposition 17 and (51),

𝑖 ∈ [med− (𝑛)] ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) = H̃ + 𝛿𝑛 > 1 − 𝜉.

Rearranging, we obtain 𝛿𝑛 > 1 − H̃ − 𝜉. Now, by (51),

𝑖 ∈ [med+ (𝑛)] ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) = H̃ − 𝛿𝑛 < H̃ − (1 − H̃ − 𝜉)
= 𝜉 + 2H̃ − 1
≤ 𝜉 + (1 + 𝜁) − 1
= 𝜉 + 𝜁,

where the final inequality is due to our assumption that H̃ ≤
(1 + 𝜁)/2.

The upper bound for 𝑛th given in Proposition 17 is pes-
simistic. It is based on the minimal change that must occur at
every step of the OT-BST. The change at every OT-BST step
is typically larger, and thus the actual required value of 𝑛th is
expected to be much smaller. We adapt [8, Proposition 2] to
give better bounds on the required number of OT-BST steps to
ensure monopolarization. To this end, we define, for 𝑦 ∈ [0, 1]
and 𝑥 ∈ [0,min{𝑦, 1 − 𝑦}], the functions

𝑐(𝑥, 𝑦) = ℎ2 (ℎ−1
2 (𝑦 + 𝑥) ∗ ℎ

−1
2 (𝑦 − 𝑥)) − 𝑦,

𝑑 (𝑥, 𝑦) = 𝑦 − (𝑦 + 𝑥) (𝑦 − 𝑥),

where ℎ−1
2 : [0, 1] → [0, 1/2] is the inverse of ℎ2. Since ℎ2

is concave-∩ and increasing over [0, 1/2], ℎ−1
2 is convex-∪

and increasing over [0, 1]. We also define the sequence of
functions

𝐶0 (𝑦) = 𝐷0 (𝑦) = 0,
𝐶𝑛 (𝑦) = 𝑐(𝐶𝑛−1 (𝑦), 𝑦), 𝑛 = 1, 2, . . . ,
𝐷𝑛 (𝑦) = 𝑑 (𝐷𝑛−1 (𝑦), 𝑦), 𝑛 = 1, 2, . . . .

Lemma 20. Let 𝑛 ≥ 0. If 𝑖 ∈ [med− (𝑛)] then

𝐶𝑛 (H̃) ≤ 𝐻 (�̃�𝑖 |�̃�𝑖) − H̃ ≤ 𝐷𝑛 (H̃).

If 𝑖 ∈ [med+ (𝑛)] then

𝐶𝑛 (H̃) ≤ H̃ − 𝐻 (�̃�𝑖 |�̃�𝑖) ≤ 𝐷𝑛 (H̃).

Proof: In light of Corollary 14, denote, for any 𝑛 ≥ 0 and
arbitrary 𝑖 ∈ [med− (𝑛)]

𝛿𝑛 = 𝐻 (�̃�𝑖 |�̃�𝑖) − H̃.

Observe that for arbitrary 𝑖 ∈ [med+ (𝑛)], by Corollary 14 we
have 𝛿𝑛 = H̃ − 𝐻 (�̃�𝑖 |�̃�𝑖). Our goal is thus to show that for
any 𝑛 ≥ 0,

𝐶𝑛 (H̃) ≤ 𝛿𝑛 ≤ 𝐷𝑛 (H̃). (64)

The remainder of the proof mirrors the proof of [8, Proposi-
tion 2]. We prove the claim by induction. If 𝑛 = 0, the claim
is trivially true. Assume that the claim holds for some 𝑛 ≥ 0,
and we will show it also holds for 𝑛 + 1.

By block-independence of the BI-process we may use [6,
Lemma 2.1], by which

H̃ + 𝛿𝑛+1 ≥ ℎ2 (ℎ−1
2 (H̃ + 𝛿𝑛) ∗ ℎ

−1
2 (H̃ − 𝛿𝑛)),

H̃ + 𝛿𝑛+1 ≤ (H̃ + 𝛿𝑛) + (H̃ − 𝛿𝑛) − (H̃ + 𝛿𝑛) (H̃ − 𝛿𝑛).

Rearranging, we obtain

𝑐(𝛿𝑛, H̃) ≤ 𝛿𝑛+1 ≤ 𝑑 (𝛿𝑛, H̃). (65)

Now, 𝑑 (𝑥, 𝑦) = 𝑥2−𝑦2+𝑦 is increasing in 𝑥 whenever 𝑥 ≥ 0. The
function 𝑐(𝑥, 𝑦) is also increasing for 𝑥 ∈ [0,min{𝑦, 1−𝑦}]. To
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see this, it suffices to show that 𝑐𝑦 (𝑥) = ℎ−1
2 (𝑦+𝑥) ∗ ℎ

−1
2 (𝑦−𝑥)

is increasing, as ℎ2 is increasing. Denoting 𝑟 (𝑥) = ℎ−1
2 (𝑥) we

obtain that

d𝑐𝑦 (𝑥)
d𝑥

= 𝑟 ′ (𝑦 + 𝑥) (1 − 2𝑟 (𝑦 − 𝑥)) − 𝑟 ′ (𝑦 − 𝑥) (1 − 2𝑟 (𝑦 + 𝑥))
(a)
≥ (𝑟 ′ (𝑦 + 𝑥) − 𝑟 ′ (𝑦 − 𝑥)) (1 − 2𝑟 (𝑦 + 𝑥))
(b)
≥ 0,

where (a) is because 𝑟 (·) is increasing, and (b) is because
𝑟 (·) is convex so its derivative 𝑟 ′ (·) is increasing and since
𝑟 (·) ≤ 1/2 by definition. Thus, by (65) and the induction
hypothesis (64),

𝛿𝑛+1 ≥ 𝑐(𝛿𝑛, H̃) ≥ 𝑐(𝐶𝑛 (H̃), H̃) = 𝐶𝑛+1 (H̃),
𝛿𝑛+1 ≤ 𝑑 (𝛿𝑛, H̃) ≤ 𝑑 (𝐷𝑛 (H̃), H̃) = 𝐷𝑛+1 (H̃),

which completes the proof.

Example 5. Consider a BI-process with H̃ = 0.2. We
wish to find 𝑛th that will ensure that the OT-BST is
(0.004, [med+ (𝑛)], [med− (𝑛)])-monopolarizing for the BI-
process whenever 𝑛 ≥ 𝑛th.

Proposition 17, even when using the tighter bound in
Remark 6, gives the upper bound

𝑛th ≤ 1 +
⌊

H̃ − 𝜉
Δ(𝜉, 1 − 𝜉)

⌋
= 40162.

This is a prohibitive value. Thankfully, it is also unnecessarily
pessimistic. To obtain a practical value for 𝑛th, we turn to
Lemma 20, by which

2.22 · 10−5 ≤ 𝐻 (�̃�𝑖 |�̃�𝑖) ≤ 0.0041, 𝑖 ∈ [med+ (9)],
8.89 · 10−6 ≤ 𝐻 (�̃�𝑖 |�̃�𝑖) ≤ 0.0031, 𝑖 ∈ [med+ (10)] .

Therefore, when H̃ = 0.2, 𝑛th = 10 suffices to ensure
(0.004, [med+ (𝑛)], [med− (𝑛)])-monopolarization for 𝑛 ≥ 𝑛th.

C. Monopolarization for FAIM-derived Processes, for a Single
BST

This subsection is devoted to proving Theorem 21 below.
That is, we show that the BST is monopolarizing for suitably
chosen 𝜂, L, H when applied to a set of forgetful6 FAIM-
derived s/o-processes. The theorem holds for a set of s/o-
processes that satisfies a set of rather lax conditions. The
conditions are defined in terms of the 𝐿-forgetfulness of the
s/o-process, 𝜖𝐿 , see Definition 10; and the mixing parameters
𝜓𝑀 and 𝜙𝑀 from Lemma 7.

Recall that if a specific FAIM-derived s/o-process satisfies
Condition K, it is forgetful (see Example 7). Thus, by
Definition 10, we have that 𝜖𝐿 −−−−→

𝐿→∞
0. Furthermore, for

this FAIM-derived s/o-process, by Lemma 7, 𝜓𝑀 −−−−−→
𝑀→∞

1,
and 𝜙𝑀 −−−−−→

𝑀→∞
1, where 𝜓𝑀 is nonincreasing and 𝜙𝑀 is

6An interesting open problem is whether the forgetfulness condition is
necessary.

nondecreasing. Our conditions for the set of forgetful FAIM-
derived s/o-processes are that there exist sequences 𝜖𝐿 , �̄�𝑀 ,
and 𝜙𝑀 such that for any s/o-process in the set we have

𝜖𝐿 ≤ 𝜖𝐿 −−−−→
𝐿→∞

0, (66a)

𝜓𝑀 ≤ �̄�𝑀 −−−−−→
𝑀→∞

1, (66b)

𝜙𝑀 ≥ 𝜙𝑀 −−−−−→
𝑀→∞

1, (66c)

�̄�𝑀 nonincreasing, 𝜙𝑀 nondecreasing. (66d)

Clearly, for a given finite set C of forgetful FAIM-derived s/o-
processes, conditions (66) are easy to satisfy. Namely, for any
𝐿 and 𝑀 , take 𝜖𝐿 = max𝑐∈C 𝜖𝐿 (𝑐), �̄�𝑀 = max𝑐∈C 𝜓𝑀 (𝑐), and
𝜙𝑀 = min𝑐∈C 𝜙𝑀 (𝑐). For an infinite set C, we may replace
max and min above by sup and inf, respectively.

Theorem 21. Fix sequences 𝜖𝐿 , �̄�𝑀 , and 𝜙𝑀 that satisfy
the limits in (66a)–(66c), as well as the conditions in (66d).
Let 𝑋★ ↣ 𝑌★ be a forgetful FAIM-derived s/o-process that
satisfies the inequalities in (66a)–(66c). For every 𝜂 > 0 there
exist 𝐿th, 𝑀th, and 𝑛th, independent of the process, such that if
𝐿0 ≥ 𝐿th, 𝑀0 ≥ 𝑀th, and 𝑛 ≥ 𝑛th then a level-𝑛 BST initialized
with parameters 𝐿0 and 𝑀0 is (𝜂, [med+ (𝑛)], [med− (𝑛)])-
monopolarizing.

Specifically, let 𝐹𝑁𝑛

1 ↣ 𝐺
𝑁𝑛

1 be a transformed s/o-block of
a level-𝑛 BST initialized with 𝐿0 and 𝑀0 as above. Then:
• if H(𝑋★ |𝑌★) ≤ 1/2 then 𝐻 (𝐹𝑖 |𝐺𝑖) < 𝜂, ∀𝑖 ∈
[med+ (𝑛)];

• if H(𝑋★ |𝑌★) ≥ 1/2 then 𝐻 (𝐹𝑖 |𝐺𝑖) > 1 − 𝜂, ∀𝑖 ∈
[med− (𝑛)].

This theorem will follow as a corollary to Proposition 22
below. We will show in Proposition 22 that, when 𝐿th and 𝑀th
are suitably chosen, there is a close relationship between the
BST of a forgetful FAIM-derived s/o-process and the OT-BST
of a BI-process. Since, by Proposition 17, the OT-BST of a
BI-process is monopolarizing, this will imply that the BST is
also monopolarizing.

The parameters 𝐿th, 𝑀th, and 𝑛th for given sequences 𝜖𝐿 ,
�̄�𝑀 , and 𝜙𝑀 are determined in the proof of Theorem 21. For
future reference, they are detailed in the following remark.
Remark 7. We are given 𝜂 > 0, and our goal is to set the
parameters 𝑛th, 𝐿th, and 𝑀th. We do this via the following
steps.

1) Fix 𝜀1 < 𝜂/12 and 𝜀2 < 𝜂
2/32, in line with (85) below.

2) Let 𝜉 be as in (84) below.
3) Set 𝑛th using this 𝜉 in (62).
4) Take 𝜖 = 𝜀12−𝑛th , in line with (77).
5) Find 𝐿th such that (35) holds with this 𝜖 , and 𝐿th in place

of 𝑘 .
6) Find 𝑀th such that (80) holds with 𝑀th in place of 𝑀,

and 𝑛th in place of 𝑛.
These steps will follow from the proof of Theorem 21.

Recall our notation from Section IV-B for the BST and
OT-BST. We will only consider medial indices. The BST is
expressed using the sequence of functions 𝑓𝑛,𝑖 , 𝑔𝑛,𝑖 , where
𝑖 ∈ [med(𝑛)]. The OT-BST is expressed using the sequence of
functions 𝑓𝑛,𝑖 , �̃�𝑛,𝑖 .
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Let 𝑖 ∈ [med(𝑛)]; its base-vector b is given by

b =
[
𝑏1 𝑏2 · · · 𝑏2𝑛

]
,

We also denote

a =
[
1 𝑁0 + 1 2𝑁0 + 1 · · · (2𝑛 − 1)𝑁0 + 1

]
,

z =
[
𝑁0 2𝑁0 3𝑁0 · · · 2𝑛𝑁0

]
.

We further define for index 𝑖 ∈ [med(𝑛)]:

𝐹𝑖 = 𝑓𝑛,𝑖 (𝑋b), 𝐺𝑖 = 𝑔𝑛,𝑖 (𝑋b
a , 𝑌

z
a ), (67a)

�́�𝑖 = 𝑓𝑛,𝑖 (𝑋b), �́�𝑖 = �̃�𝑛,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
), (67b)

�̃�𝑖 = 𝑓𝑛,𝑖 ( �̃�b), �̃�𝑖 = �̃�𝑛,𝑖 ( �̃�b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
). (67c)

In words:
• 𝐹𝑖 ↣ 𝐺𝑖 is a transformed s/o-pair obtained after applying

a level-𝑛 BST to the FAIM-derived process;
• �́�𝑖 ↣ �́�𝑖 is an OT-transformed s/o-pair obtained after

applying a level-𝑛 OT-BST to the FAIM-derived process;
• �̃�𝑖 ↣ �̃�𝑖 is an OT-transformed s/o-pair obtained after

applying a level-𝑛 OT-BST to the BI-process.
The following proposition, as well as Lemmas 23 and 24,

are stated for a forgetful FAIM-derived s/o-process, 𝑋★ ↣ 𝑌★,
that satisfies (66) for some sequences 𝜖𝐿 , �̄�𝑀 , and 𝜙𝑀 .

Proposition 22. Fix 𝑛 ≥ 0, 𝜀1 > 0, and 0 < 𝜀2 <
1
6 . There exist

𝐿th and 𝑀th such that a level-𝑛 BST initialized with parameters
𝐿0 ≥ 𝐿th, 𝑀0 ≥ 𝑀th satisfies:

|𝐻 (𝐹𝑖 |𝐺𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) | ≤ 2𝜀1 +
𝜀2
2
− 3𝜀2 log

3𝜀2
2

(68a)

< 2𝜀1 +
√︁

8𝜀2. (68b)

Furthermore, we have

|𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛
)−𝐻 (�̃�𝑖 |�̃�𝑖) | ≤ 2𝜀1+

𝜀2
2
−3𝜀2 log

3𝜀2
2
. (69)

Proof: Denote

�́� = 𝑃
𝑋b

b−𝐿0
,𝑌

b+𝐿0
b−𝐿0

,

�̃� =
2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

.

Then, (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) is distributed according to �́� and

( �̃�b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) is distributed according to �̃�.

In Lemma 23 that follows we show that there exists 𝐿th
such that if 𝐿0 ≥ 𝐿th then

|𝐻 (𝐹𝑖 |𝐺𝑖) − 𝐻 (�́�𝑖 |�́�𝑖) | ≤ 2𝜀1. (70)

Next, in Lemma 24 that follows we show that there exists 𝑀th
such that if 𝑀0 ≥ 𝑀th then

(1 − 𝜀2)�̃� ≤ �́� ≤ (1 + 𝜀2)�̃�.

This will enable us to use Lemma 25 below with 𝑓 = 𝑓𝑛,𝑖 and
𝑔 = �̃�𝑛,𝑖 to obtain

|𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) | ≤
𝜀2
2
− 3𝜀2 log

3𝜀2
2

<
√︁

8𝜀2.

Hence, we conclude that

|𝐻 (𝐹𝑖 |𝐺𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) |
≤ |𝐻 (𝐹𝑖 |𝐺𝑖) − 𝐻 (�́�𝑖 |�́�𝑖) | + |𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) |

≤ 2𝜀1 +
𝜀2
2
− 3𝜀2 log

3𝜀2
2

< 2𝜀1 +
√︁

8𝜀2.

This proves (68).
Finally, to show (69), by (73) in Lemma 23 we have

|𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛
) − 𝐻 (�́�𝑖 |�́�𝑖) | ≤ 2𝜀1.

We insert the above in place of (70), and by the same arguments
as before,

|𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛
) − 𝐻 (�̃�𝑖 |�̃�𝑖) |

≤ |𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛
) − 𝐻 (�́�𝑖 |�́�𝑖) | + |𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) |

≤ 2𝜀1 +
𝜀2
2
− 3𝜀2 log

3𝜀2
2
.

This completes the proof.
In the sequel, we will refer to the right-hand side of (68a).

To this end, for 𝜀1 > 0 and 0 < 𝜀2 <
1
6 , we denote

𝜀3 = 𝜀3 (𝜀1, 𝜀2) ≜ 2𝜀1 +
𝜀2
2
− 3𝜀2 log

3𝜀2
2
. (71)

We now state and prove Lemmas 23 to 25.
For the lemma below, recall that a BST is initialized with

parameters 𝐿0 and 𝑀0. This lemma is concerned with 𝐿0 and
applies for any 𝑀0.

Lemma 23. Fix 𝑛 ≥ 0 and 𝜀1 > 0. There exists 𝐿th such that
if 𝐿0 ≥ 𝐿th then for all 𝑀0,

0 ≤ 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (𝐹𝑖 |𝐺𝑖) ≤ 2𝜀1 (72)

and
0 ≤ 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛

) ≤ 2𝜀1. (73)

Proof: By (32), 𝐺𝑖 ≡ (�́�𝑖 , ´
𝐺𝑖), where

�́�𝑖 = �̃�𝑛,𝑖 (𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
),

´
𝐺𝑖 = (𝑋b−𝐿0−1

a , 𝑌
b−𝐿0−1
a , 𝑌 z

b+𝐿0+1). (74)

Since 𝑓𝑛,𝑖 = 𝑓𝑛,𝑖 , we have 𝐹𝑖 = �́�𝑖 . Therefore,

𝐻 (𝐹𝑖 |𝐺𝑖) = 𝐻 (�́�𝑖 |�́�𝑖 , ´
𝐺𝑖) ≤ 𝐻 (�́�𝑖 |�́�𝑖), (75)

where the inequality is because conditioning reduces entropy.
This proves the left-hand side of (72).

We now turn to proving the right-hand side of (72). Utilizing
the left-hand side of (66a) and Corollary 10 with i = b, 𝜆 = 𝐿th,
and 𝐿0 ≥ 𝐿th, we obtain

𝐼 (𝑆b; 𝑆b−𝐿0 , 𝑆b+𝐿0 | 𝑋b−1
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) ≤ 2𝑛 · 2𝜖𝐿 . (76)

Using the right-hand side of (66a), we take 𝐿th large enough
so that

𝜖𝐿th ≤ 𝜀1 · 2−𝑛. (77)



22

Hence,

2𝜀1 ≥ 𝐼 (𝑆b; 𝑆b−𝐿0 , 𝑆b+𝐿0 | 𝑋b−1
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
)

(a)
≥ 𝐼 (�́�𝑖 , �́�𝑖; 𝑆b−𝐿0 , 𝑆b+𝐿0 | 𝑋b−1

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
)

(b)
≥ 𝐼 (�́�𝑖; 𝑆b−𝐿0 , 𝑆b+𝐿0 | �́�𝑖 , 𝑋

b−1
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
)

(c)
= 𝐼 (�́�𝑖; 𝑆b−𝐿0 , 𝑆b+𝐿0 | �́�𝑖)
= 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (�́�𝑖 |�́�𝑖 , 𝑆b−𝐿0 , 𝑆b+𝐿0 )
(d)
= 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (�́�𝑖 |�́�𝑖 , ´

𝐺𝑖 , 𝑆b−𝐿0 , 𝑆b+𝐿0 )
(e)
= 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆b−𝐿0 , 𝑆b+𝐿0 ) (78)
(f)
≥ 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (𝐹𝑖 |𝐺𝑖),

where:

• (a) is due to (2). By (33), 𝑋b is a probabilistic function of
𝑆b; by (67b), �́�𝑖 is a function of 𝑋b, and �́�𝑖 is a function
of (𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0
). Thus, we have the Markov chain

(𝑆b−𝐿0 , 𝑆b+𝐿0 ) −◦− (𝑆b, 𝑋
b−1
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
)

−◦− (𝑋b, 𝑋
b−1
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) −◦− (�́�𝑖 , �́�𝑖).

Specifically, we have the Markov chain

(𝑆b−𝐿0 , 𝑆b+𝐿0 ) −◦− (𝑆b, 𝑋
b−1
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
) −◦− (�́�𝑖 , �́�𝑖),

for which we use (2).
• (b) is by the chain rule.
• (c) is since �́�𝑖 ≡ (�́�𝑖 , 𝑋

b−1
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0
), which holds due

to (31) and (67b).
• (d) is by the Markov property (33), (67b), and (74): �́�𝑖 and
�́�𝑖 are probabilistic functions of states 𝑆b+𝐿0

b−𝐿0
, whereas

´
𝐺𝑖

is a probabilistic function of states 𝑆b−𝐿0−1
a and 𝑆z

b+𝐿0+1.
• (e) is because �́�𝑖 = 𝐹𝑖 and because 𝐺𝑖 ≡ (�́�𝑖 , ´

𝐺𝑖) by (32).
• (f) is because conditioning reduces entropy.

This shows (72).
Finally, to show (73) we use the same steps. Namely, we

obtain the left-hand side of (73) by replacing (75) with

𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛
) = 𝐻 (�́�𝑖 |�́�𝑖 , ´

𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛
) ≤ 𝐻 (�́�𝑖 |�́�𝑖).

For the right-hand side of (73), observe that by the penultimate
step of (78) we have

2𝜀1 ≥ 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆b−𝐿0 , 𝑆b+𝐿0 )
= 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆b−𝐿0 , 𝑆b+𝐿0 , 𝑆0, 𝑆𝑁𝑛

)
≥ 𝐻 (�́�𝑖 |�́�𝑖) − 𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛

).

The first equality is by Markov property (33). The final
inequality is because conditioning reduces entropy.

Lastly, note that there are no restrictions on 𝑀0 throughout
the proof — its only role is setting the parameters of the BST
— and thus the claim holds for any 𝑀0.

For the lemma below, again recall that a BST is initialized
with parameters 𝐿0 and 𝑀0. This lemma is concerned with
𝑀0 and applies for any 𝐿0.

1 𝑁𝑛

ℓ = 1

𝑏1

𝑏1−𝐿0 𝑏1+𝐿0

ℓ = 2

𝑏2

𝑏2−𝐿0 𝑏2+𝐿0

ℓ = 3

𝑏3

𝑏3−𝐿0 𝑏3+𝐿0

ℓ = 4

𝑏4

𝑏4−𝐿0 𝑏4+𝐿0

𝑋
𝑏2
𝑏2−𝐿0

,𝑌
𝑏2+𝐿0
𝑏2−𝐿0 𝑏4 − 𝑏3 − 2𝐿0

Fig. 9. Illustration of a level-2 BST. There are four b-blocks, with b-block
numbers ℓ = 1, 2, 3, 4. The base-index (in blue) in b-block ℓ is 𝑏ℓ . The
red boxes in the illustration correspond to 𝑋b

b−𝐿0
, 𝑌

b+𝐿0
b−𝐿0

, where 𝑋 is only
available to the left of the blue lines (shown in green). Each red box represents
a contiguous set of indices, and there are 2𝑛 such sets; they are separated in
time.

Lemma 24. Fix 𝑛 ≥ 0, 𝜀2 > 0, and 𝐿0. There exists 𝑀th such
that if 𝑀0 ≥ 𝑀th then

𝑃
𝑋b

b−𝐿0
,𝑌

b+𝐿0
b−𝐿0
≤ (1 + 𝜀2)

2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

, (79a)

𝑃
𝑋b

b−𝐿0
,𝑌

b+𝐿0
b−𝐿0
≥ (1 − 𝜀2)

2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

. (79b)

Proof: By the right-hand sides of (66b) and (66c), we
may choose 𝑀th such that

(�̄�𝑀th−2) (2
𝑛 ) ≤ 1 + 𝜀2, (80a)

(𝜙𝑀th−2) (2
𝑛 ) ≥ 1 − 𝜀2. (80b)

For any 𝑀0 ≥ 𝑀th, by (66d), we thus have

(�̄�𝑀0−2) (2
𝑛 ) ≤ (�̄�𝑀th−2) (2

𝑛 ) ≤ 1 + 𝜀2, (81a)
(𝜙𝑀0−2) (2

𝑛 ) ≥ (𝜙𝑀th−2) (2
𝑛 ) ≥ 1 − 𝜀2. (81b)

Denote by b̄ =
[
�̄�1 �̄�2 · · · �̄�2𝑛

]
the modulo-base-vector

of 𝑖. By Corollary 6, for any 1 ≤ ℓ < 2𝑛 we have 1 ≤ |�̄�ℓ+1 −
�̄�ℓ | ≤ 2. Hence, by (22), and recalling that 𝑁0 = 2𝐿0 + 𝑀0,

(𝑏ℓ+1 − 𝐿0) − (𝑏ℓ + 𝐿0) = ℓ𝑁0 − (ℓ − 1)𝑁0 − 2𝐿0 + �̄�ℓ+1 − �̄�ℓ
= 𝑀0 + (�̄�ℓ+1 − �̄�ℓ)
≥ 𝑀0 − |�̄�ℓ+1 − �̄�ℓ |
≥ 𝑀0 − 2. (82)

The vector 𝑋b
b−𝐿0

, 𝑌
b+𝐿0
b−𝐿0

contains symbols with indices in
B = ∪ℓBℓ , where Bℓ = {𝑏ℓ − 𝐿0, 𝑏ℓ − 𝐿0 + 1, . . . , 𝑏ℓ + 𝐿0},
1 ≤ ℓ ≤ 2𝑛. Each set Bℓ is a contiguous subsequence of B.
The greatest index in Bℓ is 𝑏ℓ + 𝐿0 and the smallest index in
Bℓ+1 is 𝑏ℓ+1 − 𝐿0; see Figure 9 for an illustration. By (82),
any two consecutive sets Bℓ and Bℓ+1 are separated by at least
𝑀0 − 2 indices.

Using the left-hand sides of (66b) and (66c), Lemma 7, and
a straightforward induction argument, we conclude that

𝑃
𝑋b

b−𝐿0
,𝑌

b+𝐿0
b−𝐿0
≤ (�̄�𝑀0−2) (2

𝑛 )
2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

,

𝑃
𝑋b

b−𝐿0
,𝑌

b+𝐿0
b−𝐿0
≥ (𝜙𝑀0−2) (2

𝑛 )
2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

.
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Thus, by (81),

𝑃
𝑋b

b−𝐿0
,𝑌

b+𝐿0
b−𝐿0
≤ (1 + 𝜀2)

2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

,

𝑃
𝑋b

b−𝐿0
,𝑌

b+𝐿0
b−𝐿0
≥ (1 − 𝜀2)

2𝑛∏
ℓ=1

𝑃
𝑋
𝑏ℓ
𝑏ℓ −𝐿0

,𝑌
𝑏ℓ+𝐿0
𝑏ℓ −𝐿0

,

which is (79).
In Lemma 24 we saw that �́� and �̃� are close in the sense

of (79). The following lemma, whose proof can be found in
Appendix D, translates this proximity to conditional entropies.

Lemma 25. Let 𝐴 and �̃� be two discrete random variables
over the same finite alphabet A. Denote P (𝐴 = 𝑎) = 𝑝(𝑎)
and P

(
�̃� = 𝑎

)
= 𝑞(𝑎) for all 𝑎 ∈ A. Assume that for some

0 ≤ 𝜀 < 1
6 ,

(1 − 𝜀)𝑞(𝑎) ≤ 𝑝(𝑎) ≤ (1 + 𝜀)𝑞(𝑎), ∀𝑎 ∈ A. (83)

Then, for any 𝑓 : A → {0, 1} and 𝑔 : A → G, where G is
some finite alphabet, we have��𝐻 ( 𝑓 (𝐴) |𝑔(𝐴)) − 𝐻 ( 𝑓 ( �̃�) |𝑔( �̃�))�� ≤ 𝜀

2
− 3𝜀 log

3𝜀
2

<
√

8𝜀.

We are now ready to prove Theorem 21.
Proof of Theorem 21: Choose 𝜀1 > 0 and 0 < 𝜀2 <

1
6

small enough such that

𝜉 ≜ 𝜂 − 4𝜀1 − (2𝜀1 +
√︁

8𝜀2) > 0. (84)

For example, one may take

𝜀1 <
𝜂

12
, (85a)

𝜀2 <
𝜂2

32
. (85b)

Take 𝑛th large enough so that Proposition 17 holds with 𝜉
as above. Recall that Proposition 17 holds for any 𝐿0 and 𝑀0,
so we are free to set them as desired.

By Proposition 22, for 𝑛th, 𝜀1, and 𝜀2 above, there exist 𝐿th
and 𝑀th such that (68) holds for 𝐿0 ≥ 𝐿th and 𝑀0 ≥ 𝑀th. That
is,

−(2𝜀1 +
√︁

8𝜀2) ≤ 𝐻 (𝐹𝑖 |𝐺𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) ≤ (2𝜀1 +
√︁

8𝜀2). (86)

In fact, we choose 𝐿0 ≥ 𝐿th as in the proof of Lemma 23.
This ensures that the 𝐿0-forgetfulness of the s/o-process is
upper-bounded by 𝜀1. Thus, by Corollary 12, (43) holds with
𝜖 ≤ 𝜀1, so that

−2𝜀1 ≤ H(𝑋★ |𝑌★) − H̃ ≤ 2𝜀1.

Hence, if H(𝑋★ |𝑌★) ≤ 1/2 then H̃ ≤ (1 + 4𝜀1)/2 and if
H(𝑋★ |𝑌★) ≥ 1/2 then H̃ ≥ (1 − 4𝜀1)/2. Consequently, by
Corollary 19 with 𝜁 = 4𝜀1, if 𝑛 ≥ 𝑛th then

H(𝑋★ |𝑌★) ≤ 1/2⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) < 𝜉 + 4𝜀1, ∀𝑖 ∈ [med+ (𝑛)],
H(𝑋★ |𝑌★) ≥ 1/2⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) > 1 − 𝜉 − 4𝜀1, ∀𝑖 ∈ [med− (𝑛)] .

Combining the above with (84) and (86) we obtain that for
𝑛 ≥ 𝑛th,

H(𝑋★ |𝑌★) ≤ 1/2⇒ 𝐻 (𝐹𝑖 |𝐺𝑖) < 𝜂, ∀𝑖 ∈ [med+ (𝑛)],
H(𝑋★ |𝑌★) ≥ 1/2⇒ 𝐻 (𝐹𝑖 |𝐺𝑖) > 1 − 𝜂, ∀𝑖 ∈ [med− (𝑛)] .

This completes the proof.

Remark 8. We have proved Theorem 21 using (68b), which is
looser than (68a). Hence, the proof would also hold if we were
to define 𝜉 in (84) as 𝜂 − 4𝜀1 − 𝜀3. The looser definition of 𝜉
circumvents a cumbersome upper bound on 𝜀3, and by proxy
on 𝜀2, that involves the Lambert 𝑊 function [23, p. 332].

D. Monopolarization for FAIM-derived Processes, for a Cas-
cade of BSTs

The previous subsection considered a single BST. However,
in practice, one may cascade several BSTs to obtain a universal
polar code of rate different from 1/2. In this subsection, we
extend the previous results to a cascade of BSTs.

A cascade of BSTs is defined by the following:
• the number of BSTs in the cascade, 𝑡 (that is, the overall

transform is comprised of 𝑡 stages);
• parameter 𝐿0, which defines the number of lateral indices

in the level-0 block of the first BST in the cascade;
• parameters 𝑀 {1}0 , 𝑀

{2}
0 , . . . , 𝑀

{𝑡 }
0 , where 𝑀 {𝑖}0 defines the

number of medial indices in the level-0 block of the 𝑖th
BST in the cascade;

• recursion depths 𝑛1, 𝑛2, . . . , 𝑛𝑡 , of the 𝑡 BSTs in the
cascade;

• a binary vector c =
[
𝑐1 𝑐2 . . . 𝑐𝑡−1

]
of length 𝑡 −

1. Each stage of the cascade applies a BST operation
on a subset of indices from the previous stage. This is
determined by c; informally, 𝑐𝑖 = 0 (𝑐𝑖 = 1) implies that
stage 𝑖 + 1 is the result of applying a BST on the newly
formed medial-minus (plus) indices of stage 𝑖.

