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Abstract—We describe a successive-cancellation list decoder for
polar codes, which is a generalization of the classic successive-
cancellation decoder of Arıkan. In the proposed list decoder,
L decoding paths are considered concurrently at each decoding
stage, where L is an integer parameter. At the end of the decoding
process, the most likely among the L paths is selected as the
single codeword at the decoder output. Simulations show that
the resulting performance is very close to that of maximum-
likelihood decoding, even for moderate values of L. Alternatively,
if a genie is allowed to pick the transmitted codeword from the
list, the results are comparable to the performance of current
state-of-the-art LDPC codes. We show that such a genie can be
easily implemented using simple CRC precoding.

The specific list-decoding algorithm that achieves this perfor-
mance doubles the number of decoding paths for each informa-
tion bit, and then uses a pruning procedure to discard all but the
L most likely paths. However, straightforward implementation
of this algorithm requires Ω(Ln2) time, which is in stark
contrast with the O(n logn) complexity of the original successive-
cancellation decoder. In this paper, we utilize the structure
of polar codes along with certain algorithmic transformations
in order to overcome this problem: we devise an efficient,
numerically stable, implementation of the proposed list decoder
that takes only O(Ln logn) time and O(Ln) space.

I. INTRODUCTION

THE discovery of channel polarization and polar codes by
Arıkan [1] is universally recognized as a major break-

through in coding theory. Polar codes provably achieve the
capacity of memoryless symmetric channels, with low encod-
ing and decoding complexity. Moreover, polar codes have an
explicit construction (there is no random ensemble to choose
from) and a beautiful recursive structure that makes them in-
herently suitable for efficient implementation in hardware [7],
[12].

These remarkable properties of polar codes have generated
an enormous interest, see [2], [3], [6], [8], [14], [15] and ref-
erences therein. Nevertheless, the impact of polar coding in
practice has been, so far, negligible. Although polar codes
achieve capacity asymptotically, empirical studies indicate that
for short and moderate block lengths, successive-cancellation
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decoding of polar codes does not perform as well as turbo
codes or LDPC codes. As we ponder why, we identify two
possible causes: either the codes themselves are weak at these
lengths, or there is a significant performance gap between
successive-cancellation and maximum-likelihood decoding. In
fact, the two causes are complementary and, as we shall see,
both contribute to the problem.

In this paper, we propose an improvement to the successive-
cancellation decoder of [1], namely, a successive-cancellation
list decoder. Our decoder is governed by a single integer pa-
rameter L, which denotes the list size. As in [1], we decode the
input bits successively one-by-one. However, in the proposed
decoder, L decoding paths are considered concurrently at each
decoding stage. Specifically, our decoder doubles the number
of decoding paths for each information bit ui to be decoded,
thus pursuing both ui = 0 and ui = 1 options, and then uses a
pruning procedure to discard all but the L most likely paths. At
the end of the decoding process, the most likely among the L
decoding paths is selected as the decoder output (thus, in con-
trast to most list-decoding algorithms in the literature, the
output of our decoder is not a list but a single codeword).

The performance of the list-decoding algorithm outlined
above is encouraging. For example, Figure 1 shows our simu-
lation results for a polar code of rate half and length 2048 on
a binary-input AWGN channel, under successive-cancellation
decoding and under list decoding. We also include in Fig-
ure 1 a lower bound on the probability of word error under
maximum-likelihood decoding (such a bound can be readily
evaluated in list-decoding simulations). As can be seen from
Figure 1, the performance of our list-decoding algorithm is
very close to that of maximum-likelihood decoding, even for
moderate values of L. The results in Figure 1 are representa-
tive: we found that for a wide range of polar codes of various
lengths, list decoding effectively bridges the performance
gap between successive-cancellation decoding and maximum-
likelihood decoding.

