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Polar Codes for the Deletion Channel:
Weak and Strong Polarization
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Abstract—This paper presents the first proof of polarization
for the deletion channel with a constant deletion rate and a
regular hidden-Markov input distribution. A key part of this
work involves representing the deletion channel using a trellis
and describing the plus and minus polar-decoding operations on
that trellis. In particular, the plus and minus operations can be
seen as combining adjacent trellis stages to yield a new trellis
with half as many stages. Using this viewpoint, we prove a weak
polarization theorem for standard polar codes on the deletion
channel. To achieve strong polarization, we modify this scheme
by adding guard bands of repeated zeros between various parts
of the codeword. This gives a scheme whose rate approaches
the mutual information and whose probability of error decays
exponentially in the cube-root of the block length. We conclude
by showing that this scheme can achieve capacity on the deletion
channel by proving that the capacity of the deletion channel
can be achieved by a sequence of regular hidden-Markov input
distributions.

Index Terms—Polar codes, deletion channel, fast polarization,
channels with memory, Markov processes

I. INTRODUCTION

IN many communications systems, symbol-timing errors
may result in insertion and deletion errors. For example, a

deletion channel with constant deletion rate maps a length-N
input string to a substring using an i.i.d. process that deletes
each input symbol with probability δ. These types of channels
were first studied in the 1960s [1], [2] and modern coding
techniques were first applied to them in [3]. Over the past
15 years, numerical bounds on the capacity of the deletion
channel have been significantly improved but a closed-form
expression for the capacity remains elusive [4]–[11]. Recently,
polar codes were applied to the deletion channel in a series
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of papers, but the question of polarization for non-vanishing
deletion rates remained open [12]–[15]. In this work, we show
that polar codes can be used to efficiently approach the mutual
information rate between a regular (i.e., finite-state, irreducible,
and aperiodic) hidden-Markov input process and the output of
the deletion channel with constant deletion rate.

In [12], a polar code is designed for the binary erasure
channel (BEC) and evaluated on a BEC that also introduces a
single deletion. An inner cyclic-redundancy check (CRC) code
is used and decoding is performed by running the successive
cancellation list (SCL) decoder [16] exhaustively over all
possible deletion locations. The idea is to insert a single
erasure symbol into the received sequence at all possible
locations in order to convert a deletion at that location into
an erasure. The results show one can recover a single deletion
in this setting. An extension to d deletions is also discussed
but the decoding complexity grows faster than Nd+1, where
N is the code length and d is the number of deletions.

In [13], a low-complexity decoder is proposed for the case
of d deletions. Its complexity, for a length-N polar code, is
roughly d3N logN when d deletions occur1. The paper also
presents simulation results for polar codes with lengths ranging
from 256 to 2048 on two deletion channels. The first channel
has a fixed deletion rate of 0.002 and the second introduces
exactly 4 deletions. Based on their results, the authors of [13]
conjecture that polarization occurs when N → ∞ while the
total number of deletions, d, is fixed.

The final papers [14], [15] in this series extend the previous
results by proving that weak polarization occurs when N →∞
and d = o(N). While this result is quite interesting, its proof
does not extend to the case of constant deletion rate. For the
case where N →∞ with d fixed, these papers also show strong
polarization for the deletion channel and weak polarization for
the cascade of the deletion channel and a discrete memoryless
channel (DMC).

In this paper, we combine the well-known trellis repre-
sentation for channels with synchronization errors [3] with
low-complexity successive-cancellation (SC) trellis decoding
for channels with memory [17], [18]. In particular, [3] de-
scribes how the joint input-output probability of the deletion
channel (and other synchronization-error channels) can be
represented using a trellis. This is closely related to fast
algorithms for the edit distance between strings based on
dynamic programming [19]. The main advantage of the trellis
perspective is that it naturally generalizes to other channels

1In [13], this complexity is misstated as O(d2N logN).
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with synchronization errors (e.g., with insertions, deletions,
and errors). The papers [17], [18] describe how the plus and
minus polar-decoding operations can be efficiently applied to
a channel whose input-output mapping is represented by a
trellis. Putting these ideas together defines a low-complexity
SC decoder for polar codes on the deletion channel that is
essentially equivalent to the decoder defined in [13].

Building on previous proofs of polarization for channels
with memory [20], [21], this paper proves weak and strong
polarization for the deletion channel. In order to prove strong
polarization, guard bands of ‘0’ symbols are embedded in the
codewords of Arıkan’s standard polar codes. Effectively, these
guard bands allow the decoder to work on independent blocks
and enable our proof of strong polarization.

The primary results of this research are summarized in
Theorem 1. Conceptually, it provides a polynomial-time method
to achieve the mutual information rate between a fixed regular
hidden-Markov input process and the binary deletion channel.

Theorem 1. Fix a regular hidden-Markov input process and
a parameter ν ∈ (0, 1/3]. The rate of our coding scheme
approaches the mutual information rate between the input
process and the binary deletion channel output. The encoding
and decoding complexities of our scheme are O(Λ log Λ) and
O(Λ1+3ν), respectively, where Λ is the blocklength. For any
0 < ν′ < ν and sufficiently large blocklength Λ, the probability
of decoding error is at most 2−Λν

′

.

The family of allowed input distributions is defined in
Subsection II-D and the structure of the codeword is defined
in Section VII-A. Its proof can be found in Section VII. As
we will see, the parameter ν controls the number of polar
transforms that are treated via trellises (the weak polarization
stage) versus the number of polar transform in which no trellises
are employed (the strong polarization stage). As can be seen
above, a larger ν implies a lower probability of error, but a
higher decoding complexity. While the theorem is stated for a
fixed input process, we note that the encoding and decoding
complexities scale cubically with the number of states in the
input process.

Theorem 2 establishes a sequence of regular hidden-Markov
input processes whose mutual information rates approach the
deletion channel capacity.

Theorem 2. Let C be the capacity of the binary deletion
channel with deletion probability δ. For any ε > 0, there is a
regular hidden-Markov input process whose mutual information
rate on the binary deletion channel output is at least C − ε.

Together, the two theorems imply that the first scheme can
be used to achieve capacity on the binary deletion channel. We
should note, however, that we do not provide an efficient
method to optimize the input distribution or to bound its
complexity in terms of the gap to capacity. Also, Theorem 2
is weaker than a recent result by Li and Tan which proves
the capacity can be approached by a sequence of finite-
order Markov input distributions that are both irreducible and
aperiodic [22]. Both results are predated by an earlier proof
of Dobrushin that shows that a sequence of periodic finite-

state Markov input distributions can approach capacity on the
deletion channel [2].

Here is an outline of the structure of this paper. Section II
sets up the basic notation and definitions used in this paper.
Section III defines the concept of a trellis and shows how it can
be used to compactly represent various deletion patterns and
their corresponding probabilities. In Section IV, we describe
how plus and minus polarization operations are applied to
trellises to yield new trellises. This provides a more detailed
description of the SC trellis decoding method introduced
in [17]. It is our hope that all sections up to and including
Section IV will be accessible to practitioners who are primarily
interested in the implementation details. Section V discusses
information rates and Section VI proves that, in our setting,
weak polarization occurs. Section VII focuses on strong
polarization. The practitioner is advised to read Section VII-A
which defines the structure and operation of an encoder with
guard bands. The proof of the main theorem is presented in
Section VII.

II. BACKGROUND

A. Notation

The natural numbers are denoted by N , {1, 2, . . .}. We also
define [m] , {1, 2, . . . ,m} for m ∈ N. Let X denote a finite
set (e.g., the input alphabet of a channel). In this paper, we fix
X = {0, 1} as the binary alphabet. Extensions to non-binary
alphabets are straightforward, see for example [23, Chapter
3] and [21, Appendix A]. Let x = (x1, . . . , xN ) ∈ XN be
a vector of length N = 2n. We use [statement] to denote
the Iverson bracket which evaluates to 1 if statement is true
and 0 otherwise. The concatenation of vectors y ∈ XN1 and
y′ ∈ XN2 lives in XN1+N2 and is denoted by y � y′. The
length of a vector y is denoted by |y|. Random variables will
typically be denoted by uppercase letters.

In this paper, we use the standard Arıkan transform presented
in the seminal paper [24]. The Arıkan transform of x ∈ XN ,
N = 2n, is defined recursively using length-N/2 binary vectors,
x[0] and x[1]:

x[0] , (x1 ⊕ x2, x3 ⊕ x4, . . . , xN−1 ⊕ xN ) , (1)
x[1] , ( x2, x4, . . . , xN ) , (2)

where ⊕ denotes modulo-2 addition. Then, for any sequence
b1, b2, . . . , bλ ∈ {0, 1} with λ ≤ n, we extend this notation to
define the vector x[b1,b2,...,bλ] ∈ X 2n−λ recursively via

x[b1,b2,...,bλ] =
(
x[b1,b2,...,bλ−1]

)[bλ]

. (3)

Specifically, if λ = n, then the vector x[b1,b2,...,bλ] is a scalar.
This scalar is denoted by ui(b), where b defines the index

i(b) , 1 +

n∑
j=1

bj2
n−j . (4)

That is, for b = (b1, b2, . . . , bn),

ui(b) = x[b1,b2,...,bn] . (5)

The transformed length-N vector is given by

u = (u1, . . . , uN ) = An(x) , (6)
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Fig. 1. Upper and lower bounds on the capacity of the binary deletion channel.

where An : X 2n → X 2n is called the Arıkan transform of
order n. Its inverse is denoted A−1

n and satisfies A−1
n = An.

Let b = (b1, b2, . . . , bn) and x ∈ XN be given, where
N = 2n and i = i(b). As before, let u = A(x). The vector
ui−1

1 = (u1, u2, . . . , ui−1) will play an important role later on.
Thus, we now state explicitly that when i = 0, the vector ui−1

1

is taken as the empty vector.

B. Deletion Channel

Let W (y|x) denote the transition probability for N uses
of the deletion channel with constant deletion rate δ. The
input is denoted by x ∈ XN and the output y has a random
length M = |y| supported on {0, 1, . . . , N}. This channel is
equivalent to a BEC with erasure probability δ followed by a
device that removes all erasures from the output. Thus, W (y|x)
equals the probability that N −M deletions have occurred,
which is (1−δ)M ·δN−M , multiplied by the number of distinct
deletion patterns that produce y from x, see [4, Section 2].

The study of this channel was initiated in the 1960s [1], [2].
Modern coding techniques were first applied to this channel
in [3]. Over the past 15 years, numerical bounds on the capacity
of the deletion channel have been significantly improved [4]–
[11]. Figure 1 shows the current best bounds on its capacity
as a function of δ.

We will also consider a trimmed deletion channel whose
output is given by removing all leading and trailing zeros from
the output of the standard deletion channel. See Section VII
for details.

C. Trellis Definition

An N -segment trellis T is a labeled weighted directed graph
(V, E). We assume that V can be partitioned into V0, . . . ,VN
so that V is the union of N + 1 disjoint sets:

V = V0 ·∪ V1 ·∪ · · · ·∪ VN−1 ·∪ VN ,

where ·∪ denotes a disjoint union. For channels with memory,
Vj represents the set of possible channel states after j channel

inputs. Similarly, the edge set E is arranged into a sequence
of N disjoint sets:

E = E1 ·∪ E2 ·∪ · · · ·∪ EN−1 ·∪ EN .

An edge in Ej connects a vertex in Vj−1 to a vertex in Vj .
We define σ(e) and τ(e) to be the starting and terminating
vertices of edge e. Thus, for e = u → v, we have σ(e) = u
and τ(e) = v. Then,

e ∈ Ej implies σ(e) ∈ Vj−1 and τ(e) ∈ Vj .

A trellis section comprises two adjacent sets of vertices along
with the edges that connect them. That is, for 1 ≤ j ≤ N ,
section j comprises vertex sets Vj−1 and Vj , as well as edge
set Ej . See Fig. 2 for an example of a trellis with 4 sections.

Each edge e ∈ E has a weight w(e) ∈ [0, 1] and a label
`(e) ∈ X . We also assume that V0 and VN have weight
functions,

q : V0 → [0, 1] and r : VN → [0, 1] ,

that are associated with the initial and final states.
A path through a trellis is a sequence of N edges,

e1, e2, . . . , eN , which starts at a vertex in V0 and ends at
a vertex in VN . Namely, σ(e1) ∈ V0, τ(eN ) ∈ VN , and for
each 1 ≤ j ≤ N − 1, we have τ(ej) = σ(ej+1). The weight
of a path through the trellis is defined as the product of the
weights on each edge in the path times the weights of the
initial and final vertices. Namely, the weight of the above path
is

q(σ(e1)) · r(τ(eN ))×
N∏
j=1

w(ej) .

Thus, an N -section trellis naturally defines a path-sum function
T : XN → R, where T (x) equals the sum of the path weights
over all paths whose length-N label sequences match x. That
is,

T (x) ,
∑
e1∈E1,
`(e1)=x1

∑
e2∈E2,
`(e2)=x2

· · ·
∑

eN∈EN ,
`(eN )=xN

q(σ(e1)) r(τ(eN ))

×
N∏
j=1

w(ej)×
N−1∏
j=1

[τ(ej) = σ(ej+1)] . (7)

D. FAIM processes

In latter parts of this paper, for simplicity, we will often
introduce key ideas by first framing them in the context of
the uniform input distribution. That is, by first considering
the case in which the input distribution is i.i.d. Bernoulli
1/2. However, the uniform input distribution, or indeed any
i.i.d. input distribution, is known to generally be sub-optimal
with respect to the information rate between input and output,
when transmitting over a deletion channel [4], [9]–[11]. Thus,
we stand to benefit by considering a larger class of input
distributions.
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To this end, let S be a given finite set. Each element of S
is a state of an input process. In the following2 definition, we
have for all j ∈ Z that Sj ∈ S and Xj ∈ X .

Definition 1 (FAIM process). A strictly stationary process
(Sj , Xj), j ∈ Z is called a finite-state, aperiodic, irreducible,
Markov (FAIM) process if, for all j,

PSj ,Xj |Sj−1
−∞ ,X

j−1
−∞

= PSj ,Xj |Sj−1
, (8)

is independent of j and the sequence (Sj), j ∈ Z is a finite-state
Markov chain that is stationary, irreducible, and aperiodic.

Note that by (8) we mean that for all sj , xj , sj−1, xj−1, . . .,

P (Sj = sj , Xj = xj |Sj−1 = sj−1, Xj−1 = xj−1

, Sj−2 = sj−2, Xj−2 = xj−2, . . .)

= P (Sj = sj , Xj = xj |Sj−1 = sj−1) .

For a FAIM process, consider the sequence Xj , for j ∈ Z. In
principle, the distribution of this sequence can be computed by
marginalizing the states of the FAIM process (Sj , Xj). Such a
sequence is typically called a hidden-Markov process. In this
paper, we sometimes add the term regular to emphasize that
the hidden state process is a regular Markov chain.

Let us now connect the concept of a FAIM process to that
of a trellis. Let a FAIM process (Xj , Sj) be given, and fix
N ≥ 1. We now define the corresponding trellis, having N
stages. The vertex set is V = V0 ·∪ V1 ·∪ · · · ·∪ VN , where we
define

Vj = {sj : s ∈ S}

for 0 ≤ j ≤ N so that each Vj contains a distinct copy of S . For
each x ∈ X , 1 ≤ j ≤ N , αj−1 ∈ Vj−1, and βj ∈ Vj , define an
edge e from αj−1 to βj with label `(e) = x and weight w(e) =
PSj ,Xj |Sj−1

(β, x|α). Lastly, for all α0 ∈ V0 define q(α0) =
π(α), where π(α) is the stationary probability of state α in the
Markov process (Sj)j∈R, and define r(βN ) = 1 for all βN ∈
VN . It follows that the probability of (X1, X2, . . . , XN ) =
(x1, x2, . . . , xN ) = x equals T (x), where T was defined in
(7).

III. TRELLIS REPRESENTATION OF JOINT PROBABILITY

We have just seen that a trellis can be used to compactly
represent a hidden-Markov input distribution. In fact, a trellis
can also represent more complicated distributions. Namely, we
will now show how a trellis can be used to represent the joint
distribution of a hidden-Markov input process and the channel
output.

A. Trellis for uniform input

This trellis representation for the deletion channel can also
be found in [3].

As previously explained, it is generally beneficial to use an
input distribution with memory. However, for the sake of an
easy exposition, we will first consider the simplest possible

2The definition of FAIM and FAIM-derived processes here is a specialization
of the definition given in [21]. Here, we are interested in FAIM-derived
(i.e., hidden-Markov) input processes. However, the input-output process of a
deletion channel is neither FAIM nor FAIM-derived.

i=0

i=1

i=2

i=3

y1 =0

y2 =1

y3 =1

j=0 j=1 j=2 j=3 j=4

x1 x2 x3 x4xj

yi

Fig. 2. A trellis for the binary deletion channel with uniform input, a codeword
length of N = 4, and a received word y = (011) of length M = 3. Vertices
are denoted vi,j with 0 ≤ i ≤M and 0 ≤ j ≤ N . All blue edges have label
‘0’ while all red edges have label ‘1’. The horizontal edges are weighted by the
probability δ/2. Diagonal edges are weighted by the probability (1−δ)/2. The
two circled vertices have q(v0,0) = r(vM,N ) = 1, while all other vertices
in V0 and VN have q and r values equal to 0, respectively. Edges that can
be pruned without changing the function T in (7) are dashed.

input distribution, a uniform input distribution (i.e., i.i.d. and
Bernoulli 1/2).