The cascade is constructed recursively. For 𝑡 = 1, we are in
the single BST case. This BST is defined through 𝐿0, parameter
𝑀0 = 𝑀

{1}
0 , and recursion depth 𝑛1. That is, we transform

𝑋𝑁 {1}

1 to 𝑈𝑁 {1}

1 , where 𝑁 {1} = (2𝐿0 + 𝑀 {1}0 ) · 2
𝑛1 . Recall that

medial indices at level 𝑛1 of the BST are split into [med− (𝑛1)]
and [med+ (𝑛1)], see (4). We denote the medial sets of stage
1 of the cascade as

[med−{1}] = [med− (𝑛1)], [med+{1}] = [med+ (𝑛1)] .

The remaining indices are lateral. We further define the two sets
[𝜈med−{1}] and [𝜈med+{1}], which we call “the new medial-
minus and medial-plus sets of stage 1 of the cascade.” For
this base case, they coincide with [med−{1}] and [med+{1}],
respectively. That is,

[𝜈med−{1}] = [med−{1}], [𝜈med+{1}] = [med+{1}] .

When moving from stage 𝑖 to stage 𝑖 + 1 of the cascade, we
first make 𝑀 {𝑖+1}0 · 2𝑛𝑖+1 copies of the stage-𝑖 cascade. That is,
the length of the stage-(𝑖 + 1) cascade is

𝑁 {𝑖+1} = 𝑁 {𝑖} · 𝑀 {𝑖+1}0 · 2𝑛𝑖+1 . (87)
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For 1 ≤ ℓ ≤ 𝑀 {𝑖+1}0 · 2𝑛𝑖+1 and 1 ≤ 𝑗 ≤ 𝑁 {𝑖} , Denote

𝑋
(ℓ )
𝑗

= 𝑋 𝑗+(ℓ−1)𝑁 {𝑖} ,

𝑈
(ℓ )
𝑗

= 𝑈 𝑗+(ℓ−1)𝑁 {𝑖} ,

and their vector versions

𝑿ℓ =

[
𝑋
(ℓ )
1 𝑋

(ℓ )
2 · · · 𝑋

(ℓ )
𝑁 {𝑖}

]
,

𝑼ℓ =

[
𝑈
(ℓ )
1 𝑈

(ℓ )
2 · · · 𝑈

(ℓ )
𝑁 {𝑖}

]
.

Copy ℓ of the stage-𝑖 cascade transforms 𝑿ℓ to 𝑼ℓ . Next, for
each 1 ≤ 𝑗 ≤ 𝑁 (𝑖) , we take the 𝑗 th index of each copy and
apply, as described below, an operation: either a BST or a pass-
through. That is, for 1 ≤ 𝑗 ≤ 𝑁 {𝑖} and 1 ≤ ℓ ≤ 𝑀 {𝑖+1}0 · 2𝑛𝑖+1 ,
further denote

𝑉
( 𝑗 )
ℓ

= 𝑉
ℓ+( 𝑗−1) ·𝑀 {𝑖+1}0 ·2𝑛𝑖+1 , (88)

and the vectors

𝑼
𝑗
=

[
𝑈
(1)
𝑗

𝑈
(2)
𝑗

· · · 𝑈
(𝑀 {𝑖+1}0 ·2𝑛𝑖+1 )
𝑗

]
, (89a)

𝑽
𝑗
=

[
𝑉
( 𝑗 )
1 𝑉

( 𝑗 )
2 · · · 𝑉

( 𝑗 )
𝑀
{𝑖+1}
0 ·2𝑛𝑖+1

]
. (89b)

The operation transforms 𝑼
𝑗

to 𝑽
𝑗
. The output of the stage-

(𝑖+1) cascade is 𝑽1, 𝑽2, . . ., 𝑽
𝑁 {𝑖} . In other words, we operate

on a single symbol from each copy, and the result is a single
contiguous block on the output side. This ordering is amenable
to successive-cancellation decoding.

What remains to define is which operation, BST or pass-
through, to apply to which index, and to determine the various
medial sets. At stage 𝑖 of the cascade, each index is either
medial or lateral. The medial indices are split into [med−{𝑖}]
and [med+{𝑖}]. These sets will be defined as part of the
recursion. Important subsets of these sets are [𝜈med−{𝑖}]
and [𝜈med+{𝑖}], respectively. These two subsets will also be
defined as part of the recursion. BST operations will be applied
to exactly one of these subsets, called the “active set.” On all
other indices, the pass-through operation will be applied.

When moving from stage 𝑖 < 𝑡 to stage 𝑖 + 1, define the
“active set” 𝜎𝑖 as

𝜎𝑖 =

{
[𝜈med−{𝑖}], if 𝑐𝑖 = 0,
[𝜈med+{𝑖}], if 𝑐𝑖 = 1.

(90)

For 𝑖 = 𝑡 we technically define the active set as the descendants
of the active set of the previous stage, that is

𝜎𝑡 = [𝜈med−{𝑡}] ∪ [𝜈med+{𝑡}] . (91)

For each index 1 ≤ 𝑗 ≤ 𝑁 {𝑖} , we do the following:
• If 𝑗 ∈ 𝜎𝑖 , apply a BST operation to 𝑼

𝑗
. The BST is

defined by parameters 𝐿0 = 0, 𝑀0 = 𝑀
{𝑖+1}
0 , and has

recursion depth 𝑛𝑖+1.
– If 𝑉 ( 𝑗 )

ℓ
is a medial-minus symbol, then (see (88))

ℓ + ( 𝑗 − 1) · 𝑀 {𝑖+1}0 · 2𝑛𝑖+1 ∈ [𝜈med−{𝑖 + 1}] .

– If 𝑉 ( 𝑗 )
ℓ

is a medial-plus symbol, then

ℓ + ( 𝑗 − 1) · 𝑀 {𝑖+1}0 · 2𝑛𝑖+1 ∈ [𝜈med+{𝑖 + 1}] .

– All indices in [𝜈med−{𝑖+1}] are also in [med−{𝑖+1}].
– All indices in [𝜈med+{𝑖 +1}] are also in [med+{𝑖 +1}].

• Otherwise, apply a pass-through operation to 𝑼
𝑗
, that is

𝑽
𝑗
= 𝑼

𝑗
, i.e., by (89), 𝑉 ( 𝑗 )

ℓ
= 𝑈

(ℓ )
𝑗

for each 1 ≤ ℓ ≤
𝑀
{𝑖+1}
0 · 2𝑛𝑖+1 .

– If 𝑗 ∈ [med−{𝑖}], then all the indices in 𝑽
𝑗

(see (88)
and (89b)), are in [med−{𝑖 + 1}].

– If 𝑗 ∈ [med+{𝑖}], then all the indices in 𝑽
𝑗

are in
[med+{𝑖 + 1}].

• Any index that is not in [med−{𝑖}] or [med+{𝑖}] is lateral.
We introduce the following definition — a specialization of

the above — to simplify the statements of the claims in this
subsection.

Definition 12. A (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade is a cascade of BSTs
as above, with 𝑀

{𝑖}
0 = 𝑀0 and 𝑛𝑖 = 𝑛, for 1 ≤ 𝑖 ≤ 𝑡.

The length of a (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade, by the recur-
sion (87) and recalling that 𝑁 {1} = (2𝐿0 + 𝑀0)2𝑛 is given
by

𝑁 {𝑡 } = (2𝐿0 + 𝑀0)𝑀 𝑡−1
0 2𝑛𝑡 . (92)

Our plan for the rest of this subsection is as follows. Denote
the cascade threshold entropy as

ℎ(c) =
1 +∑𝑡−1

𝑖=1 𝑐𝑖2
𝑡−𝑖

2𝑡
. (93)

In Lemma 26, we show that the fraction of medial-minus
indices out of all medial indices of the cascade approaches
ℎ(c). We further show that the fraction of medial indices out of
all indices approaches 1. Then, in Theorem 28, we show that
ℎ(c) is indeed a threshold entropy of the cascade. That is, for
an s/o-process with conditional entropy rate less than ℎ(c), the
medial-plus indices monopolarize; and for an s/o-process with
conditional entropy rate greater than ℎ(c), the medial-minus
indices monopolarize.

Lemma 26. Consider a (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade. Then,

| [med−{𝑡}] |
| [med+{𝑡}] ∪ [med−{𝑡}] |

=

1 +
𝑡−1∑︁
𝑖=1

𝑐𝑖2𝑡−𝑖
(

1
1 − 2(1 − 2−𝑛)𝑀−1

0

) 𝑡−𝑖
2 +

𝑡−1∑︁
𝑖=1

2𝑡−𝑖
(

1
1 − 2(1 − 2−𝑛)𝑀−1

0

) 𝑡−𝑖 . (94)

Moreover,

| [med+{𝑡}] ∪ [med−{𝑡}] |
𝑁 {𝑡 }

=

(
1 − 2 − 21−𝑛

𝑀0

) 𝑡 ©«2 +
𝑡−1∑︁
𝑖=1

2𝑡−𝑖
(

1
1 − 2(1 − 2−𝑛)𝑀−1

0

) 𝑡−𝑖ª®¬
2𝑡 (2𝐿0 + 𝑀0)𝑀−1

0
.

(95)

Observe that when 𝑀0 is large, the right-hand side of (94)
approaches ℎ(c), as the terms in parentheses approach 1 and
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∑𝑡−1
𝑖=1 2𝑡−𝑖 = 2𝑡 − 2. Furthermore, when 𝑀0 is also large with

respect to 𝐿0, the right-hand side of (95) approaches 1.
Proof: Define 𝜈0 = 1, and denote by 𝜈𝑖 the number of new

medial plus indices (which is the same as the number of new
medial minus indices) at the output of stage 𝑖 of the cascade.
By the cascade construction, the first stage is merely a BST
of depth 𝑛 with b-blocks consisting of 𝑀0 medial indices and
2𝐿0 lateral indices each. Recalling that the number of medial
indices in a BST of depth 𝑛 is given in (19b), we have

𝜈1 =
1
2
𝜈0 · (2𝑛𝑀0 − 2(2𝑛 − 1)) .

Note that the factor 1/2 stems from counting the number of
new medial plus indices, which is half the number of new
medial indices.

When moving from step 𝑖 − 1 of the cascade to step 𝑖, we
perform 𝜈𝑖−1 BSTs of depth 𝑛, each with b-blocks consisting
of 𝑀0 medial indices and 0 lateral indices. Hence, the number
of new medial plus indices at the end of stage 𝑖 is

𝜈𝑖 =
1
2
𝜈𝑖−1 · (2𝑛𝑀0 − 2(2𝑛 − 1)) . (96)

Thus,
𝜈𝑖 =

1
2𝑖
(2𝑛𝑀0 − 2(2𝑛 − 1))𝑖 . (97)

We now claim that for 1 ≤ 𝑖 ≤ 𝑡,

| [med−{𝑖}] | = 𝜈𝑖 +
𝑖−1∑︁
𝑗=1
𝑐 𝑗𝜈 𝑗 (2𝑛𝑀0)𝑖− 𝑗 (98a)

| [med+{𝑖}] | = 𝜈𝑖 +
𝑖−1∑︁
𝑗=1
(1 − 𝑐 𝑗 )𝜈 𝑗 (2𝑛𝑀0)𝑖− 𝑗 . (98b)

Indeed, by the construction above, if 𝑐𝑖 = 0,

| [med−{𝑖 + 1}] | = 𝜈𝑖+1 + 2𝑛𝑀0 | [med−{𝑖}] \ [𝜈med−{𝑖}] |,
| [med+{𝑖 + 1}] | = 𝜈𝑖+1 + 2𝑛𝑀0 | [med+{𝑖}] |,

and if 𝑐𝑖 = 1 then

| [med−{𝑖 + 1}] | = 𝜈𝑖+1 + 2𝑛𝑀0 | [med−{𝑖}] |,
| [med+{𝑖 + 1}] | = 𝜈𝑖+1 + 2𝑛𝑀0 | [med+{𝑖}] \ [𝜈med+{𝑖}] |.

Recalling that | [𝜈med−{𝑖}] | = | [𝜈med+{𝑖}] | = 𝜈𝑖 , we can use
the above to prove (98) by induction on 𝑖.

Next, observe that

| [med−{𝑖}] ∪ [med+{𝑖}] | = | [med−{𝑖}] | + | [med+{𝑖}] |

= 2𝜈𝑖 +
𝑖−1∑︁
𝑗=1
𝜈 𝑗 (2𝑛𝑀0)𝑖− 𝑗 . (99)

Denote 𝛼 = 2(2𝑛 − 1). By (97) and (98a),

| [med−{𝑡}] | = 𝜈𝑡 +
𝑡−1∑︁
𝑖=1

𝑐𝑖𝜈𝑖 (2𝑛𝑀0)𝑡−𝑖

=
(2𝑛𝑀0 − 𝛼)𝑡

2𝑡
+

𝑡−1∑︁
𝑖=1

𝑐𝑖2−𝑖 (2𝑛𝑀0 − 𝛼)𝑖 (2𝑛𝑀0)𝑡−𝑖

=
(2𝑛𝑀0 − 𝛼)𝑡

2𝑡
+ (2

𝑛𝑀0 − 𝛼)𝑡
2𝑡

𝑡−1∑︁
𝑖=1

𝑐𝑖2𝑡−𝑖
(

2𝑛𝑀0
2𝑛𝑀0 − 𝛼

) 𝑡−𝑖
=
(2𝑛𝑀0 − 𝛼)𝑡

2𝑡
©«1 +

𝑡−1∑︁
𝑖=1

𝑐𝑖2𝑡−𝑖
(

1
1 − 𝛼2−𝑛𝑀−1

0

) 𝑡−𝑖ª®¬ .

Similarly, by (97) and (99),

| [med−{𝑡}] ∪ [med+{𝑡}] | = 2𝜈𝑡 +
𝑡−1∑︁
𝑖=1

𝜈𝑖 (2𝑛𝑀0)𝑡−𝑖

= 2 · (2
𝑛𝑀0 − 𝛼)𝑡

2𝑡
+

𝑡−1∑︁
𝑖=1

2−𝑖 (2𝑛𝑀0 − 𝛼)𝑖 (2𝑛𝑀0)𝑡−𝑖

= 2 · (2
𝑛𝑀0 − 𝛼)𝑡

2𝑡
+ (2

𝑛𝑀0 − 𝛼)𝑡
2𝑡

(
𝑡−1∑︁
𝑖=1

2𝑡−𝑖
(

2𝑛𝑀0
2𝑛𝑀0 − 𝛼

) 𝑡−𝑖)
=
(2𝑛𝑀0 − 𝛼)𝑡

2𝑡
©«2 +

𝑡−1∑︁
𝑖=1

2𝑡−𝑖
(

1
1 − 𝛼2−𝑛𝑀−1

0

) 𝑡−𝑖ª®¬ . (100)

Combining the above two expressions, we obtain
| [med−{𝑡}] |

| [med+{𝑡}] ∪ [med−{𝑡}] |

=

1 +
𝑡−1∑︁
𝑖=1

𝑐𝑖2𝑡−𝑖
(

1
1 − 𝛼2−𝑛𝑀−1

0

) 𝑡−𝑖
2 +

𝑡−1∑︁
𝑖=1

2𝑡−𝑖
(

1
1 − 𝛼2−𝑛𝑀−1

0

) 𝑡−𝑖 ,

=

1 +
𝑡−1∑︁
𝑖=1

𝑐𝑖2𝑡−𝑖
(

1
1 − 2(1 − 2−𝑛)𝑀−1

0

) 𝑡−𝑖
2 +

𝑡−1∑︁
𝑖=1

2𝑡−𝑖
(

1
1 − 2(1 − 2−𝑛)𝑀−1

0

) 𝑡−𝑖 ,
where in the last equality we recalled that 𝛼 = 2(2𝑛 − 1). This
proves (94).

To prove (95), we divide the expression in (100) by the
expression in (92). Since 𝛼 = 2(2𝑛 − 1), the ratio between the
term preceding the large parentheses in (100) and 𝑁 {𝑡 } is

(2𝑛𝑀0 − 𝛼)𝑡

2𝑡𝑁 {𝑡 }
=
(2𝑛 (𝑀0 − 2) + 2)𝑡

2𝑡 (2𝐿0 + 𝑀0)𝑀 𝑡−1
0 2𝑛𝑡

=
(𝑀0 − 2 + 21−𝑛)𝑡

2𝑡 (2𝐿0 + 𝑀0)𝑀 𝑡−1
0

=
(1 − (2 − 21−𝑛)𝑀−1

0 )
𝑡

2𝑡 (2𝐿0 + 𝑀0)𝑀−1
0

.

This completes the proof.
The following simple observations on ℎ(c) will be useful

in the proof of Proposition 29 below.

Lemma 27. Let c be a binary vector of length 𝑡 − 1 and let
its length-(𝑡 − 2) suffix obtained by removing 𝑐1 be c1 Then:

ℎ(c1) = 2ℎ(c) − 𝑐1, (101)
1

2𝑡−1 ≤ ℎ(c
1) ≤ 1 − 1

2𝑡−1 . (102)

Observe that by (101) and (102) we have ℎ(c) ≤ 1/2 − 2−𝑡
if 𝑐1 = 0 and ℎ(c) ≥ 1/2 + 2−𝑡 if 𝑐1 = 1.

Proof: The proof follows from simple algebra. Indeed,

ℎ(c1) =
1 +∑𝑡−2

𝑖=1 𝑐𝑖+12𝑡−1−𝑖

2𝑡−1 = 2 ·
(

1 +∑𝑡−1
𝑖=1 𝑐𝑖2

𝑡−𝑖

2𝑡
− 𝑐1

2

)
= 2ℎ(c) − 𝑐1,
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which is (101). Next, by setting 𝑐𝑖+1 = 0 (𝑐𝑖+1 = 1) for all
1 ≤ 𝑖 ≤ 𝑡 − 2 in the expression for ℎ(c1), i.e., the first equality
above, we obtain the lower (upper) bound in (102).

In the sequel we will denote by cℓ the suffix of c after
removing its first ℓ elements. That is,

cℓ =
[
𝑐ℓ+1 𝑐ℓ+2 · · · 𝑐𝑡−1

]
. (103)

Note that c𝑡−1 is an empty vector, and by (93) we have
ℎ(c𝑡−1) = 1/2.

The following is the cascade equivalent of Theorem 21.

Theorem 28. Let the number of stages of the cascade 𝑡, and
the binary vector c of length 𝑡 − 1 be given. Fix sequences 𝜖𝐿 ,
�̄�𝑀 , and 𝜙𝑀 that satisfy the limits in (66a)–(66c), as well as
the conditions in (66d). Let 𝑋★ ↣ 𝑌★ be a forgetful FAIM-
derived s/o-process that satisfies the inequalities in (66a)–(66c).
For every 𝜂 > 0 there exist 𝐿th, 𝑀th, and 𝑛th, independent of
the process, such that if 𝐿0 ≥ 𝐿th, 𝑀0 ≥ 𝑀th, and 𝑛 ≥ 𝑛th
then a (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade is (𝜂, [med+{𝑡}], [med−{𝑡}])-
monopolarizing.

Specifically, let 𝐹𝑁 {𝑡}

1 ↣ 𝐺𝑁 {𝑡}

1 be a transformed s/o-block
of a (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade as in Definition 12. Then:
• if H(𝑋★ |𝑌★) ≤ ℎ(c) then 𝐻 (𝐹𝑖 |𝐺𝑖) < 𝜂, ∀𝑖 ∈
[med+{𝑡}];

• if H(𝑋★ |𝑌★) ≥ ℎ(c) then 𝐻 (𝐹𝑖 |𝐺𝑖) > 1 − 𝜂, ∀𝑖 ∈
[med−{𝑡}].

The proof will follow along the same general lines of
Theorem 21. We first consider the simple case of an observation-
truncated transform applied to a BI-process. For this simple
case, we generalize Proposition 17.

Recall that in a BI-process with parameter 𝑁0 = 2𝐿0 +
𝑀0, contiguous symbol and observation blocks of length 𝑁0
are independent. In our setting, a BI-process is defined as in
Definition 11, with the transform length 𝑁𝑛 replaced by 𝑁 {𝑡 }

and the number of copies of the level-0 block of length 𝑁0 (2𝑛
in the definition) is 𝑁 {𝑡 }/𝑁0. Further recall that an observation-
truncated transform is defined in Section IV-B. The key point
to note is that the “observation-truncated” property is defined
based on a truncation at a level-0 block of a BST, see (29). In
other words, this property is determined at the “input-output”
level of the process. Consequently, in a cascade of more than
one BST, the overall transform is observation truncated if the
first BST is. We call such a cascade an observation-truncated
cascade.

The following is a generalization of Proposition 17. Recall
that H̃ was defined in (40), and that 𝜎𝑡 was defined in (91).

Proposition 29. Fix cascade parameters 𝑡 and c. For every
𝜁 > 0, there exists a threshold value 𝑛th ≥ 0 such that if
𝑛 ≥ 𝑛th then an observation-truncated (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade
with any parameters 𝐿0, 𝑀0 is (𝜁, [med+{𝑡}], [med−{𝑡}])-
monopolarizing for any BI-process �̃�★ ↣ 𝑌★ with parameter
𝑁0 = 2𝐿0 + 𝑀0.

Specifically, let �̃�𝑁 {𝑡}

1 ↣ �̃�𝑁 {𝑡}

1 be an OT-transformed
s/o-block of the observation-truncated (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade,
where 𝑛 ≥ 𝑛th. Then:

H̃ ≤ ℎ(c) ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) < 𝜁, ∀𝑖 ∈ [med+{𝑡}], (104a)
H̃ ≥ ℎ(c) ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) > 1 − 𝜁, ∀𝑖 ∈ [med−{𝑡}] . (104b)

In fact, we can strengthen the above:

H̃ ≤ ℎ(c) ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) <
𝜁

2𝑡
, ∀𝑖 ∈ [med+{𝑡}]\𝜎𝑡 , (105a)

H̃ ≥ ℎ(c) ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) > 1 − 𝜁

2𝑡
, ∀𝑖 ∈ [med−{𝑡}]\𝜎𝑡 . (105b)

Proof: First observe that if the proposition holds for some
𝜁 < 1, then it clearly holds for all 𝜁 ≥ 1 with the same 𝑛th.
Thus, assume that 𝜁 < 1.

We start by choosing 𝑛th such that Proposition 17 holds with
𝜉 = 𝜁/2𝑡 . First consider the case H̃ = ℎ(c); the more general
case will follow by monotonicity. We now track the evolution
of the cascade stages, by using Corollary 18.

If 𝑐1 = 0, then, by Lemma 27, ℎ(c) ≤ 1/2. Hence, by
Corollary 18 and (101),

𝐻 (�̃�𝑖 |�̃�𝑖) ∈
{
(ℎ(c1) − 𝜉, ℎ(c1)], 𝑖 ∈ [med−{1}],
[0, 𝜉), 𝑖 ∈ [med+{1}] .

Similarly, if 𝑐1 = 1, then, by Lemma 27, ℎ(c) ≥ 1/2. Hence,
by Corollary 18 and (101),

𝐻 (�̃�𝑖 |�̃�𝑖) ∈
{
(1 − 𝜉, 1], 𝑖 ∈ [med−{1}],
[ℎ(c1), ℎ(c1) + 𝜉), 𝑖 ∈ [med+{1}] .

Recall that by the cascade construction, [𝜈med−{1}] =

[med−{1}] and [𝜈med+{1}] = [med+{1}]. Thus, the active
set 𝜎1 (see (90)) is not polarized, whereas the remaining new
medial set is polarized in the sense of (105). In particular,
regardless of whether 𝑐1 = 0 or 𝑐1 = 1, we have

𝑖 ∈ 𝜎1 =⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) ∈ (ℎ(c1) − 𝜉, ℎ(c1) + 𝜉).

This will form the basis of the following claim, which we
prove by induction: after ℓ < 𝑡 stages of the cascade,

𝐻 (�̃�𝑖 |�̃�𝑖) ∈
(ℎ(cℓ) − (2ℓ − 1)𝜉, ℎ(cℓ) + (2ℓ − 1)𝜉), 𝑖 ∈ 𝜎ℓ ,
(1 − 𝜉, 1], 𝑖 ∈ [med−{ℓ}]\𝜎ℓ ,
[0, 𝜉), 𝑖 ∈ [med+{ℓ}]\𝜎ℓ .

The claim implies that after ℓ < 𝑡 stages of the cascade, all
the medial indices are polarized in the sense of (105), except
for the active set.

As shown above, the claim is indeed true for the basis case,
ℓ = 1. For the induction step, assume the claim is true after
ℓ < 𝑡 − 1 stages. To prove that it is also true after ℓ + 1 stages,
we call upon Corollary 18 and Remark 5. That is, recall that
to form stage ℓ + 1, we make 𝑀 {ℓ+1}0 · 2𝑛ℓ+1 copies of a symbol
in the active set, and apply a BST to the copies. Further recall
that we are in a BI-process setting. That is, these copies are
i.i.d. By Remark 5 and the induction hypothesis, Corollary 18
holds with H̃ replaced by some value

𝜂 ∈ (ℎ(cℓ) − (2ℓ − 1)𝜉, ℎ(cℓ) + (2ℓ − 1)𝜉). (106)

For 𝜂 as in (106), if 𝑐ℓ+1 = 0, then, by Lemma 27, ℎ(cℓ) ≤
1/2 − 2−(𝑡−ℓ ) . By our assumption that 𝜁 < 1, we have 𝜉 =

𝜁/2𝑡 < 2−𝑡 . Hence, by (106),

𝜂 < ℎ(cℓ) + (2ℓ − 1)𝜉 ≤ 1
2
+ 2ℓ · (𝜉 − 2−𝑡 ) − 𝜉 < 1

2
.
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Therefore, by Corollary 18,

𝐻 (�̃�𝑖 |�̃�𝑖) ∈
{
(2𝜂 − 𝜉, 2𝜂], 𝑖 ∈ [𝜈med−{ℓ + 1}],
[0, 𝜉), 𝑖 ∈ [𝜈med+{ℓ + 1}] .

(107)

Using (101) and (106), equation (107) implies

𝑖 ∈ [𝜈med−{ℓ + 1}] =⇒
𝐻 (�̃�𝑖 |�̃�𝑖) ∈ (ℎ(cℓ+1) − (2ℓ+1 − 1)𝜉, ℎ(cℓ+1) + (2ℓ+1 − 2)𝜉).

Similarly, for 𝜂 as in (106), if 𝑐ℓ+1 = 1, then 𝜂 > 1/2, so by
Corollary 18,

𝐻 (�̃�𝑖 |�̃�𝑖) ∈
{
(1 − 𝜉, 1], 𝑖 ∈ [𝜈med−{ℓ + 1}],
[2𝜂 − 1, 2𝜂 − 1 + 𝜉), 𝑖 ∈ [𝜈med+{ℓ + 1}] .

Again, Using (101) and (106), we obtain that in this case

𝑖 ∈ [𝜈med+{ℓ + 1}] =⇒
𝐻 (�̃�𝑖 |�̃�𝑖) ∈ (ℎ(cℓ+1) − (2ℓ+1 − 2)𝜉, ℎ(cℓ+1) + (2ℓ+1 − 1)𝜉).

In other words, combining both of the above cases and
recalling the definition of the active set (90), we have

𝑖 ∈ 𝜎ℓ+1 =⇒
𝐻 (�̃�𝑖 |�̃�𝑖) ∈ (ℎ(cℓ+1) − (2ℓ+1 − 1)𝜉, ℎ(cℓ+1) + (2ℓ+1 − 1)𝜉).

Recalling the cascade construction, and specifically how
[med−{ℓ+1}] and [med+{ℓ+1}] are obtained from [med−{ℓ}],
[med+{ℓ}], [𝜈med−{ℓ+1}], and [𝜈med+{ℓ+1}], we obtain the
remainder of the inductive claim. Using (91), this proves (105).

For the last stage of the cascade, 𝑡, we call upon Corollary 18.
By the cascade construction, we need only consider the active
set 𝜎𝑡−1, as all other indices are polarized (in the sense of (105)
and thus also in the sense of (104)). Recall that ℎ(c𝑡−1) = 1/2,
and thus, by the inductive claim, and since 𝜁 = 𝜉 · 2𝑡 ,

𝑖 ∈ 𝜎𝑡−1 =⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) ∈
(

1
2
− 𝜁

2
+ 𝜉, 1

2
+ 𝜁

2
− 𝜉

)
.

By (63a) and the monotonicity of 𝛼(·) and 𝛼′ (·),

𝑖 ∈ [𝜈med−{𝑡}] =⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) > 𝛼′ (1/2 − 𝜁/2 + 𝜉)
= 1 − 𝜁 + 2𝜉 − 𝜉
> 1 − 𝜁 .

Similarly, by (63b) and the monotonicity of 𝛽(·) and 𝛽′ (·),

𝑖 ∈ [𝜈med+{𝑡}] =⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) < 𝛽′ (1/2 + 𝜁/2 − 𝜉)
= 1 + 𝜁 − 2𝜉 − 1 + 𝜉
< 𝜁 .

We have proved the claim for H̃ = ℎ(c). The general case
follows by monotonicity. That is, recall that the derivation above
relies on repeated applications of the functions 𝛼, 𝛼′, 𝛽, 𝛽′

in Corollary 18. These functions are monotone. Thus, since
we have proved (104a) and (105a) for 𝑖 ∈ [med+{𝑡}] when
H̃ = ℎ(c), this must also be the case for H̃ ≤ ℎ(c). The case
H̃ ≥ ℎ(c) follows similarly.

The following corollary of Proposition 29 is the analog of
Corollary 19 for the cascade case.

Corollary 30. For a given 𝜁 > 0, let 𝑡, c, 𝐿0, 𝑀0, and 𝑛th
be as in Proposition 29. Then, under the same setting as
Proposition 29, for any 0 ≤ 𝜏 ≤ 1 and 𝑛 ≥ 𝑛th we have

H̃≤ ℎ(c) + 𝜏
2𝑡
⇒ 𝐻 (�̃�𝑖 |�̃�𝑖)<2𝜁 + 𝜏, ∀𝑖 ∈ [med+{𝑡}], (108a)

H̃≥ ℎ(c) − 𝜏

2𝑡
⇒ 𝐻 (�̃�𝑖 |�̃�𝑖)>1 − 2𝜁 − 𝜏, ∀𝑖 ∈ [med−{𝑡}] . (108b)

Proof: Recall that in the cascade construction, when
moving from stage 𝑖 < 𝑡 to stage 𝑖 + 1, we operate only on the
new medial indices in the active set 𝜎𝑖 , defined in (90). The
remaining new medial indices belong to the set �̄�𝑖 , defined as:

�̄�𝑖 =

{
[𝜈med−{𝑖}], if 𝑐𝑖 = 1,
[𝜈med+{𝑖}], if 𝑐𝑖 = 0.

By assumption, we are in a BI-process setting. By Lemma 13,
the conditional entropy corresponding to any index in 𝜎𝑖
is the same, and hence we denote it by 𝑎𝑖 . Similarly, we
denote by 𝑏𝑖 the conditional entropy corresponding to an
arbitrary index in �̄�𝑖 . For stage 𝑡, we denote by 𝑎−𝑡 and 𝑎+𝑡 the
conditional entropies corresponding to indices in [𝜈med−{𝑡}]
and [𝜈med+{𝑡}], respectively. Furthermore, conservation of
conditional entropy holds, by Corollary 14. That is,

𝑎1 + 𝑏1 = 2H̃,
𝑎𝑖 + 𝑏𝑖 = 2𝑎𝑖−1, 2 ≤ 𝑖 < 𝑡,
𝑎−𝑡 + 𝑎+𝑡 = 2𝑎𝑡−1.

From the above, we easily get by induction that

2𝑡H̃ =
(
𝑎−𝑡 + 𝑎+𝑡

)
+

𝑡−1∑︁
𝑖=1

2𝑡−𝑖𝑏𝑖 .

From the above and (93), we have

H̃ − ℎ(c) =
𝑎−𝑡 + 𝑎+𝑡 − 1 +∑𝑡−1

𝑖=1 2𝑡−𝑖 (𝑏𝑖 − 𝑐𝑖)
2𝑡

.