Unfortunately, even under maximum-likelihood decoding,
the performance of polar codes falls short in comparison to
LDPC and turbo codes of comparable length. However, it
turns out that we can do much better. We have observed
in simulations that with high probability, the transmitted
codeword is on the list we generate, but it is not the most
likely codeword on the list. It is therefore not selected as
the decoder output. This means that performance could be
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Fig. 1: List-decoding performance for a polar code of length
n = 2048 and rate R = 0.5 on the BPSK-modulated Gaus-
sian channel. The code was constructed using the methods of
[15], with optimization for Eb/N0 = 2 dB.
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Fig. 2: List-decoding performance of a polar code, with and
without CRC precoding, as compared to the LDPC code
used in the WiMAX standard. The LDPC code is of length
2304 and rate 0.5, with simulation results taken from [16].
The polar code is the same as in Figure 1, simulated over the
BPSK-AWGN channel; list size is L = 32 throughout, and
CRC is 16 bits long.

further improved if we had a genie aided decoder capable of
identifying the transmitted codeword whenever it is on the
list. But such a genie can be easily implemented, for example
using CRC precoding (see Section V for more details). As
can be seen from Figure 2, the resulting BER is lower than
the BER achieved with the LDPC code currently used in the
WiMAX standard [16]. The situation in Figure 2 is, again,
representative: it has been confirmed in numerous simulations
that the performance of polar codes under list decoding with
CRC is comparable to state-of-the-art turbo and LDPC codes.

Figure 3 summarizes some of these simulation results, using
a uniform scale devised by Yury Polyanskiy [10], [11]. It can
be seen from Figure 3 that at lengths 512 and 1024, polar
coding with CRC performs better than any code currently
known, when considering a target error-probability of 10−4.

The discussion in the foregoing paragraph suggests
that list decoding of polar codes may hold promise for
a number of applications in data communications and storage.
However, the proposed list-decoding algorithm presents a
significant computational challenge. As shown in Section IV,
straightforward implementation of this algorithm requires
Θ(Ln2) operations, which is in stark contrast with the
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Fig. 3: Comparison of normalized rate for various families
of codes. Higher normalized rates correspond to better
codes [11]. The points on this plot are obtained as follows.
Fix a binary-input AWGN channel and a desired BER of
10−4. Simulate the performance of a code C of length n and
rate R to find the SNR required to achieve this BER. Then
use the bounds of Polyanskyi, Poor, and Verdú [11] to find
the largest possible coding rate R∗ at this SNR, length, and
BER. The normalized rate is the ratio R/R∗.

O(n log n) complexity of Arıkan’s successive-cancellation
decoder [1]. Indeed, although a Θ(Ln2) decoding algorithm
is certainly polynomial-time, such decoding complexity would
be prohibitive for most applications in practice. One of the
main technical contributions of this paper is this: we utilize
the recursive structure of polar codes along with certain
“lazy-copy” algorithmic techniques [4] in order to overcome
this problem. Specifically, we devise an efficient, numerically
stable, implementation of the proposed list-decoding algorithm
that runs in time O(Ln log n).

The rest of this paper is organized as follows. In Section II,
we describe Arıkan’s successive-cancellation decoder. The de-
coder is formalized in terms of two algorithms (Algorithm 2
and Algorithm 3), in a notation that will become essential
in the subsequent sections. In Section III, we show how the
space complexity of Arıkan’s successive-cancellation decoder
can be reduced from O(n log n) to O(n); this observation
will later help us reduce the complexity of the proposed list
decoder. In Section IV, we present our main result herein:
we describe a successive-cancellation list-decoding algorithm
for polar codes, with time complexity O(Ln log n) and
space complexity O(Ln). The algorithm is first illustrated
by means of a simple example (see Figure 4 and Figure 5). It
is then presented in sufficient detail to allow an independent
implementation. Finally, in Section V, we show how list
decoding of polar codes can be concatenated with simple CRC
precoding to obtain the results reported in Figures 2 and 3.

By necessity, this paper contains a fair amount of algorith-
mic detail. Thus, on a first reading, the reader is advised to skip
directly to Section IV and peruse the first three paragraphs.
Doing so will provide a high-level understanding of the list-
decoding algorithm proposed in this paper and will also show
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why a naive implementation of this algorithm is too costly.

II. FORMALIZATION OF THE SUCCESSIVE CANCELLATION
DECODER

The successive cancellation (SC) decoder is due to Arıkan
[1]. In this section, we recast it using our notation, for future
reference. Let the polar code under consideration have length
n = 2m and dimension k. Thus, the number of frozen bits is
n − k. We denote by u = (ui)

n−1
i=0 = un−1

0 the information
bits vector (including the frozen bits), and by c = cn−1

0 the
corresponding codeword, which is sent over a binary-input
channel W : X → Y , where X = {0, 1}. At the other end of
the channel, we get the received word y = yn−1

0 . A decoding
algorithm is then applied to y, resulting in a decoded codeword
ĉ having corresponding information bits û. Note that our use
of the sans-serif font is reserved only for the above vectors
of length n; vectors resulting from recursive definitions will
have a different font.