The trellis representation will be used on the decoder side.
Thus, when building the trellis, we will have already received
the output vector y. Hence, the primary role of the trellis is to
evaluate the probabilities associated with possible input vectors
x, of length N . That is, the trellis will be used to calculate
the joint probability of x and y, denoted PX(x) ·W (y|x), for
y fixed. Recall that W (y|x) is the deletion channel law, and
in this subsection PX is the uniform input distribution.

We will shortly define the concept of a valid path in the
trellis. Each valid path will correspond to a specific transmitted
x and a specific deletion pattern that is compatible with the
received y (see Fig. 2). We term this trellis the base trellis, as
we will ultimately construct other trellises derived from it.

Recalling our notation, we have x as the unknown input
vector, of known length N . The vector y is the known output,
having known length M = |y|. The deletion probability is δ.
The base trellis is defined as follows.

Definition 2 (Base Trellis for Uniform Input). For N , δ, M ,
and y ∈ XM :

1) The vertex set V equals the disjoint union

V = V0 ·∪ V1 ·∪ · · · ·∪ VN ,

where, for 0 ≤ j ≤ N ,

Vj = {vi,j : 0 ≤ i ≤M} . (9)

2) A path passing through vertex vi,j corresponds to the
event where only i of the first j transmitted symbols were
received. That is, from x1, x2, . . . , xj , the channel has
deleted j − i symbols3.

3) Vertices vi,j with 0 ≤ i ≤M and 0 ≤ j < N each have
up to three outgoing edges: two ‘horizontal’ edges, each

3Note that we could have optimized our definition of Vj . Namely, only i
in the range max{0,M −N + j} ≤ i ≤ min{j,M} are actually consistent
with the described event (i.e., only the solid edges in Figure 2). We leave such
optimization to the practitioner and settle for the simpler description in (9).
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corresponding to a deletion, and one ‘diagonal’ edge,
corresponding to a non-deletion.

4) For 0 ≤ i ≤ M and 0 ≤ j < N , there are two edges
e, e′ from vi,j to vi,j+1. From 2) above, we deduce that
these two ‘horizontal’ edges are associated with xj+1

being deleted by the channel. The first is associated
with xj+1 = 0 and has `(e) = 0, while the second is
associated with xj+1 = 1 and has `(e′) = 1. Since
the probability of deletion is δ, and in the uniform
distribution xj+1 = 0 and xj+1 = 1 each occur with
probability 1/2, we set w(e) = w(e′) = δ/2.

5) For 0 ≤ i < M and 0 ≤ j < N , there is a single edge e
from vi,j to vi+1,j+1. Recalling 2) above, we deduce that
this ‘diagonal’ edge represents xj+1 not being deleted,
and being observed as yi+1. Thus, `(e) = yi+1. Since
the probability of sending xj+1 in the uniform case is
1/2, regardless of its value, and the probability of a
non-deletion is 1− δ, we set w(e) = (1− δ)/2.

6) We set q(v0,0) = 1. All other vertices v ∈ V0 have
q(v) = 0. Thus, with respect to (7), we effectively force
all paths to start at v0,0. Namely, when starting a path,
no symbols have yet been transmitted, and hence no
symbols have yet been received.

7) We set r(vM,N ) = 1. All other vertices v ∈ VN have
r(v) = 0. Thus, with respect to (7), we effectively force
all paths to end at vM,N . That is, at the end of a path,
N symbols have been transmitted, and of these, M have
been received.

In line with the definitions above, let us call a path valid if
it starts at v0,0 and ends at vM,N . For example, in Figure 2,
valid paths are those that start at the circled vertex on the top
left, end at the circled vertex on the bottom right, and hence
contain only solid edges. Clearly, such a path is comprised of
N edges, e1, e2, . . . , eN . Denote by x = (x1, x2, . . . , xN ) the
input vector corresponding to the above path, where xi = `(ei).
Each such x is consistent with our received y. Indeed, tracing
the path, the type of the corresponding edge (horizontal or
diagonal) shows exactly which of the xi to delete and which to
keep in order to arrive at y. Also, the probability of the input
sequence x being transmitted and experiencing the above chain
of deletion/no-deletion events is exactly equal to the product
of the w(ei), times q(v0,0) · r(vM,N ) = 1.

From the above discussion, one has the following key lemma.

Lemma 3. Let T be a trellis as described in Definition 2.
Then, for x ∈ XN and T (x) as defined in (7), we have

T (x) = PX(x) ·W (y|x) ,

where PX is the uniform input distribution and W is the
deletion channel law.

Proof: First, we observe that the weight of a trellis path
equals the joint probability of (x,y) and the deletion pattern.
Then, the claim follows from the fact that T (x) sums the
path weight over all paths through the trellis (i.e., all deletion
patterns) consistent with the given (x,y) pair.

B. Trellises for hidden-Markov inputs

As explained earlier, a trellis is used on the decoding side,
in order to capture the joint probability of x and y. We now
show how such a trellis is built for the more general case in
which x is drawn from a regular hidden-Markov input process.
Intuitively, this is done by simply “multiplying” the trellis
corresponding to the input distribution, as described at the end
of Section II, with the trellis defined for the uniform case (with
the correction that the edge weights δ/2 and (1 − δ)/2 are
replaced by δ and 1 − δ, respectively). A formal definition
follows.

Definition 3 (Base Trellis for Hidden-Markov Input). For N ,
δ, M , S, PSj ,Xj |Sj−1

, π, and y ∈ XM :
1) The vertex set V equals the disjoint union

V = V0 ·∪ V1 ·∪ · · · ·∪ VN ,

where, for 0 ≤ j ≤ N ,

Vj = {vs,i,j : 0 ≤ i ≤M , s ∈ S} . (10)

Thus, |Vj | = (M + 1) · |S|.
2) A path passes through vertex vs,i,j if exactly i of the

first j transmitted symbols are not deleted and the state
of the input process is s ∈ S after the j-th input (i.e.,
Sj = s).

3) Vertices vs,i,j with 0 ≤ i ≤M , 0 ≤ j < N , and s ∈ S
each have up to 3 · |S| outgoing edges.

4) For 0 ≤ i ≤M , 0 ≤ j < N , and α, β ∈ S , there are two
edges e, e′ from vα,i,j to vβ,i,j+1. From item 2, we deduce
that these two ‘horizontal’ edges are associated with
xj+1 being deleted by the channel. The first is associated
with xj+1 = 0 and has `(e) = 0, while the second is
associated with xj+1 = 1 and has `(e′) = 1. Recalling
that by stationarity PSj+1,Xj+1|Sj = PSj ,Xj |Sj−1

, we set

w(e) = δ · PSj ,Xj |Sj−1
(β, 0|α) (11)

and
w(e′) = δ · PSj ,Xj |Sj−1

(β, 1|α) . (12)

That is, the probability of a deletion, times the probability
implied by the underlying FAIM distribution.

5) For 0 ≤ i < M , 0 ≤ j < N , and α, β ∈ S, there is a
single edge e from vα,i,j to vβ,i+1,j+1. Recalling item 2
above, we deduce that this ‘diagonal’ edge represents
xj+1 being observed (i.e., not deleted) as yi+1. Thus,
`(e) = yi+1. We set

w(e) = (1− δ) · PSj ,Xj |Sj−1
(β, yi+1|α) .

That is, the probability of a non-deletion, times the
probability implied by the underlying FAIM distribution4.

6) For all vs,0,0 ∈ V0, where s ∈ S, we set q(vs,0,0) =
π(s). All other vertices v ∈ V0 have q(v) = 0. Thus,
with respect to (7), we effectively force all paths to
start at a vertex vs,0,0, where s ∈ S. Namely, when
starting a path, no symbols have yet been transmitted,

4As in the uniform case, one can reduce the trellis by restricting the index i
in (10) to the range max{0,M −N + j} ≤ i ≤ min{j,M} and removing
any edge e with w(e) = 0.
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and hence no symbols have yet been received. Moreover,
the probability of starting the path at vs,0,0 is π(s), the
stationary probability of s in the FAIM input process.

7) For all vs,M,N ∈ VN , we set r(vs,M,N ) = 1. All other
vertices v ∈ VN have r(v) = 0. Thus, with respect to (7),
we effectively force all paths to end at a vertex vs,M,N .
That is, at the end of a path, N symbols have been
transmitted, and of these, M have been received.

As in the uniform case, we have the following lemma, which
is easily proved.

Lemma 4. Let T be a trellis as per Definition 3. Then, for
x ∈ XN and T (x) as defined in (7),

T (x) = PX(x) ·W (y|x) ,

where PX is the hidden-Markov input distribution and W is
the deletion channel law.

Proof: First, we observe that the weight of a trellis path
equals the joint probability of (x,y) and the deletion pattern.
Then, the claim follows from the fact that T (x) sums the
path weight over all paths through the trellis (i.e., all deletion
patterns) consistent with the given (x,y) pair.

C. Trellis for the trimmed deletion channel
For reasons that will shortly become clear, we will now

consider a slight variation of the deletion channel. Namely,
we now define the trimmed deletion channel (TDC). A TDC
is a deletion channel that, after the deletion process, trims its
output of leading and trailing ‘0’ symbols. Thus, by definition,
the output of a TDC is either an empty string, or a string that
starts and ends with a ‘1’ symbol.

We now show how to alter Definition 3 in order to account
for this variation. The change turns out to be minimal.

Definition 4 (Base Trellis for Hidden-Markov Input and TDC).
For N , δ, M , S , PSj ,Xj |Sj−1

, π, and trimmed output y∗ ∈ XM ,
define the trellis T as in Definition 3, but with the following
changes.
• The probability of an edge e from vα,0,j to vβ,0,j+1 with
`(e) = 0 must be changed to w(e) = PSj ,Xj |Sj−1

(β, 0|α).
Namely, the δ factor in (11) is removed. In short, if the
path is currently at vertex vα,0,j , then none of the j
symbols x1, x2, . . . , xj have made it to the output of the
channel (they have either been deleted or trimmed). Thus,
if xj+1 = 0, it will surely be either deleted, or else
trimmed.

• The probability of an edge e from vα,M,j to vβ,M,j+1 with
`(e) = 0 must be changed to w(e) = PSj ,Xj |Sj−1

(β, 0|α).
Namely, the δ factor in (11) is removed. Note that the
exact same reasoning from the previous point applies;
the only difference is that now we are correcting for the
trimming of the trailing ‘0’ symbols.

The result of the above altered trellis definition is the
following lemma.

Lemma 5. Let T be a trellis as described in Definition 4.
Then, for x ∈ XN and T (x) as defined in (7),

T (x) = PX(x) ·W ∗(y∗|x) ,

where PX is the hidden-Markov input distribution and W ∗ is
the law of the TDC.

Proof: First, we observe that the weight of a trellis path
equals the joint probability of (x,y∗) and the deletion/trimming
event associated with that path. Then, the claim follows from
the fact that T (x) sums the path weight over all paths through
the trellis (i.e., all deletion/trimming events) consistent with
the given (x,y∗) pair.

IV. POLARIZATION OPERATIONS ON A TRELLIS

Polar plus and minus transforms for channels with memory
were first presented in [17], [18]. Let an input distribution on
xN be given, for N even. For this input distribution and a
vector channel with input x ∈ XN and output y, let T be a
trellis with N sections whose path-sum function satisfies

T (x) = Pr(Y = y,X = x) . (13)

A. Minus transform
For a given path-sum function T (x), where x ∈ XN , the

polar minus transform defines a new path-sum function T [0](z),
z ∈ XN/2. Specifically, T [0](z) is the marginalization of T (x)
over all x vectors satisfying

z = x[0] = (x1 ⊕ x2, . . . , xN−1 ⊕ xN ) .

That is,

T [0](z) ,
∑

x∈XN :x[0]=z

T (x) (14)

=
∑

x∈XN
T (x)

N/2∏
j=1

[x2j−1 ⊕ x2j = zj ]

= Pr(Y = y,X[0] = z) ,

where the last equality follows under the assumption of (13).
Due to the local nature of this reparameterization, there is
a modified trellis T [0] with N/2 sections that represents the
new path-sum function. Fig. 3 shows an example of the minus
trellis.

Definition 5 (Minus Transform). Let T = T (V, E , w, `, q, r)
be a length-N trellis, where N is even. The trellis T̃ =
T̃ (Ṽ, Ẽ , w̃, ˜̀, q̃, r̃) = T [0] is defined as follows.
• The vertex set of T̃ is

Ṽ = Ṽ0 ·∪ Ṽ1 ·∪ · · · ·∪ ṼN/2 ,

where
Ṽj = V2j .

• We next define the edge set Ẽ implicitly. Consider an edge
ẽ = α → γ ∈ Ẽ in section j of T̃ with label ˜̀(ẽ) = z.
Then,

α ∈ Ṽj−1 = V2j−2 and γ ∈ Ṽj = V2j .

The weight w̃(ẽ) of this edge equals the sum of the product
of the edge weights along each two-step path α e1−→ β

e2−→
γ in T with `(e1)⊕ `(e2) = z. That is,

w̃(ẽ) =
∑

e1∈E2j−1:
σ(e1)=α

∑
e2∈E2j :
τ(e2)=γ

w(e1)w(e2)
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× [τ(e1) = σ(e2)] · [`(e1)⊕ `(e2) = z] .

Edges with weight 0 may be removed from T̃ .
• The minus operation does not affect initial and final ver-

tices and this implies that q̃(v) = q(v) and r̃(v) = r(v).

The following lemma states that applying a minus transform
to a trellis indeed results in a trellis whose corresponding path-
sum function is the minus transform of the path-sum function
of the initial trellis.

Lemma 6. Let T be a trellis with N sections, where N is even.
Denote the minus transform of T by T ′ = T [0] per Definition 5.
Let T and T ′ be the path-sum functions corresponding to T
and T ′, respectively, as defined in (7) . Then, T ′ equals T [0]

as defined in (14).

Proof: This follows from the fact that the minus trellis
is constructed by merging adjacent trellis stages and then
combining paths according to their x[0] values. Finally, the
new paths are relabeled by their x[0] values.

B. Plus transform

For a given path-sum function T (x), where x ∈ XN , the
polar plus transform defines a new path-sum function T [1](z′),
z′ ∈ XN/2. This definition is always with respect to a vector
z ∈ XN/2, which is assumed to be fixed. Specifically, T [1](z′)
equals T (x), where x is the unique vector satisfying

z = x[0] = (x1 ⊕ x2, . . . , xN−1 ⊕ xN ) and
z′ = x[1] = (x2, x4, . . . , xN ) .

That is,

T [1](z′) , T (x)
∣∣
x:x[0]=z,x[1]=z′

(15)

=
∑

x∈XN
T (x)

N/2∏
j=1

[x2j−1 ⊕ x2j = zj ] · [x2j = z′j ]

= Pr(Y = y,X[0] = z,X[1] = z′) ,

where the last equality follows under the assumption of (13).
As with the minus transform, there is a corresponding

operation one can apply to the underlying trellis, which we
now detail. Note that the plus-transform of a trellis is defined
with respect to a fixed vector z, which may not be specified
explicitly when it is clear from the context. Fig. 3 shows an
example of the plus trellis.

Definition 6 (Plus Transform). Let T = T (V, E , w, `, q, r) be
a length-N trellis, where N is even and let z ∈ XN/2 be given.
The trellis T̃ = T̃ (Ṽ, Ẽ , w̃, ˜̀, q̃, r̃) = T [1] is defined as follows.

• The vertex set of T̃ is the same as the minus trellis T [0].
This is also the case for the functions q̃ and r̃.

• We next define the edge set Ẽ implicitly. Consider an edge
ẽ = α → γ ∈ Ẽ in section j of T̃ with label ˜̀(ẽ) = z′.
Then,

α ∈ Ṽj−1 = V2j−2 and γ ∈ Ṽj = V2j .

The weight w̃(ẽ) of this edge equals the sum of the product
of the edge weights along each two-step path α e1−→ β

e2−→
γ in T with `(e1)⊕ `(e2) = zj and `(e2) = z′. That is,

w̃(ẽ) =
∑

e1∈E2j−1:
σ(e1)=α

∑
e2∈E2j :
τ(e2)=γ

w(e1)w(e2)

× [τ(e1) = σ(e2)] · [`(e1)⊕ z′ = zj ] · [`(e2) = z′] .

Edges with weight 0 may be removed from T̃ .

This lemma states the key property of the plus transform.

Lemma 7. Let T be a trellis with N sections where N is even,
and let z ∈ XN/2 be given. Denote the plus transform of T
by T ′ = T [1] per Definition 6. Let T and T ′ be the path-sum
functions corresponding to T and T ′, respectively, as defined
in (7) . Then, T ′ equals T [1] as defined in (15).

Proof: This follows from the fact that the plus trellis is
constructed by merging adjacent trellis stages and then pruning
paths that do not satisfy x[0] = z. Finally, the remaining paths
are relabeled with x[1] values.

C. Successive cancellation decoding

As in Arıkan’s seminal paper [24], the transform defined
above leads to an SC decoding algorithm. In brief, given y
we first construct a base trellis T . Then, there is a recursive
decoder that, given T [b1,b2,...,bλ], constructs T [b1,b2,...,bλ,0] and
calls itself with that argument. When this returns the decoded
x[b1,b2,...,bλ,0], it then builds T [b1,b2,...,bλ,1] with respect to those
hard decisions and calls itself to decode x[b1,b2,...,bλ,1]. Then,
the two decoded vectors are combined to form x[b1,b2,...,bλ] and
the function returns. The following lemma makes this precise.