We now prove (108a). If H̃ ≤ ℎ(c), then the result follows
trivially from (104a) in Proposition 29. Hence, assume that

ℎ(c) < H̃ ≤ ℎ(c) + 𝜏/2𝑡 . (109)

By (109), (105b), and the definition of �̄�𝑖 , observe that if 𝑐𝑖 = 1
then 𝑏𝑖 > 1− 𝜁/2𝑡 . Moreover, by (104b) and (109), 𝑎−𝑡 > 1− 𝜁 .
Thus,

𝜏 ≥ 2𝑡 (H̃ − ℎ(c))

= 𝑎−𝑡 + 𝑎+𝑡 − 1 +
𝑡−1∑︁
𝑖=1

2𝑡−𝑖 (𝑏𝑖 − 𝑐𝑖)

=

(
𝑎+𝑡 +

∑︁
𝑖,𝑐𝑖=0

2𝑡−𝑖𝑏𝑖

)
+

(
𝑎−𝑡 − 1 +

∑︁
𝑖,𝑐𝑖=1

2𝑡−𝑖 (𝑏𝑖 − 1)
)

>

(
𝑎+𝑡 +

∑︁
𝑖,𝑐𝑖=0

2𝑡−𝑖𝑏𝑖

)
−

(
1 +

∑︁
𝑖,𝑐𝑖=1

2−𝑖
)
𝜁

>

(
𝑎+𝑡 +

∑︁
𝑖,𝑐𝑖=0

2𝑡−𝑖𝑏𝑖

)
− 2𝜁 .

Rearranging the above yields

𝑎+𝑡 +
∑︁
𝑖,𝑐𝑖=0

2𝑡−𝑖𝑏𝑖 < 2𝜁 + 𝜏.
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By the non-negativity of conditional entropy, this implies that
𝑎+𝑡 < 2𝜁 + 𝜏 and for 𝑖 such that 𝑐𝑖 = 0, we have 𝑏𝑖 < 2𝜁 + 𝜏.
Finally, recalling the cascade construction, the definition of
[med+{𝑡}], and the definition of �̄�𝑖 , the conditional entropy
of any index in [med+{𝑡}] is either 𝑎+𝑡 or some 𝑏𝑖 where 𝑖 is
such that 𝑐𝑖 = 0. This yields (108a).

The proof for (108b) is similar. If H̃ ≥ ℎ(c), then the result
follows trivially from (104b) in Proposition 29. Hence, assume
that

ℎ(c) − 𝜏/2𝑡 ≤ H̃ < ℎ(c). (110)

By (110), (105a), and the definition of �̄�𝑖 , observe that if 𝑐𝑖 = 0
then 𝑏𝑖 < 𝜁/2𝑡 . Moreover, by (104a) and (110), 𝑎+𝑡 < 𝜁 . Thus,

−𝜏 ≤ 2𝑡 (H̃ − ℎ(c))

= 𝑎−𝑡 + 𝑎+𝑡 − 1 +
𝑡−1∑︁
𝑖=1

2𝑡−𝑖 (𝑏𝑖 − 𝑐𝑖)

=

(
𝑎+𝑡 +

∑︁
𝑖,𝑐𝑖=0

2𝑡−𝑖𝑏𝑖

)
+

(
𝑎−𝑡 − 1 +

∑︁
𝑖,𝑐𝑖=1

2𝑡−𝑖 (𝑏𝑖 − 1)
)

<

(
𝜁 +

∑︁
𝑖,𝑐𝑖=0

2−𝑖𝜁

)
+

(
𝑎−𝑡 − 1 +

∑︁
𝑖,𝑐𝑖=1

2𝑡−𝑖 (𝑏𝑖 − 1)
)

< 2𝜁 +
(
(𝑎−𝑡 − 1) +

∑︁
𝑖,𝑐𝑖=1

2𝑡−𝑖 (𝑏𝑖 − 1)
)
.

Rearranging the above yields

−2𝜁 − 𝜏 < (𝑎−𝑡 − 1) +
∑︁
𝑖,𝑐𝑖=1

2𝑡−𝑖 (𝑏𝑖 − 1).

Since conditional entropy is upper-bounded by 1, we have
(𝑎−𝑡 − 1) ≤ 0 and (𝑏𝑖 − 1) ≤ 0. The above inequality thus
implies that (𝑎−𝑡 − 1) > −2𝜁 − 𝜏 and for 𝑖 such that 𝑐𝑖 = 1,
we have (𝑏𝑖 − 1) > −2𝜁 − 𝜏. Finally, recalling the cascade
construction, the definition of [med−{𝑡}], and the definition of
�̄�𝑖 , the conditional entropy of any index in [med−{𝑡}] is either
𝑎−𝑡 or some 𝑏𝑖 where 𝑖 is such that 𝑐𝑖 = 1. Simple rearranging
yields (108b).

The following is the analog of Proposition 22 for the cascade
case. Similar to Proposition 22, we state the following for a
forgetful FAIM-derived s/o-process, 𝑋★ ↣ 𝑌★, that satisfies
(66) for some sequences 𝜖𝐿 , �̄�𝑀 , and 𝜙𝑀 .

Proposition 31. Let the number of stages of the cascade 𝑡,
and the binary vector c of length 𝑡 − 1 be given. Fix 𝑛 ≥ 0,
𝜀1 > 0, and 0 < 𝜀2 <

1
6 . There exist 𝐿th and 𝑀th such that for

any 𝐿0 ≥ 𝐿th, 𝑀0 ≥ 𝑀th, a (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade satisfies:

|𝐻 (𝐹𝑖 |𝐺𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) | ≤ 2𝜀1 +
𝜀2
2
− 3𝜀2 log

3𝜀2
2

< 2𝜀1 +
√︁

8𝜀2.

Furthermore, we have

|𝐻 (𝐹𝑖 |𝐺𝑖 , 𝑆0, 𝑆𝑁𝑛
) − 𝐻 (�̃�𝑖 |�̃�𝑖) | ≤ 2𝜀1 +

𝜀2
2
− 3𝜀2 log

3𝜀2
2
.

Proof: The proof follows along the same lines as Propo-
sition 22. In the cascade case, the base-vector b of index 𝑖 is
of length 2𝑛·𝑡 as opposed to 2𝑛 in the non-cascade case. This
vector holds a single medial index from each of the b-blocks
on the RHS of the transform, just as for the non-cascade case.

All that remains are minor adaptations to the proof, to account
for this change. That is, throughout the proof, including in the
underlying lemmas, we make the following changes.
• Replace 2𝑛 and 2−𝑛 with 2𝑛·𝑡 and 2−𝑛·𝑡 , respectively.
• Replace 𝑁𝑛 with 𝑁 {𝑡 } .
• Extend 𝑓𝑛,𝑖 and �̃�𝑛,𝑖 to the cascade case according to the

construction in Section V-D.
This completes the proof.

Proof of Theorem 28: Choose 𝜀1 > 0 and 0 < 𝜀2 <
1
6

small enough such that

𝜁 ≜ 𝜂 − 2𝑡+1𝜀1 − (2𝜀1 +
√︁

8𝜀2) > 0. (111)

For example, one may take

𝜀1 <
𝜂

4(1 + 2𝑡 ) ,

𝜀2 <
𝜂2

32
.

Take 𝑛th large enough so that Proposition 29 holds with 𝜁
as above. Recall that Proposition 29 holds for any 𝐿0 and 𝑀0,
so we are free to set them as desired.

By Proposition 31, for 𝑛th, 𝜀1, and 𝜀2 above, there exist 𝐿th
and 𝑀th such that (68) holds for 𝐿0 ≥ 𝐿th and 𝑀0 ≥ 𝑀th. That
is,

−(2𝜀1 +
√︁

8𝜀2) ≤ 𝐻 (𝐹𝑖 |𝐺𝑖) − 𝐻 (�̃�𝑖 |�̃�𝑖) ≤ (2𝜀1 +
√︁

8𝜀2). (112)

In fact, we choose 𝐿0 ≥ 𝐿th as in the proof of Lemma 23
(adapted to the cascade case as detailed in the proof of Propo-
sition 31). This ensures that the 𝐿0-forgetfulness of the s/o-
process is upper-bounded by 𝜀1. Thus, by Corollary 12, (43)
holds with 𝜖 ≤ 𝜀1, so that

−2𝜀1 ≤ H(𝑋★ |𝑌★) − H̃ ≤ 2𝜀1.

Hence, if H(𝑋★ |𝑌★) ≤ ℎ(c) then H̃ ≤ ℎ(c) + 2𝜀1 and if
H(𝑋★ |𝑌★) ≥ ℎ(c) then H̃ ≥ ℎ(c) − 2𝜀1. Consequently, by
Corollary 30 with 𝜏 = 2𝑡+1𝜀1, if 𝑛 ≥ 𝑛th then

H(𝑋★ |𝑌★) ≤ ℎ(c) ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) < 2𝜁 + 𝜏, ∀𝑖 ∈ [med+ (𝑛)],
H(𝑋★ |𝑌★) ≥ ℎ(c) ⇒ 𝐻 (�̃�𝑖 |�̃�𝑖) > 1 − 2𝜁 − 𝜏, ∀𝑖 ∈ [med− (𝑛)] .

Combining the above with (111) and (112) we obtain that for
𝑛 ≥ 𝑛th,

H(𝑋★ |𝑌★) ≤ ℎ(c) ⇒ 𝐻 (𝐹𝑖 |𝐺𝑖) < 𝜂, ∀𝑖 ∈ [med+ (𝑛)],
H(𝑋★ |𝑌★) ≥ ℎ(c) ⇒ 𝐻 (𝐹𝑖 |𝐺𝑖) > 1 − 𝜂, ∀𝑖 ∈ [med− (𝑛)] .

This completes the proof.

VI. DECODING THE UNIVERSAL POLAR CODE

The universal polar code consists of a concatenation of a
BST cascade and Arıkan’s seminal codes, that is fast transforms.
Ultimately, the code consists of recursive applications of Arıkan
transforms, which can be decoded efficiently using successive-
cancellation decoding. The difference between the slow and
fast stages lies in the order in which the Arıkan transforms are
connected. Therefore, both the slow and fast polarization stages
are decoded using successive-cancellation decoding, performed
in lockstep.
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Specifically, the decoder estimates the transformed bits (the
�̂� in Figure 10) in succession, assuming previous decoding
decisions are correct. To decode a symbol, the decoder
computes its likelihood ratio; this is performed recursively.
If the symbol is “frozen,” the decoder returns its frozen value.
In a non-symmetric case, this might employ some common
randomness shared between the encoder and decoder, see [24]
for details.

Due to the memory in the s/o-process, the recursive com-
putation of likelihoods is done via the successive-cancellation
trellis decoding of [15] and [16]. In this variation of successive-
cancellation decoding, the decoder is cognizant of the existence
of an underlying state connecting two blocks, and averages
over it when computing likelihoods. This results in a slight
increase in complexity; in a seminal polar code, when there are
|S| states and the code length is �̂� , the decoding complexity
is 𝑂 ( |S|3�̂� · log �̂�), see [16, Theorem 2]

The overall codelength of the universal polar code is Λ =

𝑁 · �̂� (see Section III-C), so its decoding complexity using
successive-cancellation trellis decoding is 𝑂 ( |S|3Λ · log(Λ)).
In the proof of Theorem 1 below, we show that the overall
decoding error of this scheme is upper-bounded by 2−Λ𝛽

for
any 𝛽 < 1/2 and �̂� large enough.

As we will see in Section VIII, the decoding performance
may be enhanced by using a successive cancellation list decoder.
Such a decoder, tailored to the universal polar coding scheme
of this paper is described in [25]. For a list of size 𝐿, the
decoding complexity increases by a factor of 𝐿, with respect
to (plain) successive cancellation decoding.

To prove Theorem 1 we will need some notation for
the inputs and outputs of the slow and fast stages of the
overall transform. The notation is illustrated in Figure 10. The
construction consists of a layer of �̂� copies of a BST cascade,
each of length 𝑁 , which is concatenated to a layer of 𝑁 fast
transforms, each of length �̂� . A vector comprising the 𝑗 th
output of each BST cascade is the input to fast transform 𝑗 .
Let 1 ≤ ℓ ≤ �̂� , 1 ≤ 𝑖 ≤ �̂� , and 1 ≤ 𝑗 ≤ 𝑁 . Denote

𝑋
(ℓ )
𝑗

= 𝑋 𝑗+(ℓ−1)𝑁 ,

𝑌
(ℓ )
𝑗

= 𝑌 𝑗+(ℓ−1)𝑁 ,

and their vector versions

𝑿ℓ =

[
𝑋
(ℓ )
1 𝑋

(ℓ )
2 · · · 𝑋

(ℓ )
𝑁

]
,

𝒀ℓ =

[
𝑌
(ℓ )

1 𝑌
(ℓ )

2 · · · 𝑌
(ℓ )
𝑁

]
.

That is, the s/o-process relevant for BST cascade ℓ is 𝑿ℓ ↣ 𝒀ℓ .
Output 𝑗 of BST cascade ℓ is 𝐹 (ℓ )

𝑗
. The input to fast transform

𝑗 is the vector

𝑭 𝑗 =

[
𝐹
(1)
𝑗

𝐹
(2)
𝑗

· · · 𝐹
( �̂� )
𝑗

]
.

Output 𝑖 of fast transform 𝑗 is �̂� ( 𝑗 )
𝑖

= �̂�𝑖+( 𝑗−1) �̂� . The overall
output of fast transform 𝑗 is the vector

�̂� 𝑗 =

[
�̂�
( 𝑗 )
1 �̂�

( 𝑗 )
2 · · · �̂�

( 𝑗 )
�̂�

]
.

Our notation for a vector of ordered elements (see Section II)
carriers over to an ordered vector of vectors, e.g., �̂�𝑏

𝑎 =[
�̂�𝑎 �̂�𝑎+1 · · · �̂�𝑏

]
. Moreover, �̂�𝑁 �̂�

1 = �̂�𝑁
1 .

BST
cascade

1

�̂� copies

BST
cascade

1

BST
cascade

ℓ

BST
cascade

�̂�

𝑿1 ↣ 𝒀1

𝑿ℓ ↣ 𝒀ℓ

𝑿 �̂� ↣ 𝒀 �̂�

𝑁

Fast
transform

1

𝑁 copies

�̂�

Fast
transform

𝑗

𝑗

𝐹
(1)
𝑗

𝑖�̂�
( 𝑗)
𝑖 𝑗

𝐹
(ℓ)
𝑗𝑖�̂�

( 𝑗)
𝑖

𝑗

𝐹
(�̂� )
𝑗

𝑖�̂�
( 𝑗)
𝑖

Fast
transform

𝑁

Fig. 10. Notation for inputs and outputs of the slow and fast stages in our
universal construction.

Note that under this notation, the decoder decodes the bit
vectors �̂� 𝑗 , 𝑗 = 1, . . . , 𝑁 in order using successive-cancellation
trellis decoding. Specifically, it first decodes �̂�1, then �̂�2, and
so on. The decoding order in a vector �̂� 𝑗 is as expected:
�̂�
( 𝑗 )
1 , then �̂�

( 𝑗 )
2 , and so forth up to �̂�

( 𝑗 )
�̂�

. Namely, when

decoding �̂� ( 𝑗 )
𝑖

, we do this after having decoded �̂�
𝑗−1
1 as well

as �̂� ( 𝑗 )1 , �̂�
( 𝑗 )
2 , . . . , �̂�

( 𝑗 )
𝑖−1.

Proof of Theorem 1: Our proof is divided into four parts:

I Defining the coding scheme, i.e., the indices on which
information bits are transmitted.

II Proving item 3 in the theorem statement: encoding and
decoding complexity.

III Proving item 2 in the theorem statement: vanishing error
probability and the error exponent.

IV Proving item 1 in the theorem statement: the code rate 𝑅
is achievable.

Part I – Coding Scheme Definition
Our sequence of codes is parametrized by 𝑅 < 𝐼∗ and

𝛽 < 1/2, both given in the theorem statement. It is based on
the universal construction of this paper. That is, it consists of
a concatenation of a cascade of BSTs and a fast transform. To
fully specify a member of this sequence, we must define the
following:

• The slow transform parameters: 𝑡, c, 𝐿0, 𝑀0, and 𝑛.
• The number of stages in the fast transform: �̂�.
• The set of indices A over which information bits are

transmitted.

The sequence is formed by increasing �̂� and keeping the slow
transform parameters fixed. The parameter �̂� must be large
enough; conditions on its size are given in this part, as well
as in Parts III and IV. All these conditions must be met.

Let C be the family of s/o-processes. If 𝐼∗ = 0, the theorem
is trivially correct; hence, we assume that 𝐼∗ > 0. Let 𝜖𝐿 , �̄�𝑀 ,
and 𝜙𝑀 be sequences such that (66) holds for any s/o-process
in C. Every s/o-process 𝑋★ ↣ 𝑌★ in C has the same input
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distribution; we denote the entropy rate of the input process
by H(𝑋★). Denote

ℎ∗ = H(𝑋★) − 𝐼∗. (113)

By definition of 𝐼∗, any s/o-process 𝑋★ ↣ 𝑌★ in C satisfies
𝐼∗ ≤ H(𝑋★) −H(𝑋★ |𝑌★). In other words, we always have

H(𝑋★ |𝑌★) ≤ ℎ∗. (114)

Denote
𝛿 = 𝐼∗ − 𝑅. (115)

Looking forward, in part III we will use the union bound to
upper-bound the probability of error. Thus, we will require fast
polarization, for which we turn to Proposition 49. All processes
in C satisfy the Bhattacharyya recursion (166) with

𝜅 = 2�̄�0, (116)

see (168) and (66b). Next, fix 𝛽′ such that

𝛽 < 𝛽′ < 1/2 (117)

and let
𝛿′ = 𝛿/5. (118)

By Proposition 49, there exist 𝜂 and 𝑛0 such that if 𝑍0 ≤ 𝜂,
then (170) below holds with 𝛽′ and 𝛿′ in place of 𝛽 and 𝛿.
This will be utilized in Part IV. Parameters 𝜂 and 𝑛0 are used
as follows.
• Parameter 𝜂 will be the monopolarization goal for the

BST cascade in Theorem 28.
• Parameter 𝑛0 will be one of the lower bounds on the

number of fast polarization steps, �̂�.
To apply Theorem 28, we now set the parameters 𝑡 and c.

We set 𝑡 and c such that

ℎ∗ ≤ ℎ(c) ≤ ℎ∗ + 𝛿′. (119)

Indeed, this can be done by (93), recalling that 𝐼∗ > 0 implies
by (113) that ℎ∗ < 1.

Recall from Definition 12 that a cascade of BSTs is defined
by five parameters: 𝑡, c, 𝐿0, 𝑀0, and 𝑛. We have already set 𝑡
and c. For the remaining parameters, we will utilize Theorem 28.
Namely, given 𝑡, c, and 𝜂, there exist 𝐿th, 𝑀th, and 𝑛th (see
Remark 7) such that if 𝐿0 ≥ 𝐿th, 𝑀0 ≥ 𝑀th, and 𝑛 ≥ 𝑛th
then a (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade is (𝜂, [med+{𝑡}], [med−{𝑡}])-
monopolarizing, for any s/o-process in C. Specifically, since
H(𝑋★ |𝑌★) ≤ ℎ(c) by (114) and (119), the medial-plus indices
are the ones that monopolarize. Thus, due to Proposition 49,
after the fast transform almost all of them will have a very
low Bhattacharyya parameter.

We set 𝑛 = 𝑛th. To set 𝐿0 and 𝑀0, we further call upon
Lemma 26. Namely, we set 𝐿0 = 𝐿th and take 𝑀0 ≥ 𝑀th large
enough such that the fraction of medial-plus indices out of all
indices in our BST cascade is at least

| [med+{𝑡}] |
𝑁

≥ 1 − ℎ(c) − 𝛿′. (120)

We can do this due to the combination of (94) and (95), and
by recalling the observation following (95).

Up to this point, we have defined all the parameters of the
BST cascade: 𝑡, c, 𝐿0, 𝑀0, 𝑛. Recall that the sequence is formed

by increasing �̂�, and that �̂� must satisfy a set of conditions
that we have yet to fully specify. For now, consider some �̂�
large enough.

Using (92), let 𝑁 = (2𝐿0 + 𝑀0)𝑀 𝑡−1
0 2𝑛𝑡 and denote

�̂� = 2�̂�. (121)

The total codelength is thus

Λ = 𝑁 · �̂� = (2𝐿0 + 𝑀0)𝑀 𝑡−1
0 2𝑛𝑡 · 2�̂�. (122)

We now define the set D as all indices 𝑘 = 𝑖 + ( 𝑗 − 1)�̂� ,
1 ≤ 𝑖 ≤ �̂� , 1 ≤ 𝑗 ≤ 𝑁 such that the following conditions hold:

1) 𝑗 ∈ [med+{𝑡}], where we recall that [med+{𝑡}] is the
medial-plus set for our (𝑡, c; 𝐿0, 𝑀0, 𝑛)-cascade of BSTs;

2) �̄��̂� ≤ 2−�̂� 𝛽′
, where �̄�0 = 𝜂, and the process �̄� satisfies

(166) with equality instead of inequality, 𝜅 = 2�̄�0 (see
(116)), and we take 𝐵𝑚+1 as the 𝑚th bit in the binary
representation of 𝑖.

Remark 9. Observe that if 𝑘 ∈ D, then for any s/o-process in
C, we have 𝑍 (�̂�𝑘 |�̂�𝑘−1

1 , 𝑌Λ
1 ) ≤ 2−�̂� 𝛽′

. This follows from the
second condition in the definition of D, which upper-bounds
the Bhattacharyya process for any s/o-process in C.

We now partition D into three disjoint sets, A, B, and C.

A =

{
𝑘 ∈ D : 𝐾 (�̂�𝑘 |�̂�𝑘−1

1 ) ≤ 2−�̂�
𝛽′
}
,

B =

{
𝑘 ∈ D : 𝐾 (�̂�𝑘 |�̂�𝑘−1

1 ) ≥ 1 − 2−�̂�
𝛽′
}
,

C =

{
𝑘 ∈ D : 2−�̂�

𝛽′

< 𝐾 (�̂�𝑘 |�̂�𝑘−1
1 ) < 1 − 2−�̂�

𝛽′
}
,

where 𝐾 is the total variation distance, see [26, Definition 3].
Thus,

|D| = |A| + |B| + |C|. (123)

Following the Honda-Yamamoto scheme [24], we take A as
the set of information indices.

Part II – Complexity
We have already discussed the decoding complexity of our

scheme in the beginning of this section, and showed that it is
𝑂 ( |S|3Λ · log(Λ)). This is also the encoding complexity, since
encoding uses the successive cancellation trellis algorithm [16]
as well. This proves item 3 in the theorem statement.

Part III – Error Probability
To upper-bound the probability of error, we will use the

union bound. For this, we will need a second condition on �̂�:
it is large enough such that

2−�̂�
𝛽′ ≤ 1

2Λ
2−Λ

𝛽

. (124)

It is possible to satisfy (124) for all �̂� large enough since
𝛽′ > 𝛽 by (117), 𝑁 is fixed, and Λ = 𝑁 · �̂� by (122).

Recall that the input distribution is fixed over the set C.
Denote this input distribution by 𝑃𝑋Λ

1
. Since �̂�Λ

1 is the result
of a transform we have specified over 𝑋Λ

1 , we denote the
corresponding distribution of �̂�Λ

1 as 𝑃�̂�Λ
1

.
The claim on the probability of error follows from [24]; for

completeness we show this directly here.
• We encode �̂�𝑘 sequentially.
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– If 𝑘 ∈ A, encode the next information bit into �̂�𝑘 . We as-
sume that the information bits are i.i.d. Bernoulli(1/2).

– If 𝑘 ∉ A, we draw �̂�𝑘 according to a binary random
variable with distribution 𝑃�̂�𝑘 |�̂�𝑘−1

1
(𝑢 |�̂�𝑘−1

1 ).
• This results in a �̂�Λ1 that is sampled from a distribution
𝑄�̂�Λ

1
that is different from the distribution 𝑃�̂�Λ

1
.

• By Remark 9 and (124), had �̂�Λ1 been sampled from 𝑃�̂�Λ
1

,
the union bound would yield a total probability of error
of at most 1

2 2−Λ𝛽

.
• We abuse notation and denote by 𝑃(�̂�Λ1 , 𝑦

Λ
1 ) the joint

probability of �̂�Λ1 sampled from 𝑃�̂�Λ
1

and 𝑦Λ1 the resulting
channel output. Similarly, 𝑄(�̂�𝑘 , 𝑦Λ1 ) denotes this joint
probability if �̂�Λ1 were sampled from 𝑄�̂�Λ

1
. Under this

notation, from the previous bullet, we have∑︁
�̂�Λ1 ,𝑦

Λ
1

𝑃(�̂�Λ1 , 𝑦
Λ
1 ) ·

[
Dec(𝑦Λ1 ) ≠ �̂�

Λ
1
]
≤ 1

2
2−Λ

𝛽

, (125)

where [·] is the Iverson notation [27, p. 11]: equal to 1 if
the condition holds and to 0 otherwise, and ‘Dec’ is the
successive cancellation decoder.

• The true probability of error of this scheme, i.e., under
𝑄, is given by

𝑃e =
∑︁
�̂�Λ1 ,𝑦

Λ
1

𝑄(�̂�Λ1 , 𝑦
Λ
1 ) ·

[
Dec(𝑦Λ1 ) ≠ �̂�

Λ
1
]

=
∑︁
�̂�Λ1 ,𝑦

Λ
1

𝑃(�̂�Λ1 , 𝑦
Λ
1 ) ·

[
Dec(𝑦Λ1 ) ≠ �̂�

Λ
1
]

+
∑︁
�̂�Λ1 ,𝑦

Λ
1

(
𝑄(�̂�Λ1 , 𝑦

Λ
1 ) − 𝑃(�̂�

Λ
1 , 𝑦

Λ
1 )

)
·
[
Dec(𝑦Λ1 ) ≠ �̂�

Λ
1
]

≤ 1
2

2−Λ
𝛽 +

∑︁
�̂�Λ1 ,𝑦

Λ
1

��𝑄(�̂�Λ1 , 𝑦Λ1 ) − 𝑃(�̂�Λ1 , 𝑦Λ1 )�� ,
where the inequality is by (125), and since [·] ≤ 1.

• Following [24, eq. 57] (see also [28, Lemma 3.5]), we
can bound the second term above as∑︁

�̂�Λ1 ,𝑦
Λ
1

��𝑄(�̂�Λ1 , 𝑦Λ1 ) − 𝑃(�̂�Λ1 , 𝑦Λ1 )��
(a)
≤

∑︁
𝑘∈A

∑̂︁
𝑢𝑘

1

𝑃(�̂�𝑘−1
1 )

��𝑄(�̂�𝑘 |�̂�𝑘−1
1 ) − 𝑃(�̂�𝑘 |�̂�𝑘−1

1 )
��

(b)
=

∑︁
𝑘∈A

∑̂︁
𝑢𝑘−1

1

𝑃(�̂�𝑘−1
1 )

∑̂︁
𝑢𝑘

����12 − 𝑃(�̂�𝑘 |�̂�𝑘−1
1 )

����
(c)
=

∑︁
𝑘∈A

∑̂︁
𝑢𝑘−1

1

𝑃(�̂�𝑘−1
1 )

��𝑃(0|�̂�𝑘−1
1 ) − 𝑃(1|�̂�𝑘−1

1 )
��

(d)
=

∑︁
𝑘∈A

𝐾 (�̂�𝑘 |�̂�𝑘−1
1 )

(e)
≤ |A|2−�̂� 𝛽′

≤ Λ · 2−�̂� 𝛽′

(f)
≤ 1

2
2−Λ

𝛽

,

where in (a) we abused notation and used 𝑃 and 𝑄 to
denote 𝑃�̂�𝑘−1

1
, 𝑄�̂�𝑘 |�̂�𝑘−1

1
, and 𝑃�̂�𝑘 |�̂�𝑘−1

1
; in (b) we recalled

from the topmost bullet that for 𝑘 ∈ A we draw �̂�𝑘 from

a Bernoulli(1/2) random variable; in (c) we used the
equality 1/2 = (𝑃(0|�̂�𝑘−1

1 ) + 𝑃(1|�̂�𝑘−1
1 ))/2; in (d) we

used [14, Definition 3]; (e) follows from the definition of
A; finally, (f) is by (124).

• Combining the above two bullets, we obtain

𝑃e ≤ 2−Λ
𝛽

.

This proves item 2 in the theorem statement.
Part IV – Rate
Our goal is to show that

|A| ≥ Λ𝑅. (126)

The size of D is lower-bounded by

|D|
(a)
≥ 𝑁 · (1 − ℎ(c) − 𝛿′) · �̂� · (1 − 𝛿′)
(b)
= Λ(1 − ℎ(c) − 𝛿′) · (1 − 𝛿′)
(c)
> Λ(1 − ℎ(c) − 2𝛿′)
(d)
≥ Λ(1 − ℎ∗ − 3𝛿′)
(e)
= Λ(𝐼∗ + 1 −H(𝑋★) − 3𝛿′), (127)

where
• (a) is by (120) and by (170) with 𝛽′ and 𝛿′ in place of 𝛽

and 𝛿, recalling (116) and the discussion following (118).
• (b) is by (122).
• (c) is since 𝛿′ > 0. See (118), (115), and the text preceding

(115).
• (d) is by (119).
• (e) is by (113).
To lower-bound the size of A, we define the sets A′, B′, C′,

which are defined similarly to A, B, and C, but we do not
limit the indices 𝑘 to be from D. That is,

A′ =
{
1 ≤ 𝑘 ≤ Λ : 𝐾 (�̂�𝑘 |�̂�𝑘−1

1 ) ≤ 2−�̂�
𝛽′
}
,

B′ =
{
1 ≤ 𝑘 ≤ Λ : 𝐾 (�̂�𝑘 |�̂�𝑘−1

1 ) ≥ 1 − 2−�̂�
𝛽′
}
,

C′ =
{
1 ≤ 𝑘 ≤ Λ : 2−�̂�

𝛽′

< 𝐾 (�̂�𝑘 |�̂�𝑘−1
1 ) < 1 − 2−�̂�

𝛽′
}
.

Clearly, |B| ≤ |B′ | and |C| ≤ |C′ |, thus

|B| + |C| ≤ |B′ | + |C′ |. (128)

We now prove that

|B′ | + |C′ | ≤ Λ(1 −H(𝑋★) + 2𝛿′). (129)

First, let us show that for �̂� large enough,

|C′ | ≤ Λ𝛿′. (130)

Recall from Figure 10 that the transform consists of a
concatenation of copies of BST cascades with fast transforms.
Specifically, for fixed 1 ≤ 𝑗 ≤ 𝑁 , all indices of the form
𝑘 = 𝑖 + ( 𝑗 − 1)�̂� , 1 ≤ 𝑖 ≤ �̂� belong to the same fast transform.
We claim that for a fixed 𝑗 there exists an �̂� large enough such
that the fraction of such indices 𝑘 belonging to C′ is at most 𝛿′.
Indeed, this follows from fast polarization results in [26]. To
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see this, first denote 𝑍𝑘 = 𝑍 (�̂�𝑘 |�̂�𝑘−1
1 ) and 𝐾𝑘 = 𝐾 (�̂�𝑘 |�̂�𝑘−1

1 ).
From [26, (4a) and (4b)], if 𝑍𝑘 ≤ 2−�̂� 𝛽

then

𝐾𝑘 ≥ 1 − 𝑍𝑘 ≥ 1 − 2−�̂�
𝛽

.

Combining the above with (28) in [26, Theorem 7] and the
first two displayed equations in the proof of [26, Theorem 13],
we see the claim.

Now, to see (130), note that since we have fixed 𝑁 , the
number of possible indices 𝑗 is finite. Hence, we take �̂� as
being at least the maximum �̂� over all such 𝑗 . This yields
(130).

We now show that for �̂� large enough,

|A′ | ≥ Λ (H(𝑋★) − 2𝛿′) . (131)

Indeed, this follows by

ΛH(𝑋★)
(a)
≤

Λ∑︁
𝑘=1

𝐻 ( �̂�𝑘 | �̂� 𝑘−1
1 )

(b)
=

Λ∑︁
𝑘=1

𝐻 (�̂�𝑘 |�̂�𝑘−1
1 )

=
∑︁
𝑘∈A′

𝐻 (�̂�𝑘 |�̂�𝑘−1
1 ) +

∑︁
𝑘∈B′

𝐻 (�̂�𝑘 |�̂�𝑘−1
1 ) +

∑︁
𝑘∈C′

𝐻 (�̂�𝑘 |�̂�𝑘−1
1 )

(c)
≤ |A′ | +

∑︁
𝑘∈B′

𝐻 (�̂�𝑘 |�̂�𝑘−1
1 ) + |C′ |

(d)
≤ |A′ | +

∑︁
𝑘∈B′

𝐻 (�̂�𝑘 |�̂�𝑘−1
1 ) + Λ𝛿′

(e)
≤ |A′ | + |B′ |𝛿′ + Λ𝛿′

≤ |A′ | + Λ𝛿′ + Λ𝛿′

= |A′ | + 2Λ𝛿′,

where:
• (a) follows from [20, Theorem 4.2.2], which states that

the summands in the series are a non-increasing sequence
with limit H(𝑋★).

