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Abstract—Consider a single-user or multiple-access channel
with a large output alphabet. A method to approximate the
channel by an upgraded version having a smaller output alphabet
is presented and analyzed. The original channel is not necessarily
symmetric and does not necessarily have a binary input alphabet.
Also, the input distribution is not necessarily uniform. The ap-
proximation method is instrumental when constructing capacity
achieving polar codes for an asymmetric channel with a non-
binary input alphabet. Other settings in which the method is
instrumental are the wiretap setting as well as the lossy source
coding setting.

Index Terms—Polar codes, multiple-access channel, sum-rate,
asymmetric channels, channel degradation, channel upgradation.

I. INTRODUCTION

Polar codes were introduced in 2009 in a seminal paper
[1] by Arıkan. In [1], Arıkan considered the case in which
information is sent over a binary-input memoryless channel.
The definition of polar codes was soon generalized to channels
with prime input alphabet size [2]. A further generalization to
a polar coding scheme for a multiple-access channel (MAC)
with prime input alphabet size is presented in [3] and [4].

The communication schemes in [2]–[4] are explicit, have
efficient encoding and decoding algorithms, and achieve sym-
metric capacity (symmetric sum capacity in the MAC setting).
However, [2]–[4] do not discuss how an efficient construction
of the underlying polar code is to be carried out. That is, no
efficient method is given for finding the unfrozen synthesized
channels. This question is highly relevant, since a straightfor-
ward attempt at finding the synthesized channels is intractable:
the channel output alphabet size grows exponentially in the
code length.

The problem of constructing polar codes for these settings
was discussed in [5]–[9]. The current paper is the natural
counterpart of [7]: here we derive an upgraded approximation.

In addition to single-user and multiple-access channels,
polar codes have been used to tackle many classical infor-
mation theoretic problems. Of these, we mention here three
applications, and briefly explain the purpose of our results in
each context. The interested reader will have no problem filling
in the gaps.
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First, we mention lossy source coding. Korada and Urbanke
show in [10] a scheme by which polar codes can be used to
achieve the rate distortion bound in a binary and symmetric
setting. These techniques were generalized to a non-binary yet
symmetric setting by Karzand and Telatar [11]. Generalization
of this result to a non-symmetric setting can be done by
suitably applying the technique in [12]. This is the technique
we will use in our outline. In brief, lossy source coding
for a non-symmetric and non-binary source can be carried
out as follows. The output of the test channel corresponds
to the source we want to compress, whereas the input to
the test channel corresponds to a distorted representation of
the source. The scheme applies a polar transformation on
the channel input bits, and “freezes” (does not transmit) the
transformed bits with a distribution that is almost uniform
given past transformed bits. Namely, if an upgraded version
of the distribution has an entropy very close to 1, then surely
the true distribution has an entropy that is at least as high. We
also mention an alternative technique of “symmetrizing” the
channel, as described by Burshtein in [13]. For both methods,
our method can be used to efficiently find which channels to
freeze.

A second setting where our method can be applied is coding
for asymmetric channels. In [12], Honda and Yamamoto use
the ideas developed in [10] in order to present a simple
and elegant capacity achieving coding scheme for asymmetric
memoryless channels (see also [14] for a broader discussion).
To use the notation in [12], a key part of the scheme is
to transmit information on the ith synthetic channel if the
entropy H(Ui|U i−1

0 ) is very close to 1 while the entropy
H(Ui|U i−1

0 , Y n−1
0 ) is very close to 0. The method presented

here can be used to check which indices satisfy the first
condition. In addition, the method in [7] can be used to check
the second condition1.

A third problem worth mentioning is the wiretap channel
[15], as was done in [16]–[19]. There, we transmit information
only over synthesized channels that are almost pure-noise
channels to the wiretapper. In order to validate this property
computationally, it suffices to show that an upgraded version
of the synthesized channel is almost pure-noise.

The same problem we consider in this paper — approximat-
ing a channel with an upgraded version having a prescribed
output alphabet size — was recently considered by Ghayoori
and Gulliver in [20]. Broadly speaking, the method presented
in [20] builds upon the pair and triplet merging ideas presented

1The method in [7] is stated with respect to a symmetric input distribution.
In fact, the key result, [7, Theorem 5], is easily seen to hold for non-uniform
input distributions as well.
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in the context of binary channels in [21] and analyzed in [22].
In [20], it is stated that the resulting approximation is expected
to be close to the original channel. As yet, we are not aware of
an analysis making this claim precise. In this paper, we present
an alternative upgrading approximation method. Thus, with
respect to our method, we are able to derive an upper bound
on the gain in sum rate. The bound is given as Theorem 2
below, and is the main analytical result of this paper.

The previous examples involved single-user channel. In fact,
our method can be used in the more general setting in which a
MAC is to be upgraded. Let the underlying MAC have input
alphabet X t, where t designates the number of users (t =
1 if we are in fact considering a single-user channel). We
would like to mention up-front that the running time of our
upgradation algorithm grows very fast in q = |X |t. Thus, our
algorithm can only be argued to be practical for small values
of q. On a related note, we mention that a recent result [23]
shows that, at least in the analogous case of degrading, this
adverse effect cannot be avoided.

This paper is written such that all the information needed
in order to implement the algorithm and understand its perfor-
mance is introduced first. Thus, the structure of this paper is as
follows. In Section II we set up the basic concepts and notation
that will be used later on. Section III describes the binning
operation as it is used in our algorithm. The binning operation
is a preliminary step used later on to define the upgraded
channel. Section IV contains our upgrading algorithm, as well
as the statement of Theorem 2. Section V is devoted to proving
Theorem 2. The more technical parts of the proof are relegated
to the appendix.

II. PRELIMINARIES

A. Multiple Access Channel
Let W : X t → Y designate a generic t-user MAC, where
X is the input alphabet of each user2, and Y is the finite3

output alphabet. Denote a vector of user inputs by x ∈ X t,
where x = (x(l))tl=1. We denote the size of the entire input
alphabet by

q = |X |t . (1)

Our MAC is defined through the probability function W ,
where W (y|x) is the probability of observing the output y
given that the user input was x.

B. Degradation and Upgradation
The notions of a (stochastically) degraded and upgraded

MAC are defined in an analogous way to that of a degraded
and upgraded single-user channel, respectively. That is, we say
that a t-user MAC Q : X t → Z is degraded with respect to
W : X t → Y , if there exists a channel P : Y → Z such that
for all z ∈ Z and x ∈ X t,

Q(z|x) =
∑
y∈Y

W (y|x) · P(z|y) .

2Following the observation in [24], we do not constrain ourselves to an
input alphabet which is of prime size.

3The assumption that Y is finite is only meant to make the presentation
simpler. That is, our method readily generalizes to the continuous output
alphabet case.

In words, the output of Q is obtained by data-processing the
output of W . We write Q �W to denote that Q is degraded
with respect to W .

Conversely, we say that a t-user MAC Q′ : X t → Z ′ is
upgraded with respect to W : X t → Y if W is degraded
with respect to Q′. We denote this as Q′ �W . If Q satisfies
both Q � W and Q � W , then Q and W are said to be
equivalent. We express this by W ≡ Q. Note that both � and
� are transitive relations, and thus so is ≡.

C. The Sum-Rate Criterion

Let a t-user MAC W : X t → Y be given. Next, let X =
(X(l))tl=1 be a random variable distributed4 over X t. Let Y
be the random output of W when the input is X. The sum-rate
of W is defined as the mutual information

R(W ) = I(X;Y ) .

By the data-processing inequality [25, Theorem 2.8.1]

W � Q =⇒ R(W ) ≤ R(Q) ,

W ′ � Q =⇒ R(W ′) ≥ R(Q) .

Thus, equivalent MACs have the same sum-rate.
In Section IV we show how to obtain an upgraded ap-

proximation of W . The original MAC W : X t → Y is
approximated by another MAC Q′ : X t → Z ′ with a
smaller output alphabet size. Then, we bound the difference
(increment) in the sum-rate.