Lemma 8. Let T be a base trellis with N = 2n sections
corresponding to a received word y such that (13) holds for the
corresponding path-sum function. For each i ∈ [N ] in order, let
ûi−1

1 be a vector of past decisions and b1, b2, . . . , bn ∈ {0, 1}
satisfy i(b) = i. Construct T [b1,b2,...,bn] iteratively as follows.
For λ = 1, 2, . . . , n, let us define

T [b1,b2,...,bλ] ,

{
(T [b1,b2,...,bλ−1])[bλ] if λ ≥ 2 ,

T [b1] if λ = 1 .

If bλ = 1, then we apply the plus transform with respect to
the fixed vector

z = A−1
n−λ

(
ûθτ
)
, (16)

where ûθτ , (ûτ , ûτ+1, . . . , ûθ) and

θ =

λ∑
j=1

bj2
n−j , τ = θ − 2n−λ + 1 . (17)

Then, for U = An(X) ∈ XN , we have

T [b1,b2,...,bn](u) = Pr(Ui = u, U i−1
1 = ûi−1

1 ,Y = y) .

Proof: To facilitate a proof by induction, we actually prove
a stronger claim. Namely, let 0 ≤ λ ≤ n be given. Define bλ
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δ 2
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Fig. 3. The left panel continues the example from Fig. 2 by showing the same trellis except that edge weights are shown and edges with zero weight have
been pruned. Like before, we color the edge blue if the associated input is 0 and red if it is 1. The middle panel shows the minus trellis for this example
where adjacent stages have been merged and the input labels correspond to the modulo-2 sum of adjacent inputs. Here the edge colors are for the merged
inputs z1 = x1 ⊕ x2 and z2 = x3 ⊕ x4. The right panel shows the plus trellis where the edges depend on a previous decision (z1 or z2) and are labeled by
one input (x2 or x4). The edge colors indicate the values of the inputs x2 and x4.

as the vector in {0, 1}n whose first λ entries equal those of b,
while the remaining entries are all-zero. That is,

bλ = (b1, b2, . . . , bλ, 0, 0, . . . , 0) . (18)

Recalling the notation in (1)–(5), we will prove that for all
µ ∈ X 2n−λ ,

T [b1,b2,...,bλ](µ)

= P (X[b1,b2,...,bλ] = µ, U
i(bλ)−1
1 = û

i(bλ)−1
1 ,Y = y) .

(19)

For λ = n this reduces to the claimed lemma, by (5).
The proof of (19) proceeds by induction on λ. For the base

case, take λ = 0, and note that (19) holds by assumption: the
LHS is by definition T (µ) while the RHS is simply P (X =
µ,Y = y), and the two are equal by (13).

For the induction step, we assume that (19) is true for λ, and
prove it to be true for λ+1. Assume first that bλ+1 = 0. In this
case, bλ = bλ+1. Recall that since bλ+1 = 0, we get the trellis
T [b1,b2,...,bλ,bλ+1] by applying a minus transform (Definition 5)
on T [b1,b2,...,bλ]. We must prove that (19) holds with λ+ 1 in
place of λ, and this is indeed the case by Lemma 6. Indeed,
recall that by our recursive definition, X[b1,b2,...,bλ,bλ+1] =(
X[b1,b2,...,bλ]

)[0]
, and apply Lemma 6, where in (13) and (14)

we replace X, Y, and y with X[b1,b2,...,bλ], (Y, U
i(bλ)−1
1 ),

and (y, û
i(bλ)−1
1 ), respectively.

Now, let us assume that bλ+1 = 1. Because of this, note that
bλ 6= bλ+1. As before, we assume that (19) is true for λ, and
prove it to be true for λ+ 1. By definition, we get the trellis
T [b1,b2,...,bλ,bλ+1] by applying a plus transform (Definition 6)
on T [b1,b2,...,bλ], with respect to the vector z defined in (16)
and (17), with λ replaced by λ + 1. Thus, if we denote by
T the probability function associated with T [b1,b2,...,bλ], we
get by Lemma 7 that the probability function associated with
T [b1,b2,...,bλ,bλ+1], which we denote by T ′, satisfies

T ′(z′) = T (µ)

= P (X[b1,b2,...,bλ] = µ, U
i(bλ)−1
1 = û

i(bλ)−1
1 ,Y = y) ,

where µ is the unique vector for which µ[0] = z and µ[1] = z′.
For this definition of µ, note that the condition X[b1,b2,...,bλ] =
µ is equivalent to the pair of conditions

X[b1,b2,...,bλ,0] = z and X[b1,b2,...,bλ,bλ+1] = z′ .

We will shortly prove that the pair of conditions

U
i(bλ)−1
1 = û

i(bλ)−1
1 and X[b1,b2,...,bλ,0] = z (20)

can be simplified to

U
i(bλ+1)−1
1 = û

i(bλ+1)−1
1 . (21)

Once this is proved, the lemma follows, since the above implies
that

T ′(z′) =

P (X[b1,b2,...,bλ,bλ+1] = z′, U
i(bλ+1)−1
1 = û

i(bλ+1)−1
1 ,Y =y) .

Let us now show that (20) is equivalent to (21). To get
from the vector U i(bλ)−1

1 in (20) to the vector U i(bλ+1)−1
1 in

(21) we need to append to the former the vector U i(bλ+1)−1
i(bλ) .

That is, by (4) and (5), and recalling that bλ+1 = 1, we need
to append all the length-n polar transforms of X with prefix
(b1, b2, . . . , bλ, 0). Thus, recalling (6), all that remains is to
show that ûi(bλ+1)−1

i(bλ) = An−(λ+1)(z). To see that this indeed
is the case, we observe that z is defined by (16) and (17) with
λ+1 in place of λ. Recalling (4) and (18), and keeping in mind
that in (17) we replace λ by λ+1, we see that θ = i(bλ+1)−1
while τ = i(bλ).

Actually, the above lemma is not unique to the deletion
channel and it applies to any base trellis for which (13) holds.
The above lemma also gives an efficient method for deciding5

the value of ûi at stage i, since

5Note that the arg maxu∈{0,1} of Pr(Ui = u|U i−1
1 = ûi−1

1 ,Y = y) is
equal to that of Pr(Ui = u, U i−1

1 = ûi−1
1 ,Y = y). Thus, if we are using

SC decoding to decide on the value of ûi, where Ui is non-frozen, then we
can save some computation time by not carrying out the division on the RHS
of (22). However, if the trellis is used to track probabilities on the encoding
side, the we must use conditioning when employing the Honda-Yamamoto
scheme.
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Pr(Ui = u|U i−1
1 = ûi−1

1 ,Y = y)

=
T [b1,b2,...,bn](u)∑

u′∈X
T [b1,b2,...,bn](u′)

(22)

when Pr(U i−1
1 = ûi−1

1 ,Y = y) > 0.

D. Complexity

In [17], SC trellis decoding is generalized to finite-state
channels with memory. For a finite-state channel with A states,
the decoding complexity of a length-N code is shown to be
O(A3N logN). While there are some connections between
finite-state channels and deletion channels [10], it is not clear
if this complexity result can be applied directly to the deletion
channel. Using a different formulation, an SC decoder for polar
codes on the deletion channel is defined in [13]. Its complexity
is O(N4 logN) for a constant deletion rate and a uniform
input distribution6.

In this section, we bound the complexity of computing the
plus and minus transformations of a trellis. For a trellis T with
N sections, let P2(j) be the number of distinct 2-step paths
from states in V2j to states in V2j+2 and define

C(T ) ,
N/2−1∑
j=0

P2(j) .

From Definition 5, one can verify that the minus transform
requires C(T ) multiplies and adds to compute T [0]. Similarly,
from Definition 6, it follows that the plus transform requires
at most C(T ) multiplies and adds to compute T [1].

Consider a trellis Tλ at depth-λ in the decoding process.
Such a trellis will have 2n−λ sections each corresponding to
2λ channel uses. For the deletion channel, we observe that
each state in V2j has at most 2(2λ + 1)|S| outgoing edges.
This is because each edge can be labeled by 0 or 1, the number
of deletions (between 0 and 2λ) determines the change in the
channel state, and the input state can change to any of |S|
possibilities. Combining these observations, and noting that
the number of vertices in each segment is at most 2n|S|, we
see that

C(Tλ) ≤ 2n|S| ·
(
2(2λ + 1)|S|

)2
2n−λ ≤ 22n+2(2λ + 3)|S|3 .

Since the full decoder uses 2λ plus and minus operations at
depth λ, the overall decoding complexity is

n−1∑
λ=0

2λ22n+2(2λ + 3)|S|3 = O(|S|3N4) ,

which is lower than previous methods by a logN factor. This
occurs because the λ = n − 1 decoding step dominates the
calculation and has O(|S|3N4) complexity by itself.

The reader should happily note that the above quartic growth
in N is not present in Theorem 1. The overall complexity of
our scheme is much smaller because the guard bands allow
the codeword to be separated into many smaller blocks whose
trellises can be processed separately.

6As noted earlier, the complexity of the decoding algorithm in [13] is
misstated as O(d2N logN) for d deletions but it is actually O(d3N logN).

V. INFORMATION RATES

In this section, we will introduce and analyze various
information rates related to polar codes on the deletion channel.
For a given regular hidden-Markov input distribution, let X be
an input vector of length N and let Y be the corresponding
output vector (i.e., the observation of X through the deletion
channel). The main goal of this paper is to show that our polar
coding scheme achieves the information rate

I = lim
N→∞

I(X;Y)

N
, (23)

where X and Y depend implicitly on N . This existence of
this limit is well-known [2] but we revisit it here because the
same argument will be used later with slight variations.

Lemma 9. Fix a hidden-Markov input distribution. For a given
N , let X = (X1, X2, . . . , XN ) be a random vector with the
above distribution. Let Y be the result of passing X through a
deletion channel with deletion probability δ. Then, the following
two limits exist,

lim
N→∞

H(X)

N
and lim

N→∞

H(X|Y)

N
. (24)

Proof: The proof of this lemma is detailed below for
uniform inputs in Section V-A and hidden-Markov inputs in
Section V-B.

Once the limits in (24) are established, the limit in (23)
follows because

I(X;Y)

N
=
H(X)

N
− H(X|Y)

N
.

A. Uniform input

In this subsection, we prove Lemma 9, for the restricted
case in which the input distribution is i.i.d. and uniform.

Proof of Lemma 9 for Uniform Inputs: In such a setting,
the first limit in (24) clearly exists and equals 1. To prove the
second limit in (24), let us first define

HN = H(X|Y) , |X| = N . (25)

Our plan is to show that the sequence HN is superadditive,
implying [25, Lemma 1.2.1, page 3] the existence of the second
limit in (24). Indeed, let N1 and N2 be given, and let X
and X′ be distributed according to the input distribution, and
having lengths N1 and N2, respectively. Denote the outputs
corresponding to to X and X′ by Y and Y′, respectively. We
have

HN1+N2
= H(X�X′|Y �Y′)
(a)
= H(X,X′|Y �Y′)

≥ H(X,X′|Y �Y′,Y,Y′)
(b)
= H(X,X′|Y,Y′)
(c)
= H(X|Y,Y′) +H(X′|X,Y,Y′)
(d)
= H(X|Y) +H(X′|Y′)
= HN1

+HN2
,

where (a) holds because N1 and N2, the lengths of X and
X′, respectively, are constant parameters; (b) holds because
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Y �Y′ is a function of Y and Y′; (c) follows by the chain
rule; (d) holds because, for the i.i.d. uniform input distribution,
the pair (X,Y) is independent of the pair (X′,Y′). Hence,
the sequence HN is indeed superadditive.

B. Hidden-Markov input

We now prove Lemma 9 for the case where the input
distribution is a regular hidden-Markov process. Since now HN
is not generally superadditive, we will take an indirect route
to prove Lemma 9. Indeed, the following lemma is proved by
defining a related quantity, ĤN , which is superadditive. Recall
from (8) that in the following, S0 is the state of the process
before X1 is output and SN is the state before XN+1 is output.

Lemma 10. Fix a regular hidden-Markov input distribution.
For a given N , let X = (X1, X2, . . . , XN ) be a random vector
with the above distribution. Let Y be the result of passing X
through a deletion channel with deletion probability δ. Then,
the following limit exists:

lim
N→∞

H(X|Y, S0, SN )

N
. (26)

Proof: Define

ĤN = H(X|Y, S0, SN ) , |X| = N . (27)

To borrow the terminology of [21], the above defines the
boundary-state-aware entropy. Note that S0 and SN are the
states just before transmission has started, and just after
transmission has ended, respectively.

We now show that ĤN is superadditive. Indeed, let X and X′

be consecutive input vectors of length N1 and N2, respectively.
That is, X �X′ is a vector of length N1 + N2 drawn from
the input distribution. Denote by Y and Y′ the output vectors
corresponding to X and X′, respectively. Then,

ĤN1+N2 = H(X�X′|Y �Y′, S0, SN1+N2)
(a)
= H(X,X′|Y �Y′, S0, SN1+N2

)
(b)

≥ H(X,X′|Y,Y′, S0, SN1+N2)

≥ H(X,X′|Y,Y′, S0, SN1
, SN1+N2

)
(c)
= H(X|Y,Y′, S0, SN1 , SN1+N2)

+H(X′|X,Y,Y′, S0, SN1 , SN1+N2)
(d)
= H(X|Y, S0, SN1

) +H(X′|Y′, SN1
, SN1+N2

)

= ĤN1 + ĤN2 ,

where (a) holds because N1 and N2, the lengths of X and
X′, respectively, are constant parameters; (b) holds because
Y �Y′ is a function of Y and Y′; (c) follows by the chain
rule; (d) holds because of conditional independence: given
SN1 , (X,Y, S0) is independent of (X′,Y′, SN1+N2). Hence,
the sequence ĤN is indeed superadditive, and the following
limit exists by [25, Lemma 1.2.1, page 3],

lim
N→∞

ĤN
N

.

All that remains now is to account for the difference in
the entropies of HN and ĤN , incurred by conditioning on S0

and SN . As will be made clear in the following proof, this
difference can be bounded by a constant, and hence vanishes
when we divide by N .

Proof of Lemma 9 for hidden-Markov inputs: We first
note that the existence of the second limit in (24) implies
the existence of the first limit. Indeed, taking the deletion
probability δ equal to 1 makes the second limit equal the first.
Hence, all that remains is to prove the existence of the second
limit.

To show that the second limit in (24) exists, note that, for
|X| = N , we have on the one hand that

H(X, S0, SN |Y) = H(X|Y) +H(S0, SN |X,Y)

≥ H(X|Y)

= HN ,

and on the other hand that

H(X, S0, SN |Y) = H(S0, SN |Y) +H(X|Y, S0, SN )

≤ 2 log2 |S|+H(X|Y, S0, SN )

= 2 log2 |S|+ ĤN .

Thus,
HN ≤ ĤN + 2 log2 |S| .

Since it is easily seen that ĤN ≤ HN , we have that

ĤN
N
≤ HN

N
≤ ĤN

N
+

2 log2 |S|
N

. (28)

We have already proved that the limit of the LHS of (28) exists,
in Lemma 10. Since the limit of (2 log2 |S|)/N is 0, the limit
of the RHS of (28) exists and equals that of the LHS. By the
sandwich property, the limit of the middle term exists as well,
which is the desired result.

We finish by restating the last part of the proof as a lemma.

Lemma 11. Fix a hidden-Markov input distribution. For a
given N , let X = (X1, X2, . . . , XN ) be a random vector with
the above distribution. Let Y be the result of passing X through
a deletion channel with deletion probability δ. Then,

lim
N→∞

H(X|Y, S0, SN )

N
= lim
N→∞

H(X|Y)

N
. (29)

VI. WEAK POLARIZATION

In this section, we prove weak polarization for both the
deletion channel and the trimmed deletion channel, as defined
in Subsection III-C. The term “weak polarization” alludes to ε
being fixed in Theorems 12 and 20 below. As in [24], we will
first prove that a certain process is submartingale, and then
prove that it either converges to 0 or to 1.

As a first step, we will shortly define three entropies. These
are defined with respect to an input X of length N = 2n,
which has a regular hidden-Markov input distribution, and
U = An(X). The corresponding output is denoted Y. Recall
that S0 and SN are the (hidden) states of the input process,
just before X is transmitted and right after X is transmitted,
respectively. Lastly, denote by Y∗ the result of trimming all
leading and trailing ‘0’ symbols from Y. Then, for a given



11

n and 1 ≤ i ≤ N = 2n, define the following (deterministic)
entropies:

hi = H(Ui|U i−1
1 ,Y) , (30)

ĥi = H(Ui|U i−1
1 , S0, SN ,Y) , (31)

h∗i = H(Ui|U i−1
1 ,Y∗) . (32)

Clearly,
h∗i ≥ hi ≥ ĥi .

Note that in the case of a uniform input distribution, there is
only one state, and hence hi and ĥi are equal.

Following [24], we show weak polarization by considering a
sequence B1, B2, . . . of i.i.d. Ber(1/2) random variables. For
any n ∈ N, let Jn = i(B1, B2, . . . , Bn) be the random index
defined by (4), with Bt in place of bt. We will study the three
related random processes defined for n ∈ N by

Hn = hJn , (33)

Ĥn = ĥJn , (34)
H∗n = h∗Jn . (35)

The arguments below will show that Ĥn is a bounded
submartingale. Thus, the sequence Ĥn converges and the limit
is denoted by Ĥ∞. One can also argue that Ĥ∞ ∈ {0, 1}. From
this, we will infer that Hn and H∗n must converge to either
0 or 1 as well. Though neither Hn nor H∗n are necessarily
submartingales.