• (b) follows since our overall transform is invertible.
• (c) follows since the summed entropies are upper bounded

by 1.
• (d) follows from (130).
• To see (e), we utilize [26, (4c)]. That is, the inequality

𝐻 (�̂�𝑘 |�̂�𝑘−1
1 ) ≤

√︃
1 − (𝐾 (�̂�𝑘 |�̂�𝑘−1

1 ))2.

Since for every 𝑘 ∈ B′ we have 𝐾 (�̂�𝑘 |�̂�𝑘−1
1 ) ≥ 1−2−�̂�

𝛽′

,
we can take �̂� large enough such that 𝐻 (�̂�𝑘 |�̂�𝑘−1

1 ) ≤ 𝛿′.
Rearranging yields (131).

Finally, to obtain (129), observe that

Λ = |A′ | + |B′ | + |C′ |.

Thus, using (131) we obtain

|B′ | + |C′ | ≤ Λ(1 −H(𝑋★) + 2𝛿′),

which is (129).

Having proved (129), we utilize (123) to conclude that

|A| = |D| − |B| − |C|
(a)
≥ |D| − |B′ | − |C′ |
(b)
≥ |D| − Λ(1 −H(𝑋★) + 2𝛿′)
(c)
≥ Λ(𝐼∗ + 1 −H(𝑋★) − 3𝛿′) − Λ(1 −H(𝑋★) + 2𝛿′)
= Λ(𝐼∗ − 5𝛿′)
(d)
= Λ(𝐼∗ − 𝛿)
(e)
= Λ𝑅,

where:
• (a) is by (128).
• (b) is by (129).
• (c) is by (127).
• (d) is by (118).
• (e) is by (115).
Thus, the size of A is lower-bounded by 𝑅, proving item 1

in the theorem statement, and completing the proof.

VII. HOW TO CONSTRUCT UNIVERSAL POLAR CODES

In this section, we explain how one would construct universal
polar codes in practice. Until this point, we have shown that a
set of processes with memory that satisfy certain conditions can
be decoded using a universal polar code. The code’s parameters
depend on these conditions and must be sufficiently large to
attain a specified coding rate and error probability. A naive
approach would be to set these parameters using Remark 7
and Section III-C. However, this might needlessly result in
an impracticably large codelength — recall Example 5 that
suggests a BST comprising of 40162 layers, whereas in fact
just 10 layers suffice.

In what follows, for simplicity, we consider a universal
transform whose slow stage is a single BST layer (i.e., a
cascade with 𝑡 = 1 layers). Generalizing to cascades with
larger 𝑡 is straightforward.

In a practical application, the code is to be used over some
set of s/o-processes C. All processes in C share the same fixed
input distribution, which is known. We are further given a size
constraint on the codelength.

To continue, we first decide the code parameters:
• The parameters 𝐿0 and 𝑀0 that respectively define the

number of lateral and medial indices in the first level of
the BST, see Section III-B.

• The number of levels of the BST, 𝑛. Thus, using 𝐿0 and
𝑀0 above, the length of each BST in the slow stage is
𝑁 = (2𝐿0 + 𝑀0) · 2𝑛.

• The number of levels of the fast transform, �̂�. Recall that
this also determines the number of copies of the BST in
the slow stage, �̂� = 2�̂�.

With these parameters set, the codelength is given by Λ = 𝑁 · �̂� ,
see (122). We can now construct the transform, but we must
still determine the frozen and non-frozen indices, and thus
set the code rate. To this end, we must supply some minimal
information on C. This information consists of a set of bounds
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on the following parameters, which must hold for all processes
in C.
• Upper bound on 𝐻 (𝑋0 |𝑌 𝐿0

−𝐿0
, 𝑋−1
−𝐿0
).

• Recalling (35), an upper bound 𝜖𝐿0 on both
𝐼 (𝑆1; 𝑆𝐿0 |𝑋

𝐿0
1 , 𝑌

𝐿0
1 ) and 𝐼 (𝑆1; 𝑆𝐿0 |𝑌

𝐿0
1 ).

• Upper bound �̄�𝑀0−2 and lower bound 𝜙𝑀0−2, on 𝜓𝑀0−2
and 𝜙𝑀0−2, respectively, see Lemma 7.

• Upper bound �̄�0 on 𝜓0, which by (116) leads to an upper
bound on 𝜅.

In step 1b of the construction below, it will become apparent
that we would like 𝜖𝐿0 to be close to 0 and both �̄�𝑀0−2 and
𝜙𝑀0−2 to be close to 1. This can be achieved by taking 𝐿0 and
𝑀0 large enough. Next, we also must ensure that the fraction
of medial indices, 𝛼𝑛 in (18), is close to 1. Recalling Lemma 3,
this can be achieved by ensuring that 𝑀0 is sufficiently larger
than 𝐿0.

The above set of bounds is the key to computing upper
bounds on the Bhattacharyya parameters of the s/o-pairs at the
last level of the overall universal transform. These are part of
what is required for determining the frozen set.

We must also take into consideration the fixed input process.
We employ the Honda-Yamamoto [24] scheme to this end.
Namely, we need to compute upper bounds on the total variation
of the s/o-pairs at the last level of the overall universal transform
for the input process. Practically, since the input process is
fixed and independent of the channel, Monte-Carlo simulation
may be used to obtain these bounds. These bounds, together
with the above bounds on Bhattacharyya parameters, are used
to determine the frozen set.

We now proceed via the following steps, which use the
notation of Figure 10. Further recall that 𝐺 𝑗 = (𝐹 𝑗−1

1 , 𝑌𝑁
1 ), see

Definition 4.
1) Compute upper bounds on the conditional entropies of the

s/o-pairs at the last level of each BST of the slow stage.
That is, for each 1 ≤ 𝑗 ≤ 𝑁 , compute upper bounds on
𝐻 (𝐹𝑗 |𝐺 𝑗 ) = 𝐻 (𝐹𝑗 |𝐹 𝑗−1

1 , 𝑌𝑁
1 ). Note that we have dropped

the index ℓ, since all BSTs are copies of one another, and
we have assumed stationarity. This step consists of two
substeps.

a) For the first substep, we momentarily assume a block-
independent process regime (recall Section V-B). Using
Lemma 20 with the upper bound on 𝐻 (𝑋0 |𝑌 𝐿0

−𝐿0
, 𝑋−1
−𝐿0
)

in place of H̃, calculate upper bounds on 𝐻 (�̃�𝑗 |�̃� 𝑗 ) (see
(67c)) for each medial index 𝑗 . Recall from Lemma 13
that at each level 𝑚 of the BST, the entropy of all
indices in [med− (𝑚)] is identical and similarly the
entropy of all indices [med+ (𝑚)] is also identical. The
entropies of lateral indices are “stuck” and do not evolve
further; at each level 𝑚 of the transform two new lateral
indices are generated, one from [med− (𝑚)] and one
from [med+ (𝑚)], so the bounds on their entropies stop
evolving and are simply taken from the previous level.

b) To remove the assumption from the previous substep,
we use Proposition 22. That is, to compute upper bounds
on 𝐻 (𝐹𝑗 |𝐺 𝑗 ), we use (68a). To this end, we compute an
upper bound on 𝜀3, the right-hand side of (68a), using
the bounds on the parameters above. Namely, in (71)

we set 𝜀1 ← 𝜖𝐿0 ·2𝑛 and 𝜀2 ← max{(�̄�𝑀0−2)2
𝑛 −1, 1−

(𝜙𝑀0−2)2
𝑛 }, in line with (77) and (81), respectively.

Observe that 𝜀3 bounds the difference between the
results of this and the previous step; this difference
may be made small by suitably increasing 𝐿0 and 𝑀0.

2) Compute upper bounds on the conditional entropies of
the s/o-pairs at the last level of each fast transform of
the slow stage, 𝑍

(
�̂�
( 𝑗 )
𝑖

��� (�̂� ( 𝑗 )𝑖′ )𝑖−1
𝑖′=1, �̂�

𝑗−1
1 ,𝒀 �̂�

1

)
, for each

1 ≤ 𝑗 ≤ 𝑁 and 1 ≤ 𝑖 ≤ �̂� . We do this via the following
substeps.

a) Using [14, Lemma 1] on the result of step 1b, derive
upper bounds on the Bhattacharyya parameters of the
s/o-pairs entering the fast stage. That is, for each 𝑗 , we
compute the upper bound

𝑍 (𝐹𝑗 |𝐹 𝑗−1
1 , 𝑌𝑁

1 ) ≤
√︃
𝐻 (𝐹𝑗 |𝐹 𝑗−1

1 , 𝑌𝑁
1 ).

b) From these, use (166) from Appendix A and the upper
bound on 𝜅 to derive upper bounds on the Bhattacharyya
parameters of the s/o-pairs at the last level of the fast
stage. That is, for each 1 ≤ 𝑖 ≤ �̂� and 1 ≤ 𝑗 ≤ 𝑁 ,
these are upper bounds on

𝑍

(
�̂�
( 𝑗 )
𝑖

��� (�̂� ( 𝑗 )𝑖′ )
𝑖−1
𝑖′=1, �̂�

𝑗−1
1 ,𝒀 �̂�

1

)
.

For the next step, we use the upper bounds on both the
Bhattacharyya parameters and the total variations. That is,
upper bounds on:

𝑍

(
�̂�
( 𝑗 )
𝑖

��� (�̂� ( 𝑗 )𝑖′ )
𝑖−1
𝑖′=1, �̂�

𝑗−1
1 ,𝒀 �̂�

1

)
,

𝐾

(
�̂�
( 𝑗 )
𝑖

��� (�̂� ( 𝑗 )𝑖′ )
𝑖−1
𝑖′=1, �̂�

𝑗−1
1

)
.

3) Take the non-frozen indices as those for which the sum
of these upper bounds is small enough. That is, the word
error rate is upper-bounded by∑︁

𝑖, 𝑗

(
𝑍

(
�̂�
( 𝑗 )
𝑖

��� (�̂� ( 𝑗 )𝑖′ )
𝑖−1
𝑖′=1, �̂�

𝑗−1
1 ,𝒀 �̂�

1

)
+ 𝐾

(
�̂�
( 𝑗 )
𝑖

��� (�̂� ( 𝑗 )𝑖′ )
𝑖−1
𝑖′=1, �̂�

𝑗−1
1

) )
,

where the sum is over the indices 𝑖, 𝑗 for which �̂� ( 𝑗 )
𝑖

is
non-frozen (contains an information bit).
Note that when the input distribution is uniform the total
variation is always 0, thus one may consider only the
sum of upper bounds on the Bhattacharyya parameter to
determine the non-frozen set. Accordingly, in this case,
the word error rate is upper-bounded by∑︁

𝑖, 𝑗

𝑍

(
�̂�
( 𝑗 )
𝑖

��� (�̂� ( 𝑗 )𝑖′ )
𝑖−1
𝑖′=1, �̂�

𝑗−1
1 ,𝒀 �̂�

1

)
,

where, again, the summation is over indices 𝑖, 𝑗 for which
�̂�
( 𝑗 )
𝑖

is non-frozen.
Remark 10. In a process with memory, the parameter 𝜓0 is
typically greater than 1 (see the discussion following Lemma 7),
and thus 𝜅 from (116) is greater than 2. Thus, the upper
bounds on the Bhattacharyya parameter may be non-informative
for many s/o-pairs, leading to very low rate codes. To see
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this, consider the Bhattacharyya recursion (166) used in step
2b: in half of the steps, the recursion leads to the bound
𝑍𝑛+1 ≤ 𝜅𝑍𝑛. When 𝜅 is large, the right-hand side may quickly
exceed 1, making this bound on the Bhattacharyya parameter
non-informative. In practice, we can do much better. In the fast
stage of the universal transform, we combine transformed s/o-
pairs from different BSTs. These BSTs are “far apart:” at the
beginning and end of each BST are enough lateral symbols that
are essentially a buffer that ensures forgetfulness “takes place.”
Hence, practically we may assume that the two transformed
s/o-pairs from different BSTs are independent and set 𝜓0 = 1
(or 𝜅 = 2) in step 2b. This works well in practice, and we
have followed this strategy for our numerical results below.
The above heuristic can be made exact by adding an additional
small buffer of symbols between BSTs. That is, due to the
mixing property of FAIM processes, this buffer makes the
BSTs as close to independent as desired. By Lemma 7, the
mixing coefficients tend to 1 exponentially fast, so this buffer
is negligible compared to the BST blocklength, incurring a
vanishing rate loss.

We end this section by contrasting the construction of
universal polar codes described above to that of non-universal
polar codes. Here, by definition, we must construct the code
to work for a family of s/o-processes. Thus, we cannot follow
the process-specific technique described in [29].7 Hence, we
resort to using the above bounding techniques. It is interesting
to note that for the universal setting, asymptotically (for large
enough blocklengths), the use of these bounds does not incur
a rate penalty. This is in contrast to non-universal polar codes.

VIII. NUMERICAL RESULTS

In this section, we provide simulation results for our universal
polar code. These are given in Figures 11 and 12. The universal
polar code was designed using the method in Section VII.
Namely, we selected the following code parameters:
• 𝐿0 = 6 and 𝑀0 = 40,
• 𝑛 = 5,
• �̂� = 7.

Thus, the code length is

𝑁 · �̂� = (2𝐿0 + 𝑀0) · 2𝑛+�̂� = 212992.

We chose the memoryless uniform input distribution. Our
code is to operate on two different Gilbert-Elliott channels
(see Example 8 in Appendix E). Indeed, the capacity-achieving
input distribution for these symmetric channels is uniform. The
Gilbert-Elliott channels have the following parameters:

1) Channel GE-one:
• crossover probability in good state: 0.01;
• crossover probability in bad state: 0.175;
• transition probability good state to bad state: 0.40;
• transition probability bad state to good state: 0.40.

2) Channel GE-two:
• crossover probability in good state: 0.01;

7In fact, since we are dealing with states, the effective alphabet for the
construction algorithm is non-binary, and we should have referred to [30] and
[31] as well.

• crossover probability in bad state: 0.170;
• transition probability good state to bad state: 0.60;
• transition probability bad state to good state: 0.55.

For these channels, we have the following bounds:

• 𝐻 (𝑋0 |𝑌 𝐿0
−𝐿0

, 𝑋−1
−𝐿0
) ≤ 0.45,

• 𝜖𝐿0 ≤ 7.39 · 10−8,
• 𝜓𝑀0−2 ≈ 𝜙𝑀0−2 ≈ 1 (recall that these parameters approach

1 exponentially fast with 𝑀0, which we have set to 40),
• 𝜓0 ≤ 2.1.

From these bounds, in step 1b of Section VII one may compute:
𝜀1 = 2.36 · 10−6, 𝜀2 ≈ 0, and 𝜀3 = 4.73 · 10−6.

We designed a set of universal polar codes using the
procedure in Section VII, with rates from 0.15 to 0.30.
Specifically, in line with Remark 10, we have taken 𝜓0 as
1 in step 2b. The simulation results of these of codes on both
Gilbert-Elliott channels are shown in Figure 11. The decoding
of these codes was done using a list-decoder [25]. Indeed,
utilizing a larger list size for decoding improves the word error
rate considerably.

Observe that the codes may operate on additional channels
that satisfy the above bounds. Two examples are a BSC with
crossover probability 0.09, having capacity 0.44, and BEC with
erasure probability 0.45, having capacity 0.45. Both channels
are memoryless so they trivially satisfy the other bounds.
Simulation results of the same codes for these channels, again
using a list-decoder, are shown in Figure 12.

We wish to emphasize that the numerical results are far
better than the upper bounds on decoding error (step 3 in
the method of Section VII). Indeed, the upper bound (sum of
Bhattacharyya parameters of non-frozen indices) for rate 0.15
is 1.9 and the upper bound for rate 0.27 is 3960.41. Both are
non-informative and extremely pessimistic. When constructing
the codes, as non-frozen indices we have selected those with
the lowest upper bounds on the Bhattacharyya parameter.

IX. A CONTRACTION INEQUALITY

In this section we introduce a contraction inequality that will
be useful in proving a sufficient condition for forgetfulness in
Section X. To this end, we define a pseudo-metric 𝑑 between
two nonnegative vectors that have the same support. We will
show that if a matrix M satisfies a certain property called
subrectangularity, then it has a parameter 𝜏(M) < 1 such that
𝑑 (x𝑇M, y𝑇M) ≤ 𝜏(M)𝑑 (x, y).

This section invariably contains a large number of indices.
For tractability, we adhere to the following notational conven-
tion in this section. Indices 𝑖 and 𝑘 denote indices of rows of
matrix M, and indices 𝑗 , 𝑙 denote indices of columns of matrix
M. Additionally, throughout this section, we implicitly assume
that in any product of two matrices or a vector and a matrix,
their dimensions match to enable forming these products.

Recall that the support 𝜎(x) of a vector x is the set of its
nonzero indices. That is, 𝜎(x) = {𝑖 | 𝑥𝑖 ≠ 0}. The following
pseudo-metric [32, Chapter 3.1], [33, Section 2] is defined for
nonnegative vectors with the same support.
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Fig. 11. Word error rate of a universal polar code of length 212992, used on
two different Gilbert-Elliott channels: GE-one, in solid blue ( ); and GE-two,
in dashed red ( ). We use a list-decoder for the decoding, employing list
sizes 𝐿 = 1 ( ), 𝐿 = 2 ( ), 𝐿 = 4 ( ), 𝐿 = 8 ( ), and 𝐿 = 16 ( ).

0.15 0.2 0.25 0.3
10−4

10−3

10−2

10−1

100

Code rate

W
or

d
er

ro
r

ra
te

Fig. 12. Word error rate of the same universal polar code as in Figure 11,
used on two additional channels: BEC, in solid blue ( ); and BSC, in dashed
red ( ). Again, we use a list-decoder for the decoding, employing list sizes
𝐿 = 1 ( ), 𝐿 = 2 ( ), 𝐿 = 4 ( ), 𝐿 = 8 ( ), and 𝐿 = 16 ( ).

𝑖

𝑘
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Fig. 13. An illustration of a subrectangular matrix. Each of the small squares
is an element of the matrix. The white squares contain zeros, whereas the
filled squares contain positive values. Elements (M)𝑖, 𝑗 and (M)𝑘,𝑙 , denoted
with diagonal lines ( and respectively), are nonzero. Therefore, elements
(M)𝑖,𝑙 and (M)𝑘, 𝑗 , denoted with a crosshatch ( ), are also nonzero. In fact,
any matrix element in the support of a subrectangular matrix is nonzero.

Definition 13 (Projective distance). Let x, y be two nonnegative
nonzero vectors such that 𝜎(x) = 𝜎(y). The projective distance
𝑑 between the two vectors is

𝑑 (x, y) ≜ max
𝑗 ,𝑙∈𝜎 (x)

ln
𝑥 𝑗/𝑦 𝑗
𝑥𝑙/𝑦𝑙

= ln max
𝑗 ,𝑙∈𝜎 (x)

𝑥 𝑗/𝑦 𝑗
𝑥𝑙/𝑦𝑙

. (132)

For row vectors we define 𝑑 (x𝑇 , y𝑇 ) = 𝑑 (x, y). If x = y = 0,
we define 𝑑 (x, y) = 0.

The projective distance is usually defined for positive vectors.
Our definition generalizes it slightly for nonnegative vectors,
provided they have the same support. In other words, we may
assume that the (joint) zero indices of x and y are deleted
before computing this distance. The projective distance is a
pseudo-metric [32, Exercise 3.1]: it satisfies all of the properties
of a metric over the nonnegative quadrant, with the exception
that 𝑑 (x, y) = 0 if and only if x = 𝑐y for some 𝑐 > 0.

The concept of a subrectangular matrix was introduced
in [19] for square nonnegative matrices. However, it is easily ex-
tended to arbitrary nonnegative matrices. In this work, therefore,
a subrectangular matrix need not be square. Subrectangularity
will play a key role in the contraction inequality we develop.

Definition 14 (Subrectangular matrix). A nonnegative matrix
M is called subrectangular if (M)𝑖, 𝑗 ≠ 0 and (M)𝑘,𝑙 ≠ 0 implies
that (M)𝑖,𝑙 ≠ 0 and (M)𝑘, 𝑗 ≠ 0.

We illustrate a subrectangular matrix in Figure 13. To better
understand the meaning of this concept, in the following lemma
we introduce equivalent characterizations of a subrectangular
matrix. To this end, we remind the reader that a nonzero row
(column) of a matrix contains at least one nonzero element,
and that for a matrix M we denote its set of nonzero rows by
Nr (M) and its set of nonzero columns by Nc (M).

Lemma 32. Let M be a nonnegative matrix. The following
are equivalent:

1) The matrix M is subrectangular.
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2) If M contains a zero element, either the entire row
containing it or the entire column containing it are all
zeros:

(M)𝑖, 𝑗 = 0 ⇐⇒ 𝑖 ∉ Nr (M) or 𝑗 ∉ Nc (M). (133)

3) The matrix M satisfies

(M)𝑖, 𝑗 ≠ 0 ⇐⇒ 𝑖 ∈ Nr (M) and 𝑗 ∈ Nc (M). (134)

Proof: The second and third characterizations are clearly
equivalent. Hence, it suffices to show that 1 ⇒ 2 and 3 ⇒ 1.

1 ⇒ 2: Assume to the contrary that M is subrectangular
but (133) is not satisfied. That is, there exist 𝑖, 𝑗 such that
(M)𝑖, 𝑗 = 0 and 𝑖 ∈ Nr (M), 𝑗 ∈ Nc (M). Since row 𝑖 and column
𝑗 of M are not all zeros, there exist 𝑘, 𝑙 such that (M)𝑖,𝑙 ≠ 0
and (M)𝑘, 𝑗 ≠ 0. By subrectangularity of M, (M)𝑖, 𝑗 must also
be nonzero, a contradiction.

3⇒ 1: Assume that (134) holds. If M is an all-zero matrix,
or has just a single nonzero row (column), then M is obviously
subrectangular. Assume, therefore, that M has at least two
nonzero rows and at least two nonzero columns. That is, there
exist (𝑖, 𝑗), (𝑘, 𝑙) such that (M)𝑖, 𝑗 ≠ 0 and (M)𝑘,𝑙 ≠ 0. Thus,
by (134), 𝑖, 𝑘 ∈ Nr (M) and 𝑗 , 𝑙 ∈ Nc (M). Then, a second of
use of (134) implies that (M)𝑖,𝑙 ≠ 0 and (M)𝑘, 𝑗 ≠ 0. Therefore,
M is subrectangular.

Observe from (133) that if M is subrectangular and M′ is
obtained from M by multiplying some of its rows or columns by
0, then M′ is also subrectangular. Similarly, if M′′ is obtained
from M by deleting some of its rows or columns, then M′′ is
also subrectangular. In particular, (134) implies that the matrix
formed by deleting all of the all-zero rows and columns of M
is positive — it contains only positive elements.

Lemma 33. If M is a nonzero subrectangular matrix and x, y
are nonnegative vectors such that

x𝑇M


1 > 0 and
y𝑇M


1 > 0,

then 𝜎(x𝑇M) = 𝜎(y𝑇M) and 𝜎(Mx) = 𝜎(My).

We remark that this lemma holds even if 𝜎(x) ≠ 𝜎(y).
In particular, it implies that if M is subrectangular and x, y
are arbitrary nonnegative vectors such that x𝑇M and y𝑇M are
nonzero, then 𝑑 (x𝑇M, y𝑇M) is well-defined.

Proof: It suffices to prove the claim that 𝜎(x𝑇M) =

𝜎(y𝑇M), for the second claim follows by noting that M is
subrectangular if and only if M𝑇 is subrectangular. Without
loss of generality, we may assume that M does not have all-
zero rows. For, if it had such rows, we could remove them
and delete the corresponding indices from x and y without
affecting any of the values involved. This implies, by (133),
that any column of M is either all positive or all zeros. Thus,
for any nonnegative and nonzero vector z, we have (z𝑇M)𝑖 = 0
if and only if column 𝑖 of M is an all-zero column. The claim
follows since both x and y are nonnegative and nonzero.

The following corollary was stated as [19, Proposition 6.1]
without proof. We provide a short proof.

Corollary 34. If M is a subrectangular matrix and T, T′ are
some other nonnegative matrices (not necessarily subrectangu-
lar), then TM and MT′ are subrectangular.

Proof: The case where either matrix is the zero matrix
is trivial, so we assume they are both nonzero. It suffices to

consider the case TM, since that transpose of a subrectangular
matrix remains subrectangular. By Lemma 33, every row of
TM is either all-zeros, or has the same support as the other
nonzero rows of TM. This implies, by (134), that TM is
subrectangular.

We remark that a converse to Corollary 34 does not hold.
That is, if a product of two nonnegative matrices is subrectan-
gular, this does not imply that either of them is subrectangular.
For example, if we denote by ∗ an arbitrary positive value in a
matrix, then T1,T2 below are not subrectangular whereas their
product T1T2 is:

T1 =

[
∗ 0
∗ ∗

]
, T2 =

[
∗ ∗
0 ∗

]
, T1T2 =

[
∗ ∗
∗ ∗

]
.

We now introduce a parameter that plays a key role in the
contraction inequalities we develop. To this end, recall that the
support 𝜎(M) of a matrix M is the set of index pairs

𝜎(M) = {(𝑖, 𝑗) | 𝑖 ∈ Nr (M), 𝑗 ∈ Nc (M)}.

By (134), if M is subrectangular and (𝑖, 𝑗) ∈ 𝜎(M) then
(M)𝑖, 𝑗 > 0.

Definition 15 (Birkhoff contraction coefficient). Let M be a
nonnegative matrix. Its Birkhoff contraction coefficient 𝜏(M)
is defined as follows.

• If M is subrectangular and nonzero, then

𝜏(M) ≜ sup
x>0, y>0

𝑑 (x𝑇M, y𝑇M)
𝑑 (x, y) . (135)

• If M is the zero matrix, then 𝜏(M) = 0.
• If M is not subrectangular, then 𝜏(M) = 1.

By Lemma 33 and the positivity of x and y, the numerator
of (135) is well-defined. That is, x𝑇M and y𝑇M have the same
support. The denominator of (135) is also well-defined, as x
and y are positive and thus have the same support as well.
Finally, to ensure that the ratio in (135) is well-defined, we use
the convention 0/0 = 0. Observe that the supremum in (135)
is obtained for x ≠ 𝑐y for 𝑐 > 0.

The Birkhoff contraction coefficient [32, Chapter 3], [34]
is usually defined for matrices with no all-zero columns. We
generalize here the definition slightly to apply also to matrices
with columns that are all-zeros. In light of Definition 13
and Lemma 33, the Birkhoff contraction coefficient of a matrix
with some all-zero columns is simply the Birkhoff contraction
coefficient of the matrix obtained by deleting its all-zero
columns. We note in passing that

𝜏(M) = 𝜏(M𝑇 ), (136)

since 𝑑 (x𝑇M, y𝑇M) = 𝑑 (M𝑇x,M𝑇y).
The following theorem is a restatement of [32, Section 3.4]

(see [34, Theorem 1.1] for an alternative proof).

Theorem 35. If M is subrectangular and nonzero, then

𝜏(M) =
1 −

√︁
𝜙(M)

1 +
√︁
𝜙(M)

< 1,
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where

𝜙(M) ≜ min
𝑖,𝑘∈Nr (M) ,
𝑗 ,𝑙∈Nc (M)

(M)𝑖, 𝑗 (M)𝑘,𝑙
(M)𝑖,𝑙 (M)𝑘, 𝑗

> 0. (137)

Since M is subrectangular and nonzero, all index pairs on
the right-hand side of (137) are in the support of M, by which
𝜙(M) > 0. In other words, the Birkhoff contraction coefficient
of a subrectangular matrix is the Birkhoff contraction coefficient
of the positive matrix obtained by deleting all of its all-zero
rows and columns. The proofs of this theorem in [32, Section
3.4] and [34, Theorem 1.1] assume no all-zero columns in M.
However, as explained after Definition 15, they hold without
change for our slightly generalized definition of the Birkhoff
contraction coefficient.

By Definition 15 and Theorem 35, if x and y are positive
vectors and M is subrectangular, then

𝑑 (x𝑇M, y𝑇M) ≤ 𝜏(M)𝑑 (x, y).

We now show that this holds in the more general case, where
x and y are nonnegative vectors with the same support.

Corollary 36. If x, y are nonnegative vectors such that 𝜎(x) =
𝜎(y) and M is subrectangular, then

𝑑 (x𝑇M, y𝑇M) ≤ 𝜏(M)𝑑 (x, y). (138)

Proof: The claim is trivial if x = y = 0. If x, y are positive,
the claim follows from Definition 15 and Theorem 35. So, we
assume that x and y are nonzero but have some zero elements.
Denote by x̃, ỹ the vectors formed from x, y by deleting their
zero elements, and by M̃ the matrix formed from M by deleting
the rows corresponding to these indices. The resulting vectors
are positive and the resulting matrix remains subrectangular.
Therefore,

𝑑 (x𝑇M, y𝑇M) = 𝑑 (x̃𝑇M̃, ỹ𝑇M̃)
≤ 𝜏(M̃)𝑑 (x̃, ỹ) = 𝜏(M̃)𝑑 (x, y).

Finally, observe that (1−
√
𝑥)/(1+

√
𝑥) is a decreasing function

of 𝑥 when 𝑥 ≥ 0; this is easily seen by computing its derivative,
−(
√
𝑥(1+

√
𝑥)2)−1. Since M̃ is formed from M by deleting rows,

𝜙(M̃) ≥ 𝜙(M). Thus, we must have 𝜏(M̃) ≤ 𝜏(M), which
completes the proof.

In the following lemma we prove an inequality, adapted
from the proof of [33, Lemma 5], that is useful in the sequel.

Lemma 37. Let 𝛼𝑖 > 0, 𝛽𝑖 > 0, and 𝛾𝑖 ≥ 0 for all 𝑖. Assume
that 𝛾𝑖 > 0 for some 𝑖. Then,

min
𝑖

𝛼𝑖

𝛽𝑖
≤

∑
𝑖 𝛾𝑖𝛼𝑖∑
𝑖 𝛾𝑖𝛽𝑖

≤ max
𝑖

𝛼𝑖

𝛽𝑖
. (139)

Proof: Denoting 𝜌𝑖 = 𝛼𝑖/𝛽𝑖 , we have∑
𝑖 𝛾𝑖𝛼𝑖∑
𝑖 𝛾𝑖𝛽𝑖

=

∑
𝑖 𝛾𝑖𝛽𝑖𝜌𝑖∑
𝑖 𝛾𝑖𝛽𝑖

=
∑︁
𝑖

𝛾𝑖𝛽𝑖∑
𝑖′ 𝛾𝑖′ 𝛽𝑖′

𝜌𝑖 =
∑︁
𝑖

𝜃𝑖𝜌𝑖 ,

where 𝜃𝑖 ≥ 0 for all 𝑖 and
∑

𝑖 𝜃𝑖 = 1. That is, the ratio on the
left-hand side is a convex combination of the ratios 𝜌𝑖 . Hence,
it is lower-bounded by min𝑖 𝜌𝑖 and upper-bounded by max𝑖 𝜌𝑖 ,
as required.

Armed with the above inequality, we can prove the following
important property of the Birkhoff contraction coefficient.

Lemma 38. Let M be a subrectangular matrix and let T be a
nonnegative matrix. Then,

𝜏(TM) ≤ 𝜏(M).

If, in addition, T is subrectangular then

𝜏(TM) ≤ 𝜏(T)𝜏(M). (140)

Remark 11. Two remarks are in order. First, we note that (140)
is adapted from [32, equation 3.7]. Second, there is nothing
special about the ordering of the subrectangular and nonnegative
matrix in the lemma. In particular, if the product TM is replaced
with the product MT everywhere, the lemma holds unchanged.
Indeed, by (136), 𝜏(TM) = 𝜏((TM)𝑇 ) = 𝜏(M𝑇T𝑇 ) and M is
subrectangular if and only if M𝑇 is subrectangular.

Proof: There is nothing to prove if TM = 0, so we assume
that TM is nonzero.