The following lemma is essentially a restatement of [7,
Lemma 2], and justifies the use of the sum-rate as the figure
of merit. Informally, it states that if the difference in sum rate
is small, then the difference in all other mutual informations
of interest is small as well. Apart from [3] and [4], see for
example [25, Theorem 15.3.6] for context as to why we are
considering these other mutual informations.
Lemma 1. Let W : X t → Y and Q′ : X t → Z ′ be a pair of
t-user MACs such that W � Q′ and

R(W ) ≥ R(Q′)− ε , (2)

where ε ≥ 0. Let X be distributed over X t. Denote by Y and
Z ′ the random outputs of W and Q′, respectively, when the
input is X. Let the sets A, B be disjoint subsets of the user
index set {1, 2, . . . , t}. Denote XA = (X(l))l∈A and XB =
(X(l))l∈B . Then,

I(XA;Y |XB) ≥ I(XA;Z ′|XB)− ε . (3)

For completeness, the proof is given in Appendix A.

III. THE BINNING OPERATION

In broad strokes, our algorithm will operate by first dividing
the output letters into groups, which we call bins. In a sense
that will be formalized soon, all the letters sharing a bin
are “close”, and will thus be merged together. This section

4Recall that in a MAC setting the input distribution is usually assumed to
be a product distribution; see for example [25, page 525] and [25, Theorem
15.3.6]. We do not make such an assumption in this paper since we do not
need it.
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is devoted to defining the binning operation. We note that a
similar yet different binning operation was used in [7] in order
to approximate a given channel by a degraded version of it.

In order to aid the reader, we accompany the following two
sections by a running example. Let us start now by introducing
the channel in Figure 1. In our example, t = 1, X = {0, 1, 2},
and so the input alphabet size is q = 3. The initial output
alphabet size is 6. The example will evolve, and in the end
we will produce an upgraded version of this channel with an
output alphabet consisting of only 5 output letters. Note that
this is a toy example, in the sense that the output alphabet
sizes are atypically small.

Let the random variables X and Y be as in Lemma 1,
and recall that X is not necessarily uniformly distributed.
Assume that the output alphabet Y has been purged of all
letters y with zero probability of appearing under the given
input distribution. That is, assume that for all y ∈ Y , the
denominator in (4) below is positive. Thus, we can indeed
define the function ϕW : X t × Y → [0, 1] as the a posteriori
probability (APP):

ϕW (x|y) = P(X = x|Y = y) =
P(X = x) ·W (y|x)∑

v∈X t
P(X = v) ·W (y|v)

,

(4)
for every input x ∈ X t and every letter in the (purged) output
alphabet y ∈ Y . Figure 2 contains the APP values ϕW (x|y)
of our running example. Note the caption which highlights
“close” letters.

For y ∈ Y let us denote

pW (y) = P(Y = y) ,

and define η : [0, 1]→ R by

η(p) = −p · ln p ,
where ln(·) stands for natural logarithm. Using the above
notation, the entropy of the input X given the observation
Y = y is

H(X|Y = y) =
∑
x∈X t

η (ϕW (x|y)) ,

measured in natural units (nats). Thus, the sum-rate can be
expressed as

R(W ) = H(X)−
∑
y∈Y

pW (y)H(X|Y = y)

= H(X)−
∑
y∈Y

pW (y)
∑
x∈X t

η (ϕW (x|y)) .

As a first step towards the definition of our bins, we quantize
the domain of η(p) with resolution specified by a fidelity
parameter µ. That is, we partition [0, 1] into quantization-
regions which depend on the value of µ. Informally, we enlarge
the width of each region until an increment of 1/µ is reached,
either on the horizontal or the vertical axis. A formal definition
is given below.
Definition 1 (Quantization regions). Define a partition of the
interval [0, 1) into M = Mµ non-empty regions of the form

[bi, bi+1) , i = 1, 2, . . . ,M ,

specified by the following. Starting from b1 = 0, the endpoint
of the ith region is given by

bi+1 = max

0 < p ≤ 1 :

p ≤ bi + 1
µ ,

|η(p)− η(bi)| ≤ 1
µ

 . (5)

Then, denote the region to which p belongs byR(p) = Rµ(p).
Namely, for 1 ≤ i < M ,

R(p) = i ⇔ p ∈ [bi, bi+1) , (6a)

and for the last region, i = M , we have that

R(p) = M ⇔ p ∈ [bM , 1] . (6b)

It is easily inferred from Definition 1 that for all regions
1 ≤ i < M (all regions but the last), there is either a horizontal
or vertical increment of 1/µ:

bi+1 − bi =
1

µ
, or |η(bi+1)− η(bi)| =

1

µ
,

but typically not both (see Figure 3).
Recall from (1) that q is the size of the input alphabet. For

technical reasons, we will henceforth assume that

µ ≥ max(5, q(q − 1)) . (7)

Based on the quantization regions defined above, we define
our binning rule.

Definition 2 (Bins of output letters). Two output letters
y1, y2 ∈ Y are said to be in the same bin if for all x ∈ X t we
have that R(ϕW (x|y1)) = R(ϕW (x|y2)). That is, y1 and y2

share the same vector of region-indices,

( i(x) )x∈X t ,

where i(x) , R(ϕW (x|y1)) = R(ϕW (x|y2)).

Note that we will try to use consistent terminology through-
out: A “region” is a one-dimensional interval and has to
do with a specific value of x. A “bin” is essentially a q-
dimensional cube, defined through regions, and has to do
with all the values x can take. Figure 4 contains the regions
corresponding to each pair of input and output letters in our
running example. We see that there are two non-empty bins.

Recall that our ultimate aim is to approximate the original
channel W : X t → Y by an upgraded version having a smaller
output alphabet. As we will see, the output alphabet of the
approximating channel will be a union of two sets, Z and K.
We now define the first set, which is typically the dominant
one in terms of size. Figuratively, we think of Z as the result
of merging together all the letters in the same bin. That is,
the size of Z is the number of non-empty bins, as each non-
empty bin corresponds to a distinct letter z ∈ Z . Denote by
B(z) the set of letters in Y which forms the bin associated
with z. Thus, all the symbols y ∈ B(z) can be thought of as
having been merged into one symbol z.
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y1 y2 y3 y4 y5 y6

W (y|x = 0) 0.0600 0.0105 0.0262 0.0788 0.1680 0.6565
W (y|x = 1) 0.1950 0.0390 0.1050 0.2985 0.0720 0.2905
W (y|x = 2) 0.2450 0.0505 0.1187 0.3728 0.0400 0.1730

Fig. 1. Channel used throughout the running example. The table gives the probability of receiving an output letter y given that an input letter x was transmitted.
The input alphabet size is q = 3 and there are 6 output letters.

close︷ ︸︸ ︷ close︷ ︸︸ ︷
y1 y2 y3 y4 y5 y6

ϕW (x = 0|y) 0.1200 0.1050 0.1048 0.1050 0.6000 0.5862
ϕW (x = 1|y) 0.3900 0.3900 0.4202 0.3980 0.2571 0.2594
ϕW (x = 2|y) 0.4900 0.5050 0.4750 0.4970 0.1429 0.1545

Fig. 2. APP values corresponding to the running example. The set {y1, y2, y3, y4} contains output letters with close APP values. The same holds for the
set {y5, y6}.

p

η(p)

slo
pe
=
+
1

slope= −
1

1/e1/e20 1

R(p)

1/µ

1

2/µ

2

3/µ

3

4/µ

4

5/µ

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6/µ

Fig. 3. Functions η(p) = −p · ln p and R(p). The fidelity parameter µ is set to µ = 17.2, which results in the number of regions being M = 20. Some
of the regions of R(p) are thinner (in width), and have a vertical increment of exactly 1/µ. On the other hand, the bold-faced regions have a horizontal
increment (width) of exactly 1/µ, while their vertical increment is less than 1/µ, as the horizontal dotted lines in the figure demonstrate for region 6. As a
leftover effect, the last region, 20, has horizontal and vertical increments which are both less than 1/µ.

z1︷ ︸︸ ︷ z2︷ ︸︸ ︷
y1 y2 y3 y4 y5 y6

R (ϕW (x = 0|y)) 5 5 5 5 13 13
R (ϕW (x = 1|y)) 10 10 10 10 7 7
R (ϕW (x = 2|y)) 11 11 11 11 5 5

Fig. 4. Quantization regions for µ = 17.2. The columns designate the output
letters in Y , and the rows designate the region indices of the corresponding
APP values. There are two non-empty bins, which correspond to the index
vectors (5, 10, 11) and (13, 7, 5). The first bin contains {y1, y2, y3, y4}
and the second contains {y5, y6}. We label the two bins by z1 and z2,
respectively.