Theorem 12. The sequence Ĥn converges (almost surely and
in L1) to a well-defined random variable Ĥ∞ ∈ {0, 1} and,
for any ε > 0, it follows that

1

N

∣∣{i ∈ [N ] |H(Ui|U i−1
1 , S0, SN ,Y) ∈ [ε, 1− ε]

}∣∣→ 0 .

(36)

Proof: Lemma 13 below shows that Ĥ1, Ĥ2, Ĥ3, . . . ∈
[0, 1] is a bounded submartingale with respect to Jn. This
implies that the sequence Ĥn converges (almost surely and in
L1) to a limit that is denoted by Ĥ∞ [26, p. 236]. Lemma 18
below shows that, for any ε > 0, there is a ∆ > 0 such that
Ĥn ∈ [ε, 1− ε] implies Ĥn+1 > Ĥn + ∆ with probability 1

2 .
Thus, the sequence Ĥn cannot converge to any real number in
the set (0, 1) and hence Ĥ∞ ∈ {0, 1}.

From (31) and (34), we see that Pr
(
Ĥn ∈ [ε, 1− ε]

)
equals

1

N

∣∣{i ∈ [N ] |H(Ui|U i−1
1 , S0, SN ,Y) ∈ [ε, 1− ε]

}∣∣ .
Since Ĥn converges almost surely to Ĥ∞ and ε, 1 − ε are
continuity points of Pr(Ĥ∞ ≤ x) [26, Ch. 4], it follows that

lim
n→∞

Pr
(
Ĥn ∈ [ε, 1− ε]

)
= Pr

(
Ĥ∞ ∈ [ε, 1− ε]

)
= 0 .

This completes the proof.

Lemma 13. For a hidden-Markov input distribution and a
deletion channel with deletion probability δ, let Ĥn and Jn
be as defined above. Then, the sequence Ĥ1, Ĥ2, Ĥ3, . . . is
a bounded submartingale with respect to the J1, J2, J3, . . .
sequence.

Proof: Since Ĥn is clearly bounded between 0 and 1,
it remains to show that E(Ĥn+1|J1, J2, . . . , Jn) ≥ Ĥn. Let
X�X′ be a length-2N input to the channel. Denote by Y�Y′
the corresponding output, where Y only contains inputs from X
and Y′ only contains inputs from X′. Recall that U = An(X)
and define V = An(X′) and

F = (U1 ⊕ V1, V1, U2 ⊕ V2, V2, . . . , UN ⊕ VN , VN ) .

By (4), we have that Jn+1 = 2Jn − 1 with probability 1/2
and Jn+1 = 2Jn with probability 1/2. Thus,

E(Ĥn+1|Jn1 )

= E
(
H(FJn+1

|F Jn+1−1
1 ,Y �Y′, S0, S2N )|Jn1

)
=

1

2
H(F2Jn−1|F 2Jn−2

1 ,Y �Y′, S0, S2N )

+
1

2
H(F2Jn |F

2Jn−1
1 ,Y �Y′, S0, S2N )

=
1

2
H(F2Jn−1, F2Jn |F

2Jn−2
1 ,Y �Y′, S0, S2N )

=
1

2
H(UJn ⊕ VJn , VJn |F

2Jn−2
1 ,Y �Y′, S0, S2N )

=
1

2
H(UJn , VJn |U

Jn−1
1 , V Jn−1

1 ,Y �Y′, S0, S2N )

(a)
≥ 1

2
H(UJn , VJn |U

Jn−1
1 , V Jn−1

1 ,Y,Y′, S0, S2N )

(b)

≥ 1

2
H(UJn , VJn |U

Jn−1
1 , V Jn−1

1 ,Y,Y′, S0, SN , S2N )

(c)
=

1

2
H(UJn |U

Jn−1
1 ,Y, S0, SN )

+
1

2
H(VJn |V

Jn−1
1 ,Y′, SN , S2N )

(d)
= Ĥn .

The inequality (a) follows from the fact that Y � Y′ is
a deterministic function of Y,Y′. Inequality (b) follows
since conditioning reduces entropy. Step (c) holds by the
Markov property. Finally, (d) is due to stationarity: Ĥn =
H(UJn |U

Jn−1
1 ,Y, S0, SN ) = H(VJn |V

Jn−1
1 ,Y′, SN , S2N ).

Since the sequence Ĥn is a bounded submartingale, it
converges almost surely and in L1 to a random variable
Ĥ∞ ∈ [0, 1]. To show that Ĥ∞ ∈ {0, 1} with probability
1, one can show that, if ε ≤ Ĥn ≤ 1 − ε, then there is a
∆ = ∆(ε) > 0 such that Ĥ−n − Ĥn > ∆(ε), where

Ĥ−n , H(UJn⊕VJn |U
Jn−1
1 , V Jn−1

1 ,Y�Y′, S0, S2N ) . (37)

That is, a ‘minus’ operation applied to non-polarized entropy
changes the entropy by at least ∆. Such a result indeed
establishes the above, since it dictates that Ĥn cannot converge
to anything other than either 0 or 1. As before, we first prove
the above for the simple case of i.i.d. uniform input, and then
generalize to a hidden-Markov input.

A. Uniform input

Lemma 14. Let X and X′ be independent vectors of length
N = 2n, both drawn from an i.i.d. uniform distribution. Let
Ĥn and Ĥ−n be as defined in (31), (34), and (37), with S0, SN
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and S2N being degenerate random variables always taking the
value 1. Then, for every ε > 0 there exists ∆(ε) > 0 such that
if ε ≤ Ĥn ≤ 1− ε, then Ĥ−n − Ĥn > ∆(ε).

Proof: Denote i = Jn, and assume a fixed ε for which ε ≤
Ĥn ≤ 1− ε. Then, since S0, SN , and S2N are degenerate, we
observe that (Ui, U

i−1
1 ,Y) is independent of (Vi, V

i−1
1 ,Y′).

It follows that

H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y,Y′)

is the entropy of the modulo-2 sum of the independent binary
random variables Ui and Vi . Thus, Mrs. Gerber’s Lemma [27,
Lemma 2.2] implies that, for every ε > 0, there is ∆ > 0 such
that

H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y,Y′)−H(Ui|U i−1
1 ,Y) ≥ ∆ .

Since

Ĥ−n+1 = H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y �Y′)

≥ H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y,Y′) ,

the result follows.

B. Hidden-Markov input

The proof of Lemma 14 above relied on the mutual indepen-
dence of (Ui, U

i−1
1 ,Y) and (Vi, V

i−1
1 ,Y′). To emulate7 this

property in a FAIM setting, we note that for s0, sN , and s2N

fixed, we indeed have that (Ui, U
i−1
1 ,Y) and (Vi, V

i−1
1 ,Y′)

are independent, when conditioning on the event S0 = s0,
SN = sN , S2N = s2N . Towards this end, for s0, sN , s2N ∈ S ,
we denote the probability of these three states occurring as

p(s0, sN , s2N ) = Pr(S0 = s0, SN = sN , S2N = s2N ) . (38)

In the reminder of this subsection, we will assume that N is
large enough such that the above probability is always positive.
This is indeed possible, by the following lemma.

Lemma 15. For s ∈ S, denote by π(s) the stationary
probability of s. That is, the probability that S0 = s. Let

πmin = min
s∈S

π(s) ,

Then, πmin > 0, and there exists a ν such that for all N ≥ 2ν

and all s0, sN , s2N ∈ S we have

Pr(S0 = s0, SN = sN , S2N = s2N ) >
(πmin)3

2
. (39)

Proof: Since the underlying Markov chain is regular (i.e.,
finite-state, irreducible, and aperiodic), some power of the
transition matrix must be strictly positive and this implies that
πmin > 0. Regularity further implies that S0, SN , S2N become
asymptotically independent as N increases. Thus, there must
be an N0 = 2n0 such that (39) holds for all N ≥ N0.

For (s0, sN , s2N ), we define the quantities α(s0, sN , s2N )
and β(s0, sN , s2N ) as follows.

α(s0, sN , s2N ) , (40)

7For independence, it is sufficient to condition on the event SN = sN .
Conditioning on the more specific event S0 = s0, SN = sN , S2N = s2N
is needed for latter parts.

H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y,Y′, S0=s0, SN=sN , S2N=s2N )

and
β(s0, sN , s2N ) ,

γ(s0, sN ) + γ(sN , s2N )

2
, (41)

where

γ(s0, sN ) , H(Ui|U i−1
1 ,Y, S0 = s0, SN = sN ) . (42)

Note that by stationarity,

γ(sN , s2N ) = H(Vi|V i−1
1 ,Y′, SN = sN , S2N = s2N ) .

The following lemma states how α and β are related to our
quantities of interest, Ĥn and Ĥ−n .

Lemma 16. Let N = 2n > 2ν , where ν was promised in
Lemma 15. Then, for α and β as defined above, we have that

Ĥ−n ≥
∑

s0,sN ,s2N∈S
p(s0, sN , s2N ) · α(s0, sN , s2N ) , (43)

and

Ĥn =
∑

s0,sN ,s2N∈S
p(s0, sN , s2N ) · β(s0, sN , s2N ) . (44)

Furthermore, for all s0, sN , s2N ∈ S,

α(s0, sN , s2N ) ≥ β(s0, sN , s2N ) . (45)

Proof: Define i = Jn. To prove (43), we proceed similarly
to the proof in Lemma 13 and deduce that

Ĥ−n = H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y �Y′, S0, S2N )

≥ H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y,Y′, S0, S2N )

≥ H(Ui ⊕ Vi|U i−1
1 , V i−1

1 ,Y,Y′, S0, SN , S2N )

=
∑

s0,sN ,s2N∈S
p(s0, sN , s2N ) · α(s0, sN , s2N ) ,

The proof of (44) follows by stationarity. That is,

Ĥn = H(Ui|U i−1
1 ,Y, S0, SN )

=
H(Ui|U i−1

1 ,Y, S0, SN ) +H(Vi|V i−1
1 ,Y′, SN , S2N )

2

=
∑

s0,sN ,s2N∈S
p(s0, sN , s2N ) · γ(s0, sN ) + γ(sN , s2N )

2

=
∑

s0,sN ,s2N∈S
p(s0, sN , s2N ) · β(s0, sN , s2N ) .

By (41), we deduce that (45) will follow from proving that

α(s0, sN , s2N ) ≥ γ(s0, sN ) (46)

and
α(s0, sN , s2N ) ≥ γ(sN , s2N ) (47)

W.l.o.g, we prove (46). Indeed, given that SN = sN , we
have by the Markov property that (S0, U

i−1
1 , Ui,Y) and

(V i−1
1 , Vi,Y

′, S2N ) are independent. Hence, for any s2N we
may also write γ, defined in (42), as

γ(s0, sN ) = H(Ui|U i−1
1 , V i−1

1 , Vi,Y,Y
′,

S0 = s0, SN = sN , S2N = s2N ) .

Lastly, note that in the above expression for γ, since we
condition on Vi, we could have written Ui ⊕ Vi in place of
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Ui. This would give us the expression for α in (40), up to a
further conditioning on Vi. Since conditioning reduces entropy,
(46) follows. As noted, the proof of (47) is similar. Hence, we
deduce (45).

In light of Lemma 16, our plan is to show the existence of a
triplet (s0, sN , s2N ) for which α(s0, sN , s2N ) is substantially
greater than β(s0, sN , s2N ). The next lemma assures us such
a triplet indeed exists.

Lemma 17. For every ε > 0 there exists a ∆′ = ∆′(ε) for
which the following holds. Let N = 2n > 2ν , where ν was
promised in Lemma 15. Then, if ε ≤ Ĥn ≤ 1− ε, then there
exists a triplet s0, sN , s2N such that

α(s0, sN , s2N ) > β(s0, sN , s2N ) + ∆′ . (48)

Proof: By definition of γ in (42), we have that

Ĥn =
∑

s0,sN∈S
Pr(S0 = s0, SN = sN ) · γ(s0, sN ) (49)

=
∑

sN ,s2N∈S
Pr(SN = sN , S2N = s2N ) · γ(sN , s2N ) ,

where the second equality follows by stationarity. A crucial
point will be to show the existence of a triplet (s0, sN , s2N )
for which (Ĥn−γ(s0, sN )) · (Ĥn−γ(sN , s2N )) ≤ 0. In other
words, either

γ(s0, sN ) ≤ Ĥn and γ(sN , s2N ) ≥ Ĥn , (50)

or
γ(s0, sN ) ≥ Ĥn and γ(sN , s2N ) ≤ Ĥn . (51)

To show this by contradiction, we start by supposing that
this is not the case. Then, for all s0, sN , s2N ∈ S, it must be
that

(Ĥn − γ(s0, sN )) · (Ĥn − γ(sN , s2N )) > 0 . (52)

Fix some arbitrary a, b ∈ S . By specializing s0 to a and sN
to b in (52), we deduce that Ĥn 6= γ(a, b). Assume w.l.o.g.
that γ(a, b) < Ĥn. We now claim that for all c, d ∈ S,

γ(c, d) < Ĥn . (53)

Indeed, let c, d ∈ S be given. By setting s0 = a, sN = b,
s2N = c, we deduce from (52) that γ(b, c) < Ĥn. Hence, if
we set s0 = b, sN = c, s2N = d in (52), we deduce (53).

From the above paragraph, we conclude that for all s0, sN ∈
S , we must have that γ(s0, sN ) < Ĥn. However, recalling from
(49) that Ĥn is a weighted average of such γ terms, we arrive
at a contradiction. Hence, there exists a triplet (s0, sN , s2N )
for which either (50) or (51) holds. This is the triplet we are
searching for. Indeed, since we have assumed that ε ≤ Ĥn ≤
1− ε, the above triplet satisfies

min{γ(s0, sN ), γ(sN , s2N )} ≤ 1− ε

and
max{γ(s0, sN ), γ(sN , s2N )} ≥ ε .

Our result now follows by combining part (i) of [27, Lemma
2.2] with8 [20, Lemma 11].

8The first two strict inequalities in the statement of [20, Lemma 11] are
essentially typos: they should both be replaced by weak inequalities, as is
evident from reading the beginning of the proof.

Combining Lemmas 16 and 17 gives the following key result.

Lemma 18. For every ε > 0 there exists ∆ = ∆(ε) for which
the following holds. Let N = 2n > 2ν , where ν was promised
in Lemma 15. Then, if ε < Ĥn ≤ 1− ε, then

Ĥ−n − Ĥn > ∆(ε)

Proof: Take

∆ =
∆′ · (πmin)3

2
,

where ∆′ is as defined in Lemma 17. Now, simply combine
(39), (43), (44), (45) and the existence of triplet s0, sN , s2N

for which (48) holds, to yield the claim.
The following lemma will be useful.

Lemma 19. For n ∈ N, let An and Bn be real random
variables defined on a common probability space. Suppose Bn
converges in L1 to B∞ and E(An) converges to E(B∞). If
An ≥ Bn for all n ∈ N, then An converges in L1 to B∞.

Proof: By definition, Bn converges to B∞ in L1 if and
only if E(|Bn −B∞|)→ 0. Thus, by the triangle inequality,

E(|An −B∞|) ≤ E(|An −Bn|) + E(|Bn −B∞|)
= E(An −Bn) + E(|Bn −B∞|)
= E(An)− E(Bn) + E(|Bn −B∞|) .

In the limit, the first two terms converge to E(B∞) and the
last term converges to 0. Thus, E(|An −B∞|)→ 0.

The following theorem claims weak polarization for the
three cases discussed earlier.

Theorem 20. Fix ε ∈ (0, 1) and let N = 2n. For a given
hidden-Markov input distribution, let X = (X1, X2, . . . , XN )
be a random vector with the above distribution. Let Y be the
result of passing X through a deletion channel with deletion
probability δ. Denote U = A(X). Let S0 and SN be as in
Definition 1. Then,

lim
n→∞

∣∣{i : H(Ui|U i−1
1 ,Y, S0, SN ) < ε

}∣∣
N

(54a)

= lim
n→∞

∣∣{i : H(Ui|U i−1
1 ,Y) < ε

}∣∣
N

(54b)

= lim
n→∞

∣∣{i : H(Ui|U i−1
1 ,Y∗) < ε

}∣∣
N

(54c)

= 1− lim
n→∞

H(X|Y)

N
(54d)

and

lim
n→∞

∣∣{i : H(Ui|U i−1
1 ,Y, S0, SN ) > 1− ε

}∣∣
N

(55a)

= lim
n→∞

∣∣{i : H(Ui|U i−1
1 ,Y) > 1− ε

}∣∣
N

(55b)

= lim
n→∞

∣∣{i : H(Ui|U i−1
1 ,Y∗) > 1− ε

}∣∣
N

(55c)

= lim
n→∞

H(X|Y)

N
. (55d)

Proof: For simplicity, the proof is split into 4 parts.
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Part I: (54d) and (55d) are well defined: Recall from
Lemma 9 that limn→∞H(X|Y)/N exists. Thus, the right
hand sides of both (54d) and (55d) are well defined.