A. An outline of Successive Cancellation

In essence, the SC algorithm is an efficient method of
calculating n = 2m probability pairs, corresponding to n
recursively defined channels. A high-level description of the
SC decoding algorithm is given in Algorithm 1. In words,
for ϕ = 0, 1, . . . , n − 1, we must calculate the pair of
probabilities W (ϕ)

m (yn−1
0 , ûϕ−1

0 |0) and W
(ϕ)
m (yn−1

0 , ûϕ−1
0 |1),

defined shortly. Then, we must make a decision as to the value
of ûϕ according to the more likely probability.

Algorithm 1: A high-level description of the SC decoder
Input: the received vector y
Output: a decoded codeword ĉ

1 for ϕ = 0, 1, . . . , n− 1 do
2 calculate W (ϕ)

m (yn−1
0 , ûϕ−1

0 |0) and W (ϕ)
m (yn−1

0 , ûϕ−1
0 |1)

3 if uϕ is frozen then
4 set ûϕ to the frozen value of uϕ
5 else
6 if W (ϕ)

m (yn−1
0 , ûϕ−1

0 |0) > W
(ϕ)
m (yn−1

0 , ûϕ−1
0 |1) then

7 set ûϕ ← 0
8 else
9 set ûϕ ← 1

10 return the codeword ĉ corresponding to û

We now proceed to define bit-channels W (ϕ)
λ , where 0 ≤

λ ≤ m and 0 ≤ ϕ < 2λ. In order to aid in the exposition, we
name index ϕ the phase and index λ the layer. For the sake
of brevity, for layer 0 ≤ λ ≤ m denote hereafter

Λ = 2λ . (1)

Thus,
0 ≤ ϕ < Λ . (2)

Bit channel W
(ϕ)
λ is a binary input channel with output

alphabet YΛ × Xϕ, the conditional probability of which we
generically denote as

W
(ϕ)
λ (yΛ−1

0 ,uϕ−1
0 |uϕ) . (3)

In our context, yΛ−1
0 is always a contiguous subvector of

the received vector y. We next cite the recursive bit-channel
equations [1, Equations (22) and (23)], and note that the
“branch” parts will be shortly explained. Let 0 ≤ 2ψ < Λ,
then

branch β︷ ︸︸ ︷
W

(2ψ)
λ (yΛ−1

0 ,u2ψ−1
0 |u2ψ)

=
∑
u2ψ+1

1

2
W

(ψ)
λ−1(y

Λ/2−1
0 ,u2ψ−1

0,even ⊕ u2ψ−1
0,odd |u2ψ ⊕ u2ψ+1)︸ ︷︷ ︸

branch 2β

·W (ψ)
λ−1(yΛ−1

Λ/2 ,u
2ψ−1
0,odd |u2ψ+1)︸ ︷︷ ︸

branch 2β + 1

(4)

and

branch β︷ ︸︸ ︷
W

(2ψ+1)
λ (yΛ−1

0 ,u2ψ
0 |u2ψ+1)

=
1

2
W

(ψ)
λ−1(y

Λ/2−1
0 ,u2ψ−1

0,even ⊕ u2ψ−1
0,odd |u2ψ ⊕ u2ψ+1)︸ ︷︷ ︸

branch 2β

·W (ψ)
λ−1(yΛ−1

Λ/2 ,u
2ψ−1
0,odd |u2ψ+1)︸ ︷︷ ︸

branch 2β + 1

(5)

with “stopping condition” W (0)
0 (y|u) = W (y|u).

B. Detailed description

For Algorithm 1 to become well defined, we must now
specify how the probability pair associated with W (ϕ)

m is calcu-
lated computationally. As was observed in [1], the calculations
implied by the recursions (4) and (5) can be reused in a
dynamic programming fashion [4, Chapter 15]. Following this
line, we now show an implementation that is straightforward,
yet somewhat wasteful in terms of space.