IV. THE UPGRADED APPROXIMATION

In this section, we show how to use the bins introduced
in the previous section in order to construct an upgraded
approximation. As a prelude, consider what would happen if

we were to simply relabel all the letters in each bin, and change
nothing else. That is, consider what would happen if Q′(z|x)
would simply equal the sum of W (y|x) over all y ∈ B(z).
Obviously, the output alphabet size of Q′ would generally be
smaller than that of W . However, it is easy to see that Q′

would be degraded with respect to W , the opposite of what
we desire.

The way we achieve an upgrading operation is as follows.
First, we define a new APP measure, which we denote by
ψ. As we will see, ψ(x|z) is “close” to ϕW (x|y), for all
y ∈ B(z). The quantity ψ is the APP measure corresponding
to our approximating channel Q′. However, for the relevant
probabilities to sum to one, we must also add to the output
alphabet a small set of new symbols, which we term “boost”
symbols. The utility of a boost symbol is that it carries perfect
information as to the input. One can easily prove that if
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a channel’s output only contains boost symbols, then it is
noiseless and is thus upgraded with respect to any channel. In
our approximating channel, Q′, each boost symbol will have
a typically small probability of appearing, just high enough to
ensure that Q′ is upgraded with respect to W .

A. The APP measure ψ

In this subsection, we define an a posteriori probability
measure on the input alphabet X t, given a letter from the
merged output alphabet Z . We denote this APP measure as
ψ(x|z), defined for x ∈ X t and z ∈ Z . As we will see, ψ(x|z)
will equal the APP of the approximating channel, for output
letters z ∈ Z .

For each bin define the leading input as

x∗ = x∗(z) , arg max
x∈X t

[
max
y∈B(z)

ϕW (x|y)

]
, (8)

where ties are broken arbitrarily. For z ∈ Z , let

ψ(x|z) = min
y∈B(z)

ϕW (x|y) for all x 6= x∗, (9a)

and
ψ(x∗|z) = 1−

∑
x 6=x∗

ψ(x|z) . (9b)

Informally, we note that if the bins are “sufficiently narrow”
(if µ is sufficiently large), then ψ(x|z) is close to ϕW (x|y),
for all x ∈ X t, z ∈ Z , and y ∈ B(z). We continue our
running example with Figure 5, which contains ψ(x|z). The
reader may want to compare the closeness of the APP values
in Figure 5 to those in Figure 2.

z1 z2

ψ(x = 0|z) 0.1048 0.6000
ψ(x = 1|z) 0.3900 0.2571
ψ(x = 2|z) 0.5052 0.1429

Fig. 5. APP values ψ, corresponding to the approximating channel. The
columns designate the letters in Z , where Z = {z1, z2}, and the rows
designate the APP values according to (9). Here, the leading inputs are
x∗(z1) = 2 and x∗(z2) = 0.

B. Boost symbols and definition of Q′

Now we are in position to define our t-user MAC approx-
imation Q′ : X t → (Z ∪K), where K is a set of additional
symbols to be specified in this subsection. We refer to these
new symbols as “boost” symbols.

The augmentation of the boost symbols have a key role
in our upgradation procedure, allowing both upgradation and
reduction of the output alphabet size at the same time. The
boost symbols are defined such that the corresponding APP
values are either 0 or 1. Thus, boost symbols are “clean” in
the sense that when a boost symbol is received at the output
of the channel, the user inputs are immediately known to the
receiver.

Let y ∈ Y and x ∈ X t be given, and let z correspond to
the bin B(z) which contains y. Define the quantity αx(y) as

αx(y) ,
ψ(x|z)
ϕW (x|y)

· ϕW (x∗|y)

ψ(x∗|z) , if ϕW (x|y) 6= 0 . (10a)

Otherwise, define

αx(y) , 1 , if ϕW (x|y) = 0 . (10b)

Informally, αx(y) is the fraction of the probability W (y|x)
that gets passed to Q′(z|x). Thus, αx(y) should ideally be
close to 1. For a table of the values of αx(y) corresponding
to our running example, see Figure 6.

Next, for x ∈ X t, let

εx ,
∑
y∈Y

(1− αx(y))W (y|x) . (11)

Informally, εx is the “leftover” probability, that will be com-
pensated for by a boost symbol. Thus, εx should ideally be
close to 0. We now define K, the set of output “boost”
symbols. Namely, we define a boost symbol for each non-zero
εx,

K = {κx : x ∈ X t , εx > 0 } . (12)

Lastly, the probability function Q′ of our upgraded MAC is
defined as follows. With respect to non-boost symbols, define
for all z ∈ Z and x ∈ X t,

Q′(z|x) =
∑

y∈B(z)

αx(y)W (y|x) . (13a)

With respect to boost symbols, define for all κv ∈ K and
x ∈ X t,

Q′(κv|x) =

{
εx if x = v ,

0 otherwise .
(13b)

Note that if a boost symbol κx is received at the output of
Q′ : X t → (Z ∪K), we know for certain that the input was
X = x. Our running example concludes with Figure 7, which
contains the approximating channel. The sum-rate increment
is 0.047 bits.

The following theorem presents the properties of our up-
graded approximation of W . The proof concludes Section V.

Theorem 2. Let W : X t → Y be a t-user MAC, and let µ be
a given fidelity parameter that satisfies (7) . Let Q′ : X t →
(Z∪K) be the MAC obtained from W by the above definition
(13). Then,

(i) The MAC Q′ is well defined and is upgraded with respect
to W .

(ii) The increment in sum-rate is bounded by

R(Q′)−R(W ) ≤ q − 1

µ
(2 + q · ln q) .

(iii) The output alphabet size of Q′ is bounded by q2·(2µ)q−1.

Note that the input alphabet size q is usually considered
to be a given parameter of the communications system.
Therefore, we can think of q as being a constant. In this
view, Theorem 2 claims that our upgraded-approximation has
a sum-rate deviation of O( 1

µ ), and an output-alphabet of size
O(µq−1).
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y1 y2 y3 y4 y5 y6

α0(y) 0.8475 0.9982 0.9403 0.9818 1.0000 1.0000
α1(y) 0.9700 0.9997 0.8728 0.9642 1.0000 0.9685
α2(y) 1.0000 1.0000 1.0000 1.0000 1.0000 0.9035

Fig. 6. Values of αx(y). The columns designate the letters in Y , and the rows designate the values according to (10).

z1 z2 κ0 κ1 κ2

Q′(y|x = 0) 0.1634 0.8245 0.0121 0 0
Q′(y|x = 1) 0.6076 0.3534 0 0.0390 0
Q′(y|x = 2) 0.7870 0.1963 0 0 0.0167

Fig. 7. The upgraded channel Q′ : X t → (Z ∪K). Here, Z = {z1, z2} and K = {κ0, κ1, κ2}. Note that εx equals the non-zero entry in column κx, for
x = 0, 1, 2.

C. Implementation

In this subsection, we outline an efficient implementation of
our algorithm. In short, we make use of an associative array,
also called a dictionary [26, Page 197]. An associative array is
a data structure through which elements can be searched for by
a key, accessed, and iterated over efficiently. In our case, the
elements are sets, and they are represented via linked lists [26,
Subsection 10.2]. The associative array can be implemented
as a self-balancing tree [26, Section 13] holding (pointers to)
the lists. A different approach is to implement the associative
array as a dynamically growing [26, Subsection 17.4] hash
table [26, Subsection 11.2]. Algorithm A summarizes our
implementation.

Consider the variables αx(y) and ψ(x|z) used in the algo-
rithm. The naming of these variables is meant to be consistent
with the other parts of the paper. However, note that there
are in fact only two floating point variables involved. That
is, once we have finished dealing with y1 and moved on to
dealing with y2 in the innermost loop on line 16, the memory
space used in order to hold αx(y1) should be reused in order
to hold αx(y2), etc.

Let us now analyze our algorithm. Consider first the time
complexity. We will henceforth assume that the total number
of regions, M , is less than the largest integer value supported
by the computer. We will further assume that integer opera-
tions are carried out in time O(1). Hence, the calculation of
a key takes time O(q · logM). To see this, first recall that by
line 4 of the algorithm, a key is simply a vector of length q
containing region indices. Finding the correct region index for
each value of x can be done by a binary search involving the
bi calculated in line 1. Since line 4 is invoked |Y| times, the
total time spent running it is O(|Y| · q · logM).