Part II: (54a)=(54d) and (55a)=(55d): Since the
Arıkan transform is invertible, it follows that ĤN =
H(X|Y, S0, SN ) = H(U|Y, S0, SN ), where ĤN is defined
in (27). Thus, from the chain rule for entropy, we observe that

E(Ĥn) =
1

N

N∑
i=1

H(Ui|U i−1
1 ,Y, S0, SN )

=
1

N
H(U|Y, S0, SN )

=
1

N
ĤN .

From Theorem 12, we see that Ĥn converges in L1 to Ĥ∞ ∈
{0, 1}. This implies that E(Ĥ∞) = limn→∞E(Ĥn) which
exists and equals limN→∞ ĤN/N by Lemma 10. Since Ĥ∞ ∈
{0, 1}, observing that E(Ĥ∞) = Pr(Ĥ∞ = 1) shows that

(55a) = lim
n→∞

Pr(Ĥn> 1− ε) = Pr(Ĥ∞= 1) = lim
n→∞

1

N
ĤN ,

where the second equality holds because convergence in L1

implies convergence in distribution and 1− ε is a continuity
point of Pr(Ĥ∞ ≤ x) [26, Ch. 4]. Since Lemma 11 shows
that limN→∞ ĤN/N equals (55d), it follows that (55a) equals
(55d). The last step is observing that

(54a) = lim
n→∞

Pr(Ĥn<ε) = Pr(Ĥ∞= 0) = 1− Pr(Ĥ∞= 1)

holds because convergence in L1 implies convergence in
distribution and ε is a continuity point of Pr(Ĥ∞ ≤ x). Thus,
(54a) equals (54d).

Part III: (54c)=(54d) and (55c)=(55d): To prove these
equalities, we will apply Lemma 19 to the sequences An = H∗n
and Bn = Ĥn. Theorem 12 shows that Ĥn converges in L1

to Ĥ∞ and we established in the previous part that E(Ĥ∞)
equals (55d). From the definitions in (34) and (35), it follows
that H∗n ≥ Ĥn for all n ∈ N. The only other element required
for Lemma 19 is that E(H∗n) → E(Ĥ∞) and this will be
shown below. Assuming this for now, we observe Lemma 19
implies that H∗n converges in L1 to Ĥ∞ and gives the desired
result

(54c) = lim
n→∞

Pr(H∗n < ε) = Pr(Ĥ∞ < ε) = (54d)

(55c) = lim
n→∞

Pr(H∗n > 1− ε) = Pr(Ĥ∞ > 1− ε) = (55d) ,

where the second equality on each line holds because conver-
gence in L1 implies convergence in distribution and ε, 1− ε
are continuity points of Pr(Ĥ∞ ≤ x) [26, Ch. 4].

To show that E(H∗n)→ E(Ĥ∞), we will use the fact that

H(U|Y, S0, SN ) ≤ H(U|Y∗) ≤
H(U|Y, S0, SN ) + 2 log2 |S|+ 2 log2(N + 1) . (56)

Indeed, the first inequality holds because Y∗ is a function of
Y. The second inequality follows from first noting that

H(U|Y∗) ≤ H(Y, S0, SN ,U|Y∗) .

And then observing that

H(Y, S0, SN ,U|Y∗)
= H(Y|Y∗) +H(S0, SN |Y,Y∗) +H(U|Y,Y∗, S0, SN )
(a)
= H(Y|Y∗) +H(S0, SN |Y,Y∗) +H(U|Y, S0, SN )
(b)

≤ H(Y|Y∗) + 2 log2 |S|+H(U|Y, S0, SN )
(c)
≤ 2 log2(N + 1) + 2 log2 |S|+H(U|Y, S0, SN ) ,

where (a) follows from Y∗ being a function of Y, (b) follows
by S0 and SN each having a support of size |S|, and (c)
follows since in order to construct Y from Y∗, it suffices to
be told how many ‘0’ symbols have been trimmed from each
side of Y, and both numbers are always between 0 and N .
Combining the above two displayed equations yields the RHS
of (56).

Finally, we divide both sides of (56) by N and take the limit
as N →∞. Since the left-most and right-most terms converge
to E(Ĥ∞), the sandwich property implies that the center term,
E(H∗n) also converges to this quantity.

Part IV: (54a)=(54b)=(54c) and (55a)=(55b)=(55c):
Note that, for 1 ≤ i ≤ N , we have

H(Ui|U i−1
1 ,Y, S0, SN )≤H(Ui|U i−1

1 ,Y)≤H(Ui|U i−1
1 ,Y∗) .

We have already proved that (54a)=(54c) and (55a)=(55c).
Thus, by the sandwich property, (54a)=(54b)=(54c) and
(55a)=(55b)=(55c).

Remark 1. We end this section by remarking in passing that the
ideas used up to this point can be easily generalized to settings
in which the channel introduces insertions and substitutions, in
addition to deletions. That is, representing such outcomes via
a trellis (recall Figure 2) is straightforward: to accommodate
substitutions we only need to change the probabilities associated
with the diagonal edges we have previously defined, and an
insertion would correspond to an edge going one column across
and two rows down. Theorem 20 would continue to hold for
the more general case, as well as Theorem 2. This is because,
in both, we have not made specific use of the fact that the
channel only introduces deletions9. Indeed, the only essential
complication we had to overcome was that of synchronization.
That is, we were not told which part of the output corresponds
to which part of the input. The next section, in which we prove
strong polarization, is different in this regard. Proving strong
polarization for the more general case requires different tools
and ideas, and is done in the recent paper [28].

VII. STRONG POLARIZATION

To rigorously claim a coding scheme for the deletion channel,
one must also show strong polarization. For this, Theorem 20
is not sufficient and, so far, we have been unable to prove
strong polarization for the standard polar code construction.
Thus, we will modify the standard coding scheme to proceed.

9For this statement to be correct, we must remove (54c) and (55c) from
Theorem 20. However, the claim still holds if we do not remove these lines.
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A. Overview of Coding Scheme

Fix a deletion probability δ and a regular hidden Markov
input distribution. Recall that our goal is to achieve the
information rate I given in (23). For didactic reasons, we
first consider a simplified setting in which this goal is easily
attained. Specifically, let N0 be a given parameter, and consider
a block-TDC with block length N0 and deletion probability
δ. That is, for each input block X(φ) of length N0, where
φ = 1, 2, . . ., the channel outputs Y∗(φ), which is the result
of passing X(φ) through a TDC with deletion probability δ.
The crucial point to note is that, contrary to a deletion channel,
the output of a block-TDC contains commas between segments.
That is, we know exactly which output segment corresponds
to which input block.

How would one code for such a channel and achieve a rate
approaching I? For this, we will assume that

N0 = 2n0 , (57)

and that we can choose N0 to be arbitrarily large. Let

Φ = 2n1 (58)

be the number of blocks we will transmit through the channel.
Consider the following input distribution: each block X(φ)
will be distributed according to the input distribution that
we have fixed at the start of this subsection, and the input
blocks X(1),X(2), . . . ,X(Φ) will be i.i.d. In a nutshell, this
suffices to achieve a coding rate of I with vanishing probability
of error for the following two reasons. First, Theorem 20
shows weak polarization for each block and, in each block, we
have the required fractions of high-entropy/low-entropy indices.
Second, the independence between blocks implies that strong
polarization will occur.

We now back the above claim with a few more details. We
denote the output of the encoder — the concatenation of the
above blocks — by

X = X(1)�X(2)� · · · �X(Φ) . (59)

This output has length

N = N0 · Φ = 2n0+n1 = 2n . (60)

We will use a sans-serif font to denote a vector whose elements
are ‘blocks’. Thus, we will denote the partitioning of the above
X into blocks of length N0 by

X = (X(1),X(2), . . . ,X(Φ)) . (61)

The corresponding output of the block-TDC is denoted

Y∗ = (Y∗(1),Y∗(2), . . . ,Y∗(Φ)) . (62)

That is, Y∗ is comprised of Φ distinguishable blocks — it is
not simply the concatenation of the Y∗(φ). The superscript
‘∗’ in Y∗ suggest that trimming operation is applied blockwise.

We first consider the polar transform of X(φ), denoted10

V(φ) = A(X(φ)) , (63)

10We reserve the letter U , commonly used to denote the result of a polar
transform, for a related yet distinct definition that is yet to appear.

where 1 ≤ φ ≤ Φ. Note that V(φ) is a binary vector of length
N0,

V(φ) = (V1(φ), V2(φ), . . . , VN0
(φ)) .

Recall that Y∗(φ) is the output corresponding to X(φ), and
note that since we have assumed that the X(φ) are i.i.d., then
this must also hold for triplets (X(φ),V(φ),Y∗(φ)), when
ranging over 1 ≤ φ ≤ Φ.

For a fixed 1 ≤ φ ≤ Φ and a given 1 ≤ i0 ≤ N0, consider
the pair of entropies

H(Vi0(φ)|V i0−1
1 (φ),Y∗(φ)) and

H(Vi0(φ)|V i0−1
1 (φ)) . (64)

We now make two important observations. First, since we
have already established that the (X(φ),V(φ),Y∗(φ)) are
i.i.d. over φ, we deduce that (64) is independent of φ. Second,
both entropies in (64) exhibit slow polarization, in the sense of
Theorem 20. That is, on one hand, we deduce that (54c)=(54d)
and (55c)=(55d), if in both (54c) and (55c) we replace Ui,
U i−1

1 , Y∗, n and N by Vi0(φ), V i0−1
1 (φ), Y∗(φ), n0 and N0,

respectively. These statements hold for all δ ∈ [0, 1]. For the
special case of δ = 1, one gets a degenerate channel where
Y∗(φ) always equals the empty string. Thus, on the other hand,
the same claim of (54c)=(54d) and (55c)=(55d), under the
above substitutions continues to hold, with Y and Y∗ removed
from these equations.

Since the first entropy in (64) is always less than or equal
to the second, we deduce from the above paragraph and the
first half of Theorem 20 that for ε ∈ (0, 1) fixed, the fraction
of indices i0 for which

H(Vi0(φ)|V i0−1
1 (φ),Y∗(φ)) < ε and

H(Vi0(φ)|V i0−1
1 (φ)) ≥ ε

tends to(
1− lim

n0→∞

H(X(φ)|Y(φ)))

N0

)
−
(

1− lim
n0→∞

H(X(φ))

N0

)
= I ,

as n0 →∞. For simplicity of exposition, let us further restrict
ε to ε ∈ (0, 1/2). By both halves of Theorem 20, we deduce
that the fraction of indices i0 for which

ε ≤ H(Vi0(φ)|V i0−1
1 (φ)) ≤ 1− ε

vanishes. The conclusion is stated as a lemma, for future
reference.

Lemma 21. For ε ∈ (0, 1/2) fixed, the fraction of indices
1 ≤ i0 ≤ N0 for which

H(Vi0(φ)|V i0−1
1 (φ),Y∗(φ)) < ε and

H(Vi0(φ)|V i0−1
1 (φ)) > 1− ε (65)

tends to I , as n0 →∞, and is the same for every 1 ≤ φ ≤ Φ.

We now note that for a given φ and i0, we have an efficient
method of calculating the probabilities corresponding to (65).
Namely, this is achieved by using the base trellis defined for
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a TDC in Subsection III-C, applying a series of plus and
minus polarization operations on it, according to the binary
representation of i0 − 1, and then invoking (22). That is, the
only thing stopping us from applying the Honda-Yamamoto
scheme [29] at this point is the fact that the above ε is fixed.
That is, if we were to follow the Honda-Yamamoto scheme by
placing information bits in the Vi0 for which (65) holds, then
we would not be able to prove that the probability of error
decays to zero as the codelength increases. For this, a stronger
version of (65) is needed.

Informally, we overcome the above problem as follows. Take
ε ‘small’ and n0 as well as n1 ‘large’. Consider a ‘good’ index
i0. That is, an index i0 for which (65) holds. This will be the
case for a fraction of indices ‘very close’ to I. Next, recall
the definition of X in (59), and denote its polar transform as

U = A(X) .

Consider the subvector U i0·Φ(i0−1)·Φ+1. It is not hard to prove
that

U i0·Φ(i0−1)·Φ+1 = A((Vi0(1), Vi0(2), . . . , Vi0(Φ))) . (66)

That is, the LHS of (66) is gotten by applying the Arıkan
transform to the vector (Vi0(1), Vi0(2), . . . , Vi0(Φ)). Since
each entry of this vector satisfies (65), ‘almost all’ indices
i of U, where (i0 − 1) · Φ + 1 ≤ i ≤ i0 · Φ are strongly
polarized. That is, satisfy

Z(Ui|U i−1
1 ,Y∗) < 2−n1β and

K(Ui|U i−1
1 ) < 2−n1β (67)

where Z and K are the conditional Bhattacharyya parameter
and the conditional total variation (see Definitions 7 and 8 in
Appendix A), β < 1/2 is some fixed constant, and Y∗ is the
block-TDC output vector defined in (62). That is, the overall
fraction of useful indices 1 ≤ i ≤ N0Φ with respect to the
Honda-Yamamoto scheme [29] will be ‘very close’ to I, and
the error of the scheme will approach 0 at a rate of roughly
2−
√

Φ.
The reader may not be surprised to learn that the above

informal statements can be made rigorous and proven11. Indeed,
this will be done as part of the proof of Theorem 1. However,
one important point remains to be addressed. That is, the
channel we will in fact be coding for is the deletion channel,
and not the block-TDC. Hence, in the above description, we
have implicitly assumed a genie which has manufactured the
punctuated vector Y∗ for us. The purpose of the guard-bands,
defined shortly, is to approximate such a genie in practice.

Our actual coding scheme will be as follows. For the
encoding step, we will first use the Honda-Yamamoto scheme
with respect to the block-TDC. Thus, the information bits
will be placed in indices j of U for which (67) holds. The
resulting codeword will be X. Then, we will add to X runs
of ‘0’ symbols in key locations, and transmit the resulting
word (which will be longer than X) on the deletion channel.
On the decoder side, a preliminary step will be to deduce the

11Such a proof is not a straightforward adaptation of the ideas in [24] and
[30]. Namely, it requires the use of [31, Lemma 40], which we indeed invoke
in the proof of Theorem 1.

V(1) V(2) V(φ) · · · V(Φ)xA
xA

xA
xA

X(1) 00 . . . 0 X(2) 00 . . . 0 X(φ) . . . X(Φ)

Fig. 4. The Φ = N/N0 blocks, denoted X(1),X(2), . . . ,X(Φ), have length
N0 = 2n0 , are i.i.d., and each is distributed according to the regular hidden-
Markov input distribution. Their polar transforms are V(1),V(2), . . . ,V(Φ).
An additional n − n0 polarization steps (not shown) will be applied to
V(1),V(2), . . . ,V(Φ), resulting in U. The transmitted codeword is gotten
by separating consecutive X(·) vectors by a ‘guard band’. That is, by a string
of ‘0’ symbols. The length of the guard bands is not constant. For example,
the middle guard band is always the longest, while the first and last guard
bands are always the shortest.

punctuated vector Y∗ from the received vector Y. That is, we
will remove the guard bands (and trim the Y(φ) into Y∗(φ)
in the process), thus producing Y∗. Then, the decoder will be
applied on Y∗ to yield U, and thus the information bits.

B. Guard bands

In this subsection, we first describe how the guard bands
are added to X on the encoder side. We then explain how the
decoder deduces the punctuated vector Y∗ from the received
vector Y.

We start by defining how guard bands are added between the
blocks X(1),X(2), . . . ,X(Φ), see Figure 4. That is, we define
how X is transformed into g(X). This is done in a simple
recursive manner. Informally, let x be a vector of length 2n. If
this length is greater than the designated block-length N0, we
halve x, add `n ‘0’ symbols in the middle, and then apply g
recursively to each original half. Namely, for x = xI � xII ∈
X 2n with

xI = x2n−1

1 ∈ X 2n−1

, xII = x2n

2n−1+1 ∈ X
2n−1

being the first and second halves of x, respectively, we define

g(x) ,


x if n ≤ n0

g(xI)�
`n︷ ︸︸ ︷

00 . . . 0�g(xII) if n > n0 ,

(68)

and

`n , b2(1−ξ)(n−1)c , (69)

where ξ ∈ (0, 1/2) is a yet-to-be-specified ‘small’ constant.
The parameter ξ controls the rate penalty of adding guard bands,
on one hand, and the probability of the decoder successfully
removing the guard bands, on the other hand. We will require
that n0 > 1, so that the inequality

`n > 2(n−1)(1−ξ)−1 (70)

used later on will hold for all relevant n, i.e., for n > n0. Note
the above specifically implies that `n > 0.

We now explain how the guard bands are removed, from the
received word Y, in order to produce the punctuated sequence
Y∗ defined in (62). Equivalently, we now show a procedure
with the following outcome: for each block index 1 ≤ φ < Φ,
we will produce the trimmed vector Y∗(φ) corresponding to
the block X(φ). Before explaining how this is done, we first
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X XI XII

G GI G4 GII

Y YI Y4 YII

Z = Y∗ ZI Z4 ZII

Fig. 5. The random variables X, G, Y, and Z.

mention that our method has a small yet non-zero probability of
failing. That is, there is a non-zero probability that our method
will fail to produce Y∗. This probability will be analyzed at a
later stage.