For λ > 0 and 0 ≤ ϕ < Λ, recall the recursive definition of
W

(ϕ)
λ (yΛ−1

0 ,uϕ−1
0 |uϕ) given in either (4) or (5), depending on

the parity of ϕ. For either ϕ = 2ψ or ϕ = 2ψ+1, the channel
W

(ψ)
λ−1 is evaluated with output (y

Λ/2−1
0 ,u2ψ−1

0,even ⊕ u2ψ−1
0,odd),

as well as with output (yΛ−1
Λ/2 ,u

2ψ−1
0,odd). Since our algorithm

will make use of these recursions, we need a simple way
of defining which output we are referring to. We do this by
specifying, apart from the layer λ and the phase ϕ which define
the channel, the branch number

0 ≤ β < 2m−λ . (6)

Definition 1 (Association of branch number with output):
Since, during the run of the SC algorithm, the last-layer
channel W

(ϕ)
m is only evaluated with a single output1,

(yn−1
0 , ûϕ−1

0 ), we give a branch number of β = 0 to each
such output. Next, we proceed recursively as follows. For
λ > 0, consider a channel W (ϕ)

λ with output (yΛ−1
0 , ûϕ−1

0 )
and corresponding branch number β. Denote ψ = bϕ/2c. The
output (y

Λ/2−1
0 , û2ψ−1

0,even ⊕ û2ψ−1
0,odd) associated with W (ψ)

λ−1 will
have a branch number of 2β, while the output (yΛ−1

Λ/2 , û
2ψ−1
0,odd)
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will have a branch number of 2β + 1. Finally, we mention
that for the sake of brevity, we will talk about the output
corresponding to branch β of a channel, although this is
slightly inaccurate.

We now introduce our first data structure. For each layer
0 ≤ λ ≤ m, we will have a probabilities array, denoted by
Pλ, indexed by an integer 0 ≤ i < 2m and a bit b ∈ {0, 1}.
For a given layer λ, an index i will correspond to a phase
0 ≤ ϕ < Λ and branch 0 ≤ β < 2m−λ using the following
quotient/reminder representation.

i = 〈ϕ, β〉λ = ϕ+ 2λ · β . (7)

In order to avoid repetition, we use the following shorthand

Pλ[〈ϕ, β〉] = Pλ[〈ϕ, β〉λ] . (8)

The probabilities array data structure Pλ will be used as
follows. Let a layer 0 ≤ λ ≤ m, phase 0 ≤ ϕ < Λ, and branch
0 ≤ β < 2m−λ be given. Denote the output corresponding to
branch β of W (ϕ)

λ as (yΛ−1
0 , ûϕ−1

0 ). Then, ultimately, we will
have for both values of b that

Pλ[〈ϕ, β〉][b] = W
(ϕ)
λ (yΛ−1

0 , ûϕ−1
0 |b) . (9)

Definition 2 (Association of branch number with input):
Analogously to defining the output corresponding to a branch
β, we now define the input corresponding to a branch. As in
the “output” case, we start at layer m and continue recursively
according to (4) and (5). That is, consider the channel W (ϕ)

m .
Let ûϕ be the corresponding input which Algorithm 1 sets,
either in line 7 or in line 9. With respect to W

(ϕ)
m , we let

this input have a branch number of β = 0. Next, we proceed
recursively as follows. For layer λ > 0 and 0 ≤ ψ < 2λ−1,
let u2ψ and u2ψ+1 be the inputs corresponding to branch
0 ≤ β < 2m−λ of W (2ψ)

λ and W
(2ψ+1)
λ , respectively. Then,

in light of (5), we define the inputs corresponding to branches
2β and 2β + 1 of W

(ψ)
λ−1 as u2ψ ⊕ u2ψ+1 and u2ψ+1,

respectively.
The following lemma points at the natural meaning that

a branch number has at layer λ = 0. It is proved using a
straightforward induction.

Lemma 1: Let y and ĉ be as in Algorithm 1, the received
vector and the decoded codeword. Consider layer λ = 0, and
thus set ϕ = 0. Next, fix a branch number 0 ≤ β < 2n. Then,
the input and output corresponding to branch β of W (0)

0 are
yβ and ĉβ , respectively.