By Corollary 34, TM is subrectangular. For the first
claim, let 𝑖0, 𝑘0 ∈ Nr (TM) and 𝑗0, 𝑙0 ∈ Nc (TM) achieve
the minimum in (137); that is, be such that 𝜙(TM) =

((TM)𝑖0 , 𝑗0 (TM)𝑘0 ,𝑙0 )/((TM)𝑖0 ,𝑙0 (TM)𝑘0 , 𝑗0 ). Thus, by (134),
(𝑖0, 𝑗0), (𝑘0, 𝑙0) ∈ 𝜎(TM). This implies that 𝑗0, 𝑙0 ∈ Nc (M)
— otherwise, for example, we would have (TM)𝑖0 , 𝑗0 =∑

𝑟 (T)𝑖0 ,𝑟 (M)𝑟 , 𝑗0 = 0, which contradicts (𝑖0, 𝑗0) ∈ 𝜎(TM).
Hence,

𝜙(TM) =
(TM)𝑖0 , 𝑗0 (TM)𝑘0 ,𝑙0

(TM)𝑖0 ,𝑙0 (TM)𝑘0 , 𝑗0

=

∑
𝑖
(T)𝑖0 ,𝑖 (M)𝑖, 𝑗0∑

𝑖
(T)𝑖0 ,𝑖 (M)𝑖,𝑙0

·

∑
𝑘
(T)𝑘0 ,𝑘 (M)𝑘,𝑙0∑

𝑘
(T)𝑘0 ,𝑘 (M)𝑘, 𝑗0

=

∑︁
𝑖∈Nr (M)

(T)𝑖0 ,𝑖 (M)𝑖, 𝑗0∑︁
𝑖∈Nr (M)

(T)𝑖0 ,𝑖 (M)𝑖,𝑙0
·

∑︁
𝑘∈Nr (M)

(T)𝑘0 ,𝑘 (M)𝑘,𝑙0∑︁
𝑘∈Nr (M)

(T)𝑘0 ,𝑘 (M)𝑘, 𝑗0

(a)
≥ min

𝑖,𝑘∈Nr (M)

(M)𝑖, 𝑗0 (M)𝑘,𝑙0
(M)𝑖,𝑙0 (M)𝑘, 𝑗0

(b)
≥ min

𝑖,𝑘∈Nr (M)
𝑗 ,𝑙∈Nc (M)

(M)𝑖, 𝑗 (M)𝑘,𝑙
(M)𝑖,𝑙 (M)𝑘, 𝑗

= 𝜙(M),

where (a) is by the left-hand inequality of (139), used twice and
since 𝑗0, 𝑙0 ∈ Nc (M) and the subrectangularity of M; and in (b)
we minimize over a set of indices that contains 𝑗0, 𝑙0. Having
established 𝜙(TM) ≥ 𝜙(M) and, since (1 −

√
𝑥)/(1 +

√
𝑥)

is a decreasing function of 𝑥 for 𝑥 ≥ 0 (see the proof of
Corollary 36), we conclude that 𝜏(TM) ≤ 𝜏(M).

For the second claim, if T,M are both subrectangular, then
for any positive x, y we have 𝜎(x𝑇T) = 𝜎(y𝑇T) and repeated
applications of (138) yield

𝑑 (x𝑇TM, y𝑇TM) = 𝑑 ((x𝑇T)M, (y𝑇T)M)
≤ 𝜏(M)𝑑 (x𝑇T, y𝑇T)
≤ 𝜏(M)𝜏(T)𝑑 (x, y).

Thus, by (135), 𝜏(TM) ≤ 𝜏(T)𝜏(M).
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Applying Lemma 38 to a product of 𝑚 subrectangular
matrices M1,M2, . . . ,M𝑚, we obtain

𝜏(M1M2 · · ·M𝑚) ≤
𝑚∏
ℓ=1

𝜏(Mℓ). (141)

Corollary 36 required that x, y both have the same support.
For the cases where x and y have different supports, we have
the following lemma.

Lemma 39. Let M be subrectangular and let T be an arbitrary
nonnegative matrix. Then, for any two nonnegative vectors x
and y such that

x𝑇TM


1 > 0 and
y𝑇TM


1 > 0,

𝑑 (x𝑇TM, y𝑇TM) ≤ 4 ln
(

1 + 𝜏(M)
1 − 𝜏(M)

)
. (142)

Since M is subrectangular, 𝜏(M) < 1, which implies that the
right-hand side of (142) is finite.

Proof: There is nothing to prove if TM = 0, so we assume
that TM is nonzero. By Corollary 34, M̃ = TM is subrectangular.

Fix any 𝑖0 ∈ Nr (M̃). Such an 𝑖0 must exist because M̃
is subrectangular and x𝑇M̃ is nonzero by assumption. By
Lemma 33, and subrectangularity of M̃,

𝜎(e𝑇𝑖0M̃) = 𝜎(x
𝑇M̃) = Nc (M̃). (143)

By the symmetry and triangle inequality properties of the
projective distance [32, Exercise 3.1],

𝑑 (x𝑇M̃, y𝑇M̃) ≤ 𝑑 (e𝑇𝑖0M̃, x
𝑇M̃) + 𝑑 (e𝑇𝑖0M̃, y

𝑇M̃).

Thus, by Lemma 38 and since ln((1+ 𝑥)/(1− 𝑥)) is monotone
increasing for 0 ≤ 𝑥 < 1, (142) will follow if we show that

𝑑 (e𝑇𝑖0M̃, x
𝑇M̃) ≤ ln

(
1

𝜙(M̃)

)
= 2 ln

(
1 + 𝜏(M̃)
1 − 𝜏(M̃)

)
,

where 𝜙 is defined in (137). The right-hand equality follows
directly from Theorem 35, so we concentrate on proving the
inequality.

For any 𝑗 ∈ Nc (M̃) denote

𝜌 𝑗 =
(e𝑇

𝑖0
M̃) 𝑗

(x𝑇M̃) 𝑗
=

(M̃)𝑖0 , 𝑗∑︁
𝑘∈Nr (M̃)

𝑥𝑘 (M̃)𝑘, 𝑗
.

The denominator is positive by (143), so 𝜌 𝑗 is well-defined.
Now, for 𝑗 , 𝑙 ∈ Nc (M̃),

𝜌 𝑗

𝜌𝑙
=

∑︁
𝑘∈Nr (M̃)

𝑥𝑘 (M̃)𝑘,𝑙∑︁
𝑘∈Nr (M̃)

𝑥𝑘 (M̃)𝑘, 𝑗
·
(M̃)𝑖0 , 𝑗
(M̃)𝑖0 ,𝑙

(a)
≤ max

𝑘∈Nr (M̃)

(M̃)𝑘,𝑙
(M̃)𝑘, 𝑗

·
(M̃)𝑖0 , 𝑗
(M̃)𝑖0 ,𝑙

(b)
≤ max

𝑘∈Nr (M̃)

(M̃)𝑘,𝑙
(M̃)𝑘, 𝑗

· max
𝑖∈Nr (M̃)

(M̃)𝑖, 𝑗
(M̃)𝑖,𝑙

, (144)

where (a) is by Lemma 37 and in (b) we maximize over a set
that contains 𝑖0.

Hence, recalling the definition of the projective dis-
tance, (132),

𝑑 (e𝑇𝑖0M̃, x
𝑇M̃) = ln max

𝑗 ,𝑙∈Nc (M̃)

𝜌 𝑗

𝜌𝑙

(a)
≤ ln max

𝑖,𝑘∈Nr (M̃) ,
𝑗 ,𝑙∈Nc (M̃)

(M̃)𝑖, 𝑗 (M̃)𝑘,𝑙
(M̃)𝑖,𝑙 (M̃)𝑘, 𝑗

(b)
= ln

(
1

𝜙(M̃)

)
,

where (a) is by (144) and (b) follows from the definition of
𝜙 in (137). This completes the proof.

The following proposition and the corollary that follows are
a generalization of ideas from [18, Theorem 2].

Proposition 40. Let M1,M2, . . . ,M𝑚,T be a sequence of
square nonzero nonnegative matrices, such that Mℓ are
subrectangular for all 1 ≤ ℓ ≤ 𝑚, and let x, y be two
nonnegative nonzero vectors. Denote

x̃𝑇 = x𝑇M1,

ỹ𝑇 = y𝑇M1,

M𝑠
𝑟 = M𝑟 ·M𝑟+1 · · ·M𝑠 , 𝑟 ≤ 𝑠.

If
x𝑇M𝑚

1 T


1 > 0 and
y𝑇M𝑚

1 T


1 > 0, then

ln

( x𝑇M𝑚
1 T


1y𝑇M𝑚

1 T


1
·
y𝑇M𝑚

1


1x𝑇M𝑚

1


1

)
≤ 𝑑 (x̃, ỹ) ·

𝑚∏
ℓ=2

𝜏(Mℓ). (145)

Proof: Since
x𝑇M𝑚

1 T


1 > 0, we conclude that x𝑇M𝑠
1 is

nonzero for any 1 ≤ 𝑠 ≤ 𝑚, and the same holds if we replace
x with y. Thus, the left-hand side of (145) is well-defined. We
will show that

ln

( x𝑇M𝑚
1 T


1y𝑇M𝑚

1 T


1
·
y𝑇M𝑚

1


1x𝑇M𝑚

1


1

)
≤ 𝑑 (x̃𝑇M𝑚

2 , ỹ
𝑇M𝑚

2 ).

The right-hand side is well-defined since, by Corollary 34, M𝑠
𝑟

is subrectangular for any 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑚 and by Lemma 33.
Then, as 𝜎(x̃) = 𝜎(ỹ) by Lemma 33, (145) will follow from
Corollary 36 and (141).

Denote 𝐽 = 𝜎(x̃𝑇M𝑚
2 ) = 𝜎(ỹ

𝑇M𝑚
2 ) = Nc (M𝑚

2 ), where the
equalities are by Lemma 33 and subrectangularity. By the
right-hand inequality of (139),y𝑇M𝑚

1


1x𝑇M𝑚

1


1
=

ỹ𝑇M𝑚
2


1x̃𝑇M𝑚

2


1

=

∑
𝑙∈𝐽 1 · (ỹ𝑇M𝑚

2 )𝑙∑
𝑙∈𝐽 1 · (x̃𝑇M𝑚

2 )𝑙
≤ max

𝑙∈𝐽

(ỹ𝑇M𝑚
2 )𝑙

(x̃𝑇M𝑚
2 )𝑙

.

Next, denote by 𝑡 𝑗 =
(T) 𝑗 ,:1 the sum of the 𝑗 th row of

T. Since T is nonzero, 𝑡 𝑗 > 0 for some 𝑗 . Thus, a second
application of the right-hand inequality of (139) yieldsx𝑇M𝑚

1 T


1y𝑇M𝑚
1 T


1
=

∑
𝑗∈𝐽 𝑡 𝑗 · (x̃𝑇M𝑚

2 ) 𝑗∑
𝑗∈𝐽 𝑡 𝑗 · (ỹ𝑇M𝑚

2 ) 𝑗
≤ max

𝑗∈𝐽

(x̃𝑇M𝑚
2 ) 𝑗

(ỹ𝑇M𝑚
2 ) 𝑗

.

Combining, we obtainx𝑇M𝑚
1 T


1y𝑇M𝑚

1 T


1
·
y𝑇M𝑚

1


1x𝑇M𝑚

1


1
≤ max

𝑗 ,𝑙∈𝐽

(x̃𝑇M𝑚
2 ) 𝑗/(ỹ

𝑇M𝑚
2 ) 𝑗

(x̃𝑇M𝑚
2 )𝑙/(ỹ𝑇M𝑚

2 )𝑙
.
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Taking the logarithm of both sides, the right-hand side becomes
𝑑 (x̃𝑇M𝑚

2 , ỹ
𝑇M𝑚

2 ), which completes the proof.
Combining the above results we obtain the following

corollary.

Corollary 41. Let M1,M2, . . . ,M𝑚 be a sequence of square
nonzero subrectangular matrices, and let T, as well as
T1,T2, . . . ,T𝑚 be arbitrary square nonnegative and nonzero
matrices. Denote

R = T1M1T2M2 · · ·T𝑚M𝑚.

Then, for any two nonnegative nonzero vectors x, y such thatx𝑇RT


1 > 0 and
y𝑇RT


1 > 0 we have

ln

( x𝑇RT


1y𝑇RT


1
·
y𝑇R


1x𝑇R


1

)
≤ 4 ln

(
1 + 𝜏(M1)
1 − 𝜏(M1)

)
·

𝑚∏
ℓ=2

𝜏(Mℓ). (146)

Proof: The claim follows from Corollary 34, Lemmas 38
and 39, and Proposition 40.

Observe that (146) remains true if we replace ‘ln’ with ‘log’.

Discussion. Our Proposition 40 and Corollary 41 generalize [18,
Theorem 2] in several ways. In [18, Theorem 2], the matrices
M1, . . . ,M𝑚,T are all strictly positive. Each matrix corresponds
to an observation of a hidden Markov model (𝐴𝑛, 𝐵𝑛), where
the (𝑖, 𝑗) item of the matrix that corresponds to observation
𝑏 ∈ B is the probability that 𝐴𝑛+1 = 𝑗 and 𝐵𝑛+1 = 𝑏 given
that 𝐴𝑛 = 𝑖. In particular, [18, Theorem 2] assumes that every
observation 𝑏 ∈ B can be emitted from the same number of
states 𝑎 ∈ A,8 and that it is possible to transition between any
two states of A in one step. In this work, however, we are
not confined to such assumptions. Our formulation allows for
each observation to originate from a different number of states.
Moreover, our formulation does not assume that one can move
from every state of A to every other state of A in one step.

X. HIDDEN MARKOV MODELS THAT FORGET THEIR
INITIAL STATE

In this section we show that hidden Markov models that
satisfy a mild requirement forget their initial state. Specifically,
we will consider the mutual information between the state at
time 𝑛+1 and the model’s initial state given the observations in
between. The contraction inequality of Section IX will enable
us to show that this mutual information vanishes with 𝑛. This
enables us to obtain a sufficient condition — Condition K —
for forgetfulness. The development in this section is based on
the techniques of [19].

A. Hidden Markov Models

A hidden Markov model (HMM) is a process (𝐴𝑛, 𝐵𝑛),
where 𝐴𝑛 ∈ A is a Markov chain and 𝐵𝑛 ∈ B is an observation
that is a function of 𝐴𝑛. The alphabets A and B are assumed
finite. Without loss of generality, A = {1, 2, . . . , |A|} and B =

{1, 2, . . . , |B|}. A detailed description of the setting we consider
follows.

8We note that the authors of [18] claim that this assumption can be relaxed
with an appropriate extension, but they omit it and its derivation.

Let 𝐴𝑛, 𝑛 ∈ Z be a homogeneous Markov process assuming
values in some finite alphabet A. Denote by 𝑝( 𝑗 |𝑖) its transition
probability function, which is independent of the time index 𝑛.
That is,

𝑝( 𝑗 |𝑖) = P (𝐴𝑛 = 𝑗 |𝐴𝑛−1 = 𝑖) , 𝑖, 𝑗 ∈ A.

The |A| × |A| transition probability matrix M of the Markov
chain is defined by

(M)𝑖, 𝑗 = 𝑝( 𝑗 |𝑖), 𝑖, 𝑗 ∈ A.

This is a stochastic matrix: (M)𝑖, 𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ A and
for any 𝑖,

∑
𝑗 (M)𝑖, 𝑗 = 1. We assume that the process 𝐴𝑛

is aperiodic and irreducible (in some literature such Markov
chains are called regular). That is, we assume that the matrix
M is aperiodic and irreducible (see, e.g., [22, Proposition 4.1]).
This implies [22, Theorems 1.9 and 4.2] that the process has
a unique stationary distribution 𝝅, which is positive.

Let 𝑓 : A→ B be a deterministic function. For simplicity,
we assume that B is finite. An observation of 𝐴𝑛 is 𝐵𝑛 = 𝑓 (𝐴𝑛).
Denote, for any set 𝐵 ⊆ B,

𝑓 −1 (𝐵) = {𝑖 ∈ A | 𝑓 (𝑖) = 𝑏, 𝑏 ∈ 𝐵}.

Then, P (𝐵𝑛 = 𝑏) = P
(
𝐴𝑛 ∈ 𝑓 −1 (𝑏)

)
. We assume that B

contains only observations that actually appear, that is, B =

{𝑏 | 𝑓 (𝑖) = 𝑏, 𝑖 ∈ A}.
The process (𝐴𝑛, 𝐵𝑛) described above is called a hidden

Markov model. We summarize this in the following definition.

Definition 16 (Hidden Markov model). Let 𝐴𝑛 be a homo-
geneous Markov process taking values in A with transition
probability matrix M, which is aperiodic and irreducible. Let
𝑓 : A → B be a deterministic function, and let 𝐵𝑛 = 𝑓 (𝐴𝑛).
The process (𝐴𝑛, 𝐵𝑛) is called a hidden Markov model.
Additionally, we use the following terminology:

• 𝐴𝑛 is the state of the process,
• 𝐵𝑛 is the observation of the process.

Typically, multiple states would have the same observation.
That is, for 𝑏 ∈ B, the set 𝑓 −1 (𝑏) typically contains multiple
elements. The actual state of the process is hidden, and the
observation provides only partial information on the state.

The restriction to a deterministic function 𝑓 , rather than a
probabilistic one, seemingly presents a limitation. However,
in appendix E we show that there is no loss of generality
in assuming that 𝑓 is deterministic. That is, we show that
the deterministic and probabilistic settings are equivalent. We
emphasize that taking the viewpoint of deterministic 𝑓 is done
for convenience and to facilitate the derivation that follows.
In particular, in our setting of a FAIM process, (𝑆𝑛, 𝑋𝑛, 𝑌𝑛),
without loss of generality one may assume that (𝑋𝑛, 𝑌𝑛) is a
deterministic function of the state 𝑆𝑛.

The following notation, taken from [19], will be useful.
Define the matrices M(𝑏), 𝑏 ∈ B, by

(M(𝑏))𝑖, 𝑗 =
{
𝑝( 𝑗 |𝑖), if 𝑓 ( 𝑗) = 𝑏
0, otherwise.

(147)
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In words, (M(𝑏))𝑖, 𝑗 is the probability of transitioning from
state 𝑖 ∈ A to state 𝑗 ∈ A and observing 𝑏 ∈ B after having
arrived at state 𝑗 . That is,

(M(𝑏))𝑖, 𝑗 = P (𝐴𝑛 = 𝑗 , 𝐵𝑛 = 𝑏 |𝐴𝑛−1 = 𝑖) .
For a sequence of observations 𝑏𝑠𝑟 , 𝑟 ≤ 𝑠, we denote

M(𝑏𝑠𝑟 ) ≜ M(𝑏𝑟 )M(𝑏𝑟+1) · · ·M(𝑏𝑠).
We call 𝜏(M(𝑏𝑠𝑟 )) the Birkhoff contraction coefficient induced
by the sequence 𝑏𝑠𝑟 .

The matrices M(𝑏) are nonzero and substochastic — they
are nonnegative with unequal row sums, all less than or equal
to 1. We can reconstruct M from them using

M =
∑︁
𝑏

M(𝑏).

Example 8 in appendix E shows the matrix M and its
decomposition to matrices M(𝑏) for a specific channel with
memory.

We also define for any 𝑎 ∈ A the matrix I𝑎 by

(I𝑎)𝑖, 𝑗 =
{

1, if 𝑖 = 𝑗 = 𝑎

0, otherwise.

This matrix has a single nonzero element: ‘1’ on the diagonal,
at the (𝑎, 𝑎) position.

The process (𝐴𝑛, 𝐵𝑛) is completely characterized by the
matrices M(𝑏), 𝑏 ∈ B, and its initial distribution. We assume
that the process is stationary, so its initial distribution is 𝝅, its
unique stationary distribution. Thus, (𝝅)𝑖 = P (𝐴0 = 𝑖) and

P (𝐵1 = 𝑏1) =
∑︁
𝑗∈A

P (𝐴1 = 𝑗 , 𝐵1 = 𝑏1)

=
∑︁

𝑖, 𝑗∈A
P (𝐴1 = 𝑗 , 𝐵1 = 𝑏1 |𝐴0 = 𝑖) P (𝐴0 = 𝑖)

=
𝝅𝑇M(𝑏1)


1

Moreover, the probability of observing the sequence 𝑏𝑛1 is given
by [19, Lemma 2.1]

P
(
𝐵𝑛

1 = 𝑏𝑛1
)
=

𝝅𝑇M(𝑏𝑛1 )


1
=

𝝅𝑇M(𝑏1)M(𝑏2) · · ·M(𝑏𝑛)


1 . (148)

Similarly, for any 𝑎 ∈ A,

P
(
𝐴𝑛 = 𝑎, 𝐵𝑛

1 = 𝑏𝑛1
)
= (𝝅𝑇M(𝑏𝑛1 ))𝑎 =

𝝅𝑇M(𝑏𝑛1 )I𝑎


1 ,

and

P
(
𝐴𝑛+1 = 𝑎, 𝐵𝑛

1 = 𝑏𝑛1
)
= (𝝅𝑇M(𝑏𝑛1 )M)𝑎
=

𝝅𝑇M(𝑏𝑛1 )MI𝑎


1
=

𝝅𝑇M(𝑏𝑛1 )T𝑎


1 , (149)

where we denoted for any 𝑎 ∈ A,

T𝑎 ≜ MI𝑎 .

When P
(
𝐵𝑛

1 = 𝑏𝑛1
)
> 0 we further have by (148) and (149),

P
(
𝐴𝑛+1 = 𝑎 |𝐵𝑛

1 = 𝑏𝑛1
)
=
P

(
𝐴𝑛+1 = 𝑎, 𝐵𝑛

1 = 𝑏𝑛1
)

P
(
𝐵𝑛

1 = 𝑏𝑛1
)

=

𝝅𝑇M(𝑏𝑛1 )T𝑎


1𝝅𝑇M(𝑏𝑛1 )


1
. (150)

This is well-defined because if P
(
𝐵𝑛

1 = 𝑏𝑛1
)
> 0 then the

denominator on the right-hand side of (150) must also be
positive.

Let us now consider the case where the initial state of
the process is known. In this case, P (𝐵1 = 𝑏1 |𝐴0 = 𝑎0) =e𝑇𝑎0M(𝑏1)


1. Similar to the above, we obtain

P
(
𝐵𝑛

1 = 𝑏𝑛1 |𝐴0 = 𝑎0
)
=

e𝑇𝑎0M(𝑏
𝑛
1 )


1 , (151)

P
(
𝐴𝑛+1 = 𝑎 |𝐵𝑛

1 = 𝑏𝑛1 , 𝐴0 = 𝑎0
)
=

e𝑇𝑎0M(𝑏
𝑛
1 )T𝑎


1e𝑇𝑎0M(𝑏𝑛1 )


1
, (152)

provided that the probability in (151) is positive.
In (148)–(152), we have computed probabilities for particular

realizations of 𝐴0, 𝐵𝑛
1 and 𝐴𝑛+1. Generally, however, these are

random variables. They are jointly generated as follows. First,
draw 𝐴0 according to 𝝅. Then, at time 𝑛, draw 𝐴𝑛 according
to the 𝐴𝑛−1th row of M and compute 𝐵𝑛 = 𝑓 (𝐴𝑛).

These random variables give rise to the random vari-
ables P

(
𝐴𝑛+1 |𝐵𝑛

1
)

and P
(
𝐴𝑛+1 |𝐵𝑛

1 , 𝐴0
)
, obtained by plugging

𝐴𝑛+1, 𝐵𝑛
1 , and 𝐴0 for 𝑎, 𝑏𝑛1 , and 𝑎0 respectively in the right-hand

sides of (150) and (152). They are well-defined with probability
1. In other words, we can always compute their values via (150)
and (152); with probability 0 will the denominators on the right-
hand sides of these equations equal 0. These random variables
are of interest because

𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 ) = E

[
log

P
(
𝐴𝑛+1 |𝐵𝑛

1 , 𝐴0
)

P
(
𝐴𝑛+1 |𝐵𝑛

1
) ]

. (153)

Using (150) and (152) we write this as

𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 )

= E

log
©«
e𝑇𝐴0

M(𝐵𝑛
1 )T𝐴𝑛+1


1𝝅𝑇M(𝐵𝑛

1 )T𝐴𝑛+1


1
·
𝝅𝑇M(𝐵𝑛

1 )


1e𝑇
𝐴0

M(𝐵𝑛
1 )


1

ª®®¬
 . (154)

As above, the argument of the expectation is well-defined with
probability 1.

The Markov chain 𝐴𝑛 is finite-state, irreducible, and aperi-
odic. A classic result on such Markov chains [22, Theorem
4.3], [35, Theorem 8.9], which harks back to the days of A.
A. Markov [36], is that the chain approaches its stationary
distribution exponentially fast, regardless of its initial state. In
particular, this implies that 𝐼 (𝐴0; 𝐴𝑛+1) → 0 as 𝑛→∞. By the
Markov property we also have 𝐼 (𝐴0; 𝐴𝑛+1 |𝐴𝑛

1 ) = 0. Our setting,
however, is a hidden Markov setting, and we will be interested
in whether 𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛

1 ) → 0. In general, the answer to this
is negative — even when 𝐴𝑛 is finite-state, aperiodic, and
irreducible — see Example 3 in Section V-A, above.9

Our goal in the next subsection is to show that under a
certain Condition K, 𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛

1 ) → 0 as 𝑛→∞. This will
employ (146), which bounds expressions of a form similar to
the argument of the expectation in (154).

Remark 12. An expression similar to (153) was pointed out
in [18, Equation 3.7], in the proof of [18, Theorem 2]. There,
the goal was to show that 𝐼 (𝐴0; 𝐵𝑛 |𝐵𝑛−1

1 ) → 0. This was

9Where the state is 𝐴𝑛 = 𝑆𝑛 and the observation is 𝐵𝑛 = 𝑌𝑛. It can be
shown [19, Section 10] that this HMM does not satisfy Condition K.
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done under a restrictive assumption that transitions between
any two states in one step may happen with strictly positive
probability. When put in our notation, this implies that the
matrices M(𝑏), 𝑏 ∈ B, contain only two types of columns:
strictly positive columns and zero columns.10 In this case,
the matrices M(𝑏) are all subrectangular, so their Birkhoff
contraction coefficients are strictly less than 1; this allows one
to use (146) directly (with Tℓ = I for all ℓ) and obtain that
the mutual information indeed vanishes as 𝑛 grows. In this
paper, we alleviate this restrictive assumption, and allow for
a more general scenario where the individual matrices M(𝑏)
may also be not subrectangular. We further remark that, by the
data processing inequality (2), 𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛

1 ) → 0 implies
that 𝐼 (𝐴0; 𝐵𝑛+1 |𝐵𝑛

1 ) → 0.

B. Forgetting the Initial State

We now show that under the following Condition K (so
named in honor of Prof. Thomas Kaijser who had first suggested
it in [19]), the mutual information 𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛

1 ) vanishes
with 𝑛.

Condition K. The HMM (𝐴𝑛, 𝐵𝑛) is characterized by matrices
M(𝑏), 𝑏 ∈ B such that:

1) The matrix M =
∑

𝑏∈B M(𝑏) is aperiodic and irreducible.
2) There exists an ordered sequence 𝛽1, 𝛽2, . . . , 𝛽𝑙 of

elements of B such that the matrix M(𝛽𝑙1) =

M(𝛽1)M(𝛽2) · · ·M(𝛽𝑙) is nonzero and subrectangular.

The following are all examples where it is easy to check by
inspection that Condition K is satisfied:
• the transition matrix M is positive (or, more generally,

subrectangular);
• there exists an observation 𝛽 for which M(𝛽) has just a

single column;
• there exists an observation 𝛽 for which M(𝛽) is subrect-

angular.
Generally, though, inspection may not suffice to declare that
Condition K is satisfied.

Remark 13. The ability of a hidden Markov model to “forget”
its initial state has also been studied under somewhat weaker
assumptions than Condition K. The interested reader is invited
to consult [37], [38]. It may be possible to generalize the results
of this paper to processes that satisfy these weaker assumptions
and do not satisfy Condition K. We leave such endeavors to
future work.

Theorem 42. Suppose the HMM (𝐴𝑛, 𝐵𝑛) satisfies Condition K.
Then, for every 𝜖 > 0 there exists an integer 𝜆 such that if
𝑛 ≥ 𝜆 then

𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 ) ≤ 𝜖 .

The proof is given in the next subsection, and will follow
from Proposition 47, which provides a characterization of the
rate at which the mutual information vanishes. The idea is
to use techniques similar to the ones used in the study of

10The assumption of [18] is that M is positive. Since M(𝑏) is comprised
of columns of M and zero columns, any nonzero column of M(𝑏) must be
positive.

recurrence times of Markov chains. Namely, we bound the
probability that in a long sequence of observations there will be
sufficient non-overlapping occurrences of sequences that induce
a Birkhoff contraction coefficient below a certain threshold.
Armed with this bound, we employ Corollary 41 in (154) to
obtain an upper bound on the mutual information.

Example 6. Let 𝐴𝑛 be a finite-state Markov chain with
irreducible and aperiodic transition probability matrix M.
Consider the case of no observations: 𝐵𝑛 = 0 regardless of
𝐴𝑛. In this case, M(0) = M and Condition K is satisfied,
as there exists 𝑘0 such that M𝑘0 > 0 [32, Theorem 1.4].
Therefore, by Theorem 42, we have 𝐼 (𝐴0; 𝐴𝑛+1) → 0 as
𝑛 → ∞. As mentioned above, this is a well-known result
for finite-state, irreducible, and aperiodic Markov chains. We
note in passing that there exist other information-theoretic
proofs that 𝐼 (𝐴0; 𝐴𝑛+1) → 0 as 𝑛→∞, see, e.g., [39].

Corollary 43. Suppose the HMM (𝐴𝑛, 𝐵𝑛) satisfies Condi-
tion K. Then, for every 𝜖 > 0 there exists an integer 𝜆 such
that if 𝑛 ≥ 𝜆 then

𝐼 (𝐴1; 𝐴𝑛 |𝐵𝑛
1 ) ≤ 𝜖 . (155)

and
𝐼 (𝐴0; 𝐴𝑛 |𝐵𝑛

1 ) ≤ 𝜖 . (156)

Proof: The conditions of Theorem 42 are satisfied. Let 𝜆
be such that 𝐼 (𝐴1; 𝐴𝑛 |𝐵𝑛−1

2 ) ≤ 𝜖 for any 𝑛 ≥ 𝜆.
We first show (155). Recall that 𝐵 𝑗 is a function of 𝐴 𝑗

for any 𝑗 . Thus, for any 𝑛 ≥ 𝜆, 𝐼 (𝐴1, 𝐵1; 𝐴𝑛, 𝐵𝑛 |𝐵𝑛−1
2 ) =

𝐼 (𝐴1; 𝐴𝑛 |𝐵𝑛−1
2 ) ≤ 𝜖 . Therefore,

𝜖 ≥ 𝐼 (𝐴1, 𝐵1; 𝐴𝑛, 𝐵𝑛 |𝐵𝑛−1
2 )

= 𝐼 (𝐵1; 𝐴𝑛, 𝐵𝑛 |𝐵𝑛−1
2 ) + 𝐼 (𝐴1; 𝐵𝑛 |𝐵𝑛−1

1 ) + 𝐼 (𝐴1; 𝐴𝑛 |𝐵𝑛
1 ).

Since mutual information is nonnegative, each of the summands
on the right-hand side is upper-bounded by 𝜖 . This yields (155).

To see (156), since 𝐴0 −◦− (𝐴1, 𝐵
𝑛
1 ) −◦− 𝐴𝑛, we use (2) and

obtain
𝐼 (𝐴0; 𝐴𝑛 |𝐵𝑛

1 ) ≤ 𝐼 (𝐴1; 𝐴𝑛 |𝐵𝑛
1 ) ≤ 𝜖,

as required.
We remark that under the same conditions as Corollary 43

we also obtain 𝐼 (𝐴1; 𝐵𝑛 |𝐵𝑛−1
1 ) ≤ 𝜖 and 𝐼 (𝐴0; 𝐵𝑛 |𝐵𝑛−1

1 ) ≤ 𝜖 .
Consider a Markov chain 𝐴𝑛 and two HMMs it induces,
(𝐴𝑛, 𝐵𝑛) and (𝐴𝑛, 𝐶𝑛), where 𝐵𝑛 = 𝑓 (𝐴𝑛) and 𝐶𝑛 = 𝑔(𝐵𝑛),
for some deterministic functions 𝑓 , 𝑔. It is somewhat surprising,
but even if one of the HMMs satisfies Condition K, it does not
imply that the other one does. See Example 4 in Section V.11

Suppose that both HMMs satisfy Condition K. Then, by
Corollary 43, for every 𝜖 > 0 there exists an integer 𝜆 such
that if 𝑛 ≥ 𝜆 then 𝐼 (𝐴1; 𝐴𝑛 |𝐵𝑛

1 ) ≤ 𝜖 and 𝐼 (𝐴1; 𝐴𝑛 |𝐶𝑛
1 ) ≤ 𝜖 .