Our procedure for producing Y∗ will have a preliminary
step, and will then involve a recursion. The preliminary step is
simple: we trim the received vector Y of leading and trailing
zeros to produce Y∗. We stress that, generally, Y∗ does not
equal the punctuated sequence Y∗ defined in (62). In order
to introduce notation required later on, let us now define the
above operation more verbosely. Let XI and XII be the left and
right halves of X, see Figure 5. Thus, the transmitted word is
g(X) = GI �G4 �GII, where GI = g(XI), GII = g(XII),
and G4 is the middle guard band of length `n, where n is
log2 of the length of X. Clearly, GI and GII are of equal
length. Denote the parts of Y corresponding to GI, G4 and
GII by YI, Y4, and YII, respectively. Note that at this stage,
the decoder sees Y, but can only make an informed guess as
to what parts of Y constitute YI, Y4, and YII. We remove
from the received word Y all leading and trailing ‘0’ symbols
and denote the resulting vector Z = Y∗. We denote the parts
of Z corresponding to YI, Y4, and YII by ZI, Z4, and ZII,
respectively. In order to build up the reader’s intuition, we note
that in a ‘typical case’, ZI is YI after the leading zeros have
been removed, ZII is YII after the trailing zeros have been
removed, and Z4 is simply Y4. As explained, the production
of Z from Y constitutes the preliminary step of our method.

We will now specify how the punctuated vector Y∗ is
recursively produced from Z. For the base case, note that
if Φ = 1, then Y∗ is simply Z. Our procedure hinges on the
assumption that the middle index of Z originated from a guard
band symbol. Specifically, we will assume that the middle index
of Z (rounding down) belongs to Z4. As explained, there is
a probability of this assumption being false, and this will be
analyzed at a later stage. For now, consider the case in which
the assumption holds. In this case, the crucial observation is
that Y∗I equals the first half of Z, trimmed, while Y∗II equals
the second half of Z, trimmed. Namely, if ζ is the length of
Z, then

Y∗I = (Z1, Z2, . . . , Zbζ/2c)
∗ , (71)

Y∗II = (Zbζ/2c+1, Zbζ/2c+1, . . . , Zζ)
∗ , (72)

since the guard band Z4 has been ‘trimmed out’. Thus, we

have reduced our original problem of producing Y∗ from Y∗

into two equivalent problems, each half the size of the original:
find the first half of Y∗, namely Y∗(1),Y∗(2), . . . ,Y∗(Φ/2),
from Y∗I and the second half of Y∗ from Y∗II. Thus, we
continue recursively: we apply our method first to the RHS
(71) and then to the RHS of (72). If, during all these recursive
invocations, our assumptions on the middle index being part
of the middle guard band were indeed correct, then we will
have succeeded in producing Y∗. Note that the recursion depth
is n− n0.

There are two points that must be addressed. First, recall
that adding guard bands makes the transmitted word longer.
We must show that this has a vanishingly small effect on the
rate of our scheme. Second, we must show that our scheme of
producing Y∗ from Y has a vanishingly small probability of
failing. Once this is done, the proof of Theorem 1 will follow
easily.

C. Auxiliary lemmas

In this section, we state and prove a number of lemmas key
to the proof of Theorem 1.

In the sequel, we will choose a fixed ν ∈ (0, 1
3 ] and set

n0 = bνnc. The parameter ν will trade-off reliability and
decoding complexity (e.g., see Theorem 1). Recall that both ξ,
the parameter through which `n is defined in (69), and ν are
positive and fixed (not a function of n). Thus, the following
lemma ensures that the rate penalty of adding guard bands is
negligible as n→∞.

Lemma 22. Let x be a vector of length |x| = 2n. Then,

|x| ≤ |g(x)| <
(

1 +
2−(ξ·n0+1)

1− 2−ξ

)
· |x| . (73)

Proof: From the definition of g(x), induction shows

|g(x)| =

{
2n if n ≤ n0

2n +
∑n
t=n0+1 2n−t · `t otherwise.

(74)

Thus, the lower bound in (73) is trivial, since |x| = 2n, and
every term in the sum in (74) is non-negative, by (69). The
upper bound in (73) is trivially true for n ≤ n0. For the case
n > n0, we have that

|g(x)|/|x| (a)
= 1 +

n∑
t=n0+1

2−t · `t

(b)

≤ 1 +

n∑
t=n0+1

2−t · 2(1−ξ)·(t−1)

= 1 +

n∑
t=n0+1

2−ξ·(t−1)−1

< 1 +

∞∑
t=n0+1

2−ξ·(t−1)−1

(c)
= 1 +

2−(ξ·n0+1)

1− 2−ξ
.

where (a) follows from |x| = 2n and (74); (b) follows from
(69); (c) is simply the sum of geometric series.
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A key idea enabling the ‘genie’ described earlier is the
recursive processing of each half of the received sequence.
This processing will be successful if the middle symbol of the
received sequence is a ‘0’ originating from the outermost guard
band, as per the recursive definition in (68). The following
lemma shows that this is indeed the case, with very high
probability.

Lemma 23. Let the guard-band length `n in (69) use a fixed
ξ ∈ (0, 1/2). Fix the channel deletion probability δ and a
regular hidden-Markov input distribution. Let n > n0 > 1
and let X be a random vector of length N = 2n distributed
according to the modified input distribution described above:
i.i.d. blocks of length N0 = 2n0 , each distributed according
to the specified input distribution. Denote by Y the result of
transmitting g(X) through the deletion channel. Then, there
exists a constant θ > 0, dependent only on the input distribution
and the deletion probability such that, for n0 large enough,
the probability that the middle symbol of Y∗ (rounding down)
is not a ‘0’ from the outer guard band of length `n is at most
2−θ·2

(1−2ξ)n0
.

Proof: Let G = g(X) (see Fig. 5). Recall that we denote
the first and second halves of X by XI and XII, respectively.
Let GI = g(XI) and GII = g(XII), and denote by G4 the
guard band comprised of `n ‘0’ symbols between GI and GII.
Hence, by (68),

G = GI �G4 �GII .

Denote by Y the (untrimmed) result of passing G through
the deletion channel. Let YI, YII, and Y4 be the parts of Y
corresponding to GI, GII, and G4, respectively. Let Z = Y∗

be the trimmed Y. Define ZI, ZII, and Z4, as the parts of Z
corresponding to GI, GII, and G4, respectively.

For Z = (Z1, Z2, . . . , Zt) with t ≥ 1, the middle index of
Z (rounding down) is s = b(t+ 1)/2c. A sufficient condition
for Zs belonging to Z4 is

|ZI| < |Z4|+ |ZII| , |ZII| < |ZI|+ |Z4| . (75)

To see that this is sufficient, we observe that |ZI| < |Z4|+|ZII|
implies that the middle index does not fall in ZI because then

b(|Z|+ 1)/2c = b(|ZI|+ |Z4|+ |ZII|+ 1)/2c
≥ b(|ZI|+ |ZI|+ 2)/2c = |ZI|+ 1 .

Similarly, if |ZII| < |ZI|+ |Z4|, then the middle index does
not fall in ZII because then

b(|Z|+ 1)/2c = b(|ZI|+ |Z4|+ |ZII|+ 1)/2c
≤ b(|ZI|+ |Z4|+ |ZI|+ |Z4|)/2c = |ZI|+ |Z4| .

Now, we will analyze the probability of (75). Denote by α,
β, and γ the following length differences between the three
parts of G and the three corresponding parts of Y,

α = |GI| − |YI| ,
β = |G4| − |Y4| ,
γ = |GII| − |YII| .

Also, denote by α′, β′, and γ′ the length differences resulting
from trimming,

α′ = |YI| − |ZI| ,
β′ = |Y4| − |Z4| ,
γ′ = |YII| − |ZII| .

Suppose that the trimming on both sides stopped short of the
guard band. In this case, β′ = 0. Since |GI| = |GII| and
|G4| = `n, condition (75) would reduce to

α+ α′ < γ + γ′ + `n − β , (76)
γ + γ′ < α+ α′ + `n − β . (77)

Our aim is to show that, with very high probability, both
(76) and (77) hold, as well as the assumption leading to their
formulation.

Recall that δ is the channel deletion probability and let

ˆ̀= `n · (1− δ)/2 . (78)

We define the following ‘good’ events on the random variables
α, α′, β, β′, γ, and γ′:

A : δ|GI| − ˆ̀/4 < α < δ|GI|+ ˆ̀/4 (79)

A′ : 0 ≤ α′ < ˆ̀/4 (80)

B : 0 ≤ β < δ · `n + ˆ̀ (81)
B′ : β′ = 0 (82)
C : δ|GII| − ˆ̀/4 < γ < δ|GII|+ ˆ̀/4 (83)

C ′ : 0 ≤ γ′ < ˆ̀/4 (84)

First, we note that the total number of symbols deleted or
trimmed from GI is given by |GI| − |ZI| = α+ α′. If A and
A′ hold, then this is bounded by

α+ α′ < δ|GI|+ ˆ̀/4 + ˆ̀/4

= δ|GI|+ ˆ̀/2 . (85)

By (73), |GI| = 2n−1 + t, where t ≥ 0. We now show that if
A and A′ hold, then α+ α′ < |GI|. Indeed, by (69) and (78),

δ|GI|+ ˆ̀/2 < δ|GI|+ ˆ̀

= δ(2n−1 + t) + 2−1(1− δ)b2(1−ξ)(n−1)c
< δ(2n−1 + t) + (1− δ)2n−2

= δ2n−1 + (1− δ)2n−2 + δt

< 2n−1 + δt

< 2n−1 + t = |GI| .

The analogous claim also holds for C, C ′, and GII. Thus, if
A, A′, C, and C ′ hold, then some parts of GI and GII must
remain in ZI and ZII after deletion and trimming. Hence, the
trimming has stopped short of the guard band, which implies
B′.

If, in addition, B occurs, then both (76) and (77) must also
hold. To verify that (76) holds, note that

γ + γ′ + `n − β
(a)
> δ|GII| − ˆ̀/4 + `n − δ · `n − ˆ̀

= δ|GII| − ˆ̀/4 + (1− δ)`n − ˆ̀

(b)
= δ|GII| − ˆ̀/4 + 2ˆ̀− ˆ̀
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= δ|GII|+ 3ˆ̀/4
(c)
> δ|GII|+ ˆ̀/2 ,

where (a) follows from (82), (83), and (84); (b) follows from
(78); (c) follows since `n is positive, by (70), and thus so is
ˆ̀, by (78). Next, observe that |GI| = |GII|, and apply (85).
The proof of (77) is the same except that the upper and lower
bounds are swapped for α+ α′ and γ + γ′.

To recap, the occurrence of all the ‘good’ events in (79)–(84)
implies that the middle index falls inside Z4. Hence, the next
step is to show that each of the above events occurs with very
high probability, if n is large enough.

We now recall Hoeffding’s bound [32, Theorem 2] [33,
proof of Lemma 4.13] and apply it to the deletion channel
with deletion probability δ. Namely, let D be a random variable
equal to the number of deletions after N channel uses. Hence,
E[D] = δN , and for t ≥ 0 we have by Hoeffding’s bound that

Pr(D ≥ δN + t) ≤ e−2t2/N , (86)

Pr(D ≤ δN − t) ≤ e−2t2/N . (87)

Recalling that ξ > 0, we now require that n0 be large enough
that the bracketed term in (73) is at most 2. That is, we assume
that n0 is large enough such that, for n > n0, we have

|GI| ≤ 2 · 2n−1 . (88)

Applying both (86) and (87), we deduce that, for n > n0, we
have

1− Pr(A) ≤ 2e−2(ˆ̀/4)2/|GI|

= 2e−2(`n(1−δ)/8)2/|GI|

(a)
< 2e−2(2(n−1)·(1−ξ)−1(1−δ)/8)2/|GI|

(b)

≤ 2e−2(2(n−1)·(1−ξ)−1(1−δ)/8)2/(2·2n−1)

= 2e
−
(

(1−δ)2
256

)
·2(n−1)(1−2ξ)

(c)
≤ 2e

−
(

(1−δ)2
256

)
·2n0·(1−2ξ)

, (89)

where (a) follows from (70); (b) holds by (88); and (c) follows
from n > n0. Exactly the same bound applies to 1− Pr(C).
For Pr(B), we again use (86) to deduce that

1− Pr(B) ≤ e−2ˆ̀2/`n

(a)
= e−2( `n(1−δ)

2 )
2
/`n

= e−2( (1−δ)
2 )

2
·`n

(b)
< e−2( (1−δ)

2 )
2
·2(n−1)(1−ξ)−1

= e
−
(

(1−δ)2
4

)
·2(n−1)(1−ξ)

(c)
≤ e
−
(

(1−δ)2
4

)
·2n0·(1−ξ)

, (90)

where (a) follows from (78); (b) follows from (70); and (c)
holds because n > n0.

We now bound 1−Pr(A′∩C ′) from above. Consider GI and
YI first. Next, recall that by the recursive definition of g in (68),
the prefix of length N0 = 2n0 of GI is distributed according
to the underlying regular Markov input distribution (it does not
contain a guard band). Denote this prefix as X1, X2, . . . , XN0 ,

and denote the state of the process at time 0 as S0. Since
our input distribution is not degenerate, there exists an integer
τ > 0 and a probability 0 < p < 1 such that, for any s ∈ S,

Pr
(
(X1, X2, . . . , Xτ ) = (0, 0, . . . , 0)|S0 = s

)
< p . (91)

Let
˜̀= `n0+1 · (1− δ)/2 . (92)

Since n > n0, we have by (69) and (78) that ˜̀≤ ˆ̀ and that

˜̀/4 < 2n0 .

Let

ρ = τ ·

⌊
˜̀/4

τ

⌋
,

and partition X1, X2, . . . Xρ into consecutive segments of
length τ . Then, we define event A′′ to occur if there exists
a segment that is not an all-zero vector of length τ , and its
first non-zero entry has not been deleted. We define C ′′ as
the analogous event, with respect to GII and YII, the only
difference being that we are now considering the length ρ
suffix of XII, and considering the last non-zero entry of a
segment. By construction, if A′′ and C ′′ hold, then A′ and C ′

must hold. That is, if event A′′ occurs, then the number of
symbols trimmed from the left of GI is strictly less than
˜̀/4, since the above non-zero non-deleted symbol is not
trimmed, and this assures that the “trimming from the left”
stops before it. A similar claim holds with respect to C ′′. Thus,
1− Pr(A′ ∩ C ′) ≤ 1− Pr(A′′ ∩ C ′′).

Since (91) holds for all s ∈ S, we have by the Markov
property that

1− Pr(A′′) <
(
1− (1− p)(1− δ)

)ρ/τ
. (93)

Indeed, if A′′ does not hold, this means that we have “failed” on
each of the ρ/τ segments, in the sense that each such segment
was either all-zero, or its first non-zero symbol was deleted.
Since the probability of “success” conditioned on any given
string of past failures is always greater than (1 − p)(1 − δ),
the above follows.

Define
ζ = − loge

(
1− (1− p)(1− δ)

)
,

and note that ζ > 0. Next, we bound ρ as

ρ > ˜̀/4− τ
= `n0+1 · (1− δ)/8− τ
>
(

2(1−ξ)·n0−1
)
· (1− δ)/8− τ ,

where the second inequality follows from (70). Thus,

1− Pr(A′′) < e−
ζ
τ ((2(1−ξ)·n0−1)·(1−δ)/8−τ) .

Of course, exactly the same bound holds for 1−Pr(C ′′). Hence,
by the union bound, and recalling that A′′∩C ′′ implies A′∩C ′,
we have that

1− Pr(A′ ∩ C ′) < 2e−
ζ
τ ((2(1−ξ)·n0−1)·(1−δ)/8−τ) . (94)

Putting (89), (90), and (94) together, and applying the union
bound proves the lemma.
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We conclude this section with the proof of our main theorem.
Note that both the encoding and decoding schemes are specified
in the proof.

Proof of Theorem 1: Our proof is divided into two parts.
In the first part, we consider the ‘idealized’ random vectors X
and Y. That is, X is drawn from the probability distribution
defined in Lemma 23 (there is no encoding of date) and Y is the
result of transmitting g(X) through our deletion channel. We
will show that by previously proven lemmas, the rate penalty
of expanding X to g(X) is negligible and the probability of
deducing Y∗ from Y is very high. We conclude the first part
by discussing the polarization of U = A(X).

In the second part of the proof, we consider the actual case at
hand. That is, we show how encoding and decoding are carried
out, discuss the encoding and decoding complexity, prove that
the rate of our coding scheme approaches the information rate
I, and prove that the probability of misdecoding tends to 0.

Recall that 0 < ν′ < ν ≤ 1/3 are fixed parameters. We let

n0 = bνnc (95)

and
ν′′ =

ν + ν′

2
, (96)

implying that

0 < ν′ < ν′′ < ν ≤ 1

3
. (97)

Then, set ξ for the guard-band length `n defined in (69) to

ξ =
1− 1+ν′′/ν

2

2
=

1− ν′′/ν
4

. (98)

Note that by (60),

n1 = n− bνnc = d(1− ν)ne . (99)

We start with the first part of the proof: let X and Y be
defined as in Lemma 23 (as yet, no coding of information).

Sub-claim 1. The rate penalty incurred by adding guard bands
becomes negligible as n→∞. Namely, |g(X)|/|X| tends to
1 as n→∞.

Sub-proof : This follows by Lemma 22, which shows that the
rate penalty incurred by adding guard bands becomes negligible
as n0 → ∞, and the connection between n0 and n given in
(95). �

Sub-claim 2. The probability of making a mistake during the
partitioning of Y into the Φ = 2n−n0 trimmed blocks Y(1)∗,
Y(2)∗,. . . ,Y(Φ)∗ is less than 1

3 · 2
−2ν

′′n
, for N = 2n large

enough.