We now introduce our second, and last, data structure for
this section. For each layer 0 ≤ λ ≤ m, we will have a bit
array, denoted by Bλ, and indexed by an integer 0 ≤ i < 2m,
as in (7). The data structure will be used as follows. Let layer
0 ≤ λ ≤ m, phase 0 ≤ ϕ < Λ, and branch 0 ≤ β < 2m−λ be
given. Denote the input corresponding to branch β of W (ϕ)

λ

as û(λ, ϕ, β). Then, we will ultimately have that

Bλ[〈ϕ, β〉] = û(λ, ϕ, β) , (10)

1Recall that since the sans-serif font is used, y = yn−1
0 is the received word

corresponding to the codeword c = cn−1
0 sent over the physical channel,

while ûϕ−1
0 corresponds to the first ϕ information plus frozen bits defining

the decoded codeword: ĉ = Gû, where G is the n × n Arıkan generator
matrix.

where we have used the same shorthand as in (8). Notice that
the total memory consumed by our algorithm is O(n log n).

Our first implementation of the SC decoder is given as
Algorithms 2–4. The main loop is given in Algorithm 2,
and follows the high-level description given in Algorithm 1.
Note that the elements of the probabilities arrays Pλ and bit
array Bλ start-out uninitialized, and become initialized as the
algorithm runs its course. The code to initialize the array
values is given in Algorithms 3 and 4.

Algorithm 2: First implementation of SC decoder
Input: the received vector y
Output: a decoded codeword ĉ

1 for β = 0, 1, . . . , n− 1 do // Initialization
2 P0[〈0, β〉][0]←W (yβ |0), P0[〈0, β〉][1]←W (yβ |1)

3 for ϕ = 0, 1, . . . , n− 1 do // Main loop
4 recursivelyCalcP(m,ϕ)
5 if uϕ is frozen then
6 set Bm[〈ϕ, 0〉] to the frozen value of uϕ
7 else
8 if Pm[〈ϕ, 0〉][0] > Pm[〈ϕ, 0〉][1] then
9 set Bm[〈ϕ, 0〉]← 0

10 else
11 set Bm[〈ϕ, 0〉]← 1

12 if ϕ mod 2 = 1 then
13 recursivelyUpdateB(m,ϕ)

14 return the decoded codeword: ĉ = (B0[〈0, β〉])n−1
β=0

Algorithm 3: recursivelyCalcP(λ, ϕ) implementa-
tion I

Input: layer λ and phase ϕ

1 if λ = 0 then return // Stopping condition
2 set ψ ← bϕ/2c
// Recurse first, if needed

3 if ϕ mod 2 = 0 then recursivelyCalcP(λ− 1, ψ)
4 for β = 0, 1, . . . , 2m−λ − 1 do // calculation
5 if ϕ mod 2 = 0 then // apply Equation (4)
6 for u′ ∈ {0, 1} do
7 Pλ[〈ϕ, β〉][u′]←

∑
u′′

1
2
Pλ−1[〈ψ, 2β〉][u′ ⊕ u′′] ·

8 Pλ−1[〈ψ, 2β + 1〉][u′′]
9 else // apply Equation (5)

10 set u′ ← Bλ[〈ϕ− 1, β〉]
11 for u′′ ∈ {0, 1} do
12 Pλ[〈ϕ, β〉][u′′]← 1

2
Pλ−1[〈ψ, 2β〉][u′ ⊕ u′′] ·

13 Pλ−1[〈ψ, 2β + 1〉][u′′]

Algorithm 4: recursivelyUpdateB(λ, ϕ) implemen-
tation I

Require : ϕ is odd

1 set ψ ← bϕ/2c
2 for β = 0, 1, . . . , 2m−λ − 1 do
3 Bλ−1[〈ψ, 2β〉]← Bλ[〈ϕ− 1, β〉]⊕Bλ[〈ϕ, β〉]
4 Bλ−1[〈ψ, 2β + 1〉]← Bλ[〈ϕ, β〉]
5 if ψ mod 2 = 1 then
6 recursivelyUpdateB(λ− 1, ψ)
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Lemma 2: Algorithms 2–4 are a valid implementation of
the SC decoder.

Proof: We first note that in addition to proving the claim
explicitly stated in the lemma, we must also prove an implicit
claim. Namely, we must prove that the actions taken by the
algorithm are well defined. Specifically, we must prove that
when an array element is read from, it was already written to
(it is initialized).