Example 7. Let (𝑆𝑛, 𝑋𝑛, 𝑌𝑛) be a FAIM process. This is
an HMM with state 𝐴𝑛 = (𝑆𝑛, 𝑋𝑛, 𝑌𝑛). Clearly, there exist
functions 𝑓 , 𝑔 such that (𝑋𝑛, 𝑌𝑛) = 𝑓 (𝑆𝑛) and 𝑌𝑛 = 𝑔(𝑋𝑛, 𝑌𝑛).
Therefore, both (𝐴𝑛, (𝑋𝑛, 𝑌𝑛)) and (𝐴𝑛, 𝑌𝑛) are HMMs. If each
of the HMMs (𝐴𝑛, (𝑋𝑛, 𝑌𝑛)) and (𝐴𝑛, 𝑌𝑛) satisfies Condition K
then (155) holds with 𝐵𝑛 = (𝑋𝑛, 𝑌𝑛) or 𝐵𝑛 = 𝑌𝑛 for any 𝑛. In

11Taking 𝐴𝑛 = 𝑆𝑛, 𝐵𝑛 = (𝑋𝑛 , 𝑌𝑛 ) , and 𝐶𝑛 = 𝑌𝑛.
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particular, for any 𝜖 > 0 there exists an integer 𝜆 such that for
any 𝑘 ≥ 𝜆 we have

𝐼 (𝑆1; 𝑆𝑘 |𝑋 𝑘
1 , 𝑌

𝑘
1 ) ≤ 𝜖,

𝐼 (𝑆1; 𝑆𝑘 |𝑌 𝑘
1 ) ≤ 𝜖 .

In other words, Condition K is a sufficient condition for
forgetfulness.

C. Proof of Theorem 42

The goal of this subsection is to prove Theorem 42. To this
end, we make the following definition.

Definition 17 ((𝑛★, 𝛿★, 𝜏★)-KHMM). Let 𝑛★ be a positive
integer, and 𝛿★, 𝜏★ ∈ [0, 1). The HMM (𝐴𝑛, 𝐵𝑛) is called an
(𝑛★, 𝛿★, 𝜏★)-KHMM if it satisfies

P
(
𝜏(M(𝐵𝑛★

1 )) ≤ 𝜏★ |𝐴0 = 𝑎0
)
≥ 1 − 𝛿★, ∀𝑎0 ∈ A. (157)

In words, the HMM has a probability at least (1 − 𝛿★) of
emitting by time 𝑛★ an observation sequence that induces a
Birkhoff contraction coefficient at most 𝜏★, regardless of its
initial state.

We say that an HMM is a KHMM if it is an (𝑛★, 𝛿★, 𝜏★)-
KHMM for some (𝑛★, 𝛿★, 𝜏★).

Observe that if (𝐴𝑛, 𝐵𝑛) is an (𝑛★, 𝛿★, 𝜏★)-KHMM and 𝑛★ ≤
𝑛′★, 𝛿★ ≤ 𝛿′★, and 𝜏★ ≤ 𝜏′★ then (𝐴𝑛, 𝐵𝑛) is also an (𝑛′★, 𝛿′★, 𝜏′★)-
KHMM.

In Lemma 44, adapted from [19, Lemma 8.2], we show that
if an HMM satisfies Condition K, then it is also a KHMM
for some (𝑛★, 𝛿★, 𝜏★). This is because Condition K ensures the
existence of one sequence that induces a Birkhoff contraction
coefficient less than 1 (a “good” sequence). However, the
HMM may very well have many “good” sequences, possibly
shorter. Thus, a given HMM that satisfies Condition K may
be an (𝑛★, 𝛿★, 𝜏★)-KHMM for many different combinations of
𝑛★, 𝛿★, 𝜏★. Since the bounds we develop are dependent on the
values of 𝑛★, 𝛿★, 𝜏★, it is worthwhile to seek the combination
that yield the best bound.

Lemma 44. If the HMM (𝐴𝑛, 𝐵𝑛) satisfies Condition K then
there exist a positive integer 𝑛★ and constants 𝛿★ < 1 and
0 ≤ 𝜏★ < 1 such that (157) is satisfied.

Proof: By Condition K there exist positive integers 𝑘0, 𝑙0
and numbers 𝛾0 > 0 and 0 ≤ 𝜏★ < 1 such that

1) For any 𝑖, 𝑗 ∈ A, (M𝑘0 )𝑖, 𝑗 ≥ 𝛾0. This follows from M
being aperiodic and irreducible, so some power of it must
be strictly positive [32, Theorem 1.4].

2) For some sequence 𝛽𝑙01 of elements of B, the matrix M(𝛽𝑙01 )
is nonzero and subrectangular. Existence of such sequences
is guaranteed by Condition K. We denote 𝜏★ = 𝜏(M(𝛽𝑙01 )).
Since M(𝛽𝑙01 ) is subrectangular, 0 ≤ 𝜏★ < 1.

Denote by A′ the set of states that can lead to 𝑓 −1 (𝛽1) and
then emit the observation sequence 𝛽𝑙01 ,

A′ =
{
𝑎 ∈ A

��� e𝑇𝑎M(𝛽𝑙01 )


1
> 0

}
.

That is, there is positive probability that the next 𝑙0 observations
after any state in A′ is the word 𝛽

𝑙0
1 . Since Condition K is

satisfied, A′ is not empty, so that

𝛼0 = min
𝑎∈A′

e𝑇𝑎M(𝛽𝑙01 )


1
> 0.

We claim that (157) is satisfied with 𝑛★ = 𝑘0 + 𝑙0 and
𝛿★ = 1 − 𝛼0𝛾0 < 1. Indeed, for any 𝑎0 ∈ A,

P
(
𝜏(M(𝐵𝑛★

1 )) ≤ 𝜏★
���𝐴0 = 𝑎0

)
(a)
≥ P

(
𝜏(M(𝐵𝑘0+𝑙0

𝑘0+1 )) ≤ 𝜏★
���𝐴0 = 𝑎0

)
(b)
≥ P

(
𝐵
𝑘0+𝑙0
𝑘0+1 = 𝛽

𝑙0
1

���𝐴0 = 𝑎0

)
=

∑︁
𝑎∈A

P
(
𝐵
𝑘0+𝑙0
𝑘0+1 = 𝛽

𝑙0
1 , 𝐴𝑘0 = 𝑎

���𝐴0 = 𝑎0

)
(c)
=

∑︁
𝑎∈A′

P
(
𝐵
𝑘0+𝑙0
𝑘0+1 = 𝛽

𝑙0
1

���𝐴𝑘0 = 𝑎

)
· P

(
𝐴𝑘0 = 𝑎 |𝐴0 = 𝑎0

)
(d)
=

∑︁
𝑎∈A′

e𝑇𝑎M(𝛽𝑙01 )


1
· (M𝑘0 )𝑎0 ,𝑎

≥ 𝛼0𝛾0,

where (a) is by Corollary 34 and Lemma 38, (b) is by
Condition K, (c) is by the Markov property, and (d) is by (151).

Let us now define the random variables 𝑁𝑘 (𝜏), 𝑘 ≥ 1, by

𝑁1 (𝜏) = min{𝑛 : 𝜏(M(𝐵𝑛
1 )) ≤ 𝜏},

𝑁𝑘+1 (𝜏) = min{𝑛 : 𝜏(M(𝐵𝑁𝑘+𝑛
𝑁𝑘+1 )) ≤ 𝜏}, 𝑘 ≥ 1.

That is, the random variable 𝑁1 (𝜏) is the time of the first
occurrence of a sequence that induces a Birkhoff contraction
coefficient 𝜏 or less. In other words, 𝑁1 (𝜏) is the smallest value
of 𝑛 such that M(𝐵𝑛

1 ) is a subrectangular matrix with Birkhoff
contraction coefficient 𝜏 or less. Similarly, the random variable
𝑁𝑘 (𝜏) is the gap between the (𝑘 − 1)th and 𝑘th occurrences
of such sequences.

The following lemma and corollary are adapted from [19,
Lemma 8.3], which was stated in [19] without proof.

Lemma 45. Let (𝐴𝑛, 𝐵𝑛) be an (𝑛★, 𝛿★, 𝜏★)-KHMM. If 𝛿★ > 0,
there exist 𝛾 > 0 and 0 ≤ 𝜌 < 1 such that for any positive
integer 𝑛1,

P (𝑁1 (𝜏★) ≥ 𝑛1 | 𝐴0 = 𝑎0) ≤ 𝛾𝜌𝑛1 , ∀𝑎0 ∈ A. (158)

Proof: Let 𝑇0 = 1 and denote, for any positive integer 𝑘 ,
the random variable 𝑇𝑘 = 𝜏(M(𝐵𝑘𝑛★

1 )). Observe that, by (157),
P (𝑇1 ≤ 𝜏★ |𝐴0 = 𝑎0) ≥ 1 − 𝛿★ for any 𝑎0 ∈ A.

We now show that for any positive integer 𝑘 , and any 𝑎0 ∈ A,

P
(
𝑇𝑘 > 𝜏★

�� 𝑇𝑘−1 > 𝜏★, 𝐴0 = 𝑎0
)
≤ 𝛿★. (159)
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We will demonstrate this for 𝑘 = 2, as the proof for all other
values of 𝑘 is the same. For any 𝑎0 ∈ A,

P
(
𝑇2 ≤ 𝜏★

�� 𝑇1 > 𝜏★, 𝐴0 = 𝑎0
)

= P
(
𝜏(M(𝐵2𝑛★

1 )) ≤ 𝜏★
�� 𝑇1 > 𝜏★, 𝐴0 = 𝑎0

)
(a)
≥ P

(
𝜏(M(𝐵2𝑛★

𝑛★+1)) ≤ 𝜏★
�� 𝑇1 > 𝜏★, 𝐴0 = 𝑎0

)
=

∑︁
𝑎

P
(
𝜏(M(𝐵2𝑛★

𝑛★+1)) ≤ 𝜏★, 𝐴𝑛★ = 𝑎
�� 𝑇1 > 𝜏★, 𝐴0 = 𝑎0

)
(b)
=

∑︁
𝑎

P
(
𝜏(M(𝐵2𝑛★

𝑛★+1)) ≤ 𝜏★
�� 𝐴𝑛★ = 𝑎

)
𝑝(𝑎)

(c)
=

∑︁
𝑎

P (𝑇1 ≤ 𝜏★ | 𝐴0 = 𝑎) 𝑝(𝑎)

(d)
≥ 1 − 𝛿★.

where (a) is because, by Lemma 38, if 𝜏(M(𝐵𝑛
𝑚)) ≤

𝜏★ then 𝜏(M(𝐵𝑛
1 )) ≤ 𝜏★; in (b) we denoted 𝑝(𝑎) =

P
(
𝐴𝑛★ = 𝑎 |𝑇1 > 𝜏★, 𝐴0 = 𝑎0

)
; (c) is by the Markov property;

and (d) is by (157). Rearranging yields (159). We remark
that (159) is also true without conditioning on {𝑇𝑘−1 > 𝜏★}.

Thus,

P (𝑇𝑘 > 𝜏★ |𝐴0 = 𝑎0)
= P (𝑇𝑘 > 𝜏★ |𝑇𝑘−1 > 𝜏★, 𝐴0 = 𝑎0) · P (𝑇𝑘−1 > 𝜏★ |𝐴0 = 𝑎0)
+ P (𝑇𝑘 > 𝜏★ |𝑇𝑘−1 ≤ 𝜏★, 𝐴0 = 𝑎0) · P (𝑇𝑘−1 ≤ 𝜏★ |𝐴0 = 𝑎0)

(a)
= P (𝑇𝑘 > 𝜏★ |𝑇𝑘−1 > 𝜏★, 𝐴0 = 𝑎0) · P (𝑇𝑘−1 > 𝜏★ |𝐴0 = 𝑎0)
(b)
≤ 𝛿★P (𝑇𝑘−1 > 𝜏★ |𝐴0 = 𝑎0) ,

where (a) is by Lemma 38, by which the second summand in
the first equality must be 0, and (b) is by (159). We conclude
that for any integer 𝑘 and any 𝑎0 ∈ A,

P (𝑁1 (𝜏★) > 𝑘𝑛★ |𝐴0 = 𝑎0) = P (𝑇𝑘 > 𝜏★ |𝐴0 = 𝑎0) ≤ 𝛿𝑘★.

Hence, for any positive integer 𝑛1 (not necessarily a multiple
of 𝑛★) and any 𝑎0 ∈ A,

P (𝑁1 (𝜏★) ≥ 𝑛1 |𝐴0 = 𝑎0) ≤ 𝛿𝑛1/𝑛★−1
★ .

Rearranging, this yields

P (𝑁1 (𝜏★) ≥ 𝑛1 |𝐴0 = 𝑎0) ≤
1
𝛿★
·
(
𝛿

1/𝑛★
★

)𝑛1 .

Thus, we obtain (158) with 𝛾 = 1/𝛿★ and 𝜌 = 𝛿
1/𝑛★
★ . To

complete the proof, observe that 0 ≤ 𝜌 < 1 since 0 < 𝛿★ < 1.

We imposed 𝛿★ > 0 in Lemma 45 because this is the more
interesting case. Clearly, Lemma 45 also holds when 𝛿★ = 0,
albeit with different 𝛾, 𝜌. However, we can do better in this
case. Namely, if 𝛿★ = 0 for some 𝑛★, this implies that at time
𝑛★ the sequence of observations is ensured to induce Birkhoff
contraction coefficient less than 𝜏★. In this case, we can obtain
a much simpler bound on the mutual information. We will
return to this point in the proof of Theorem 42.

The upper bound in (158) is independent of 𝑎0. Therefore,
whenever (𝐴𝑛, 𝐵𝑛) is an (𝑛★, 𝛿★, 𝜏★)-KHMM and 𝛿★ > 0, we
conclude that

P (𝑁1 (𝜏★) ≥ 𝑛1) ≤ 𝛾𝜌𝑛1 .

More generally, we have the following corollary.

Corollary 46. Let (𝐴𝑛, 𝐵𝑛) be an (𝑛★, 𝛿★, 𝜏★)-KHMM with
𝛿★ > 0. Then, there exist 𝛾 > 0 and 0 ≤ 𝜌 < 1 such that for
any positive integers 𝑛1, 𝑛2, . . . , 𝑛𝑚,

P (𝑁1 (𝜏★) ≥ 𝑛1, 𝑁2 (𝜏★) ≥ 𝑛2, . . . , 𝑁𝑚 (𝜏★) ≥ 𝑛𝑚)
≤ 𝛾𝑚𝜌𝑛1+𝑛2+···+𝑛𝑚 . (160)

Proof: For brevity, we denote 𝑁𝑘 = 𝑁𝑘 (𝜏★). Since

P (𝑁1 ≥ 𝑛1, 𝑁2 ≥ 𝑛2, . . . , 𝑁𝑚 ≥ 𝑛𝑚)

=
𝑚∏
𝑘=1

P (𝑁𝑘 ≥ 𝑛𝑘 |𝑁𝑖 ≥ 𝑛𝑖 , 𝑖 < 𝑘) ,

(160) will follow if P (𝑁𝑘 ≥ 𝑛𝑘 |𝑁𝑖 ≥ 𝑛𝑖 , 𝑖 < 𝑘) ≤ 𝛾𝜌𝑛𝑘 .
Indeed, for any 𝑘 we have

P (𝑁𝑘 ≥ 𝑛𝑘 |𝑁𝑖 ≥ 𝑛𝑖 , 𝑖 < 𝑘)
=

∑︁
𝑎

P
(
𝑁𝑘 ≥ 𝑛𝑘 , 𝐴𝑁𝑘−1 = 𝑎 |𝑁𝑖 ≥ 𝑛𝑖 , 𝑖 < 𝑘

)
=

∑︁
𝑎

P
(
𝑁𝑘 ≥ 𝑛𝑘 |𝐴𝑁𝑘−1 = 𝑎

)
P

(
𝐴𝑁𝑘−1 = 𝑎 |𝑁𝑖 ≥ 𝑛𝑖 , 𝑖 < 𝑘

)
(a)
=

∑︁
𝑎

P (𝑁1 ≥ 𝑛𝑘 |𝐴0 = 𝑎) P
(
𝐴𝑁𝑘−1 = 𝑎 |𝑁𝑖 ≥ 𝑛𝑖 , 𝑖 < 𝑘

)
(b)
≤ 𝛾𝜌𝑛𝑘

∑︁
𝑎

P
(
𝐴𝑁𝑘−1 = 𝑎 |𝑁𝑖 ≥ 𝑛𝑖 , 𝑖 < 𝑘

)
= 𝛾𝜌𝑛𝑘 ,

where (a) is by definition of 𝑁𝑘 and (b) is by (158).

Proposition 47. Let (𝐴𝑛, 𝐵𝑛) be an (𝑛★, 𝛿★, 𝜏★)-KHMM with
𝛿★ > 0. Denote

𝛾 =
1
𝛿★
, 𝛼 = 𝛾 · log |A|, 𝜌 = 𝛿

1/𝑛★
★ < 1.

Then, for any 𝑚 ≤ 𝑛 we have

𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 ) ≤ 4 log

(
1 + 𝜏★
1 − 𝜏★

)
𝜏𝑚★ + 𝛼

(𝛾𝑛)𝑚
𝑚!

𝜌𝑛+1. (161)

Proof: Observe that the right-hand side of (160) depends
only on the sum 𝑛1 + 𝑛2 + · · · + 𝑛𝑚, and not the values of
the individual values of 𝑛𝑘 . Denote by 𝑝(𝑛, 𝑚) the number
of positive integer 𝑚-tuples (𝑛1, 𝑛2, . . . , 𝑛𝑚) such that 𝑛 =

𝑛1 + 𝑛2 + · · · + 𝑛𝑚, where each integer 𝑛𝑘 ≥ 1. In [40, p. 38],
it is shown that 𝑝(𝑛, 𝑚) =

( 𝑛−1
𝑚−1

)
. Thus, by (160),

P

(
𝑚∑︁
𝑘=1

𝑁𝑘 (𝜏★) ≥ 𝑛
)
≤ 𝑝(𝑛, 𝑚)𝛾𝑚𝜌𝑛

=

(
𝑛 − 1
𝑚 − 1

)
𝛾𝑚𝜌𝑛

≤ (𝑛 − 1)𝑚−1

(𝑚 − 1)! 𝛾𝑚𝜌𝑛.

Next, consider the matrix product M(𝐵𝑛
1 ). We wish to count,

in this product, the number of non-overlapping occurrences of
contiguous sequences of matrices whose product has Birkhoff
contraction coefficient at most 𝜏★. This is accomplished by the
integer-valued random variable

𝐷𝑛 = 𝐷𝑛 (𝜏★) = max

{
𝑚 :

𝑚∑︁
𝑘=1

𝑁𝑘 (𝜏★) ≤ 𝑛
}
.
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From the above discussion,

P (𝐷𝑛 ≤ 𝑚) = P (𝐷𝑛 < 𝑚 + 1)

= P

(
𝑚+1∑︁
𝑘=1

𝑁𝑘 (𝜏★) ≥ 𝑛 + 1

)
≤ 𝛾 (𝑛𝛾)

𝑚

𝑚!
𝜌𝑛+1. (162)

Recall from (154) that 𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 ) = E [𝐽], where we

have denoted, for brevity,

𝐽 ≜ log
©«
e𝑇𝐴0

M(𝐵𝑛
1 )T𝐴𝑛+1


1𝝅𝑇M(𝐵𝑛

1 )T𝐴𝑛+1


1
·
𝝅𝑇M(𝐵𝑛

1 )


1e𝑇
𝐴0

M(𝐵𝑛
1 )


1

ª®®¬ .
This is a conditional mutual information. In particular, for any
fixed sequence 𝑏𝑛1 we have

0 ≤ 𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 = 𝑏𝑛1 ) = E

[
𝐽 |𝐵𝑛

1 = 𝑏𝑛1
]
≤ log |A|, (163)

where the inequalities are due to the properties of mutual
information — it is nonnegative and upper-bounded by the
logarithm of the alphabet size. The random variable 𝐷𝑛 is
a function of 𝐵𝑛

1 — given any realization 𝑏𝑛1 of 𝐵𝑛
1 , we can

compute the value of 𝐷𝑛 precisely. For any 𝑚 ≤ 𝑛,

E [𝐽 |𝐷𝑛 > 𝑚] P (𝐷𝑛 > 𝑚)
=

∑︁
𝑏𝑛

1 :𝐷𝑛>𝑚

E
[
𝐽 |𝐵𝑛

1 = 𝑏𝑛1
]
P

(
𝐵𝑛

1 = 𝑏𝑛1
)

(a)
=

∑︁
𝑏𝑛

1 :𝐷𝑛≥𝑚+1
E

[
𝐽 |𝐵𝑛

1 = 𝑏𝑛1
]
P

(
𝐵𝑛

1 = 𝑏𝑛1
)

(b)
≤ 4 log

(
1 + 𝜏★
1 − 𝜏★

)
· 𝜏𝑚★ , (164)

where (a) is because 𝐷𝑛 is integer valued and (b) is by
Lemma 38 and Corollary 41. Moreover,

E [𝐽 |𝐷𝑛 ≤ 𝑚] P (𝐷𝑛 ≤ 𝑚)
=

∑︁
𝑏𝑛

1 :𝐷𝑛≤𝑚
E

[
𝐽 |𝐵𝑛

1 = 𝑏𝑛1
]
P

(
𝐵𝑛

1 = 𝑏𝑛1
)

(a)
≤ log |A| · P (𝐷𝑛 ≤ 𝑚)
(b)
≤ log |A| · 𝛾 (𝑛𝛾)

𝑚

𝑚!
𝜌𝑛+1, (165)

where (a) is by the right-hand inequality of (163) and (b) is
by (162).

Thus, for any 𝑚 ≤ 𝑛 we have by (164) and (165),

𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 ) = E [𝐽]

= E [𝐽 |𝐷𝑛 > 𝑚] P (𝐷𝑛 > 𝑚) + E [𝐽 |𝐷𝑛 ≤ 𝑚] P (𝐷𝑛 ≤ 𝑚)

≤ log
(

1 + 𝜏★
1 − 𝜏★

)
· 𝜏𝑚★ + (𝛾 · log |A|) · (𝑛𝛾)

𝑚

𝑚!
𝜌𝑛+1.

Denoting 𝛼 = 𝛾 · log |A| completes the proof.

Remark 14. We note in passing that, if desired, one can set
𝑚 = 𝜃𝑛 in (161) and obtain an upper bound that vanishes with
𝑛, provided that 𝜃 is sufficiently small. To this end, we use
the inequality 𝑚! ≥ (𝑚/𝑒)𝑚, see [40, p. 52]. We set 𝑚 = 𝜃𝑛,

and upper-bound the second summand in the right-hand side
of (161) to obtain

𝛼
(𝑛𝛾)𝑚
𝑚!

𝜌𝑛+1 ≤ 𝛼𝜌 ·
(
𝜌

(𝛾𝑒
𝜃

) 𝜃 )𝑛
.

The right-hand side of the above inequality vanishes with 𝑛 for
small enough 𝜃. To see this, observe that lim𝜃→0 (𝛾𝑒/𝜃) 𝜃 = 1,12

so we are ensured that if 𝜃 is small enough, 𝜌 · (𝛾𝑒/𝜃) 𝜃 < 1.
That said, taking 𝑚 = 𝜃𝑛 might not be the best strategy

for minimizing 𝑛 in the right-hand side of (161). A different
strategy is outlined in the proof of Theorem 42.

We are now ready to prove Theorem 42.
Proof of Theorem 42: By Lemma 44, (𝐴𝑛, 𝐵𝑛) is an

(𝑛★, 𝛿★, 𝜏★)-KHMM for some 𝑛★, 𝛿★, 𝜏★. Let

𝑚 =

log𝜏★

©«
𝜖

2
· 1

4 log
(

1+𝜏★
1−𝜏★

) ª®®¬
 .

Case 1: If 𝛿★ = 0 then at time 𝜆 = (𝑚 + 1)𝑛★ the sequence
𝐵𝜆

1 can be divided into 𝑚 + 1 contiguous sequences of length
𝑛★, each inducing a Birkhoff contraction coefficient less than
𝜏★. Therefore, using Corollary 41 we obtain that in this case
for any 𝑛 ≥ 𝜆,

𝐼 (𝐴0; 𝐴𝑛+1 |𝐵𝑛
1 ) ≤ 4 log

(
1 + 𝜏★
1 − 𝜏★

)
𝜏𝑚★ ≤

𝜖

2
.

Case 2: In the general case, 𝛿★ > 0 and we turn to
Proposition 47. For 𝑚 fixed as above, we set 𝜆 as the smallest
integer greater than or equal to 𝑚 such that for any 𝑛 ≥ 𝜆 we
have

𝛼(𝛾𝑛)𝑚𝜌𝑛+1
𝑚!

≤ 𝜖
2
,

where 𝛾 = 1/𝛿★, 𝛼 = 𝛾 · log |A|, and 𝜌 = 𝛿
1/𝑛★
★ . Such 𝜆 exists

since 𝑚 is fixed and 𝜌 < 1. For this 𝑚 and any 𝑛 ≥ 𝜆, the
right-hand side of (161) is upper-bounded by 𝜖 .

Discussion. The upper bound in Proposition 47 is generally
quite loose. We only count non-overlapping occurrences
of “good” sequences, known to have Birkhoff contraction
coefficient less than some 𝜏★, with lengths that are multiples of
some 𝑛★. There may actually be many other subsequences —
possibly shorter — that induce Birkhoff contraction coefficients
less than 1, and we ignore those. Moreover, most occurrences
of “good” sequences appear as the suffix of longer sequences.
By Lemma 38, the induced Birkhoff contraction coefficient of
these longer sequences will be smaller than that of the “good”
sequences. Moreover, the values of 𝛾 and 𝜌 are conservative.

A given KHMM may be associated with many combinations
of (𝑛★, 𝛿★, 𝜏★). Thus, one needs to carefully select the right
combination of these parameters to minimize 𝜆 in Theorem 42.
A more refined analysis, that considers a KHMM for which
multiple combinations (𝑛★, 𝛿★, 𝜏★) are known may yield better
bounds.

12Indeed, since (1/𝜃 ) 𝜃 = 𝑒𝜃 ln(1/𝜃 ) and by continuity of the exponential
function at 0, it suffices to show that lim𝜃→0 𝜃 ln(1/𝜃 ) = 0. This, in turn,
holds by L’Hôpital’s rule: lim𝜃→0 𝜃 ln(1/𝜃 ) = lim𝜃→0 ln(1/𝜃 )/(1/𝜃 ) =

lim𝜃→0 (−1/𝜃 )/(−1/𝜃2 ) = lim𝜃→0 𝜃 = 0.
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Nevertheless, even with this loose bound, we are able
to ensure that the desired mutual information vanishes for
sufficiently large 𝜆. In practice, for a given process, the mutual
information will be below the desired threshold much earlier
than promised in Proposition 47.

APPENDIX A
PROOF OF FAST POLARIZATION

In the fast stage of our construction, Arıkan polar codes
are designed based on recursive upper bounds on distribution
parameters, such as the Bhattacharyya parameter. In this
appendix we show that this procedure leads to fast polarization
universally. Fast polarization results are usually of the flavor:
“if the polar code length is large enough, then fast polarization is
obtained.” This “large enough” length is related to the process
for which the polar code is designed. In a universal setting,
however, we must design the fast stage before knowing which
process the code is to be used for. We show that it is indeed
possible to determine this length regardless of the process. This
is afforded because the slow stage is (𝜂,L,H)-monopolarizing.

Fast polarization is the phenomenon described in the follow-
ing lemma. To keep the discussion focused, we present it for a
special case of binary polar codes based on Arıkan’s kernel.

Lemma 48 ([3], [6], [41]). Let 𝐵1, 𝐵2, . . . be independent and
identically distributed random variables with P(𝐵𝑖 = 0) =
P(𝐵𝑖 = 1) = 1/2. Let 𝑍0, 𝑍1, . . . be a [0, 1]-valued random
process such that

𝑍𝑛+1 ≤ 𝜅 ·
{
𝑍2
𝑛, 𝐵𝑛+1 = 0,
𝑍𝑛, 𝐵𝑛+1 = 1,

𝑛 ≥ 0, (166)

where 𝜅 > 1. If 𝑍𝑛 converges almost surely to a {0, 1}-valued
random variable 𝑍∞ then for every 0 < 𝛽 < 1/2, we have

lim
𝑛→∞

P
(
𝑍𝑛 ≤ 2−2𝑛𝛽

)
= P (𝑍∞ = 0) . (167)

Fast polarization was first stated and proved in [3]. It was
later generalized by Şaşoğlu (see, e.g., [6, Lemma 4.2]). A
simpler proof of a stronger result13 for the general case can
be found in [41]. Our fast polarization result is based on the
proof of [41].

For example, 𝑍𝑛 might be the Bhattacharyya parameter of a
randomly-selected polarized s/o-pair (tantamount to a synthetic
channel, in a channel-coding setting), which is an upper-bound
on the probability of error of estimating the symbol from
its observation. In the memoryless case, the recursion (166)
for the Bhattacharyya parameter with 𝜅 = 2 was established
in [2, Proposition 5]. Under memory, (166) was shown in [13,
Theorem 2], with

𝜅 = 2𝜓0, (168)

where 𝜓0 is a mixing parameter of the process; mixing
parameters are defined in Lemma 7. Thus, the Bhattacharyya
parameter polarizes fast to 0 with or without memory.

13In which (167) is replaced with lim𝑛0→∞ P(∀𝑛 ≥ 𝑛0, 𝑍𝑛 ≤ 2−2𝑛𝛽 ) =
P(𝑍∞ = 0) .

The proof in [41] establishes (167) by showing that for every
𝛿 > 0 there exists an 𝑛0 such that

P (𝑍∞ = 0) − 𝛿 ≤ P
(
∀𝑛 ≥ 𝑛0, 𝑍𝑛 ≤ 2−2𝑛𝛽

)
≤ P (𝑍∞ = 0) .

The magnitude of 𝑛0 depends on two factors: the almost-sure
convergence of 𝑍𝑛 to 𝑍∞ and the law of large numbers. The
latter is independent of the process, but the former one is not.
The proof utilizes the almost-sure convergence of 𝑍𝑛 only for
the following consequence. Recalling that 𝑍𝑛 converges almost
surely to a {0, 1}-valued random variable, for any 𝜖𝑎 > 0 and
𝛿𝑎 > 0 there must be an 𝑛𝑎 such that

P (𝑍𝑛 ≤ 𝜖𝑎) ≥ P (𝑍∞ = 0) − 𝛿𝑎, ∀𝑛 ≥ 𝑛𝑎 . (169)

We reiterate that 𝑛𝑎 is process-dependent.
In our universal setting, the fast polarization stage occurs

after the slow polarization stage. Specifically, it operates on s/o-
pairs whose conditional entropy — and thus also Bhattacharyya
parameter14 — is universally smaller than 𝜂, which can be set
as small as desired.15 The ability to set 𝜂 as small as desired is
the key to obtaining universal fast polarization results. Namely,
we prove the following proposition.

Proposition 49. Let 𝐵1, 𝐵2, . . . be independent and identically
distributed random variables with P(𝐵𝑖 = 0) = P(𝐵𝑖 = 1) =
1/2. Let 𝑍0, 𝑍1, . . . be a [0, 1]-valued random process that
satisfies (166) for some 𝜅 > 1. Fix 0 < 𝛽 < 1/2. Then, for
every 𝛿 > 0 there exist 𝜂 > 0 and 𝑛0 such that if 𝑍0 ≤ 𝜂 then

P
(
𝑍𝑛 ≤ 2−2𝑛𝛽 for all 𝑛 ≥ 𝑛0

)
≥ 1 − 𝛿. (170)

Crucially, 𝜂 and 𝑛0 depend on the process 𝑍𝑛 only through
𝜅. Inspection of the proof of [41] reveals that Proposition 49
will be true once it is shown that for any 𝜖𝑎 > 0 and 𝛿′ > 0
there exists 𝑛𝑎 such that

P (𝑍𝑛 ≤ 𝜖𝑎 for all 𝑛 ≥ 𝑛𝑎) ≥ 1 − 𝛿′. (171)

The crux of our proof will be to show that we can set 𝜂 > 0
and 𝑛𝑎 such that the above holds. We will need an auxiliary
result, Corollary 51, which follows from Lemma 50, introduced
and proved below.

Remark 15. Our statement of Proposition 49 is for a fast
polarization stage based on Arıkan’s kernel. This is done for
the sake of simplicity. However, the lemma holds true for the
more general case of other kernels. The key technical tool in
the proof, Lemma 50, is stated in a general manner, enabling
its use for other kernels without change.

14See [14, Lemma 1] for relationships between the Bhattacharyya parameter
and the conditional entropy.