Sub-proof : This follows from Lemma 23 and the union bound.
Specifically, recalling the recursive nature of our algorithm to
produce Y∗, we note that an error is made only if the relevant
portion of the received vector Y, after that portion has been
trimmed, is such that the middle symbol (rounding down) does
not belong to the outermost guard band. Each such probability
can be bounded by using Lemma 23. Since we produce Φ
blocks, our recursion is applied Φ − 1 times. Hence, for n0

large enough, the probability of failing to produce Y∗ is at
most

(Φ− 1) · 2−θ·2
(1−2ξ)n0

= (2n−bνnc − 1) · 2−θ·2
bνnc·((1+ν′′/ν)/2)

, (100)

where the equality follows from (58) and (95)–(99). Recalling
(95), we may take n large enough such that n0 is indeed large
enough for the above to hold. Moreover, since 0 < ν′′ < ν, it
is straightforward to show that the RHS of (100) is less than
1
3 · 2

−2ν
′′n

for large enough n, as required. �

Sub-claim 3. The fraction of indices i for which Ui contains
an information bit tends to I, as n → ∞. For U = A(X),
these indices i are defined as satisfying the following two
inequalities: the Bhattacharyya parameter must satisfy

Z(Ui|U i−1
1 ,Y(1)∗,Y(2)∗, . . . ,Y(Φ)∗) <

1

3N
· 2−2ν

′′n

(101)
and the total variation parameter (see Definition 8 in the
appendix) must satisfy

K(Ui|U i−1
1 ) <

1

3N
· 2−2ν

′′n
. (102)

Sub-proof : Informally, H ≈ 0 iff Z ≈ 0 and H ≈ 1 iff K ≈ 0.
Specifically, by [21, Lemma 1] we have

(Z(Vi0(φ)|V i0−1
1 (φ),Y∗(φ)))2

≤ H(Vi0(φ)|V i0−1
1 (φ),Y∗(φ))

≤ Z(Vi0(φ)|V i0−1
1 (φ),Y∗(φ))

and

1−H(Vi0(φ)|V i0−1
1 (φ))

≤ K(Vi0(φ)|V i0−1
1 (φ))

≤
√

1− (H(Vi0(φ)|V i0−1
1 (φ)))2 .

Thus, Lemma 21 continues to hold if we replace (65) by the
condition

Z(Vi0(φ)|V i0−1
1 (φ),Y∗(φ)) < ε and

K(Vi0(φ)|V i0−1
1 (φ)) < ε . (103)

That is, at the end of n0 polarization stages, the fraction of
indices 1 ≤ i0 ≤ N0 satisfying the ‘weak polarization’ in (103)
tends to I for any ε > 0. To get from the ‘weak polarization’
implied by (103) to the ‘strong polarization’ implied by (101)
and (102), we will employ [31, Lemma 40], which we now
state.

Lemma 24. [31, Lemma 40] Let B1, B2, . . . be independent
and identically distributed random variables with Pr{Bi =
0} = Pr{Bi = 1} = 1/2. Let Z0, Z1, . . . be a [0, 1]-valued
random process that satisfies

Zn+1 ≤ κ ·

{
Z2
n, Bn+1 = 0,

Zn, Bn+1 = 1,
n ≥ 0 ,

for some κ > 1. Fix 0 < β < 1/2. Then, for every δ > 0 there
exist η > 0 and n0 such that if Z0 ≤ η then

Pr{Zn ≤ 2−2nβ for all n ≥ n0} ≥ 1− δ .

Crucially, η and n0 depend on the process Zn only through κ.
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We will use the above lemma in a setting in which the
initial Z0 is “close enough” to 0, and thus the lemma implies
that with high probability Zn ≤ 2−2nβ . As we will see, the
lemma will be used both with respect to the evolution of the
Bhattacharyya parameter, as well as the evolution of the total
variation.

For b = (b1, b2, . . . , bn), recall from (4) the definition of
i(b), and denote

i0(b) , 1 +

n0∑
j=1

bj2
n0−j .

Thus, we may think of the random process by which
i(B1, B2, . . . , Bn) is chosen as first selecting i0, which is
in fact a function of B1, B2, . . . , Bn0

, and then completing
the choice of i according to a new process B̃1, B̃2, . . . , B̃n1

,
where

B̃1 = Bn0+1, B̃2 = Bn0+2, . . . , B̃n1
= Bn0+n1

, (104)

recalling that n0 + n1 = n, by (95) and (99).
Fix ε > 0 to a value that will shortly be specified. Next, for

now, let us fix an index i0 for which (103) holds. We define
two processes related to (104), denoted Z̃1, Z̃2, . . . , Z̃n1 and
K̃1, K̃2, . . . , K̃n1

. Recall that by definition, the (X(φ),Y(φ))
are i.i.d. over 1 ≤ φ ≤ Φ. Hence, this must also be the case
for (Vi0(φ), V i0−1

1 (φ),Y∗(φ)), by (63). The first process is
the evolution of the conditional Bhattacharyya parameter as we
apply the n1 polar transforms implied by (104), to (X̃φ, Ỹφ)Φ

φ=1,
where

X̃φ = Vi0(φ) and Ỹφ = (V i0−1
1 (φ),Y∗(φ)) .

The second process is defined similarly, but now we consider
the evolution of the conditional total variation parameter as we
apply n1 polar transforms to (X̃φ,

˜̃Yφ)Φ
φ=1, where

˜̃Yφ = V i0−1
1 (φ) .

By our assumption of i0 satisfying (103),

Z̃1 = Z(X̃1|Ỹ1) < ε and K̃1 = K(X̃1| ˜̃Y1) < ε .

Since (X̃φ, Ỹφ) are i.i.d. over φ, and the same holds for
(X̃φ,

˜̃Yφ), we have by [24, Proposition 5] that

Z̃t+1 ≤

{
2Z̃t if B̃t = 0

Z̃2
t if B̃t = 1

and by [21, Proposition 4] that

K̃t+1 ≤

{
K̃2
t if B̃t = 0

2K̃t if B̃t = 1 .

Lastly, it follows from (66) that Z̃n1
equals the LHS of (101)

while K̃n1 equals the LHS of (102), where i is defined in (4),
with Bj instead of bj .

To prove the sub-claim, we must show that, for every ω >
0, there exists a threshold such that, if n is larger than the
threshold, then the fraction of indices i satisfying both (101)
and (102) is at least I−ω. We will do this by choosing an ε and
n0 such that the fraction of indices satisfying (103) is at least
I −ω/3. Of these weakly polarized indices, we will choose n1

such that at least a fraction 1− 2ω/3 satisfy both (101) and
(102). This is sufficient because (I −ω/3)(1−2ω/3) ≥ I−ω.
To make a proper argument, however, we will work in reverse.

First, we will set the parameters for strong polarization
assuming sufficient weak polarization. In particular, we define

β = 3(ν + ν′′)/4 (105)

and observe that (97) implies 0 < β < 1/2. Then, we let
ψ = ω/3 be the maximum fraction of weakly polarized indices
that can fail to strongly polarize and apply Lemma 24 to
determine a valid maximum for ε and minimum for n1 (in
[31], ψ, ε, and n1 are denoted δ, η, and n, respectively).
This lemma implies the existence of an ε > 0 such that if
(103) holds for an index i0, then the fraction of i values
((i0−1) ·Φ + 1 ≤ i ≤ i0 ·Φ) for which both Z̃i < 2−2βn1 and
K̃i < 2−2βn1 is at least 1− 2ω/3, for all n1 large enough12.
Conceptually, we need to apply the lemma twice – once for
(101) and once for (102). Thus, the fraction of weakly polarized
indices that fail to satisfy both (101) and (102) is at most
2ψ = 2ω/3.

Next, for the ε determined above, we find the minimum n0 to
guarantee that (103) holds for at least a fraction I−ω/3 of the
i0 indices. Lastly, we recall that n0 and n1 are monotonically
increasing functions of n, by (95) and (99). Hence, for all large
enough n, the parameters n0 and n1 will exceed the bounds
computed earlier and the fraction of indices satisfying (101)
and (102), where in both cases we replace the RHS by 2−2βn1 ,
is at least I − ω.

In order to prove the sub-claim, all that remains is to show
that, for all large enough n, we have

2−2βn1
<

1

3N
· 2−2ν

′′n
, (106)

the latter term being RHS of (101) and (102). Indeed, by (99)
we have that n1 ≥ (1 − ν)n, and recalling from (97) that
ν ≤ 1/3, we deduce that n1 ≥ 2n/3. Hence, to prove (106),
it suffices to show that

2−22βn/3

<
1

3N
· 2−2ν

′′n
. (107)

Indeed, by (97) and (105) we have that 2β/3 > ν′′. Thus,
recalling that N = 2n, we deduce that (107) holds for all n
large enough. �

We now move to the second part of our proof. Let us first
discuss how data is encoded. We produce u = uN1 successively,
starting from u1 and ending in uN . If the current index i satis-
fies (101) and (102), then ui is set to an information bit, where
the information bits are assumed i.i.d. and Bernoulli(1/2).
Otherwise, ui is randomly picked according to the distribution
P (Ui = ui|U i−1

1 = ui−1
1 ), where ui−1

1 are the realizations
occurring in previous stages13. The random picks in this case
are assumed to be from a random source common to both
the encoder and the decoder. Typically, this is implemented
using a pseudo-random number generator, common to both
sides: if the pseudo-random number 0 ≤ ri ≤ 1 drawn for

12Crucially, ε and the n1 threshold do not depend on the choice of i0.
13In practice, the user may want to pick some of these ui deterministically.

That is, pick ui such that P (Ui = ui|U i−1
1 = ui−1

1 ) is maximized, as
suggested in [34] and analyzed in [35].



22

this stage is such that P (Ui = 0|U i−1
1 = ui−1

1 ) ≤ ri, we set
ui = 0. Otherwise, we set ui = 1. These are essentially the
‘frozen-bits’ from the seminal paper [24]. Transforming u to
x = A−1

n (u) and adding guard bands to x is as described
before.

The following sub-claim proves a key part of our theorem.

Sub-claim 4. The rate of our coding scheme approaches I,
as n→∞.

Sub-proof : This is an immediate consequence of Subclaims 1
and 3. That is, Subclaim 1 states that no asymptotic rate penalty
is incurred by adding guard bands, while Subclaim 3 shows
that the fraction of Ui in which we can place information bits
converges to I. �

Note that the probability distribution of our encoded u
does not generally equal that of the random variable U used
throughout this paper. Namely, denote by p̃ the probability
distribution corresponding to the above encoding process: the
probability of the encoder producing the vector u is p̃(u).
Next, denote by p the probability distribution of U. That
is, the probability we would get if we were to set ui to
0 with probability P (Ui = 0|U i−1

1 = ui−1
1 ), irrespective

of whether i satisfies (101) and (102) or not. Our plan
is to show that the difference between p and p̃ is ‘small’.
However, we must first address a subtle point stemming from
this difference in distributions. Specifically, the probability
P (Ui = 0|U i−1

1 = ui−1
1 ) used at stage i might be undefined,

since we might be conditioning on an event with probability
0. In this case, we define the above probability to be 1/2.

We decode as previously explained: we first recursively
partition the received vector into y(1)∗,y(2)∗, . . . ,y(Φ)∗.
Then, we employ successive cancellation decoding. That is,
we produce our estimate û = ûN1 of u by first producing û1,
then û2, etc., up to ûN . If index i is such that both (101) and
(102) hold, then we set ûi to the value maximizing

P (Ui = ûi|U i−1
1 = ûi−1

1 ,Y(1)∗ = y(1)∗,

Y(2)∗ = y(2)∗, . . . ,Y(Φ)∗ = y(Φ)∗) . (108)

Otherwise, if i does not satisfy both (101) and (102), we set
ûi is accordance with the common randomness. That is, in the
pseudo-random number implementation, we set ûi = 0 if

P (Ui = 0|U i−1
1 = ûi−1

1 ) ≤ ri . (109)

Otherwise, we set ûi = 1.
We stress that the probabilities in (108) and (109) are

calculated according to the probability distribution of the
random vector U used throughout this paper. That is, although
u has been encoded according to the probability p̃, we decode
it ‘as if’ it had been encoded using p. This discrepancy will
shortly be addressed. However, as a first step, the following
sub-claim considers the case in which there is no discrepancy.

Sub-claim 5. If u were chosen according to the probability
distribution p, then the probability of misdecoding would be
less than 2

3 · 2
−2ν

′′n
, for large enough n.

Sub-proof : Note that if the above were the case, then u
and U would have the same probability distribution. Thus,

Subclaim 2 would apply, and would imply that the probability
of our partitioning algorithm failing to produce the correct
y(1)∗,y(2)∗, . . . ,y(Φ)∗ from the received vector would be
less than 1

3 · 2
−2ν

′′n
, for large enough n. Also, if a ‘genie’

were to give us the correct y(1)∗,y(2)∗, . . . ,y(Φ)∗, we have
from (101) that the probability of misdecoding u would be
less than 1

3 · 2
−2ν

′′n
for large enough n, using exactly14 the

same arguments as given in [24, Proof of Theorem 2] to bound
the probability of the successive cancellation decoder failing.
The result follows by applying the union bound. �

For u such that p(u) > 0, denote by Pe(u) the probability
that our decoder fails, given that u was encoded. Otherwise,
if p(u) = 0, define15 Pe(u) = 1. We have just shown that for
large enough n,∑

u∈XN
p(u)Pe(u) <

2

3
· 2−2ν

′′n
. (110)

However, recall that our ultimate goal is to upper bound the
LHS, after p(u) is replaced by p̃(u). Informally, a similar
bound holds for this case as well, since p and p̃ are ‘close’.
The two following sub-claims makes this statement precise.

Sub-claim 6. ∑
u∈XN

|p̃(u)− p(u)| < 1

3
· 2−2ν

′′n
.

Sub-proof : We use the following result from [36, Lemma 3.5]:

AN1 −BN1 =

N∑
i=1

Bi−1
1 (Ai −Bi)ANi+1

where, here, Aji denotes the product Aji = Ai · Ai+1 · · ·Aj ,
and A0

1 = ANN+1 , 1. We now take

Ai = Ai(u) = p̃(ui|ui−1
1 ) and Bi = Bi(u) = p(ui|ui−1

1 ) .

Recall that we have defined Bi to be 1/2 if p(ui−1
1 ) = 0.

Similarly, we define Ai to be 1/2 if p̃(ui−1
1 ) = 0. We deduce

that ∑
u∈XN

|p̃(u)− p(u)|

=
∑

u∈XN
|AN1 −BN1 |

=
∑

u∈XN

∣∣∣∣∣
N∑
i=1

Bi−1
1 (Ai −Bi)ANi+1

∣∣∣∣∣
≤
∑

u∈XN

N∑
i=1

|Bi−1
1 (Ai −Bi)ANi+1|

14Since [24] considers the Bhattacharyya parameter for the case of a channel
with uniform input, we also need to claim that our Z upper bounds the
probability of maximum-aposteriori misdecoding in the more general setting
where the channel input is non-uniform. This is well known, see e.g. [21,
Remark 1] for a proof of a slightly stronger claim.

15Note that we are being conservative. We could have simply defined Pe(u)
as the probability that our decoder fails, given that u was encoded. However,
if our input distribution is such that some vectors u are given a probability of
0, say in order to satisfy a constraint on the input, we should treat the event
of the encoder producing a u not satisfying this constraint as an error.
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=

N∑
i=1

∑
u∈XN

|Bi−1
1 (Ai −Bi)ANi+1| , (111)

where the first equality follows by the chain rule and the first
inequality follows from the triangle inequality. Next, fix i, and
consider the internal sum in (111),∑

u∈XN
|Bi−1

1 (Ai −Bi)ANi+1| . (112)

If i is an index for which both (101) and (102) hold, then
Ai = Ai(u) = 1/2 for all u. For this case, we get from (102)
and Lemma 25 in Appendix A that∑
u∈XN

|Bi−1
1 (Ai −Bi)ANi+1|

=
∑

u∈XN
Bi−1

1 · |Ai −Bi| ·ANi+1

=
∑

u∈XN
p(ui−1

1 ) ·
∣∣∣∣12 − p(ui|ui−1

1 )

∣∣∣∣ · p̃(uni+1|ui1)

=
∑
ui1∈X i

p(ui−1
1 ) ·

∣∣∣∣12 − p(ui|ui−1
1 )

∣∣∣∣ ∑
uni+1∈XN−i

p̃(uni+1|ui1)

=
∑
ui1∈X i

p(ui−1
1 ) ·

∣∣∣∣12 − p(ui|ui−1
1 )

∣∣∣∣
= K(Ui|U i−1

1 ) <
1

3N
· 2−2ν

′′n
.

Otherwise, if i is an index for which either (101) or (102) do
not hold, then Ai = Bi for all u, and thus (112) equals 0. �

We are now ready to state our bound on the probability of
misdecoding.

Sub-claim 7. For large enough n,∑
u∈XN

p̃(u)Pe(u) < 2−2ν
′′n

.

