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A Simple Proof of Fast Polarization
Ido Tal, Member, IEEE

Abstract—Fast polarization is a key property of polar codes.
It was proved for the binary polarizing 2× 2 kernel by Arıkan
and Telatar. The proof was later adapted to the general case by
Şaşoğlu. We give a simplified proof.

Index Terms—polar codes, fast polarization

I. INTRODUCTION

Polar codes are a novel family of error correcting codes,
invented by Arıkan [1]. The seminal definitions and assump-
tions in [1] were soon expanded and generalized. Key to
almost all the results involving polar codes is the concept
of fast polarization. The essence of fast polarization is the
phenomenon stated in the following lemma. The lemma was
used implicitly by Korada, Şaşoğlu, and Urbanke [2, proof of
Theorem 11], and is a generalization of a result by Arıkan and
Telatar [3, Theorem 3]. Its explicit formulation and full proof
appear in a monograph by Şaşoğlu [4, Lemma 5.9].

Lemma 1: Let T0, T1, . . . be an i.i.d. process where T0 is
uniformly distributed over {1, 2, . . . , `}. Let Z0, Z1, . . . be a
[0, 1]-valued random process such that

Zm+1 ≤ K · Zdtm , whenever Tm = t . (1)

We assume K ≥ 1 and d1, d2, . . . , d` > 0. Suppose also
that Zm converges almost surely to a {0, 1}-valued random
variable Z∞. Then, for any

0 < β < E ,
1

`

∑̀
t=1

log` dt

we have

lim
m→∞

Pr[Zm ≤ 2−`
β·m

] = Pr[Z∞ = 0] . (2)

The lemma is used to prove that the Bhattacharyya pa-
rameter associated with a random variable that underwent
polarization (for example, a synthesized channel) polarizes to
0 at a rate faster than polynomial [4, Theorem 5.4]. A similar
claim holds in the case of polarization of the Bhattacharyya
parameter to 1 [5, Theorem 16].

The original proof [4, Lemma 5.9] of Lemma 1 is somewhat
involved. To summarize, if K were equal to 1, the proof would
follow almost directly from the weak law of large numbers.
However, for K > 1, a sequence of bootstrapping arguments
is applied to strengthen the bound gradually in each step.

The main aim of this paper is to give a simpler proof of
Lemma 1. Thus, we hopefully give insight into the simple
mechanics that are at play. Our simpler proof also leads to a
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stronger result. That is, we will prove the following, which
implies Lemma 1.

Lemma 2: Let {Tm}∞m=0, {Zm}∞m=0, K, and E be as in
Lemma 1. Then, for 0 < β < E,

lim
m0→∞

Pr[Zm ≤ 2−`
β·m

for all m ≥ m0]

= Pr[Z∞ = 0] . (3)

Note that Lemma 2 has an “almost sure flavor” [6, page 69,
Equation (2)], while Lemma 1 has an “in probability flavor”
[6, page 70, Equation (5)]. We prove Lemma 2 in Section II
and show that it implies Lemma 1 in Section III.

II. PROOF OF LEMMA 2

Let εa, εb > 0 and ma < mb be parameters. We now define
three events, denoted A, B, and C.

A : |Zm − Z∞| ≤ εa , for all m ≥ ma . (4)

B :

∣∣∣∣ |{ma ≤ i < m : Ti = t}|
m−ma

− 1

`

∣∣∣∣ ≤ εb ,
for all m ≥ mb and all 1 ≤ t ≤ ` . (5)

C : Z∞ = 0 . (6)

We first claim that for any fixed εa > 0,

lim
ma→∞

Pr[A] = 1 . (7)

The above follows immediately from [6, Theorem 4.1.1], but
let us elaborate for completeness. By definition of almost
sure convergence, the event of Zm converging to Z∞ has
probability 1. Thus, the event “there exists an ma for which
(4) holds” must have probability 1 as well, since it contains the
former event. We now emphasize that the event A is dependent
on ma by adopting to notation A = A(ma), and note that the
previous sentence can be written succinctly as

Pr

[ ∞⋃
ma=0

A(ma)

]
= 1 .

Since we clearly have A(0) ⊆ A(1) ⊆ A(2) ⊆ · · · , we deduce
(7) from the above and the monotone property of measures [6,
page 21, property (ix)].

Event B is concerned with the frequency of t in the sub-
sequence of i.i.d. random variables Tma , Tma+1, . . . , Tm−1,
each of which is uniform over {1, 2, . . . , `}. We claim that for
any fixed εb > 0 and ma ≥ 0,

lim
mb→∞

Pr[B] = 1 . (8)

To see this, we use the strong law of large numbers. Denote
B = B(mb). Next, we abuse notation and denote by B(mb, t)
the event of (5) holding, but for t fixed (we remove the
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sentence “and all 1 ≤ t ≤ `” from the definition). Thus,
B(mb) =

⋂`
t=1B(mb, t). Hence, (8) will follow from proving

that for 1 ≤ t ≤ ` fixed but arbitrary,

lim
mb→∞

Pr[B(mb, t)] = 1 . (9)

Fix t, and assign to each Ti, i ≥ ma, an indicator equalling
1 if and only if Ti equals t. The indicators are i.i.d. and
equal 1 with probability 1/`. By the strong law of large
numbers [6, Theorem 5.4.2], the fraction of indicators equaling
1 approaches 1/` almost surely. Hence, so does the fraction
of Ti equalling t. We now invoke [6, Theorem 4.1.1], deduce
(9), and consequently (8).