We next consider the running time of a single invocation of
line 5. Checking for key equality and order takes time O(q). If
a balanced tree with n elements is used, this operation occurs
O(log n) times for each search operation. In contrast, in a dy-
namic hash implementation, checking for key equality occurs
only O(1) times on average, for each search operation. We
again recall that line 5 is invoked O(|Y|) times. Thus, the total
time spent running line 5 in the balanced tree implementation
is O(|Y| ·q · log n), where n is the number of non-empty bins.
In contrast, in a dynamic hash implementation, the total time
spent running line 5 is O(|Y| · q), on average.

By inspection, the total time spent running any other line

in the algorithm is upper bounded — up to multiplicative
constants — by the total spent running either line 4 or line 5.
Consider first the balanced tree implementation. We conclude
that the running time is O(|Y| · q · (log n + logM)), where
n is the total number of non-empty bins and M is the total
number of regions. By Corollary 4 below, we can write this as
O(|Y| · q · (log n+ logµ)), where µ is the fidelity parameter.
Obviously, the total number of non-empty bins is at most |Y|.
Thus, the total running time is O(|Y| · q · (log |Y| + logµ)),
for the balanced tree implementation (worst case). In the hash
setting, the same arguments lead us to conclude that the total
running time is O(|Y| · q · logµ), on average. Note that the
input to the algorithm typically has size N = |Y| · q, the table
size needed to encode the channel W . Thus the two running
times mentioned are O(N(logN + logµ)) and O(N logµ),
respectively.

The space complexity of our algorithm is O(|Y|+n ·q): we
must store all the elements of Y , and the key corresponding to
every non-empty bin. As before, we can thus bound the space
complexity as O(|Y|(q + 1)) = O(N).

V. ANALYSIS

Conceptually, for the purpose of analysis, the algorithm
can be thought of as performing four steps. In the first step,
an output alphabet Z is defined by means of a quantization
(Section III). In the second step, a corresponding APP measure
ψ is defined (Subsection IV-A). In the third step, the original
output alphabet Y is augmented with “boost” symbols K,
and a new channel W ′ : X t → (Y ∪ K) is defined. The
APP measure ψ has a key role in defining W ′, which is
upgraded with respect to W . In the fourth step, we consolidate
equivalent symbols in W ′ : X t → (Y ∪ K) into a single
symbol. The resulting channel is Q′ : X t → (Z ∪ K). On
the one hand, Q′ is equivalent to W ′, and thus upgraded
with respect to the original channel W . On the other hand,
the output alphabet of Q′ turns out to be Z ∪ K, a set
typically much smaller than the original output alphabet Y .
The channels used throughout the analysis are depicted in
Figure 8, along with the corresponding properties and the
relations between them.

This section is divided into four subsections, each subsec-
tion dealing with a corresponding algorithm step, as defined
above. Specifically, in Subsection V-A we first consider the
region intervals defined in Section III and depicted in Figure 3.
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Algorithm A: Channel upgrading procedure
input: A MAC W : X t → Y , a fidelity parameter µ.

output: A MAC Q′ : X t → (Z ∪K) satisfying Theorem 2.
// Initialization of region boundaries

1 Calculate the number of regions M and region
boundaries (bi)

M
i=0 according to (5)

// Initialization of data structure
2 Initialize an empty associative array (containing no lists)
// Populate the data structure

3 for each y ∈ Y do
// Calculate key according to (4)

and (6)
4 key = ( i(x) )x∈X t ,where i(x) , R(ϕW (x|y))
5 if associative array contains a linked list

corresponding to key then
6 add y to the corresponding linked list
7 else
8 create a new (empty) linked list, add y to it, add

the linked list to the associative array by
associating it with key

// Initialize εx
9 Set εx = 0, for each x ∈ X t
// Iterate over all non-empty bins
// Produce non-boost symbols and

probabilities
10 for each linked list in the associative array do
11 Create a new letter z and add it to the output

alphabet of Q′

12 Set Q′(z|x) = 0, for each x ∈ X t
13 Loop over all y in list and all x ∈ X t. Calculate the

leading input x∗ according to (8)
14 for each x ∈ X t do
15 Loop over all y in list and calculate ψ(x|z)

according to (9)
16 for each y in the linked list do
17 Calculate αx(y) according to (4) and (10)

// Implement (11)
18 Increment εx by (1− αx(y))W (y|x)

// Implement (13a)
19 Increment Q′(z|x) by αx(y)W (y|x)

// Produce boost symbols and
probabilities

20 for each v ∈ X t do
21 if εv > 0 then
22 Create a new letter κv and add it to the output

alphabet of Q′

// Implement (13b)
23 for each x ∈ X t do
24 if x = v then
25 Set Q′(κv|x) = εv
26 else
27 Set Q′(κv|x) = 0

We prove results about their length, span with respect to η, and
count. Building on these results, we move on to consider bins,
and state an upper bound on their number. In Subsection V-B,
we consider the quantized APP measure ψ. The two main
results of this subsection deal with the closeness of the original
APP ϕ to ψ. Specifically, we bound the difference between
η(ϕ) and η(ψ), as well as the ratio ϕ/ψ. Subsection V-C
contains the definition of W ′, a proof of the fact that is
upgraded with respect to W , and a bound on the probability of
the boost symbols. In Subsection V-D we state the equivalence
of the channels W ′ and Q′, and prove Theorem 2.

A. Quantization Properties

In Section III, we have quantized the domain of the function
η(p) = −p · ln p for the purpose of binning. Now, we would
like to discuss a few properties of this definition. A key result
of this subsection is Lemma 8, in which an upper bound on
|Z| is gotten. Recall that Z is the dominant part of the output
alphabet of the approximating channel Q′.

Observing Figure 3, the reader may have noticed that
regions entirely to the left of p = 1

e2 have a vertical increment
of 1

µ . On the other hand, regions entirely to the right of
p = 1

e2 , last region excluded, have a horizontal width of 1
µ .

The following lemma shows that this is always the case. The
proof is given in Appendix B.
Lemma 3. Let the extreme points {bi : 1 ≤ i ≤ M + 1}
partition the domain interval 0 ≤ p ≤ 1 into quantization
regions (intervals), as in Section III (see (5)). Thus,

(i) if 0 ≤ bi < bi+1 <
1
e2 , then

η(bi+1)− η(bi) =
1

µ
.

(ii) Otherwise, if 1
e2 ≤ bi < bi+1 < 1 , then

bi+1 − bi =
1

µ
.

We are now ready to upper-bound M = Mµ, the number
of quantization regions. The following corollary will be used
to bound the number of bins, namely |Z|, later on.
Corollary 4. The number of quantization regions, M = Mµ,
satisfies

M ≤ 2µ .

Proof. A direct consequence of Lemma 3 is that

M ≤
⌊
η( 1
e2 )

1/µ

⌋
+

(⌊
1− 1

e2

1/µ

⌋
+ 1

)
+ 1 .

The first term is due to regions entirely within [0, 1
e2 ), the

second (braced) term is due to regions entirely within [ 1
e2 , 1],

where the 1 inside the braces is due to the last (rightmost)
region. The 1 outside the braces is due to the possibility of a
region that crosses p = 1

e2 . Hence, since η(1/e2) = 2/e2,

M ≤ µ
(

1 +
1

e2

)
+ 2 ≤ 2µ ,

where the last inequality follows from our assumption in (7)
that µ ≥ 5.
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Upgrade Consolidate

Channel W � W ′ ≡ Q′

Output Alphabet Y Y ∪K Z ∪K

Bottom line: W � Q′

Fig. 8. A high-level view of the MACs used throughout the analysis.

The corollary, following the lemma below, will play a
significant role in the proof of Theorem 2.
Lemma 5. Given p ∈ [0, 1), let i = R(p). That is,

bi ≤ p < bi+1 .

Also, let
0 < δ ≤ bi+1 − bi ,

such that p+ δ ≤ 1. Then,

|η(p+ δ)− η(p)| ≤ 1

µ
.