Both the implicit and explicit claims are easily derived from
the following observation. For a given 0 ≤ ϕ < n, consider
iteration ϕ of the main loop in Algorithm 2. Fix a layer 0 ≤
λ ≤ m, and a branch 0 ≤ β < 2m−λ. If we suspend the run
of the algorithm just after the iteration ends, then (9) holds
with ϕ′ instead of ϕ, for all

0 ≤ ϕ′ ≤
⌊ ϕ

2m−λ

⌋
.

Similarly, (10) holds with ϕ′ instead of ϕ, for all

0 ≤ ϕ′ <
⌊
ϕ+ 1

2m−λ

⌋
.

The above observation is proved by induction on ϕ.

III. SPACE-EFFICIENT SUCCESSIVE CANCELLATION
DECODING

The running time of the SC decoder is O(n log n), and our
implementation is no exception. As we have previously noted,
the space complexity of our algorithm is O(n log n) as well.
However, we will now show how to bring the space complexity
down to O(n). The observation that one can reduce the space
complexity to O(n) was noted, in the context of VLSI design,
in [7].

As a first step towards this end, consider the probability
pair array Pm. By examining the main loop in Algorithm 2,
we quickly see that if we are currently at phase ϕ, then we
will never again make use of Pm[〈ϕ′, 0〉] for all ϕ′ < ϕ. On
the other hand, we see that Pm[〈ϕ′′, 0〉] is uninitialized for all
ϕ′′ > ϕ. Thus, instead of reading and writing to Pm[〈ϕ, 0〉],
we can essentially disregard the phase information, and use
only the first element Pm[0] of the array, discarding all the
rest. By the recursive nature of polar codes, this observation
— disregarding the phase information — can be exploited for
a general layer λ as well. The following lemma makes the
above claims formal. The proof follows easily from Line 2 of
Algorithm 3, and by noting that

bbϕ/2ic/2c = bϕ/2i+1c .
Lemma 3: During iteration ϕ of the main loop of Al-

gorithm 2, the only elements of the arrays Pλ which are
possibly read from or written to have the form Pλ[〈ϕ′, β〉][0]
and Pλ[〈ϕ′, β〉][1], where 0 ≤ λ ≤ m, 0 ≤ ϕ < 2λ,
0 ≤ β < 2m−λ, and ϕ′ = bϕ/2m−λc.

With the above lemma at hand, and since bϕ/2ic is a non-
decreasing function of ϕ, we are justified to carry out the
following alternation of the algorithm. For all 0 ≤ λ ≤ m,
let us now define the number of elements in Pλ to be 2m−λ.
Accordingly,

Pλ[〈ϕ, β〉] is replaced by Pλ[β] . (11)

This change does not affect the final output of the algorithm.
Note that the total space needed to hold the P arrays has

gone down from O(n log n) to O(n). We would now like to do
the same for the B arrays. However, as things are currently
stated, we can not disregard the phase, as can be seen for
example in Line 3 of Algorithm 4. The solution is a simple
renaming. As a first step, let us define for each 0 ≤ λ ≤ m an
array Cλ consisting of bit pairs and having length n/2. Next,
let a generic reference of the form Bλ[〈ϕ, β〉] be replaced by
Cλ[ψ+β · 2λ−1][ϕ mod 2], where ψ = bϕ/2c. Note that we
have done nothing more than rename the elements of Bλ as
elements of Cλ. However, we now see that as before we can
disregard the value of ψ and take note only of the parity of
ϕ (the proof is essentially the same as before, and left to the
reader). So, let us make one more substitution: replace every
instance of Cλ[ψ+ β · 2λ−1][ϕ mod 2] by Cλ[β][ϕ mod 2],
and resize each array Cλ to have 2m−λ bit pairs. To sum up,

Bλ[〈ϕ, β〉] is replaced by Cλ[β][ϕ mod 2] . (12)

The alert reader will notice that a further reduction in space
is possible: for λ = 0 we will always have that ϕ = 0, and
thus the parity of ϕ is always even. However, this reduction
does not affect the asymptotic space complexity which is now
indeed down to O(n).

We end this subsection by mentioning that although we were
concerned here with reducing the space complexity of our SC
decoder, the observations made with this goal in mind will
be of great use in analyzing the time complexity of our list
decoder.