15More generally, fast polarization of high-entropy indices may also be of
interest, e.g., in source-coding applications. The universal stage also provides
us with s/o-pairs whose conditional entropy is as close to 1 as desired. Due
to forgetfulness (see the proof of Lemma 23, stopping short of the last
inequality, (f)), this is true also when conditioning on the boundary states,
by taking 𝐿0 large enough. Under memory, fast polarization of high-entropy
s/o-pairs is obtained through boundary-state-informed parameters, namely the
total variation distance (see [14]). It was shown in [14, Proposition 12] that
the boundary-state-informed total variation distance undergoes a recursion
similar to (166). The required connections between the boundary-state-informed
conditional entropy and the boundary-state-informed total variation distance
can be found in [14, equation (4c)].
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Let 𝑇1, 𝑇2, . . . be a sequence of independent and identically
distributed (i.i.d.) random variables. Denote by 𝑇 a random
variable distributed according to the same distribution as each
of the random variables 𝑇𝑖 , 𝑖 ∈ N. We assume that 𝑇 is bounded;
in particular, there exist positive reals 𝑎, 𝑏 > 0 such that

−𝑏 ≤ 𝑇 ≤ 𝑎,

and for every 𝜖 > 0, P(𝑇 > 𝑎 − 𝜖) > 0. We further assume that

𝜇 ≜ E [𝑇] < 0. (172)

We define the random walk

𝐽𝑛 =
𝑛∑︁
𝑖=1
𝑇𝑖 , 𝑛 ∈ N.

For every 𝛼 > 0, define the events

A𝛼 (𝑛) = {𝐽𝑚 ≥ 𝛼 for some 𝑚 ≤ 𝑛}

and
A𝛼 = {𝐽𝑚 ≥ 𝛼 for some 𝑚 ∈ N}.

Observe that A𝛼 (𝑛) ⊆ A𝛼 (𝑛 + 1) and ∪∞
𝑛=1A𝛼 (𝑛) = A𝛼, so

that by continuity of measure [35, Theorem 2.1],

P (A𝛼) = lim
𝑛→∞

P (A𝛼 (𝑛)) . (173)

We denote by Ac
𝛼 the complementary event to A𝛼. That is,

Ac
𝛼 = {𝐽𝑛 < 𝛼 for all 𝑛 ∈ N}. We then have the following

lemma.

Lemma 50. There exists 𝑟 > 0 such that for any 𝛼 > 0,

P (A𝛼) ≤ 𝑒−𝑟 𝛼 . (174)

Moreover, for any 0 < 𝛾 < 1 and 𝑛 ∈ N,

P (𝐽𝑛 < 𝑛(1 − 𝛾)𝜇) ≥ 1 − 𝑒−2𝑛( 𝛾𝜇

𝑎+𝑏 )2 . (175)

Since 𝜇 < 0 by (172) and 0 < 𝛾 < 1 by assumption, then
𝑛(1 − 𝛾)𝜇 < 0 in (175). We will see in Corollary 51 below
that Lemma 50 implies that for any negative threshold, there
exists 𝑛𝑎 ∈ N and 𝛼 > 0 such that with probability arbitrarily
close to 1, 𝐽𝑛 drops below that threshold for every 𝑛 ≥ 𝑛𝑎
and never (for any 𝑛 ∈ N) visits above 𝛼. This will be key to
obtaining (171).

Proof: The proof combines two inequalities: (174) is
essentially the Lundberg inequality [42, equation 15] and
for (175) we call upon the Hoeffding inequality [43, Theorem
2]. Since the proof of the Lundberg inequality in [42] is for the
continuous-time case, we provide a proof for the discrete-time
case, adapted from the proof of [42].

Denote by 𝑔(𝑠) the moment-generating function of 𝑇 . That
is,

𝑔(𝑠) = E
[
𝑒𝑠𝑇

]
.

The expectation is well-defined as 𝑒𝑠𝑇 is a non-negative random
variable [35, equation 15.3]. Since 𝑇 is bounded by assumption,
𝑔(𝑠) < ∞ for any 𝑠 ∈ R; hence, 𝑔(𝑠) is continuous over R,
see [44, Theorem 9.3.3]. Observe that 𝑔(0) = 1 and, by [35,
equation 21.23] and (172), 𝑔′ (0) = E [𝑇] < 0. Thus, 𝑔(𝑠) is

decreasing at 𝑠 = 0, so 𝑔(𝑠) < 1 for 𝑠 small enough. On the
other hand, by assumption on 𝑇 ,

𝑝 ≜ P (𝑇 ≥ 𝑎/2) = E [1{𝑇 ≥ 𝑎/2}] > 0,

where 1{·} is an indicator random variable. Thus,

𝑔(𝑠) ≥ E
[
𝑒𝑠𝑇 · 1{𝑇 ≥ 𝑎/2}

]
≥ 𝑒𝑠𝑎/2𝑝.

In particular, if 𝑠 > (2/𝑎) ln(1/𝑝), then 𝑔(𝑠) > 1. Since 𝑔(𝑠)
is continuous, there exists 𝑠 > 0 such that 𝑔(𝑠) = 1. Thus, we
define

𝑟 ≜ max
𝑠>0

{
𝑠 : E

[
𝑒𝑠𝑇

]
= 1

}
. (176)

For the 𝑟 found above, denote

𝐽𝑛 = 𝑒𝑟 𝐽𝑛 =
𝑛∏
𝑖=1

𝑒𝑟𝑇𝑖 .

We claim that 𝐽𝑛, 𝑛 ∈ N, is a martingale. Indeed, since the 𝑇𝑖
are independent,

E
[
𝐽𝑛 | 𝐽𝑚, 𝑚 < 𝑛

]
= E

[
𝑒𝑟𝑇𝑛 · 𝐽𝑛−1 | 𝐽𝑚, 𝑚 < 𝑛

]
= 𝐽𝑛−1E

[
𝑒𝑟𝑇𝑛

]
= 𝐽𝑛−1,

where the last equality is by definition of 𝑟 , (176). Define the
(possibly infinite) stopping time

𝜏 = inf
𝑛
{𝑛 : 𝐽𝑛 ≥ 𝛼}.

Then, by [45, Section 10.9], the stopped process

𝐽𝑛∧𝜏 ≜

{
𝐽𝑛, 𝜏 > 𝑛,

𝐽𝜏 , 𝜏 ≤ 𝑛

is also a martingale, and

E
[
𝐽𝑛∧𝜏

]
= E

[
𝐽1

]
= 1.

Observe that for any 𝑛 ∈ N, we have P(A𝛼 (𝑛)) = P(𝜏 ≤ 𝑛).
Thus,

1 = E
[
𝐽𝑛∧𝜏

]
= E

[
𝐽𝑛∧𝜏 |𝜏 ≤ 𝑛

]
· P (A𝛼 (𝑛))

+ E
[
𝐽𝑛∧𝜏 |𝜏 > 𝑛

]
·
(
1 − P (A𝛼 (𝑛))

)
(a)
≥ E

[
𝐽𝑛∧𝜏 |𝜏 ≤ 𝑛

]
P (A𝛼 (𝑛))

(b)
= E

[
𝐽𝜏 |𝐽𝜏 ≥ 𝛼, 𝜏 ≤ 𝑛

]
P (A𝛼 (𝑛))

= E
[
𝑒𝑟 𝐽𝜏 |𝐽𝜏 ≥ 𝛼, 𝜏 ≤ 𝑛

]
P (A𝛼 (𝑛))

(c)
≥ 𝑒𝑟 𝛼P (A𝛼 (𝑛)) .

where (a) is because 𝐽𝑛∧𝜏 ≥ 0, (b) is by definition of 𝜏 and
of 𝐽𝑛∧𝜏 , and (c) is because 𝑟 > 0 by definition. Rearranging,
we obtain that for any 𝑛 ∈ N,

P (A𝛼 (𝑛)) ≤ 𝑒−𝑟 𝛼 .

Thus, by (173),

P (A𝛼) = lim
𝑛→∞

P (A𝛼 (𝑛)) ≤ 𝑒−𝑟 𝛼 .

This completes the proof of (174).
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To prove (175), recall that by the Hoeffding inequality [43,
Theorem 2], for any 𝑡 > 0 we have

P (𝐽𝑛 ≥ 𝑛(𝜇 + 𝑡)) ≤ 𝑒−2𝑛( 𝑡
𝑎+𝑏 )2 .

In particular, for any 0 < 𝛾 < 1, we may choose 𝑡 = 𝛾 |𝜇 | =
−𝛾𝜇 > 0 to obtain

P (𝐽𝑛 < 𝑛(1 − 𝛾)𝜇) = 1 − P (𝐽𝑛 ≥ 𝑛(𝜇 + 𝛾 |𝜇 |))

≥ 1 − 𝑒−2𝑛( 𝛾𝜇

𝑎+𝑏 )2 .

This completes the proof.

Corollary 51. Under the same setting as in Lemma 50, for
any 𝑛𝑎 ≥ 0, 𝛼 > 0, and 0 < 𝛾 < 1 we have

P
(
{∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛𝑎 (1 − 𝛾)𝜇} ∩Ac

𝛼

)
≥ 1 −

(
1 − 𝑒−2( 𝛾𝜇

𝑎+𝑏 )2
)−1
· 𝑒−2𝑛𝑎 ( 𝛾𝜇

𝑎+𝑏 )2 − 𝑒−𝑟 𝛼 . (177)

Proof: Note that

P (∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛𝑎 (1 − 𝛾)𝜇)

= P

(
∞⋂

𝑛=𝑛𝑎

{𝐽𝑛 < 𝑛𝑎 (1 − 𝛾)𝜇}
)

≥ P

(
∞⋂

𝑛=𝑛𝑎

{𝐽𝑛 < 𝑛(1 − 𝛾)𝜇}
)

= 1 − P
(
∞⋃

𝑛=𝑛𝑎

{𝐽𝑛 ≥ 𝑛(1 − 𝛾)𝜇}
)

(a)
≥ 1 −

∞∑︁
𝑛=𝑛𝑎

𝑒−2𝑛( 𝛾𝜇

𝑎+𝑏 )2

= 1 −
(

1

1 − 𝑒−2( 𝛾𝜇

𝑎+𝑏 )2

)
· 𝑒−2𝑛𝑎 ( 𝛾𝜇

𝑎+𝑏 )2 , (178)

where (a) is by (175) and the union bound. Observing that

P (∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛(1 − 𝛾)𝜇)
= P ({∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛(1 − 𝛾)𝜇} ∩A𝛼)
+ P

(
{∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛(1 − 𝛾)𝜇} ∩Ac

𝛼

)
≤ P (A𝛼) + P

(
{∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛(1 − 𝛾)𝜇} ∩Ac

𝛼

)
,

we obtain

P
(
{∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛(1 − 𝛾)𝜇} ∩Ac

𝛼

)
≥ P (∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝑛(1 − 𝛾)𝜇) − P (A𝛼) .

Combining this inequality with (174) and (178) yields (177)
and completes the proof.

Proof of Proposition 49: By inspection of the proof
of [41], the lemma will be true once we show that for any
𝜖𝑎 > 0 and 𝛿′ > 0 there exist 𝑛𝑎 and 𝜂 such that if 𝑍0 ≤ 𝜂,
then (171) holds. Thus, we fix 𝜖𝑎 > 0 and 𝛿′ > 0, and work
toward this goal.

Let the process �̄�0, �̄�1, . . . be defined as

�̄�0 = ln 𝑍0,

�̄�𝑛+1 =

{
2�̄�𝑛 + ln 𝜅, 𝐵𝑛+1 = 0,
�̄�𝑛 + ln 𝜅, 𝐵𝑛+1 = 1,

𝑛 ≥ 0. (179)

Then, by (166), ln 𝑍𝑛 ≤ �̄�𝑛 for any 𝑛. Therefore, (171) will
be true once we show that there exists 𝑛𝑎 and 𝜂 such that if
�̄�0 = ln 𝜂, then

P
(
�̄�𝑛 ≤ ln 𝜖𝑎 for all 𝑛 ≥ 𝑛𝑎

)
≥ 1 − 𝛿′.

Fix
0 < 𝜁 < 1/𝜅2 (180)

such that �̄�0 < ln 𝜁 < 0. Since �̄�0 = ln 𝜂 by assumption, and
since we may set 𝜂 as small as desired, we can ensure that
this is possible. We then have, by (166),

�̄�1 ≤
{
�̄�0 + ln 𝜅 + ln 𝜁, 𝐵𝑛 = 0,
�̄�0 + ln 𝜅, 𝐵𝑛 = 1.

If, further, �̄�1 < ln 𝜁 then the above inequality holds when
�̄�1 and �̄�0 are replaced with �̄�2 and �̄�1, respectively. More
generally, we define the process 𝐽𝑛, 𝑛 ∈ N, by

𝐽0 = �̄�0 = ln 𝜂,
𝐽𝑛+1 = 𝐽𝑛 + 𝑇𝑛+1, 𝑛 ≥ 0,

where

𝑇𝑛 =

{
ln 𝜅 + ln 𝜁, 𝐵𝑛 = 0,
ln 𝜅, 𝐵𝑛 = 1,

𝑛 ≥ 1.

If 𝐽𝑖 < ln 𝜁 for all 𝑖 ≤ 𝑛, then �̄�𝑛 ≤ 𝐽𝑛.
Recall that 𝐵1, 𝐵2, . . . is a sequence of i.i.d. random variables

with P(𝐵𝑖 = 0) = P(𝐵𝑖 = 1) = 1/2 for any 𝑖. Thus, 𝑇1, 𝑇2, . . . is
a sequence of i.i.d. random variables. Denoting by 𝑇 a random
variable distributed according to their common distribution, we
have P(𝑇 = ln 𝜅) = P(𝑇 = ln 𝜅 + ln 𝜁) = 1/2. In particular, 𝑇 is
bounded:

− ln
(

1
𝜅𝜁

)
= −𝑏 ≤ 𝑇 ≤ 𝑎 = ln 𝜅.

Both 𝑎 and 𝑏 are positive by (180) and since 𝜅 > 1 by
assumption. By definition, for any 𝜖 > 0, P(𝑇 > 𝑎 − 𝜖) ≥
P(𝑇 = 𝑎) = 1/2. Moreover, by (180),

𝜇 = E [𝑇] = 1
2

ln(𝜅2𝜁) < 0.

Consequently, Corollary 51 holds for the random walk 𝐽𝑛−𝐽0 =∑𝑛
𝑖=1 𝑇𝑖 , 𝑛 ∈ N.
Let 𝑟 > 0 be the largest positive solution of the equation

E
[
𝑒𝑟𝑇

]
=
(𝜅𝜁)𝑟 + 𝜅𝑟

2
= 1. (181)

Such 𝑟 exists, as shown in the proof of Lemma 50. Denote for
brevity

𝜃 ≜
��� 𝜇

𝑎 + 𝑏

��� .
By Corollary 51, for any 0 < 𝛾 < 1 and 𝑛𝑎 ≥ 0 we have

P
(
{∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 − 𝐽0 < 𝑛𝑎 (1 − 𝛾)𝜇} ∩Ac

−𝐽0+ln 𝜁

)
(a)
= P

(
{∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝐽0 − 𝑛𝑎 (1 − 𝛾) |𝜇 |} ∩Ac

−𝐽0+ln 𝜁

)
≥ 1 − (1 − 𝑒−2𝛾2 𝜃2 )−1𝑒−2𝑛𝑎𝛾2 𝜃2 − 𝑒−𝑟 (−𝐽0+ln 𝜁 ) , (182)

where (a) is because 𝜇 < 0.
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Observe that since 𝐽𝑛 = 𝐽0 +
∑𝑛

𝑖=1 𝑇𝑖 we have

Ac
−𝐽0+ln 𝜁

=

{
𝑛∑︁
𝑖=1
𝑇𝑖 < −𝐽0 + ln 𝜁 for all 𝑛 ∈ N

}
= {𝐽𝑛 < ln 𝜁 for all 𝑛 ∈ N}.

Consequently, under the event Ac
−𝐽0+ln 𝜁

, we have �̄�𝑛 ≤ 𝐽𝑛 for
any 𝑛. Hence,

P
(
{∀𝑛 ≥ 𝑛𝑎, 𝐽𝑛 < 𝐽0 − 𝑛𝑎 (1 − 𝛾) |𝜇 |} ∩Ac

−𝐽0+ln 𝜁

)
lower-bounds the probability that �̄�𝑛 ≤ 𝐽0 + 𝑛𝑎 (1 − 𝛾)𝜇 for all
𝑛 ≥ 𝑛𝑎.

Recall that 𝐽0 = �̄�0 = ln 𝜂. It remains to set 𝜂 and 𝑛𝑎 such
that ln 𝜂 < ln 𝜁 , 𝐽0 − 𝑛𝑎 (1 − 𝛾) |𝜇 | ≤ ln 𝜖𝑎, and the right-hand
side of (182) exceeds 1 − 𝛿′. Below we show one selection of
𝜂 and 𝑛𝑎. Observe that there is freedom in this selection, and
generally it is desirable to find small 𝑛𝑎 and large 𝜂. We leave
such optimization for future work.

We first set the parameters 𝛾 and 𝜁 . We take 𝛾 = 1/2 and 𝜁 =

1/(2𝜅2). In this case, |𝜇 | = (ln 2)/2 and 𝜃 = ln 2/(2 ln(2𝜅2)).
Further, our plan is to split 𝛿′ equally among the two subtracted
terms on the right-hand side of (182). We stress that these are
arbitrary choices, and in practice should be optimized. We plug
𝜁 into (181) and compute 𝑟, the largest positive solution of
𝜅𝑟 + (2𝜅)−𝑟 = 2.

Next, we set 𝐽0 so that 𝑒−𝑟 (−𝐽0+ln 𝜁 ) ≤ 𝛿′/2; one choice is
𝐽0 = ln 𝜁 + 1

𝑟
ln(𝛿′/2). Observe that indeed 𝐽0 = ln 𝜂 < ln 𝜁

since 𝛿′ < 1 (there is nothing to prove if 𝛿′ ≥ 1). We thus take

𝜂 = 𝑒𝐽0 =
1

2𝜅2

(
𝛿′

2

)1/𝑟
.

We set 𝑛𝑎 large enough such that both 𝐽0−𝑛𝑎 |𝜇 |/2 ≤ ln 𝜖𝑎 and
(1 − 𝑒−2𝛾2 𝜃2 )−1𝑒−2𝑛𝑎𝛾2 𝜃2 ≤ 𝛿′/2. That is, 𝑛𝑎 = ⌈𝑛′𝑎⌉, where

𝑛′𝑎 = max
{

4
ln 2
(𝐽0 − ln 𝜖𝑎),

2
𝜃2 ln

(
2

𝛿′ · (1 − 𝑒−𝜃2/2)

)}
.

For the above 𝜂 and 𝑛𝑎, P(�̄�𝑛 ≤ ln 𝜖𝑎 for all 𝑛 ≥ 𝑛𝑎) ≥ 1− 𝛿′.
Thus, (171) holds, and the proof is complete.

The parameters 𝑛𝑎 and 𝜂 found in the above proof depend
on the process 𝑍𝑛 only through 𝜅. Thus, they universally apply
to any process for which (166) holds. In particular, one can
set in advance a universal length �̂� for the polar code in the
fast stage.

The values of 𝑛𝑎 and 𝜂 are not optimized in the above proof,
and the actual required length of the fast stage is expected
to be shorter in practice. When designing a universal polar
code, one can try out several small values of 𝜂 and numerically
run the recursion (179) until �̄�𝑛 is sufficiently small for most
indices. The above proof implies that if 𝜂 is small enough and
we run the recursion for sufficiently long, we are ensured that
most indices will polarize fast.

APPENDIX B
AUXILIARY PROOFS FOR SECTION V-A

We denote 𝑇𝑗 = (𝑋 𝑗 , 𝑌 𝑗 ), 𝑗 ∈ Z, with realization 𝑡 𝑗 , and
𝑇𝑁
𝑀

= (𝑋𝑁
𝑀
, 𝑌𝑁

𝑀
) with realization 𝑡𝑁

𝑀
. For brevity, we denote

𝑃𝑇𝑁
𝑀

= 𝑃𝑇𝑁
𝑀
(𝑡𝑁
𝑀
), and similarly 𝑃𝑆𝑁

= 𝑃𝑆𝑁
(𝑠𝑁 ).

𝑇𝐿
1 = (𝑋𝐿

1 , 𝑌
𝐿
1 ) 𝑇𝑁

𝑀+1 = (𝑋𝑁
𝑀+1, 𝑌

𝑁
𝑀+1)

𝑆0

𝑎

𝑆𝐿

𝑏

𝑆𝑀

𝑐

𝑆𝑁

𝑑

Fig. 14. Two blocks of a FAIM process, not necessarily of the same length.
The state 𝑆0, just before the first block, assumes value 𝑎 ∈ S. The final state
of the first block, 𝑆𝐿 , assumes value 𝑏 ∈ S. The state 𝑆𝑀 , just before the
second block, assumes value 𝑐 ∈ S. The final state of the second block, 𝑆𝑁 ,
assumes value 𝑑 ∈ S.

Proof of Lemma 7: Although (34a) was already proved
in [14, Lemma 5], we provide a proof here for completeness.

We will prove that (34) holds with

𝜓𝑘 =


max
𝑠,𝜎

P (𝑆0 = 𝑠, 𝑆𝑘 = 𝜎)
P (𝑆0 = 𝑠) P (𝑆𝑘 = 𝜎) , 𝑘 > 0,

max
𝑠

1
P (𝑆0 = 𝑠) , 𝑘 = 0

(183)

and

𝜙𝑘 =


min
𝑠,𝜎

P (𝑆0 = 𝑠, 𝑆𝑘 = 𝜎)
P (𝑆0 = 𝑠) P (𝑆𝑘 = 𝜎) , 𝑘 > 0,

0, 𝑘 = 0.
(184)

Recall that by stationarity, 𝑃𝑆0 = 𝑃𝑆𝑘
for any 𝑘 . Further,

observe that by Bayes’ law,

P (𝑆0 = 𝑠, 𝑆𝑘 = 𝜎)
P (𝑆0 = 𝑠) P (𝑆𝑘 = 𝜎) =

P (𝑆𝑘 = 𝜎 |𝑆0 = 𝑠)
P (𝑆𝑘 = 𝜎) .

To prove (34), we first consider the case 𝑀 > 𝐿. Denote by
𝑎, 𝑏, 𝑐, 𝑑 the values of states 𝑆0, 𝑆𝐿 , 𝑆𝑀 , and 𝑆𝑁 , respectively
(see Figure 14). Then,

𝑃𝑇𝐿
1 ,𝑇𝑁

𝑀+1
=

∑︁
𝑡𝑀
𝐿+1

𝑃𝑇𝐿
1 ,𝑇𝑀

𝐿+1 ,𝑇
𝑁
𝑀+1

=
∑︁
𝑡𝑀
𝐿+1

∑︁
𝑑,𝑎

𝑃𝑇𝐿
1 ,𝑇𝑀

𝐿+1 ,𝑇
𝑁
𝑀+1 ,𝑆𝑁 |𝑆0

𝑃𝑆0

=
∑︁
𝑑,𝑐,
𝑏,𝑎

∑︁
𝑡𝑀
𝐿+1

𝑃𝑇𝑁
𝑀+1 ,𝑆𝑁 |𝑆𝑀

𝑃𝑇𝑀
𝐿+1 ,𝑆𝑀 |𝑆𝐿

𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

𝑃𝑆0

=
∑︁
𝑑,𝑐,
𝑏,𝑎

𝑃𝑇𝑁
𝑀+1 ,𝑆𝑁 |𝑆𝑀

©«
∑︁
𝑡𝑀
𝐿+1

𝑃𝑇𝑀
𝐿+1 ,𝑆𝑀 |𝑆𝐿

ª®¬ 𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

𝑃𝑆0

=
∑︁
𝑑,𝑐,
𝑏,𝑎

𝑃𝑇𝑁
𝑀+1 ,𝑆𝑁 |𝑆𝑀

𝑃𝑆𝑀 |𝑆𝐿
𝑃𝑇𝐿

1 ,𝑆𝐿 |𝑆0
𝑃𝑆0

=
∑︁
𝑑,𝑐,
𝑏,𝑎

𝑃𝑇𝑁
𝑀+1 ,𝑆𝑁 |𝑆𝑀

𝑃𝑆𝑀

𝑃𝑆𝑀 |𝑆𝐿

𝑃𝑆𝑀

𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

𝑃𝑆0

(a)
≤ 𝜓𝑀−𝐿

(∑︁
𝑑,𝑐

𝑃𝑇𝑁
𝑀+1 ,𝑆𝑁 |𝑆𝑀

𝑃𝑆𝑀

) (∑︁
𝑏,𝑎

𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

𝑃𝑆0

)
= 𝜓𝑀−𝐿𝑃𝑇𝐿

1
𝑃𝑇𝑁

𝑀+1
,
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where (a) follows from the definition of 𝜓𝑘 . This shows (34a).
To see (34b) we follow the exact steps above up to just before
inequality (a), and proceed with

𝑃𝑇𝐿
1 ,𝑇𝑁

𝑀+1
≥ 𝜙𝑀−𝐿

(∑︁
𝑑,𝑐

𝑃𝑇𝑁
𝑀+1 ,𝑆𝑁 |𝑆𝑀

𝑃𝑆𝑀

) (∑︁
𝑏,𝑎

𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

𝑃𝑆0

)
= 𝜙𝑀−𝐿𝑃𝑇𝐿

1
𝑃𝑇𝑁

𝑀+1
.

Again, the inequality follows from the definition of 𝜙𝑘 .
For the case 𝑀 = 𝐿, we need only establish (34a), as (34b)

is trivially true for 𝑀 = 𝐿. Again, 𝑎 and 𝑑 represent the values
of states 𝑆0 and 𝑆𝑁 . Both 𝑏 and 𝑏′ represent values of state
𝑆𝐿; this distinction is to distinguish the summation variables
of two different sums over values of 𝑆𝐿 . Thus,

𝑃𝑇𝐿
1 ,𝑇𝑁

𝐿+1
=

∑︁
𝑎,𝑏,
𝑑

𝑃𝑇𝑁
𝐿+1 ,𝑆𝑁 |𝑆𝐿

𝑃𝑆𝐿

𝑃𝑆𝐿

𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

𝑃𝑆0

≤ 𝜓0
∑︁
𝑑,𝑏

𝑃𝑇𝑁
𝐿+1 ,𝑆𝑁 |𝑆𝐿

𝑃𝑆𝐿
·
(∑︁
𝑏′ ,𝑎

𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

𝑃𝑆0

)
= 𝜓0𝑃𝑇𝐿

1
𝑃𝑇𝑁

𝐿+1
;

where the inequality is by the definition of 𝜓0 and because
𝑃𝑇𝐿

1 ,𝑆𝐿 |𝑆0
≤ ∑

𝑏′ 𝑃𝑇𝐿
1 ,𝑆𝐿 |𝑆0

.
To see that that 𝜓𝑘 is nonincreasing, observe that for any

𝑠, 𝜎 ∈ S:

𝑃𝑆𝑘+1 ,𝑆0 (𝜎, 𝑠) =
∑︁
𝑎∈S

𝑃𝑆𝑘+1 |𝑆𝑘
(𝜎 |𝑎) · 𝑃𝑆𝑘 ,𝑆0 (𝑎, 𝑠)

≤ 𝜓𝑘

∑︁
𝑎∈S

𝑃𝑆𝑘+1 |𝑆𝑘
(𝜎 |𝑎) · 𝑃𝑆𝑘

(𝑎)𝑃𝑆0 (𝑠)

= 𝜓𝑘𝑃𝑆𝑘+1 (𝜎)𝑃𝑆0 (𝑠).
Therefore, we must have 𝜓𝑘+1 ≤ 𝜓𝑘 . The proof that 𝜙𝑘 is
nondecreasing is similar, with “≤ 𝜓𝑘” replaced with “≥ 𝜙𝑘”.

Finally, the asymptotic properties of 𝜙𝑘 and 𝜓𝑘 are due to
𝑆 𝑗 being an aperiodic and irreducible stationary finite-state
Markov chain. For in this case there exist 𝛾 < 1 and 0 < 𝛼 < ∞
such that for any 𝑠, 𝜎 ∈ S and 𝑘 ≥ 0,

|𝑃𝑆𝑘 |𝑆0 (𝜎 |𝑠) − 𝑃𝑆𝑘
(𝜎) | ≤ 𝛼 · 𝛾𝑘 ,

see [22, Theorem 4.3] for a proof. Rearranging and observing
that 𝜓0 < ∞, we obtain that���� P (𝑆0 = 𝑠, 𝑆𝑘 = 𝜎)

P (𝑆0 = 𝑠) P (𝑆𝑘 = 𝜎) − 1
���� ≤ 𝜓0 · 𝛼 · 𝛾𝑘 −−−−→

𝑘→∞
0.

Hence, both 𝜓𝑘 and 𝜙𝑘 must tend to 1 exponentially fast as
𝑘 →∞.

Proof of Lemma 8: We will prove (37b). The proof
of (37a) is identical, with the replacement of 𝑌𝑏

𝑎 with 𝑋𝑏
𝑎 , 𝑌

𝑏
𝑎

throughout for any 𝑎 and 𝑏.
The process (𝑆 𝑗 , 𝑋 𝑗 , 𝑌 𝑗 ), 𝑗 ∈ Z is FAIM, so it satisfies the

Markov property (33). The proof follows from the following
chain of inequalities.

𝐼 (𝑆1; 𝑆𝜆 |𝑌𝜆
1 )
(a)
≥ 𝐼 (𝑆1; (𝑌 𝑘

𝜆+1, 𝑆𝑚) |𝑌
𝜆
1 )

= 𝐼 (𝑆1;𝑌 𝑘
𝜆+1 |𝑌

𝜆
1 ) + 𝐼 (𝑆1; 𝑆𝑚 |𝑌 𝑘

1 )
(b)
≥ 𝐼 (𝑆1; 𝑆𝑚 |𝑌 𝑘

1 )
(c)
≥ 𝐼 (𝑆ℓ ; 𝑆𝑚 |𝑌 𝑘

1 ).

We now justify the inequalities:

• (a) is by (2), noting that since 𝑚 ≥ 𝑘 ≥ 𝜆 ≥ 1, (33)
implies

𝑆1 −◦− (𝑆𝜆, 𝑌𝜆
1 ) −◦− (𝑌

𝑘
𝜆+1, 𝑆𝑚);

• (b) is because mutual information is nonnegative;
• (c) is by (2), noting that since ℓ ≤ 1, (33) implies

𝑆𝑚 −◦− (𝑆1, 𝑌
𝑘
1 ) −◦− 𝑆ℓ

(observe that this is a Markov chain in reverse order of
time).

This completes the proof.
Proof of Lemma 9: The FAIM process is forgetful, so

we let 𝜆 be the 𝜖-recollection of the process. For this 𝜆, (35)
is satisfied.

By the chain rule for mutual information,

𝐼 (𝑆0; 𝑆−𝑘 , 𝑆𝑘 |𝑋−1
−ℓ , 𝑌

𝑚
−ℓ)

= 𝐼 (𝑆0; 𝑆𝑘 |𝑋−1
−ℓ , 𝑌

𝑚
−ℓ) + 𝐼 (𝑆0; 𝑆−𝑘 |𝑋−1

−ℓ , 𝑌
𝑚
−ℓ , 𝑆𝑘). (185)

We will upper-bound each of the terms on the right-hand side
of (185) by 𝜖 , yielding the desired result.

For any 𝑚, ℓ, 𝑘 such that min{𝑚, ℓ} ≥ 𝑘 ≥ 𝜆 we have

𝜖
(a)
≥ 𝐼 (𝑆0; 𝑆𝑘 |𝑌 𝑘

0 )
(b)
≥ 𝐼 (𝑆0; (𝑆𝑘 , 𝑌𝑚

𝑘+1) |𝑌
𝑘
0 )

= 𝐼 (𝑆0;𝑌𝑚
𝑘+1 |𝑌

𝑘
0 ) + 𝐼 (𝑆0; 𝑆𝑘 |𝑌𝑚

0 )
(c)
≥ 𝐼 (𝑆0; 𝑆𝑘 |𝑌𝑚

0 )
(d)
≥ 𝐼 ((𝑆0, 𝑋

−1
−ℓ , 𝑌

−1
−ℓ ); 𝑆𝑘 |𝑌

𝑚
0 )

= 𝐼 (𝑋−1
−ℓ , 𝑌

−1
−ℓ ; 𝑆𝑘 |𝑌𝑚

0 ) + 𝐼 (𝑆0; 𝑆𝑘 |𝑋−1
−ℓ , 𝑌

𝑚
−ℓ)

(e)
≥ 𝐼 (𝑆0; 𝑆𝑘 |𝑋−1

−ℓ , 𝑌
𝑚
−ℓ).