The proof of Lemma 5 is given in Appendix C. The
corollary below is an immediate consequence of Lemma 5.
Corollary 6. All p1 and p2 that belong to the same quantization
region (that is: R(p1) = R(p2)) satisfy

|η(p1)− η(p2)| ≤ 1

µ
.

The following lemma claims that each quantization interval,
save the last, is at least as wide as the previous intervals. The
proof is given in Appendix D.
Lemma 7. Let the width of the ith quantization interval be
denoted by

∆i = bi+1 − bi , i = 1, 2, . . . ,M .

Then the sequence {∆i}M−1
i=1 (the last interval excluded) is a

non-decreasing sequence.
Following the quantization definition, the output letters in
Y were divided into bins (Section III). Each bin is represented
by a single letter in Z . The following lemma upper bounds
the size of Z .
Lemma 8. Let Z be defined as in Section III. Then,

|Z| ≤ q2 · (2µ)q−1 .

The proof of Lemma 8 is given in Appendix E. We would
like to mention that the proof is generic in the following
sense: the proof can be used verbatim to prove that the
output alphabet size in the degrading algorithm presented in
[7] produces a channel with output alphabet size at most
q2 · (2µ)q−1. This is an improvement over the (2µ)q bound
stated in [7, Lemma 6], for large enough µ.

Consider a given bin (and a given z ∈ Z). Depending on
x ∈ X t, all y ∈ B(z) share the same region index

i(x) = iz(x) , R (ϕW (x|y)) . (14)

Denote the set of region indices associated with a bin as

L(z) =
{
iz(x) : x ∈ X t

}
. (15)

According to the following lemma, the largest index in L(z)
belongs to the leading input x∗, defined in (8). In other words
the leading input is in the leading region.
Lemma 9. Consider a given z ∈ Z . Let i(x) be given by (14)
for all x ∈ X t, and let x∗ be as in (8). Then

i(x∗) = max
{
i(x) : x ∈ X t

}
.

Proof. Define the leading output y∗ ∈ B(z) by

y∗ = y∗(z) , arg max
y∈B(z)

ϕW (x∗|y) . (16)

By (8) and (16), we have that

ϕW (x∗|y∗) = max
x∈X t
y∈B(z)

ϕW (x|y) . (17)

Recalling the definition of our bins in Subsection III, we
deduce that

R (ϕW (x∗|y)) = R (ϕW (x∗|y∗)) ≥ R (ϕW (x|y)) ,

for all y ∈ B(z) and for all x ∈ X t.

B. Properties of ψ

Recall that the APP measure ψ(x|z) was defined in Sub-
section IV-A. We start this subsection by showing that ψ is
“close” to the APP of the original channel. As ψ is the APP
of the approximating channel Q′, this will be used later on to
show that the two channels have sum-rate values which are
close as well.
Lemma 10. Let W : X t → Y be a generic t-user MAC, and let
Z be the merged output alphabet conceived through applying
the binning procedure to Y . For each z ∈ Z , let x∗ = x∗(z)
be the leading-input defined by (8), and let ψ(x|z) be the
probability measure on x ∈ X t defined in (9).

Then for all z ∈ Z and y ∈ B(z),

|η (ϕW (x|y))− η (ψ(x|z)) | ≤
{

1
µ if x 6= x∗ ,
q−1
µ if x = x∗ .

Proof. Consider a particular letter y ∈ B(z). For all x 6= x∗,
we have by (9a) that ψ(x|z) belongs to the same quantization
interval as ϕW (x|y). Therefore, the first case is due to
Corollary 6.
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As for the second case, let {∆i}Mi=1 be as in Lemma 7.
Also, for the leading region i∗ = i(x∗), define the leading
width by

∆∗ = ∆i∗ .

As Lemma 9 declares the leading region to be the rightmost
region in L(z), it follows from Lemma 7 that either

i∗ = M , or ∆∗ = max {∆i : i ∈ L(z)} .
In words, the leading region is either the last region or the
widest.

Suppose first that i∗ < M . Thus, the leading width is the
largest. And so we claim that for all x 6= x∗,

0 ≤ ϕW (x|y)− ψ(x|z) ≤ ∆i ≤ ∆∗ ,

where i = i(x) = R (ϕW (x|y)). The leftmost inequality
follows from (9a), while the middle follows from ψ(x|z)
and ϕW (x|y) belonging to the same quantization interval.
The rightmost inequality follows from our observation that
∆∗ = max {∆i : i ∈ L(z)}. Based on (9b), the above implies
that

0 ≤ ψ(x∗|z)− ϕW (x∗|y) ≤ (q − 1)∆∗ . (18)

That is, x∗ may have been “pushed” several regions higher:
R (ψ(x∗|z)) ≥ R (ϕW (x∗|y)). However, Lemma 7 assures
that ∆∗ is no bigger than the width of subsequent regions.
Thus

R (ψ(x∗|z))−R (ϕW (x∗|y)) ≤ q − 1 ,

from which the second part of the lemma follows by induction,
applying Lemma 5.

If, on the other hand, i∗ = M , then ψ(x∗|z) must also
belong to the last (and leading) region. The second part of the
lemma follows then from Corollary 6.

The quantity ψ(x∗|z) frequently appears as a denominator.
The main use of the following lemma is to show that such an
expression is well defined.
Lemma 11. For z ∈ Z , let x∗ = x∗(z) be the leading-input
defined by (8), and let ψ(x|z) be the probability measure on
x ∈ X t defined in (9). Then,

ψ(x∗|z) ≥ 1

q
, (19)

for all z ∈ Z .

Proof. Consider a given z ∈ Z . Let the leading-output
y∗ ∈ B(z) be as in (16). On the one hand, since the sum
of ϕW (x|y∗) over x ∈ X t is 1, there exists a x ∈ X t such
that

ϕW (x|y∗) ≥ 1

q
. (20)

On the other hand, by (17), we have that

ϕW (x∗|y∗) ≥ ϕW (x|y∗) .
Thus,

ψ(x∗|z) ≥ ϕW (x∗|y∗) ≥ 1

q
, (21)

where the left inequality follows by (18).

We will shortly make use of the following quantity. For
every y ∈ Y , define

γ(y) ,
ϕW (x∗|y)

ψ(x∗|z) , (22)

where z is assigned to the corresponding bin, i.e. y ∈ B(z).
Note that by (19), γ(y) is indeed well defined.

Consider a given z ∈ Z . Next, we claim that

ψ(x∗|z) ≥ ϕW (x∗|y) ≥ 1

q
− 1

µ
> 0 , (23)

for all y ∈ B(z). To justify this claim, note that the leftmost
inequality follows from (17) and (21). The middle inequality
follows from (5) and (21) (recall that R (ϕW (x∗|y)) =
R (ϕW (x∗|y∗)) for all y ∈ B(z)). Finally, the rightmost
inequality follows from (7). Therefore,

0 ≤ γ(y) ≤ 1 , (24)

for all y ∈ Y
Recall that by Lemma 10, we have that ψ is close to

the APP of the original channel, ϕW , in an additive sense
(for large enough µ). The following lemma states that ψ and
ϕW are close in a multiplicative sense as well, when we are
considering x∗. The proof is given in Appendix F.

Lemma 12. Let W : X t → Y be a t-user MAC , and let γ(y)
be given by (22). Then for all y ∈ Y ,

0 ≤ 1− q(q − 1)

µ
≤ γ(y) ≤ 1 . (25)

C. The MAC W ′

We now define the channel W ′ : X t → (Y ∪ K), an
upgraded version of W : X t → Y . The utility of W ′ is as
a sub-step of the grand proof. Namely, we will show that W ′

is upgraded with respect to W , while having almost the same
output alphabet. Later, we will show that the final channel Q′

is easily gotten from W ′.
Our definition of W ′ makes heavy use of αx(y), defined in

(10). Thus, as a first step, we give the following Lemma.

Lemma 13. Let αx(y), be as in (10). Then, αx(y) is well
defined and satisfies

0 ≤ αx(y) ≤ 1 . (26)

Proof. The claim obviously holds if ϕW (x|y) = 0 due to
(10b). So, we henceforth assume that ϕW (x|y) > 0, and thus
have that

αx(y) =
ψ(x|z)
ϕW (x|y)

· ϕW (x∗|y)

ψ(x∗|z) . (27)

By assumption, the first denominator is positive. Also, by
(19), the second denominator is positive, and thus αx(y) is
indeed well defined.