By (7) and (8), we deduce that for any δa, δb > 0 there exist
ma < mb such that

Pr[A] ≥ 1− δa (10)

and
Pr[B] ≥ 1− δb . (11)

Hence,

Pr[A ∩B ∩ C] ≥ Pr[Z∞ = 0]− δa − δb . (12)

Equation (12) will be used towards the end of the proof.
We now focus on the implications of the event A∩B ∩C.

Define the shorthand

θ , − logεa K .

Note that θ is non-negative, and approaches 0 as εa approaches
0. By the definition of the events A and C, we have that
Zm ≤ εa when m ≥ ma. Thus, K ≤ Z−θm when m ≥ ma.
Hence, under the event A ∩B ∩ C, we can simplify (1) to

Zm+1 ≤ Zdt−θm , whenever m ≥ ma and Tm = t . (13)

The above equation is the heart of the proof: we have
effectively managed to “make K equal 1” — the simple case
discussed earlier. We have “paid” for this simplification by
having the exponents be dt − θ instead of the original dt.
However, since θ can be made arbitrarily close to 0, this will
not be a problem. Essentially, all that remains is some simple
algebra, followed by taking the relevant parameters small/large
enough. We do this now.

Events A and C have been put to use and have yielded
(13). We will now call on event B. We take εa small enough
such that dt − θ > 0 for all 1 ≤ t ≤ `, and further require
that εb < 1/`. Recalling that Zma ∈ [0, 1], we repeatedly
apply (13) and deduce the following under A∩B∩C. For all
m ≥ mb,

Zm ≤ Z
∏`
t=1(dt−θ)

(m−ma)·( 1
`
±εb)

ma , (14)

where the above “±” notation is in fact a function of t, defined
as

± ,

{
+ if dt − θ ≤ 1,
− otherwise.

By the definition of event A, we have that Zma ≤ εa. We
take εa ≤ 1/2. Hence, (14) simplifies to the claim that under
A ∩B ∩ C, for all m ≥ mb,

Zm ≤ 2−
∏`
t=1(dt−θ)

(m−ma)·( 1
`
±εb)

= 2−`
(E−∆)m

, (15)

where

∆ =
∑̀
t=1

1

`
log`

(
dt

dt − θ

)
−
∑̀
t=1

±εb log`(dt − θ)

+
∑̀
t=1

ma

m

(
1

`
± εb

)
log`(dt − θ) . (16)

In light of (3), our task is now the following. Given 0 < β <
E and δa, δb > 0, we must show that there exists a choice of
ma < mb and εa, εb > 0 such that (12) holds and ∆ < E−β.
Equation (12) will follow from choosing parameters for which
(10) and (11) hold. We show that the inequality on ∆ holds
by showing that each of the three sums in (16) can be made
smaller than (E−β)/3. Recalling that θ goes to 0 as εa tends
to 0, we deduce that the first sum can be made smaller than
(E−β)/3 by taking εa small enough. Similarly, we can make
the second sum smaller than (E − β)/3 by taking εb small
enough. For the third sum, we first fix ma large enough such
that (10) holds (note that event A is a function of εa, which
is by now fixed). Lastly, we take mb large enough such that
the third sum is smaller than (E − β)/3 for all m ≥ mb, and
(11) holds (again, note that event B is a function of ma and
εb, which have been fixed).

We have just proven the following. Fix 0 < β < E and
δa, δb > 0. Denote the event cardinal to (3) as

D : Zm ≤ 2−`
β·m

, for all m ≥ m0 .

Then, for ma < mb and εa, εb > 0 as above, setting m0 = mb

results in D containing A ∩B ∩ C. Thus, by (12),

P [D] ≥ Pr[Z∞ = 0]− δa − δb , for m0 = mb .

Since the probability of D increases with m0,

lim
m0→∞

Pr[D] ≥ Pr[Z∞ = 0]− δa − δb .

The above inequality holds for all δa, δb > 0, and so must also
hold for δa = δb = 0. Thus, to prove (3), all that remains to
show is

lim
m0→∞

Pr[D] ≤ Pr[Z∞ = 0] .

Indeed,

Pr[D] ≤ Pr[ lim
m→∞

Zm = 0] = Pr[Z∞ = 0] .

Thus, the claim is true when taking m0 to infinity as well.

III. PROOF OF LEMMA 1

We now explain why Lemma 2 implies Lemma 1. That is,
why (3) implies (2). Clearly, (3) implies

lim inf
m→∞

Pr[Zm ≤ 2−`
β·m

] ≥ Pr[Z∞ = 0] .

Thus, the claim will follow if we prove that

lim sup
m→∞

Pr[Zm ≤ 2−`
β·m

] ≤ Pr[Z∞ = 0] .

Assume to the contrary that there exists 0 < β < E such that

lim sup
m→∞

Pr[Zm ≤ 2−`
β·m

] > Pr[Z∞ = 0] .
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The above implies that the Zm cannot converge in probability
to Z∞ [6, page 70, Equation (5)]. This contradicts [6, Theorem
4.1.2], by which almost sure convergence implies convergence
in probability.

We end this section with the following observation: in both
lemmas, we assume that the Ti are uniformly distributed over
1/`. This is in line with how polar codes are defined, and
has afforded us some notational convenience. However, both
lemmas still hold if this assumption is not met. That is, in
the more general case, we define E as the expected value of
log`D, where D equals dt if T0 = t. To show this, the current
proofs need only slight and superficial amendments.
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