We now justify the inequalities:16

• (a) is by (35b) and stationarity.
• (b) is by (2), noting that (33) implies

𝑆0 −◦− (𝑆𝑘 , 𝑌 𝑘
0 ) −◦− (𝑆𝑘 , 𝑌

𝑚
𝑘+1);

• (c) is because mutual information is nonnegative;
• (d) is by (2), noting that (33) implies

𝑆𝑘 −◦− (𝑆0, 𝑌
𝑚
0 ) −◦− (𝑆0, 𝑋

−1
−ℓ , 𝑌

−1
−ℓ )

(observe that 𝑋−1
−ℓ , 𝑌

−1
−ℓ is “in the past” whereas 𝑌𝑚

0 is “in
the future,” and the state 𝑆0 is in between);

• (e) is because mutual information is nonnegative.

16We remark that in (b) and (d) we can replace the inequalities with
equalities.
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The derivation for the second term in the right-hand side
of (185) is similar. For any 𝑚, ℓ, 𝑘 such that min{𝑚, ℓ} ≥ 𝑘 ≥ 𝜆
we have

𝜖
(a)
≥ 𝐼 (𝑆0; 𝑆−𝑘 |𝑋−1

−𝑘 , 𝑌
−1
−𝑘 )

(b)
≥ 𝐼 (𝑆0; (𝑆−𝑘 , 𝑋−𝑘−1

−ℓ , 𝑌−𝑘−1
−ℓ ) |𝑋−1

−𝑘 , 𝑌
−1
−𝑘 )

(c)
≥ 𝐼 (𝑆0; 𝑆−𝑘 |𝑋−1

−ℓ , 𝑌
−1
−ℓ )

(d)
≥ 𝐼 ((𝑆0, 𝑌

𝑚
0 , 𝑆𝑘); 𝑆−𝑘 |𝑋

−1
−ℓ , 𝑌

−1
−ℓ )

(e)
≥ 𝐼 (𝑆0; 𝑆−𝑘 |𝑋−1

−ℓ , 𝑌
𝑚
−ℓ , 𝑆𝑘).

Again, we justify the inequalities:
• (a) is by (36a) and stationarity.
• (b) is by (2), noting that (33) implies

𝑆0 −◦− (𝑆−𝑘 , 𝑋−1
−𝑘 , 𝑌

−1
−𝑘 ) −◦− (𝑆−𝑘 , 𝑋

−𝑘−1
−ℓ , 𝑌−𝑘−1

−ℓ );

• (c) is by the chain rule for mutual information
• (d) is by (2), noting that (33) implies

𝑆−𝑘 −◦− (𝑆0, 𝑋
−1
−ℓ , 𝑌

−1
−ℓ ) −◦− (𝑆0, 𝑌

𝑚
0 , 𝑆𝑘);

• (e) is by the chain rule for mutual information.
This completes the proof.

Proof of Corollary 10: The FAIM process is forgetful,
so we set 𝜆 as the 𝜖-recollection of the process. The corollary
holds for 𝑘 = 1 by Lemma 9. We proceed by induction. Assume
that the corollary holds for 𝑘 − 1 ≥ 1, and we will show it
holds for 𝑘 .

Let

i′ =
[
𝑖1 𝑖2 · · · 𝑖𝑘−1

]
,

i =
[
𝑖1 𝑖2 · · · 𝑖𝑘−1 𝑖𝑘

]
=

[
i′ 𝑖𝑘

]
.

For brevity, denote

𝐶𝑖 = (𝑋 𝑖−1
𝑖−𝐿0

, 𝑌
𝑖+𝐿0
𝑖−𝐿0
).

Our goal is thus to show that

𝐼 (𝑆i; 𝑆i−𝐿0 , 𝑆i+𝐿0 |𝐶i)
= 𝐼 (𝑆i′ , 𝑆𝑖𝑘 ; 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 |𝐶i′ , 𝐶𝑖𝑘 ) ≤ 𝑘 · 2𝜖 .

Indeed,

𝐼 (𝑆i′ , 𝑆𝑖𝑘 ; 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 |𝐶i′ , 𝐶𝑖𝑘 )
= 𝐼 (𝑆i′ ; 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 |𝐶i′ , 𝐶𝑖𝑘 )
+ 𝐼 (𝑆𝑖𝑘 ; 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 |𝑆i′ , 𝐶i′ , 𝐶𝑖𝑘 )

(a)
≤ 𝐼 (𝑆i′ ; 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , (𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 , 𝐶𝑖𝑘 ) |𝐶i′ )
+ 𝐼 (𝑆𝑖𝑘 ; 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 , (𝑆i′ , 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝐶i′ ) |𝐶𝑖𝑘 )

(b)
≤ 𝐼 (𝑆i′ ; 𝑆i′−𝐿0 , 𝑆i′+𝐿0 |𝐶i′ ) + 𝐼 (𝑆𝑖𝑘 ; 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 |𝐶𝑖𝑘 )
(c)
≤ (𝑘 − 1) · 2𝜖 + 2𝜖
= 𝑘 · 2𝜖,

where (a) is by the chain rule; (b) is by (2) and (33), used
for the Markov chains (See Figure 15 for an illustration):

𝑆i′ −◦− (𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝐶i′ ) −◦− (𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 , 𝐶𝑖𝑘 ),

𝑖1 − ℓ 𝑖1 + ℓ𝑖1 𝑖2 − ℓ 𝑖2 + ℓ𝑖2 𝑖3 − ℓ 𝑖3 + ℓ𝑖3 𝑖4 − ℓ 𝑖4 + ℓ𝑖4

“future”“past” “present”

Fig. 15. Illustration of the timeline for 𝑘 = 4. Given 𝑆𝑖4−ℓ , the “future” is
independent of the “present” and “past.” Given 𝑆𝑖3+ℓ , the “past” is independent
of the “present” and “future.”

which holds because 𝑖𝑘−1 ≤ 𝑖𝑘−1 + 𝐿0 ≤ 𝑖𝑘 − 𝐿0 so
(𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 , 𝐶𝑖𝑘 ) are independent of 𝑆i′ given 𝑆𝑖𝑘−1+𝐿0 ,
which is part of 𝑆i′+𝐿0 , and

𝑆𝑖𝑘 −◦− (𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 , 𝐶𝑖𝑘 )
−◦− (𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 , 𝑆i′ , 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝐶i′ ),

which again holds because 𝑖𝑘−1 + 𝐿0 ≤ 𝑖𝑘 − 𝐿0 ≤ 𝑖𝑘 , so
(𝑆i′ , 𝑆i′−𝐿0 , 𝑆i′+𝐿0 , 𝐶i′ ) are independent of 𝑆𝑖𝑘 given 𝑆𝑖𝑘−𝐿0

;
finally, (c) is because 𝐼 (𝑆i′ ; 𝑆i′−𝐿0 , 𝑆i′+𝐿0 |𝐶i′ ) ≤ (𝑘 − 1) · 2𝜖 by
the induction hypothesis and 𝐼 (𝑆𝑖𝑘 ; 𝑆𝑖𝑘−𝐿0 , 𝑆𝑖𝑘+𝐿0 |𝐶𝑖𝑘 ) ≤ 2𝜖 by
Lemma 9. This completes the proof.

APPENDIX C
AUXILIARY PROOFS FOR SECTION IV-B

Recall from (1) that the binary entropy function ℎ2 : [0, 1] →
[0, 1] is defined by

ℎ2 (𝑥) = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥).

This is a concave-∩ function that satisfies ℎ2 (𝑥) = ℎ2 (1 − 𝑥)
for any 𝑥 ∈ [0, 1], and is monotone increasing over [0, 1/2].
The inverse of the binary entropy function is ℎ−1

2 : [0, 1] →
[0, 1/2]. The following three technical lemmas will be used
to prove Lemma 15.

Lemma 52. For any 0 ≤ 𝑥 ≤ 1/2,

1 − ℎ2 (𝑥) ≥
2

ln 2

(
1
2
− 𝑥

)2
. (186)

Proof: Denote 𝑔(𝑥) = 1 − ℎ2 (𝑥). Clearly, 1 = 𝑔(0) >
1/(2 ln 2) ≈ 0.721. For any 𝜖 > 0, the function 𝑔(𝑥) is 4
times continuously differentiable over [𝜖, 1/2]. Therefore, by
Taylor’s formula with remainder [46, Theorem 5.19], for any
𝑥 ∈ [𝜖, 1/2], there exists 𝑦 ∈ [𝑥, 1/2] such that

𝑔(𝑥) = 2
ln 2

(
1
2
− 𝑥

)2
+ 𝑔

(4) (𝑦)
4!

(
1
2
− 𝑥

)4
.

However, 𝑔 (4) (𝑦) = 2(𝑦−3 + (1 − 𝑦)−3)/ln 2 > 0 for any 𝑦 ∈
[𝜖, 1/2]. Hence, 1 − ℎ2 (𝑥) ≥ 2(1/2 − 𝑥)2/(ln 2) for any 0 ≤
𝑥 ≤ 1/2 as well.

Lemma 53. For any 0 ≤ 𝑦 ≤ 𝑥 ≤ 1/2,

ℎ2 (𝑥) − ℎ2 (𝑦) ≥
1

ln 2
(𝑥 − 𝑦) (1 − 2𝑦) . (187)

Proof: There is nothing to prove if 𝑥 = 𝑦, so we assume
that 𝑦 < 𝑥. Due to the concavity of ℎ2 (𝑥), for any 𝑥1 ≤ 𝑥2 ≤ 𝑥3
we have

(𝑥3−𝑥1) (ℎ2 (𝑥2) −ℎ2 (𝑥1)) ≥ (𝑥2−𝑥1) (ℎ2 (𝑥3) −ℎ2 (𝑥1)) (188)
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(see, for example, [47, Section 1.4.3], or [48, Exercise 6.17]).
Setting 𝑥1 = 𝑦, 𝑥2 = 𝑥, 𝑥3 = 1/2 in (188) we obtain(

1
2
− 𝑦

)
(ℎ2 (𝑥) − ℎ2 (𝑦)) ≥ (𝑥 − 𝑦) (1 − ℎ2 (𝑦)).

Since 𝑦 < 𝑥 ≤ 1/2 by assumption, 1/2 − 𝑦 > 0. Therefore, we
rearrange the above inequality and obtain

ℎ2 (𝑥) − ℎ2 (𝑦) ≥ (𝑥 − 𝑦)
1 − ℎ2 (𝑦)
1/2 − 𝑦 ≥

1
ln 2
(𝑥 − 𝑦) (1 − 2𝑦) ,

where the rightmost inequality is by (186).

Lemma 54. For any 𝑥, 𝑦 ∈ (0, 1/2), the function

𝑓 (𝑥, 𝑦) = ℎ2 (ℎ−1
2 (𝑥) ∗ ℎ

−1
2 (𝑦)) − 𝑦 (189)

is increasing in 𝑥 and decreasing in 𝑦.

Proof: Denote, for 𝑥, 𝑦 ∈ (0, 1/2),

𝑔(𝑥, 𝑦) = ℎ2 (𝑥 ∗ 𝑦) − ℎ2 (𝑦).

Then, 𝑓 (𝑥, 𝑦) = 𝑔(ℎ−1
2 (𝑥), ℎ

−1
2 (𝑦)). The function ℎ2 (𝑥) is

monotone increasing over [0, 1/2], so ℎ−1
2 (𝑥) is also monotone

increasing over [0, 1/2]. Therefore, the claim will be true once
we establish that 𝑔(𝑥, 𝑦) is increasing in 𝑥 and decreasing in
𝑦.

To this end, recall the function

arctanh(𝑥) = 1
2

ln
(

1 + 𝑥
1 − 𝑥

)
,

defined for 𝑥 ∈ [0, 1]. This is an increasing function of 𝑥
(since its derivative is (1− 𝑥2)−1, which is positive). Moreover,
arctanh(𝑥) > 0 for 𝑥 > 0.

Now,

𝜕𝑔(𝑥, 𝑦)
𝜕𝑥

=
2

ln 2
(1 − 2𝑦) arctanh

(
(1 − 2𝑥) (1 − 2𝑦)

)
.

This is positive since arctanh(𝑧) > 0 for 𝑧 > 0, and both
(1 − 2𝑥) > 0 and (1 − 2𝑦) > 0. Thus, 𝑔(𝑥, 𝑦), and by proxy
𝑓 (𝑥, 𝑦), is increasing in 𝑥. Next,

𝜕𝑔(𝑥, 𝑦)
𝜕𝑦

=
2

ln 2

(
(1 − 2𝑥) arctanh

(
(1 − 2𝑥) (1 − 2𝑦)

)
− arctanh(1 − 2𝑦)

)
≤ 2

ln 2

(
(1 − 2𝑥) arctanh(1 − 2𝑦) − arctanh(1 − 2𝑦)

)
=

2
ln 2
((1 − 2𝑥) − 1) · arctanh(1 − 2𝑦)

< 0,

where the first inequality is because (1 − 2𝑥) (1 − 2𝑦) < (1 −
2𝑦) and arctanh(·) is increasing. Thus, 𝑔(𝑥, 𝑦), and by proxy
𝑓 (𝑥, 𝑦), is decreasing in 𝑦.

Proof of Lemma 15: It was shown in [6, Lemma 2.1]
that ∑︁

𝑎,𝑏

𝑝𝑎𝑞𝑏ℎ2 (𝛼𝑎 ∗ 𝛽𝑏) ≥ ℎ2 (ℎ−1
2 (𝐴) ∗ ℎ

−1
2 (𝐵)),

where
𝐴 =

∑︁
𝑎

𝑝𝑎ℎ2 (𝛼𝑎), 𝐵 =
∑︁
𝑏

𝑞𝑏ℎ2 (𝛽𝑏).

Therefore,∑︁
𝑎,𝑏

𝑝𝑎𝑞𝑏 (ℎ2 (𝛼𝑎 ∗ 𝛽𝑏) − ℎ2 (𝛽𝑏)) ≥ ℎ2 (ℎ−1
2 (𝐴) ∗ ℎ

−1
2 (𝐵)) − 𝐵

= 𝑓 (𝐴, 𝐵),

where 𝑓 (·, ·) was defined in (189). By (57), 𝐴 ≥ 𝜉1 and 𝐵 ≤ 𝜉2.
Since, by Lemma 54, 𝑓 (𝐴, 𝐵) is increasing in 𝐴 and decreasing
in 𝐵, we conclude that∑︁
𝑎,𝑏

𝑝𝑎𝑞𝑏 (ℎ2 (𝛼𝑎 ∗ 𝛽𝑏) − ℎ2 (𝛽𝑏)) ≥ ℎ2 (ℎ−1
2 (𝜉1)∗ℎ−1

2 (𝜉2))−𝜉2.

Define, therefore,

Δ(𝜉1, 𝜉2) ≜ ℎ2 (ℎ−1
2 (𝜉1) ∗ ℎ−1

2 (𝜉2)) − 𝜉2. (190)

It remains to show that Δ(𝜉1, 𝜉2) > 0.
To this end, observe that for any 𝑥, 𝑦 ∈ (0, 1/2),

ℎ2 (𝑥 ∗ 𝑦) − ℎ2 (𝑦)
(a)
≥ 1

ln 2
(𝑥 ∗ 𝑦 − 𝑦) · (1 − 2𝑦)

=
1

ln 2
𝑥(1 − 2𝑦)2.

where (a) is by (187). Therefore,

Δ(𝜉1, 𝜉2) ≥
1

ln 2
ℎ−1

2 (𝜉1)
(
1 − 2ℎ−1

2 (𝜉2)
)2
> 0.

We note in passing that the expression for Δ(𝜉1, 𝜉2) derived
here (or its lower bound) may be used to obtain a tighter lower
bound than that of [13, Lemma 11].

APPENDIX D
AUXILIARY PROOFS FOR SECTION V-C

Proof of Lemma 25: Denote 𝐹 = 𝑓 (𝐴), �̃� = 𝑓 ( �̃�),
𝐺 = 𝑔(𝐴), and �̃� = 𝑔( �̃�). For any 𝑓0 ∈ {0, 1}, 𝑔0 ∈ G, we
abuse notation and write

𝑝( 𝑓0, 𝑔0) ≜ P (𝐹 = 𝑓0, 𝐺 = 𝑔0) =
∑︁

𝑎: 𝑓 (𝑎)= 𝑓0 ,
𝑔 (𝑎)=𝑔0

𝑝(𝑎), (191a)

𝑞( 𝑓0, 𝑔0) ≜ P
(
�̃� = 𝑓0, �̃� = 𝑔0

)
=

∑︁
𝑎: 𝑓 (𝑎)= 𝑓0 ,

𝑔 (𝑎)=𝑔0

𝑞(𝑎). (191b)

With this notation we also have 𝑝(𝑔0) = P (𝐺 = 𝑔0)
and 𝑝( 𝑓0 |𝑔0) = P (𝐹 = 𝑓0 |𝐺 = 𝑔0). The distributions
𝑞(𝑔0), 𝑞( 𝑓0 |𝑔0) are similarly defined. By (83) and (191) we
have for all 𝑓0 ∈ {0, 1} and 𝑔0 ∈ G,

(1 − 𝜀)𝑞( 𝑓0, 𝑔0) ≤ 𝑝( 𝑓0, 𝑔0) ≤ (1 + 𝜀)𝑞( 𝑓0, 𝑔0),
(1 − 𝜀)𝑞(𝑔0) ≤ 𝑝(𝑔0) ≤ (1 + 𝜀)𝑞(𝑔0). (192)

Therefore,

1 − 𝜀
1 + 𝜀 · 𝑞( 𝑓0 |𝑔0) ≤ 𝑝( 𝑓0 |𝑔0) ≤

1 + 𝜀
1 − 𝜀 · 𝑞( 𝑓0 |𝑔0).

When 0 ≤ 𝜀 ≤ 1
3 , we have (1 + 𝜀)/(1 − 𝜀) ≤ 1 + 3𝜀 and

(1−𝜀)/(1+𝜀) ≥ 1−3𝜀 ≥ 0 by straightforward algebra. Hence,
for any 𝑓0 ∈ {0, 1} and 𝑔0 ∈ G,

(1 − 3𝜀)𝑞( 𝑓0 |𝑔0) ≤ 𝑝( 𝑓0 |𝑔0) ≤ (1 + 3𝜀)𝑞( 𝑓0 |𝑔0),
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by which |𝑝( 𝑓0 |𝑔0) − 𝑞( 𝑓0 |𝑔0) | ≤ 3𝜀 · 𝑞( 𝑓0 |𝑔0). Thus, for any
𝑔0 ∈ G, since 𝜀 < 1

6 by assumption,

𝑑 (𝑔0) ≜
1∑︁

𝑓0=0
|𝑝( 𝑓0 |𝑔0)−𝑞( 𝑓0 |𝑔0) | ≤ 3𝜀

1∑︁
𝑓0=0

𝑞( 𝑓0 |𝑔0) = 3𝜀 <
1
2
.

Since 𝐹 and �̃� are binary, we conclude from [20, Theorem
17.3.3] that for any 𝑔0 ∈ G,��𝐻 (𝐹 |𝐺 = 𝑔0) − 𝐻 (�̃� |�̃� = 𝑔0)

�� ≤ −𝑑 (𝑔0) log
𝑑 (𝑔0)

2
(a)
≤ −3𝜀 log

3𝜀
2
. (193)

Inequality (a) is true because 𝑥 ↦→ −𝑥 log 𝑥
2 is increasing for

0 ≤ 𝑥 < 2
𝑒
≈ 0.736, and 0 ≤ 𝑑 (𝑔0) ≤ 3𝜀 < 1

2 < 2
𝑒

by
assumption.

Let
∑+ denote summation over all 𝑔0 ∈ G for which 𝑝(𝑔0) ≥

𝑞(𝑔0), and
∑− denote summation over all 𝑔0 ∈ G for which

𝑝(𝑔0) < 𝑞(𝑔0). Since
∑

𝑔0 𝑝(𝑔0) =
∑

𝑔0 𝑞(𝑔0) = 1, we have∑︁+ (𝑝(𝑔0) − 𝑞(𝑔0)) = −
∑︁− (𝑝(𝑔0) − 𝑞(𝑔0))

=
1
2

∑︁
𝑔0

|𝑝(𝑔0) − 𝑞(𝑔0) |

≤ 𝜀
2

∑︁
𝑔0

𝑞(𝑔0) =
𝜀

2
,

where the inequality is by (192). Hence, for any nonnegative
function ℎ : G→ R+,∑︁

𝑔0

(𝑝(𝑔0) − 𝑞(𝑔0))ℎ(𝑔0)

=
∑︁+ |𝑝(𝑔0) − 𝑞(𝑔0) |ℎ(𝑔0) −

∑︁− |𝑝(𝑔0) − 𝑞(𝑔0) |ℎ(𝑔0)

≤
(

sup
𝑔0

ℎ(𝑔0) − inf
𝑔0
ℎ(𝑔0)

)
· 1

2
∑︁
𝑔0

|𝑝(𝑔0) − 𝑞(𝑔0) |

≤
(

sup
𝑔0

ℎ(𝑔0) − inf
𝑔0
ℎ(𝑔0)

)
· 𝜀

2
. (194)

Therefore,

𝐻 (𝐹 |𝐺) − 𝐻 (�̃� |�̃�)
=

∑︁
𝑔0

𝑝(𝑔0)𝐻 (𝐹 |𝐺 = 𝑔0) −
∑︁
𝑔0

𝑞(𝑔0)𝐻 (�̃� |�̃� = 𝑔0)

(a)
≤

∑︁
𝑔0

𝑝(𝑔0)
(
𝐻 (�̃� |�̃� = 𝑔0) − 3𝜀 log

3𝜀
2

)
−

∑︁
𝑔0

𝑞(𝑔0)𝐻 (�̃� |�̃� = 𝑔0)

= −3𝜀 log
3𝜀
2
+

∑︁
𝑔0

(𝑝(𝑔0) − 𝑞(𝑔0))𝐻 (�̃� |�̃� = 𝑔0)

(b)
≤ −3𝜀 log

3𝜀
2
+

(
max
𝑔0

𝐻 (�̃� |�̃� = 𝑔0) −min
𝑔0

𝐻 (�̃� |�̃� = 𝑔0)
)
· 𝜀

2
(c)
≤ 𝜀

2
− 3𝜀 log

3𝜀
2
,

where (a) is by (193), (b) is by (194), and (c) is because the
entropy of a binary random variable assumes values between
0 and 1.

Similarly,∑︁
𝑔0

(𝑝(𝑔0) − 𝑞(𝑔0))ℎ(𝑔0) ≥ −
(

sup
𝑔0

ℎ(𝑔0) − inf
𝑔0
ℎ(𝑔0)

)
· 𝜀

2
,

𝑦

𝑦 (2 − ln 𝑦)

2√𝑦

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

Fig. 16. Illustration of the inequality 𝑦 (2 − ln 𝑦) ≤ 2√𝑦.

by which

𝐻 (𝐹 |𝐺) − 𝐻 (�̃� |�̃�) ≥ −
(
𝜀

2
− 3𝜀 log

3𝜀
2

)
.

Thus, we have shown that��𝐻 (𝐹 |𝐺) − 𝐻 (�̃� |�̃�)�� ≤ 𝜀
2
− 3𝜀 log

3𝜀
2
.

By Lemma 55 below and some algebra, we obtain that

𝜀

2
− 3𝜀 log

3𝜀
2
≤
√

8 · 21/12√3
𝑒 · ln 2

√
𝜀 <
√

8𝜀,

which completes the proof.

Lemma 55. For any 𝑦 > 0, we have

𝑦(2 − ln 𝑦) ≤ 2
√
𝑦.

Proof: This inequality is illustrated in Figure 16. A formal
proof follows. The Fenchel dual of 𝑓 (𝑥) = 𝑒𝑥 [49, p. 105] is

𝑓 ∗ (𝑦) = sup
𝑥

(𝑥𝑦 − 𝑒𝑥) =

𝑦 ln 𝑦 − 𝑦, 𝑦 > 0,
0, 𝑦 = 0,
∞, otherwise.

Therefore, for any 𝑥 ∈ R and 𝑦 > 0 we have 𝑥𝑦−𝑒𝑥 ≤ 𝑦 ln 𝑦−𝑦.
Now, set 𝑥 = 1

2 ln 𝑦 and rearrange to yield 𝑦(2 − ln 𝑦) ≤ 2√𝑦
as desired.

APPENDIX E
EQUIVALENCE OF THE DETERMINISTIC AND PROBABILISTIC

FORMULATIONS OF HIDDEN MARKOV MODELS

Recall that in a FAIM process, the observations are a
probabilistic function of the state, see (33). However, in
Section X, we defined the observations of a hidden Markov
model as a deterministic function of the state. Seemingly, the
deterministic model is less general than the probabilistic FAIM
model. As in [18] and [19], we now show that the deterministic
and probabilistic models are equivalent.

Using the notation of Section X, a hidden Markov model
consists of a Markov state 𝐴𝑛 and an observation 𝐵𝑛. In the
deterministic model, 𝐵𝑛 = 𝑓 (𝐴𝑛), where 𝑓 is a deterministic
function. In the probabilistic model, there exists a distribution
𝑞 such that

P
(
𝐵𝑛 = 𝑏 | 𝐴𝑛 = 𝑗 , 𝐵𝑛−1

1 , 𝐴𝑛−1
1

)
= P (𝐵𝑛 = 𝑏 |𝐴𝑛 = 𝑗) = 𝑞(𝑏 | 𝑗).

(195)
One direction of the equivalence is easy: any deterministic

model can be thought of a probabilistic model with 𝑞(·| 𝑗)
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assuming only the values 0 and 1. To cast the probabilistic
model as a deterministic one, observe that by the Markov
property and (195), we have

P
(
𝐵𝑛 = 𝑏, 𝐴𝑛 = 𝑗 | 𝐴𝑛−1 = 𝑖, 𝐴𝑛−2

1 , 𝐵𝑛−1
1

)
= P (𝐵𝑛 = 𝑏, 𝐴𝑛 = 𝑗 | 𝐴𝑛−1 = 𝑖)
= P (𝐴𝑛 = 𝑗 | 𝐴𝑛−1 = 𝑖) · P (𝐵𝑛 = 𝑏 | 𝐴𝑛 = 𝑗)
= 𝑝( 𝑗 |𝑖)𝑞(𝑏 | 𝑗).

We call a pair ( 𝑗 , 𝑏), 𝑗 ∈ A, 𝑏 ∈ B, viable if
𝑞(𝑏 | 𝑗) > 0. Define a new Markov chain 𝐶𝑛 with states
( 𝑗 , 𝑏) whenever ( 𝑗 , 𝑏) is a viable pair,17 and whose tran-
sition probability function for any two states ( 𝑗 , 𝑏) and
(𝑖, 𝑘) is P (𝐶𝑛 = ( 𝑗 , 𝑏) |𝐶𝑛−1 = (𝑖, 𝑘)) = 𝑝( 𝑗 |𝑖)𝑞(𝑏 | 𝑗). Set
𝑓 : A × B → B as the deterministic function that outputs
its second argument. That is, 𝑓 (𝑎, 𝑏) = 𝑏. This model is
deterministic, and is equivalent to the probabilistic one.

We are now almost done; all that remains is to show that
𝐶𝑛 is regular (aperiodic and irreducible) if and only if 𝐴𝑛 is.

Lemma 56. Let 𝐴𝑛 be a finite-state homogeneous Markov
chain and let 𝐵𝑛 be a probabilistic observation of 𝐴𝑛, as
in (195). Then, 𝐴𝑛 is aperiodic and irreducible if and only if
𝐶𝑛 = (𝐴𝑛, 𝐵𝑛) as defined above is aperiodic and irreducible.

Proof: Recall that a finite-state homogeneous Markov
chain is aperiodic and irreducible if and only if its transition
matrix is primitive. That is, if and only if there exists an integer
𝑚 such that the 𝑚-step transition probability from state 𝑖 to
state 𝑗 is positive for any 𝑖, 𝑗 [32, Theorem 1.4 and Section
4.2], also [22, Section 4.1].

Assume first that 𝐴𝑛 is aperiodic and irreducible. Hence,
there exists 𝑚 such that P (𝐴𝑛 = 𝑗 |𝐴𝑛−𝑚 = 𝑖) > 0 for all 𝑖, 𝑗 ,
and 𝑛. Therefore, for any viable pairs ( 𝑗 , 𝑏) and (𝑖, 𝑘),

P (𝐶𝑛 = ( 𝑗 , 𝑏) |𝐶𝑛−𝑚 = (𝑖, 𝑘)) = 𝑞(𝑏 | 𝑗)P (𝐴𝑛 = 𝑗 |𝐴𝑛−𝑚 = 𝑖) > 0.

Since the states of 𝐶𝑛 consist only of viable pairs, we conclude
that 𝐶𝑛 is aperiodic and irreducible.

Next, assume that 𝐶𝑛 is aperiodic and irreducible. Then, there
exists 𝑚 such that P (𝐶𝑛 = ( 𝑗 , 𝑏) |𝐶𝑛−𝑚 = (𝑖, 𝑘)) > 0 for any
two viable pairs (states) ( 𝑗 , 𝑏) and (𝑖, 𝑘), and all 𝑛. Therefore,
for any 𝑘 such that (𝑖, 𝑘) is viable (at least one such 𝑘 must
exist),

P (𝐴𝑛 = 𝑗 |𝐴𝑛−𝑚 = 𝑖) =
∑︁
𝑏

P (𝐶𝑛 = ( 𝑗 , 𝑏) |𝐶𝑛−𝑚 = (𝑖, 𝑘)) > 0.

Hence, 𝐴𝑛 is aperiodic and irreducible.

Example 8. The Gilbert-Elliott channel [50] is a classic
example of a channel with memory. It is defined as follows.
The channel may be at one of two states, good and bad. In
the good state, the channel is a binary symmetric channel
(BSC) with crossover probability 𝛾 and in the bad state, the
channel is a BSC with crossover probability 𝛽. The probability
of transitioning from the good state to the bad state is 𝑝, and
the probability of transitioning from the bad state to the good
state is 𝑞.

17States for which 𝑞 (𝑏 | 𝑗 ) = 0 can never appear with positive probability
and are therefore removed.

Assuming a symmetric channel input, we construct a
deterministic model 𝐶𝑛 = (𝑆𝑛, 𝑋𝑛, 𝑌𝑛) with states

1 = (good, 0, 0), 5 = (bad, 0, 0),
2 = (good, 0, 1), 6 = (bad, 0, 1),
3 = (good, 1, 0), 7 = (bad, 1, 0),
4 = (good, 1, 1), 8 = (bad, 1, 1).

For brevity, for a number 𝑥 ∈ [0, 1] we denote 𝑥 = 1 − 𝑥. The
transition probability matrix of 𝐶𝑛 is

M =
1
2



𝑝�̄� 𝑝𝛾 𝑝𝛾 𝑝�̄� 𝑝𝛽 𝑝𝛽 𝑝𝛽 𝑝𝛽

𝑝�̄� 𝑝𝛾 𝑝𝛾 𝑝�̄� 𝑝𝛽 𝑝𝛽 𝑝𝛽 𝑝𝛽

𝑝�̄� 𝑝𝛾 𝑝𝛾 𝑝�̄� 𝑝𝛽 𝑝𝛽 𝑝𝛽 𝑝𝛽

𝑝�̄� 𝑝𝛾 𝑝𝛾 𝑝�̄� 𝑝𝛽 𝑝𝛽 𝑝𝛽 𝑝𝛽

𝑞�̄� 𝑞𝛾 𝑞𝛾 𝑞�̄� 𝑞𝛽 𝑞𝛽 𝑞𝛽 𝑞𝛽

𝑞�̄� 𝑞𝛾 𝑞𝛾 𝑞�̄� 𝑞𝛽 𝑞𝛽 𝑞𝛽 𝑞𝛽

𝑞�̄� 𝑞𝛾 𝑞𝛾 𝑞�̄� 𝑞𝛽 𝑞𝛽 𝑞𝛽 𝑞𝛽

𝑞�̄� 𝑞𝛾 𝑞𝛾 𝑞�̄� 𝑞𝛽 𝑞𝛽 𝑞𝛽 𝑞𝛽


.

The possible observations (𝑋,𝑌 ) are (0, 0), (0, 1), (1, 0), and
(1, 1). The matrices M(𝑏), 𝑏 ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} are
obtained from M by replacing all but two columns of M with
zeros. Namely, in M(0, 0), all but columns 1 and 5 are replaced
with zeros; in M(0, 1) all but columns 2 and 6 are replaced
with zeros; in M(1, 0) all but columns 3 and 7 are replaced
with zeros; and in M(1, 1) all but columns 4 and 8 are replaced
with zeros.
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