We now consider two cases. If x = x∗, then αx(y) = 1,
and the claim is obviously true. Thus, assume that x 6= x∗.
Since we are dealing with probabilities, we must have that
αx(y) ≥ 0. Consider the two fractions on the RHS of (27).
By (9a), the first fraction is at most 1, and by (23) the second
fraction is at most 1. Thus, αx(y) is at most 1.
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We now define W ′ : X t → (Y ∪K), an upgraded version
of W . For all y ∈ Y and for all x ∈ X t, define

W ′(y|x) = αx(y) ·W (y|x) . (28a)

Whereas, for all κv ∈ K and for all x ∈ X t, define

W ′(κv|x) =εx =
∑
y∈Y

(1− αx(y))W (y|x) if x = v ,

0 otherwise.
(28b)

The following lemma states that W ′ is indeed an upgraded
version of W .
Lemma 14. Let W : X t → Y be a t-user MAC, and let
W ′ : X t → (Y ∪K) be the MAC obtained by the procedure
above. Then, W ′ is well-defined and is upgraded with respect
to W . That is,

W ′ �W .

Proof. Based on Lemma 13, it can be easily verified that W ′

is indeed well-defined. We define the following intermediate
channel P : (Y ∪K)→ Y , and prove the lemma by showing
that W is obtained by the concatenation of W ′ followed by
P . Define for all y ∈ Y and for all y′ ∈ (Y ∪K),

P(y|y′) =


1 if y′ = y ∈ Y ,
[1−αx(y)]·W (y|x)

εu
if y′ = κu ∈ K ,

0 otherwise.

Let y ∈ Y and x ∈ X be given. Now consider the sum∑
y′∈Y∪K

W ′(y′|x) · P(y|y′)

= W ′(y|x) · 1 +
∑
κ∈K

W ′(κ|x) · P(y|κ) .

Consider first the case in which εx = 0. In this case, the sum
term, in the RHS, is zero (see (12)). Moreover, (10b) and (11)
imply that αx(y) = 1. And so we have, by (28a), that∑

y′∈Y∪K
W ′(y′|x) · P(y|y′) = W (y|x) .

Next, consider the case where εx > 0. We have that∑
y′∈Y∪K

W ′(y′|x) · P(y|y′)

= W ′(y|x) + εx · P(y|κx)

= αx(y)W (y|x) + [1− αx(y)] ·W (y|x)

= W (y|x) .

A boost symbol carries perfect information about what was
transmitted through the channel. We now bound from above
the average probability of receiving a boost symbol. This result
will be useful in the proof of Theorem 2, where we bound the
sum-rate increment of our upgraded approximation.
Lemma 15. Let εx be given by (11) for all x ∈ X t. Then,∑

x∈X t
(P(X = x) · εx) ≤ q(q − 1)

µ
.

Proof. By definition (11), we have that∑
x∈X t

P(X = x) · εx

=
∑
x∈X t

P(X = x) ·
∑
y∈Y

(1− αx(y))W (y|x)


= 1−

∑
x∈X t

P(X = x) ·
∑
y∈Y

αx(y)W (y|x)

 . (29)

We now bound the second term. We have that∑
x∈X t

P(X = x) ·
∑
y∈Y

αx(y)W (y|x)


=
∑
y∈Y

∑
x∈X t:

W (y|x)>0

P(X = x) · αx(y) ·W (y|x)

=
∑
z∈Z

∑
y∈B(z)

∑
x∈X t:

ϕW (x|y)>0

P(X = x)

· ψ(x|z)
ϕW (x|y)

· γ(y) ·W (y|x)

≥
(

1− q(q − 1)

µ

)
∑
z∈Z

∑
y∈B(z)

∑
x∈X t:

ϕW (x|y)>0

ψ(x|z) · P(X = x) ·W (y|x)

ϕW (x|y)

=

(
1− q(q − 1)

µ

)∑
z∈Z

∑
y∈B(z)

∑
x∈X t

ψ(x|z) · pW (y)

=

(
1− q(q − 1)

µ

)∑
z∈Z

∑
y∈B(z)

pW (y)
∑
x∈X t

ψ(x|z)

= 1− q(q − 1)

µ
, (30)

where the inequality is due to Lemma 12, and the equality that
follows it is due to the observation below. If ϕW (x|y) = 0,
then based on (23), we have that x 6= x∗. Therefore, by (9a),
ϕW (x|y) = 0 implies that ψ(x|z) = 0 as well. That in turn
leads to our observation that∑

x∈X t:
ϕW (x|y)>0

ψ(x|z) =
∑
x∈X t

ψ(x|z) = 1 . (31)

As the second term of (29) is bounded by (30), the proof
follows.

D. Consolidation

In the previous section, we defined W ′ : X t → (Y ∪ K)
which is an upgraded version of W : X t → Y . Note that
the output alphabet of W ′ is larger than that of W , and our
original aim was to reduce the output alphabet size. We do
this now by consolidating letters which essentially carry the
same information.

Consider the output alphabet Y ∪K of our upgraded MAC
W ′, compared to the original output alphabet Y . Note that,
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while the output letters y ∈ Y are the same output letters
we started with, their APP values are modified and satisfy the
following.

Lemma 16. Let W ′ : X t → (Y ∪ K) be the MAC defined
in Subsection V-C. Then, all the output letters y ∈ B(z) have
the same modified APP values (for each x ∈ X t separately).
Namely,

ϕW ′(x|y) = ψ(x|z) ,

for all x ∈ X t, and for all z ∈ Z and y ∈ B(z).

Proof. First consider the case where ϕW (x|y) = 0. On the
one hand, ϕW ′(x|y) = 0 by (4) and (28a). On the other hand,
(23) implies that x 6= x∗, and thus ψ(x|z) = 0 as well, by
(9a).

Now assume ϕW (x|y) > 0. In that case,

ϕW ′(x|y) =
P(X = x) ·W ′(y|x)∑

v∈X t
P(X = v) ·W ′(y|v)

=
P(X = x) · αx(y) ·W (y|x)∑

v∈X t:
W (y|v)>0

P(X = v) · αv(y) ·W (y|v)

=

P(X=x)·W (y|x)
ϕW (x|y) · γ(y) · ψ(x|z)∑

v∈X t:
ϕW (v|y)>0

P(X=v)·W (y|v)
ϕW (v|y) · γ(y) · ψ(v|z)

=
ψ(x|z)∑

v∈X t
ψ(v|z)

= ψ(x|z) ,

where the fourth equality follows from (31).

We have seen in Lemma 16 that with respect to W ′, all
the members of B(z) have the same APP values. As will be
pointed in Lemma 17 in the sequel, consolidating symbols
with equal APP values results in an equivalent channel. Thus
consolidating all the members of every bin B(z) to one symbol
z results in an equivalent channel Q′ : X t → (Z∪K) defined
by (13). Note that consolidation simply means mapping all the
members of B(z) to z with probability 1. Formally, we have
for all z ∈ Z ∪K and for all x ∈ X t,

Q′(z|x) =


∑

y∈B(z)

W ′(y|x) if z ∈ Z ,

W ′(z|x) if z ∈ K .

(32)

Based on (28), it can be easily shown that the alternative defi-
nition above agrees with the definition of Q′ : X t → (Z ∪K)
in (13).

The rest of this section is dedicated to proving Theorem 2.
But before that, we address the equivalence of W ′ and Q′ in
Lemma 17. In essence, we claim afterward that due to this
equivalence, showing that W ′ �W implies that Q′ �W .

Lemma 17. Let W : X t → Y be a t-user MAC, and let
y1, . . . , yr ∈ Y be r letters of equal APP values, for some
positive integer r. That is, for all x ∈ X t,

ϕ(x|yi) = ϕ(x|yj) , for all 1 ≤ i ≤ j ≤ r . (33)

Now let Q : X t → Z be the t-user MAC obtained by
consolidating y1, . . . , yr to one symbol z. This would make
the output alphabet

Z = Y \ {y1, . . . , yr} ∪ {z} .
Then, the MACs W and Q are equivalent, i.e.

W ≡ Q .

The proof of Lemma 17 is given in Appendix G. We have
mentioned that equivalence of MACs is a transitive relation.
Therefore, consolidating bin after bin we finally have by
induction that W ′ ≡ Q′.