Sub-proof : We use the two previous sub-claims as follows,∑
u∈XN

p̃(u)Pe(u) =
∑

u∈XN
(p(u) + p̃(u)− p(u))Pe(u)

≤
∑

u∈XN
(p(u) + |p̃(u)− p(u)|)Pe(u)

≤
∑

u∈XN
p(u)Pe(u) +

∑
u∈XN

|p̃(u)− p(u)|

<
2

3
· 2−2ν

′′n
+

1

3
· 2−2ν

′′n
,

which holds for a large enough n. �
Recall that in the statement of our theorem, we have denoted

the length of our codeword (after adding the guard bands) as
Λ. The following subclaim proves another key part of our
theorem.

Sub-claim 8. For large enough n, the probability of misde-
coding is less than 2−Λν

′

.

Sub-proof : This follows by (96), Subclaim 1, and Subclaim 7.
�

All that remains now is to discuss the encoding and decoding
complexity of our algorithms.

Sub-claim 9. The encoding complexity is O(Λ log Λ).

Sub-proof : If we choose to use an input distribution that
is not memoryless, then we must use the generalization
of Honda-Yamamoto successive cancellation encoding for
input distributions with memory [17], [18]. Fortunately, this
successive cancellation encoder does not observe the channel
output and does not require the deletion channel trellis.
Instead, it must recursively track the distribution of the hidden-
Markov input. From [17], [18], we know that the encoding
complexity is O(|S|3N logN) where |S| is the number of
states in the hidden-Markov input process. Thus, for a fixed
input distribution, the complexity of producing u and x is
O(N logN). Note that adding the guard bands is a simple
recursive process whose total time is O(Λ). Since Λ ≥ N , the
result follows. �

Sub-claim 10. The decoding complexity is O(Λ1+3ν).

Sub-proof : The complexity of partitioning the received vector
y into the Φ trimmed blocks y(1)∗,y(2)∗, . . . ,y(Φ)∗ is O(Λ).
Next, consider step i of the decoding algorithm, in which we
decide on the value of ûi. The key step is to calculate the
probability

P (Ui = 0|U i−1
1 = ûi−1

1 ,Y(1)∗ = y(1)∗,

Y(2)∗ = y(2)∗, . . . ,Y(Φ)∗ = y(Φ)∗) .

This is done in two stages. Recall (66) and the discussion below
it. First, for each 1 ≤ φ ≤ Φ, we calculate the probabilities

P (Vi0(φ) = 0|V i−1
1 (φ) = v̂i−1

1 (φ),Y(φ)∗ = y(φ)∗) ,

where i0 is the unique integer for which

(i0 − 1)Φ + 1 ≤ i ≤ i0Φ

and v̂i0−1
1 (φ) is related to ûi−1

1 through (66). That is, we
have just calculated the probabilities corresponding to the first
n0 polarization stages. Recall that by Subsection III-C, this
can be done using Φ trellises. Next, we apply the remaining
n − n0 polarization steps to these probabilities. That is, the
standard SC decoder is run for the last n − n0 stages, and
can be thought of as effectively operating on a code of length
Φ = 2n1 = 2n−n0 .

The total running time of the second stage is well known
to be O(Φ log Φ), which is indeed O(Λ1+3ν). Recalling the
discussion in Subsection IV-D, the total running time of the
first stage is

O(Φ · |S|3N4
0 ) ,

where |S| is the number of states in the Markov chain through
which the input distribution is defined (and which we treat as
a constant), N0 = 2n0 = 2bnνc and Φ = 2n−n0 = 2n−bnνc.
Since N = 2n ≤ Λ, the result follows. �

To summarize, Subclaim 4 shows that the rate of our coding
scheme approaches I . Subclaim 8 shows that the probability of
misdecoding is upper bounded by 2−Λν

′

, for large enough n.
Lastly, Subclaims 9 and 10 state that the encoding and decoding
complexities are O(Λ log Λ) and O(Λ1+3ν), respectively. This
is what we have set out to prove.
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VIII. SIMULATION RESULTS

In this section, we present simulation results for the proposed
coding scheme. Our simulation design is based on the freely
available code from [37]. While the complexity of our decoder
is decreased by the use of guard bands, it still grows like
Ω(Λ1+3ν) for some ν > 0. Therefore, we only present
simulations for n = 10 and n = 12 which correspond to
N = 1024 and N = 4096. The results of these simulations
are presented in Fig. 6.

From [8], we know that the mutual information rate for
uniform inputs is roughly 0.55 and the achieved rates of 0.226
and 0.274 are somewhat below this. Without guard bands,
however, the design rates are 0.384 and 0.422. These numbers
are closer to the goal of 0.55. Based on this, we believe
that modifying the guard band structure is a promising future
direction of research. In particular, our guard band structure
was chosen to maximize the strong polarization exponent
ν. In practice, one might prefer much shorter guard bands
(e.g., blocks of O

(
(logN)2

)
zeros) along with a detector

that detects these long runs as guard bands. This is possible
because the expected value of the longest run outside a guard
band is O(logN). We also conjecture that the application
of successive cancellation list decoding [16] will allow one
to approach capacity more quickly because of the improved
decoding performance, but we leave this to future work.
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Fig. 6. Simulation results for two codes based on the coding scheme in this
paper. The first code has n = 10, n0 = 6, and ξ = 0.2. It was designed to
achieve a block error rate of 0.1 via Monte Carlo using 2000 test blocks with
deletion probability δ = 0.1. The result is a code with K = 394 information
bits, N = 210 = 1024, and an overall transmission length of Λ = 1747
bits (including guard bands), and an overall rate of 394/1747 ≈ 0.226. The
second code has n = 12, n0 = 8, and ξ = 0.2. It was designed to achieve a
block error rate of 0.1 via Monte Carlo using 4000 test blocks with deletion
probability δ = 0.1. The result is a code with K = 1729 information bits,
N = 212 = 4096, and an overall transmission length of Λ = 6313 bits
(including guard bands), and an overall rate of 1729/6313 ≈ 0.274.
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APPENDIX

A. Conditional Bhattacharyya and Total Variation

In this section we define the conditional Bhattacharyya
parameter Z(X|Y ) and the conditional total variation K(X|Y ).
See [21, Section III] for various connections between these
and other measures, as well as for their relation to polarization
transforms.

Definition 7 (The conditional Bhattacharyya parameter). Let
X ∈ X be a binary random variable and Y ∈ Y be a discrete
random variable. Let their joint distribution be PX,Y . We
denote

Z(X|Y ) = 2
∑
y∈Y

√
PX,Y (0, y) · PX,Y (1, y)

= 2
∑
y∈Y

PY (y)
√
PX|Y (0|y) · PX|Y (1|y) .

Definition 8 (The conditional total variation). Let X ∈ X be
a binary random variable and Y ∈ Y be a discrete random
variable. Let their joint distribution be PX,Y . We denote

K(X|Y ) =
∑
y∈Y
|PX,Y (0, y)− PX,Y (1, y)|

=
∑
y∈Y

PY (y) · |PX|Y (0|y)− PX|Y (1|y)| .

The following lemma shows that if K(X|Y ) is ‘small’, then
P (X|Y ) is ‘close’ to the Bernoulli(1/2) distribution.

Lemma 25. Let X ∈ X be a binary random variable and Y ∈
Y be a discrete random variable. Let their joint distribution
be PX,Y . Then∑

x∈X
y∈Y

PY (y) · |PX|Y (x|y)− 1/2| = K(X|Y ) .

Proof.∑
x∈X
y∈Y

PY (y) · |PX|Y (x|y)− 1/2|

=
∑
y∈Y

PY (y) ·
(
|PX|Y (0|y)− 1/2|+ |PX|Y (1|y)− 1/2|

)
=
∑
y∈Y

PY (y) ·
(
|PX|Y (0|y)− PX|Y (1|y)|

)
= K(X|Y ) ,

where the penultimate equality is easily seen to hold if we
denote PX|Y (0|y) = 1/2 + δ(y), from which it follows that
PX|Y (1|y) = 1/2− δ(y).

B. Capacity-Achieving Inputs for the Deletion Channel

In [2], Dobrushin proves a capacity result for a class
of synchronization error channels that includes the binary
deletion channel. That paper also shows that the capacity can
be approached by a sequence of finite-order Markov input
distributions. Unfortunately, the Markov input distribution in
Dobrushin’s construction is not irreducible [2, Lemma 4]. Thus,
Dobrushin’s result falls slightly short of what is required by
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the polar coding construction in this paper. In [22], Li and Tan
study the capacity of the concatenation of a deletion channel
and a finite-state channel. For this setup, they prove a capacity
result and show that the capacity can be approached by a
sequence of finite-order Markov input distributions that are
irreducible and aperiodic. As they note in their paper, their
result is sufficient to prove that the polar coding scheme in
this paper can achieve capacity.

In this section, we describe a regular hidden-Markov input
distribution that also achieves capacity on the deletion channel.
Though this is not required, given [22], we include it for
completeness and because the argument is somewhat different.

Denote by PXN an input distribution over binary vectors
of length N , which we will shortly optimize over. Let
X , (X1, . . . , XN ) be a random binary vector of length N
drawn according to PXN . Take X as the input sequence to a
binary deletion channel with deletion probability δ ∈ (0, 1) and
let Y , (Y1, . . . , YM ) be the corresponding output sequence
where the random variable M is the output length. The
maximum mutual information for a length-N input is denoted
by

CN , max
PXN

1

N
I(X;Y ) . (113)

It is well-known [38, proof of Theorem II.1] that NCN is a
subadditive sequence and this implies [25, Lemma 1.2.1, page
3] that

C = lim
N→∞

CN = inf
N≥1

CN

exists and satisfies C ≤ CN for N ≥ 1. Thus, for the optimal
PXN we have

1

N
I(X;Y ) ≥ C . (114)

We begin with the standard approach [39] of using an optimal
PXN from (113) to generate a length-kN random input X =
X(1) � · · · � X(k) where each X(i) is a length-N block
drawn independently from PXN and using � to represent
vector concatenation. For this input, we denote the output
by Y = Y(1)� · · · �Y(k) where Y(i) contains the output
symbols associated with the input X(i). Thus, for each i, the
pair X(i),Y(i) has the same distribution as the pair X,Y .
The random variables Mi = |Y(i)|, for i ∈ [k], are chosen to
equal the number of output symbols generated by the input
block X(i).

Using the chain rule for mutual information, we note that

I
(
X;Y,Mk

1

)
= I(X;Y) + I

(
X;Mk

1 |Y
)

≤ I(X;Y) + k log2(N + 1) ,

where inequality follows from I
(
X;Mk

1 |Y
)
≤
∑k
i=1H

(
Mi

)
and 0 ≤Mi ≤ N . Thus, it follows that

I(X;Y) ≥ −k log2(N + 1) + I
(
X;Y,Mk

1

)
(a)
= −k log2(N + 1) + I

(
X;Y(1), . . . ,Y(k)

)
= −k log2(N + 1) +

k∑
i=1

I
(
X;Y(i)|Y(1), . . . ,Y(i− 1)

)
(b)
= −k log2(N + 1) +

k∑
i=1

I
(
X(i);Y(i)

)

= −k log2(N + 1) + kI(X;Y )

= kN

(
1

N
I(X;Y )− log2(N + 1)

N

)
(c)

≥ kN
(
C − log2(N + 1)

N

)
,

where (a) holds because there is an invertible mapping
from Y,Mk

1 to Y(1), . . . ,Y(k), (b) follows from the pairs
(X(i),Y(i))ki=1 being i.i.d., and (c) follows from (114). After
normalizing by the input length, this gives

1

kN
I(X;Y) ≥ C − log2(N + 1)

N
.

Thus, the information rate can be made arbitrarily close to C
by choosing N large enough.

However, the infinite input distribution formed by concatenat-
ing length-N blocks cannot be generated by a regular hidden-
Markov process. In order to explain how to overcome this, we
will first describe this input distribution as a hidden-Markov
process with state set

S ,
N−1⋃
j=0

{
x ∈ {0, 1}j

∣∣PXj (x) 6= 0
}
,

where the set {0, 1}i represents all possible states after i
input symbols from the length-N input distribution PXN . We
denote the initial state by the empty string ε , {0, 1}0 and
let PX0(ε) = 1 by convention. To generate multiple blocks,
we define the underlying Markov chain to start in the ε state
and return to the ε state with probability 1 after generating
N outputs. Thus, the underlying Markov chain is irreducible
because we have only included states with positive probability
and there is a path with positive probability from ε to any
x ∈ S.

Notice that the state implicitly encodes the current input
position in the length-N block distribution. For example, if s ∈
{0, 1}j , then next symbol is drawn according to PXj+1|Xj (x|s).
Thus, the underlying Markov chain is periodic with period N .
To make it aperiodic, we will introduce one additional state,
which we denote by τ , that is used to dither the input block
between length-N and length-(N + 1). State τ always outputs
a dither bit whose value is 0 and then transitions to state ε.
The idea is that, after a length-N input block, a fair coin is
used to determine if the next block will start immediately
(e.g., the underlying Markov chain transitions to state ε) or
be delayed by one symbol (e.g., the underlying Markov chain
transitions to state τ ). After this, the modified Markov chain
will be aperiodic because the transition graph has loops of
length N and N + 1. The period of a Markov chain is the
greatest common divisor of the lengths of all loops in the
transition graph. Since N and N + 1 are relatively prime, the
period is 1 and the chain is aperiodic. We also note that the
new Markov chain is still irreducible because there is still a
path with positive probability between any two states.

Let S0 be initial state of the underlying Markov chain. In
the current formulation, we have S0 = ε with probability 1
and the Markov chain is not stationary. One can make this
Markov chain stationary by drawing the initial state S0 from the
stationary distribution of the underlying Markov chain. After
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this change, we have constructed a regular hidden-Markov
input derived from our original PXN block distribution.

Now, let X be a length-k(N + 1) input drawn from the
constructed hidden-Markov process. This input can be broken
into segments by adding commas before the inputs generated
by the state ε. A complete segment is delimited by commas
on both sides, and thus has length either N or N + 1. Note
that X contains at least k segments, and by discarding the
first segment we get at least k − 1 complete segments. We
call the length-N prefix of a complete segment a block. Thus,
we have at least k − 1 blocks, X(2), . . . ,X(k), where each
block can be associated with an independent draw from PXN .
Let Ti ∈ {0, 1} be the side-information random variable that
indicates, for the i-th (possibly incomplete) segment, whether
or not state τ was visited during that segment. Given S0 and
T k1 , it is always possible to compute the locations of the
commas described above and separate X into the k− 1 blocks
X(2), . . . ,X(k). This is because S0 gives the initial offset into
the first segment and Ti indicates whether or not each segment
has the additional dither bit.

Similarly, the output Y can be separated into subvectors
associated with the above blocks by adding commas to separate
outputs generated by different segments and removing any
outputs caused by dither bits. Namely, we let Mi ∈ {0, . . . , N+
1} be the side-information random variable that indicates the
number of outputs generated by the i-th segment and Ri ∈
{0, 1} be the side-information random variable that indicates
whether the last output in a subvector is due to a dither bit.
Given Mk

1 and Rk1 , it is always possible to separate Y into
Y(2), . . . ,Y(k) where each Y(i) is the output associated with
the block X(i). Thus, each pair (X(i),Y(i)) has the same
distribution as (X,Y ). Using this setup, the chain rule of
mutual information and cardinality upper bounds imply that

I
(
X, T k1 ;Y,Mk

1 , R
k
1 |S0

)
= I
(
X, T k1 ;Y,Mk

1 , R
k
1

)
+ I
(
X, T k1 ;S0|Y,Mk

1 , R
k
1

)
− I
(
X, T k1 ;S0

)
≤ I
(
X, T k1 ;Y,Mk

1 , R
k
1

)
+ I
(
X, T k1 ;S0|Y,Mk

1 , R
k
1

)
(a)

≤ I
(
X, T k1 ;Y,Mk

1 , R
k
1

)
+N

= I
(
X;Y,Mk

1 , R
k
1

)
+ I
(
T k1 ;Y,Mk

1 , R
k
1 |X

)
+N

(b)

≤ I
(
X;Y,Mk

1 , R
k
1

)
+ k +N

= I
(
X;Y

)
+ I
(
X;Mk

1 , R
k
1 |Y

)
+ k +N

(c)

≤ I
(
X;Y

)
+ k log2(N + 2) + k + k +N , (115)

where (a) follows from log2 |S| = log2

(
1 +

∑N−1
j=0 2j

)
= N ,

(b) holds because Ti ∈ {0, 1}, and (c) follows from 0 ≤Mi ≤
N + 1 and Ri ∈ {0, 1}.

Based on the decompositions described above, the data
processing inequality implies that

I
(
X, T k1 ;Y,Mk

1 , R
k
1 |S0

)
≥ I
(
X(2), . . . ,X(k);Y(2), . . . ,Y(k)

∣∣S0)

= I
(
X(2), . . . ,X(k);Y(2), . . . ,Y(k)

)
=

k∑
i=2

I
(
X(i);Y(i)

)
= (k − 1)I(X;Y ) . (116)

Combining (114)–(116), we have

I(X;Y) ≥ −k log2(N + 2)− 2k −N + (k − 1)CN .

To lower bound the information rate, we can normalize by the
input length to see that

1

k(N+1)
I(X;Y)

≥ (k − 1)N

k(N+1)

(
C − 1

k−1

)
− 2 + log2(N+2)

N+1
.

By choosing k and N large enough, the information rate can
be made arbitrarily close to C. Thus, we have constructed
a sequence of regular hidden-Markov input distributions that
achieve capacity on the binary deletion channel.

In closing, we note that this argument works without
change for channels with independent insertions, deletions,
and substitutions.
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