IV. SUCCESSIVE CANCELLATION LIST DECODER

In this section we introduce and define our algorithm, the
successive cancellation list (SCL) decoder. Our list decoder
has a parameter L, called the list size. Generally speaking,
larger values of L mean lower error rates but longer running
times and larger memory usage. We note at this point that
successive cancellation list decoding is not a new idea: it was
applied in [5] to Reed-Muller codes

Recall the main loop of an SC decoder, where at each phase
we must decide on the value of ûϕ. In an SCL decoder, instead
of deciding to set the value of an unfrozen ûϕ to either a 0 or
a 1, we inspect both options. That is, let a “path” be a certain
decision on the values of ûϕ0 , for 0 ≤ ϕ < n. When decoding
a non-frozen bit ûϕ+1, we split the decoding path ûϕ0 into two
paths (see Figure 4). Both of the new paths will have ûϕ0 as a
prefix. One new path will end with “0” while the other ends
in “1”. Since each split doubles the number of paths to be
examined, we must prune them, and the maximum number of
paths allowed is the specified list size, L. Naturally, we would
like to keep the “best” paths at each stage, and thus require
a pruning criterion. Our pruning criterion will be to keep the
most likely paths.

Figure 5 considers the same decoding run depicted in
Figure 4 and tracks the evolution of how the Cλ arrays
are allocated and used. Each sub-figure represents the state
of the Cλ arrays at a different stage (but note that the
jth subfigure in Figure 4 generally does not correspond to
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0 1

(i) Algorithm starts. First unfrozen bit can
be either 0 or 1.

0 1

0 01 1

(ii) Algorithm continues. Second unfrozen
bits can be either 0 or 1. The number of
paths is not more than L = 4, so no need
to prune yet.

0 1

0 01 1

0 1 1 000 1 1

(iii) Considering all options for first, second,
and third bits results in 8 decoding paths; too
much, since L = 4.

0 1

0 01 1

0 1 1 000 1 1

(iv) Prune the 8 paths into L = 4 most
promising paths.

0 1

0 01 1

0 1 1 000 1 1

1 0 1 00 0 1 1

(v) Continue the 4 active paths by considering
both options of the fourth unfrozen bit. The
number of paths doubles to 8, which is too
much (L = 4).

0 1

0 01 1

0 1 1 000 1 1

1 0 1 00 0 1 1

(vi) Again, prune to L = 4 best paths.

Fig. 4: Evolution of decoding paths. We assume for simplicity that n = 4 and all bits are unfrozen. The list size is L = 4:
each level has at most 4 nodes with paths that continue downward. Discontinued paths are colored gray.

{π0} ∅ ∅ ∅
C2

{π0} ∅ ∅ ∅

C1

{π0} ∅ ∅ ∅

C0

(a) ϕ = 0, state at the start of main loop. One
active path, π0, which is empty.

{π0} {π1} ∅ ∅
C2 0 1

{π0, π1} ∅ ∅ ∅

C1

{π0, π1} ∅ ∅ ∅

C0

(b) ϕ = 0, state at the end of the main loop. Two
active paths, π0 = 0, π1 = 1.

{π0} {π1} {π2} {π3}
C2 0 0 1 0 0 1 1 1

{π0} {π1} {π2} {π3}

C1
0
0

1
0

1
1

0
1

{π0, π1,
π2, π3} ∅ ∅ ∅

C0

(c) ϕ = 1, state at the end of the main loop.
Four active paths, π0 = 00, π1 = 10, π2 = 01,
π3 = 11. Also state when ϕ = 2 and Line 7 of
the main loop has executed.

∅ {π1} {π2} {π3}
C2 1 0 0 1 1 1

∅ {π1} {π2} {π3}

C1
1
0

1
1

0
1

{π1, π2,
π3 } ∅ ∅ ∅

C0

(d) ϕ = 2, state after Line 14 of the main loop has
been called, and we are before the first execution
of Line 19 in Algorithm 13. At this stage, π0
has been killed off, and the only active paths are
π1 = 10, π2 = 01, π3 = 11.

{π0} {π1} {π2} {π3}
C2 1 0 0 1

∅ {π1} {π0, π2} {π3}

C1
1
0

1
1

0
1

{π0, π1,
π2, π3} ∅ ∅ ∅

C0

(e) ϕ = 2, state at the end of the main loop. Four
active paths, π0 = 011, π1 = 100, π2 = 010,
π3 = 111.