Proof of Theorem 2. We first prove part (i) of the theorem,
which claims that the approximation is well defined and
upgraded with respect to W . Since Q′ : X t → (Z ∪ K)
is a result of applying consolidation on W ′ : X t → (Y ∪K),
it follows that Q′ is well defined as well.

According to Lemma 14, W ′ � W . Since W ′ and Q′

are equivalent, and since upgradation transitivity immediately
follows from the definition, it follows that Q′ �W .

We now move to part (ii) of the theorem, which concerns
the sum-rate difference. Recall that the random variable Y has
been defined as the output of W : X t → Y when the input is
X. Similarly, define Z ′ as the output of Q′ : X t → (Z ∪K)
when the input is X.

To estimate the APPs for Q′ : X t → (Z ∪K), we may use
(4) and (32). First, consider a non-boost symbol z ∈ Z . Then,
for all x ∈ X t,

ϕQ′(x|z) =
P(X = x) ·∑y∈B(z)W

′(y|x)

pQ′(z)

=

∑
y∈B(z) ϕW ′(x|y) · pW ′(y)∑

ỹ∈B(z) pW ′(ỹ)
= ψ(x|z) ,

where the last equality follows from Lemma 16. Second,
consider a boost symbol κ ∈ K. Then, for all x ∈ X t,

ϕQ′(x|κ) ∈ {0, 1} .
Denote the entropy of the probability distribution defined in

Section IV-A by

Hψ(X|Z = z) =
∑
x∈X t

η [ψ(x|z)] . (34)

Thus

R(Q′) = H(X)−
∑
z∈Z

pQ′(z)Hψ(X|Z = z)

−
∑
κ∈K

pQ′(κ)H(X|Z ′ = κ) .

However, the last term is zero due to the following observation.
Given that the output of the MAC Q′ is κv for some v ∈ X t,



12

the input X is known to be v (it is deterministic). Hence
H(X|Z ′ = κv) = 0 for all κv ∈ K. Hence

R(Q′) = H(X)−
∑
z∈Z

pQ′(z)Hψ(X|Z = z) . (35)

Next we define a new auxiliary quantity to alleviate the
proof. But first, define the random variable Z as the letter in
the merged output alphabet Z corresponding to Y . Namely,
the realization Z = z occurs whenever Y is contained in B(z).
The probability of that realization is

pB(z) , P(Z = z) =
∑

y∈B(z)

pW (y) . (36)

Note that the joint distribution pB(z) · ψ(x|z) does not nec-
essarily induce a true MAC (for instance, it may contradict
the true distribution of X). Nevertheless, we plug this joint
distribution into the sum-rate expression, with due caution. In
other words, we define a new quantity J(X;Z), which is a
surrogate for mutual information. Namely, define

J(X;Z) , H(X)−
∑
z∈Z

pB(z) ·Hψ(X|Z = z)

= H(X)−
∑
z∈Z

pB(z)
∑
x∈X t

η [ψ(x|z)] , (37)

where Hψ(X|Z = z) is given by (34).
Now, we would like to bound the increment in sum-rate. To

this end, we prove two bounds and then sum. First, note that

J(X;Z)−R(W )

=
∑
y∈Y

pW (y)
∑
x∈X t

η(ϕW (x|y))

−
∑
z∈Z

pB(z)
∑
x∈X t

η(ψ(x|z))

=
∑
z∈Z

∑
y∈B(z)

pW (y)
∑
x∈X t

[η(ϕW (x|y))− η(ψ(x|z))]

≤
∑
z∈Z

∑
y∈B(z)

pW (y) · |η(ϕW (x∗|y))− η(ψ(x∗|z))|

+
∑
z∈Z

∑
y∈B(z)

pW (y)
∑
x6=x∗

|η(ϕW (x|y))− η(ψ(x|z))|

≤ 2 · q − 1

µ
, (38)

where the last inequality is due to Lemma 10.
For the second bound, we subtract (37) from (35) to get

R(Q′)− J(X;Z) =
∑
z∈Z

(pB(z)− pQ′(z))Hψ(X|Z = z) .

By (13a), (26), and (36), the parenthesized difference on the
RHS is non-negative. Thus,

R(Q′)− J(X;Z)

≤ ln q ·
∑
z∈Z

(pB(z)− pQ′(z)) = ln q ·
[

1−
∑
z∈Z

pQ′(z)

]
= ln q ·

∑
z∈K

pQ′(z) = ln q ·
∑
x∈X t

(P(X = x) · εx) .

Hence, by Lemma 15 we have a second bound:

R(Q′)− J(X;Z) ≤ ln q · q(q − 1)

µ
. (39)

The proof follows by adding the bounds (38) and (39).
Our last task is to prove part (iii) of the theorem, which

bounds the output alphabet size. Recall that |Z| is bounded
by Lemma 8. Recalling that the number of boost symbols is
bounded by |K| ≤ |X t| = q, the proof easily follows.
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APPENDIX

A. Proof of Lemma 1

Let C be the complement of A ∪ B. Thus, the sum-rate
criterion (2) can be rephrased as

I(XA,XB ,XC ;Y ) ≥ I(XA,XB ,XC ;Z ′)− ε . (40)

Applying the chain rule to both sides of (40) yields

I(XB ;Y ) + I(XA;Y |XB) + I(XC ;Y |XA,XB)

≥ I(XB ;Z ′) + I(XA;Z ′|XB) + I(XC ;Z ′|XA,XB)− ε .
So, in order to prove (3) we must show that

I(XB ;Z ′) ≥ I(XB ;Y ) and
I(XC ;Z ′|XA,XB) ≥ I(XC ;Y |XA,XB) . (41)

Since W � Q′, we have that there exists a random variable
Z ′′ such that

P(Z ′′ = z|X = x) = Q′(z|x) , (42)

and the following Markov relation holds,

(XA,XB ,XC)→ Z ′′ → Y . (43)

Then, (42) implies that

I(XB ;Z ′) = I(XB ;Z ′′) and
I(XC ;Z ′|XA,XB) = I(XC ;Z ′′|XA,XB) . (44)

Hence, the first inequality in (41) follows from (43) and the
data-processing inequality [25, Theorem 2.8.1].

To see why the second inequality in (41) holds, let us
consider I(XC ;Y, Z ′′|XA,XB). On the one hand,

I(XC ;Y, Z ′′|XA,XB)

= I(XC ;Y |XA,XB) + I(XC ;Z ′′|XA,XB , Y )

≥ I(XC ;Y |XA,XB) .

On the other hand, we claim that

I(XC ;Y,Z ′′|XA,XB)

= I(XC ;Z ′′|XA,XB) + I(XC ;Y |XA,XB , Z
′′)

= I(XC ;Z ′′|XA,XB)

= I(XC ;Z ′|XA,XB) .
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Namely, we claim that I(XC ;Y |XA,XB , Z
′′) = 0. This is

indeed true, since by the Markov property

p(xc|xa,xb, y, z′′) =
p(xa,xb,xc|y, z′′)
p(xa,xb|y, z′′)

=
p(xa,xb,xc|z′′)
p(xa,xb|z′′)

= p(xc|xa,xb, z′′) ,

where p(xa) = P(Xa = xa), etc.

B. Proof of Lemma 3

The derivative η′(p) = −(1 + ln p) is strictly decreasing
from +∞ at p = 0 , to +1 at p = 1

e2 . Thus, for all 0 ≤ p < 1
e2 ,

η′(p) > 1 .

If 0 ≤ bi < bi+1 <
1
e2 , then we have by the fundamental

theorem of calculus that

η(bi +
1

µ
)− η(bi) =

∫ bi+
1
µ

bi

η′(p) dp >
1

µ
.

Hence bi+1 < bi + 1
µ , which implies the first part of the

lemma.
Moving forward on the x-axis, η′(p) keeps decreasing from

+1 at p = 1
e2 , to −1 at p = 1. Thus for all 1

e2 ≤ p ≤ 1,

|η′(p)| ≤ 1 .

Hence, if 1
e2 ≤ bi < bi+1 < 1 , the second part follows by the

triangle inequality:

|η(bi +
1

µ
)− η(bi)| ≤

∫ bi+
1
µ

bi

|η′(p)| dp ≤ 1

µ
.

C. Proof of Lemma 5

Let p, i and δ be as in Lemma 5. If p is in the last region,
then the lemma simply follows from the definition in (5). So,
suppose i < M , and let

∆ = bi+1 − bi ≤
1

µ
, (45)

where the inequality follows from (5).
We now consider two cases. If 1

e2 ≤ p ≤ 1, then |η′(p)| ≤ 1.
Thus, by the triangle inequality,

|η(p+ δ)− η(p)| ≤
∫ p+δ

p

|η′(ξ)| dξ ≤ δ ≤ ∆ =
1

µ
,

where the equality follows by part (ii) of Lemma 3.
In the other case left to consider, 0 ≤ p < 1

e2 . Recall that
µ ≥ 5 by the assumption made in (7). Hence

1

µ
<

1

e
− 1

e2
,

which implies that

p+ δ ≤ p+ ∆ ≤ p+
1

µ
<

1

e
.

Hence, the derivative η′ is positive in the range [p, p + ∆].
By the definition of ∆ in (45), we have that the point p+ ∆
belongs to another region:

bi+1 ≤ p+ ∆ <
1

e
.

Thus, since η is strictly increasing in [0, 1
e ),

|η(p+ δ)− η(p)|
= η(p+ δ)− η(p)

≤ η(p+ ∆)− η(p)

= [η(bi+1)− η(p)] + [η(p+ ∆)− η(bi+1)] .

Hence, by the fundamental theorem of calculus,

|η(p+ δ)− η(p)| ≤
∫ bi+1

p

η′(ξ) dξ +

∫ x+∆

bi+1

η′(ξ) dξ .

Since η′(p) is a strictly decreasing function of p, the second
integral can be upper-bounded by∫ p+∆

bi+1

η′(ξ) dξ <

∫ p

bi+1−∆

η′(ξ) dξ .

By (45), we have that bi+1 −∆ = bi .Thus,

|η(p+ δ)− η(p)| ≤
∫ bi+1

p

η′(ξ) dξ +

∫ p

bi

η′(ξ) dξ

= η(bi+1)− η(bi) ≤
1

µ
,

where the last inequality follows from (5).

D. Proof of Lemma 7

Let us look at two quantization intervals i and j, where
1 ≤ i < j < M . Our aim is to prove that ∆i ≤ ∆j . Consider
first the simpler case in which ∆j = 1/µ. Recall from (5)
that 1/µ is an upper bound on the length of any interval, and
specifically on ∆i. Thus, in this case, ∆i ≤ ∆j .

Now, let us consider the case in which ∆j < 1/µ. Thus, by
(5), we must have that

η(bj+1)− η(bj) =
1

µ
. (46)

We will now assume to the contrary that ∆j < ∆i, and show
a contradiction to (46).

Since ∆j < 1/µ, we must have by part (ii) of Lemma 3
that bj < 1

e2 . Since every interval length is at most 1/µ, we
must have that ∆i ≤ 1/µ. By the above, and recalling the
assumption in (7) that µ ≥ 5, we deduce that

bj + ∆j < bj + ∆i ≤ bj +
1

µ
<

1

e2
+

1

µ
<

1

e
.

Thus, since η′(p) is positive for p < 1
e ,

η(bj+1)− η(bj) =

∫ bj+∆j

bj

η′(p) dp <

∫ bj+∆i

bj

η′(p) dp .

Now, since bi < bj and η′(p) is a strictly decreasing function
of x, we have that∫ bj+∆i

bj

η′(p) dp <

∫ bi+∆i

bi

η′(p) dp = η(bi+1)− η(bi) .



14

Lastly, since bj < 1
e2 , we have that bi+1 <

1
e2 . Thus, by part

(i) of Lemma 3 we have that

η(bi+1)− η(bi) =
1

µ
.

From the last three displayed equations, we deduce that

η(bj+1)− η(bj) <
1

µ
,

which contradicts (46).

E. Proof of Lemma 8

The size of the merged output alphabet |Z| is in fact the
number of non-empty bins. Recall that two letters y1, y2 ∈
Y are in the same bin if and only if R(ϕW (x|y1)) =
R(ϕW (x|y2)) for all x ∈ X t. As before, denote by M = Mµ

the number of quantization regions. Since the number of values
x can take is q, we trivially have that

|Z| ≤Mq .

We next sharpen the above bound by showing that although
Mq bins exist, some are necessarily empty. If a bin is non-
empty, there must exist a y ∈ Y such that (ϕW (x|y))x∈X t
is mapped to it. Thus, let us bound the number of valid
bins, where a bin is valid if there exists a probability vector
(p[x])x∈X t that is mapped to it. First, recall that a bin is simply
an ordered collection of regions. That is, recall that for each
x ∈ X t, p[x] must belong to a region of the form [bi, bi+1) or,
if i = M , [bi, 1]. Thus, denote by b[x] = bi and b[x] = bi+1

the left and right borders of this region. Let the “widest x”
be the x ∈ X t for which b[x] − b[x] is largest (brake ties
according to some ordering of X t, say).

For ease of exposition, let us abuse notation and label the
elements of X t as 0, 1, . . . , q − 1. We now aim to bound the
number of valid bins for which the widest x is 0. Surely,
there are at most Mq−1 choices for the regions corresponding
to the x from 1 to q − 1. We now fix such a choice, and
bound the number of regions which can correspond to x = 0.
By the above definitions, a corresponding probability vector
(p[x])x∈X t must satisfy

p[0] +

q−1∑
x=1

b[x] ≤ 1 and p[0] +

q−1∑
x=1

b[x] ≥ 1 .

Thus,

β , max

{
0, 1−

q−1∑
x=1

b[x]

}
≤ p[0]

≤ min

{
1, 1−

q−1∑
x=1

b[x]

}
, β . (47)

We now use the fact that x = 0 is widest. Denote

∆ = max
1≤x≤q−1

{
b[x]− b[x]

}
.

On the one hand, p[0] must belong to a region with width at
least ∆. On the other hand, β − β ≤ (q − 1)∆. Thus, the

number of such regions which have a non-empty intersection
with the interval [β, β] is at most q.

To sum up, we have shown that if the widest x is 0, the
number of valid bins is at most q ·Mq−1. Since there is no
significance to the choice x = 0, the total number of valid bins
is at most q2 ·Mq−1. The proof now follows from Corollary 4.

F. Proof of Lemma 12
We already know that γ(y) ≤ 1, by (24). Thus, we now

prove the lower bound on γ(y). To this end, we have by (5)
and (18) that for all z ∈ Z and y ∈ B(z),

ψ(x∗|z)− ϕW (x∗|y) ≤ (q − 1) · 1

µ
.

By (19), we can divide both sides of the above by ψ(x∗|z)
and retain the inequality direction. The result is

ϕW (x∗|y)

ψ(x∗|z) ≥ 1− (q − 1) ·
1/µ

ψ(x∗|z)

≥ 1− q(q − 1)

µ
,

where the last inequality yet again follows from (19). Thus,
we have proved the lower bound on γ(y) as well. Since, by
our assumption in (7), µ ≥ q(q−1), the lower bound is indeed
non-negative.

G. Proof of Lemma 17
Let W , Q and y1, . . . , yr be as in Lemma 17. We would

like to show that W and Q satisfy both

Q �W and Q �W .

It is obvious that Q is degraded with respect to W . This is
because Q is obtained from W by mapping with probability 1
one letter to another. The letters y1, . . . , yr are mapped into z,
whereas the rest of the letters in Y are mapped to themselves.

We must now show that Q : X t → Z is upgraded with
respect to W : X t → Y . Namely, we must furnish an
intermediate channel P : Z → Y . Denote

ai(x) ,W (yi|x) =
pW (yi)ϕW (x|yi)

P(X = x)· ,

A(x) , Q(z|x) =
∑

1≤i≤r

ai(x) ,

for all x ∈ X t. Note that by our running assumption on non-
degenerate output letters, A(x̃) > 0 for some x̃ ∈ X t. So
let

ei ,
ai(x̃)

A(x̃)
.

Given (33), we get that

ei ·A(x) = ai(x)

for all x ∈ X t . Hence we define for all y ∈ Y and s ∈ Z ,

P(y|s) =


ei if (y, s) = (yi, z) for some 1 ≤ i ≤ r ,
1 if y = s ,

0 otherwise.

A bit of algebra finishes the proof.
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