{π0} {π1} {π2} {π3}
C2 1 0 1 1 0 0 1 1

{π2} {π1} {π0} {π3}

C1
1 0
1 0

1 0
0 1

1 1
1 0

0 0
1 1

{π0} {π1} {π2} {π3}

C0

0
1
1
0

1
0
1
1

1
0
1
0

0
0
0
1

(f) ϕ = 3, state at the end of the main loop.
Four active paths, π0 = 0110, π1 = 0111, π2 =
0100, π3 = 1111.

Fig. 5: Evolution of the usage of Cλ arrays. The example run is the same as in Figure 4.
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the jth subfigure in Figure 5). Paths over an array repre-
sent the assignment information encoded (redundantly) in the
activePath, pathIndexToArrayIndex, inactiveArrayIndices,
and arrayReferenceCount data structures. A “∅” designates
an array not assigned to any path. We now expand on the
various sub-figures of Figure 5. Note that the following list
contains references to algorithms defined later on; on a first
read, the message we want to get across is that paths with a
common prefix can typically share non-empty arrays. This is
clearly seen, for example, in Subfigure 5(e). In what follows,
when we refer to the “main loop”, we mean the for-loop in
Algorithm 12.

(a) Here, ϕ = 0 and we are at the start of main loop.
We have one active path, π0, which is empty. The
path was assigned C2, C1 and C0 arrays by the
assignInitialPath function on Line 2 of Algo-
rithm 12, before the main loop started.

(b) Now, we still have ϕ = 0, but have reached the
end of the main loop. There are two active paths,
π0 = 0, π1 = 1 (as is also depicted in Subfigure 4(i)).
The current path π1 is the result of the clonePath
operation applied to the path π0 of the previous sub-
figure. This operation was carried out on Line 25 of
Algorithm 13. Initially, both paths shared all C arrays,
as specified in the clonePath operation. However, at
the current stage, both paths have private C2 arrays,
because of the getArrayPointer_C call on Line 26
of Algorithm 13.

(c) We are at the end of the main loop, with ϕ = 1. We
have four active paths, π0 = 00, π1 = 10, π2 = 01,
π3 = 11 (Subfigure 4(ii)). The current π2 path is the
result of applying clonePath on the previous π0, in
Line 25 of Algorithm 13. The same holds true with
respect to the current π3 and the previous π1. As in the
previous sub-figure, each path has a distinct C2 array, by
virtue of the getArrayPointer_C call on Line 26 of
Algorithm 13. Since ϕ = 1, recursivelyUpdateC
is called on Line 16 of Algorithm 12, resulting in each
path updating (Lines 7–8, Algorithm 11) a private copy
(Line 5, Algorithm 11) of C1.
We next note that sub-figure 5(c) also represents
the state we are at when ϕ = 2 and Line 7
of the main loop has executed. We might ex-
pect the state to have changed, following the call
to recursivelyCalcP, which contains a call to
getArrayPointer_C (Line 9, Algorithm 10). More-
over, since ϕ = 2, recursivelyCalcP calls itself
recursively once, which results in a second set of calls
to getArrayPointer_C. However, by the previous
paragraph, we know that at the end of the main loop
each path already had a private copy of its C2 and C1

arrays. Thus, the calls to getArrayPointer_C do
not change anything in this respect.

(d) We are now in the middle of executing Line 14 of the
main loop, with ϕ = 2 (see Subfigure 4(iv) for a partial
depiction). Namely, the “kill-loop” in Algorithm 13 has
just finished, and we are before the first execution of

Line 19 in Algorithm 13. At this stage, π0 has been
killed off, and the only active paths are π1 = 10, π2 =
01, π3 = 11. This results in free C2 and C1 arrays.
Array C2 will be re-assigned shortly, followed by C1.

(e) End of the main loop, with ϕ = 2 (Subfigure 4(iv)). We
are back to four active paths, π0 = 011, π1 = 100, π2 =
010, π3 = 111. As mentioned, the previous π0 was killed
(Line 18, Algorithm 13). On the other hand, the current
π0 and π2 are decedents of the previous π2. Namely,
the current π0 is the result of applying clonePath
on previous π2. Thus, both π0 and π2 share the same
C2 array. However, the current π0 is assigned a private
C2 array, de-assigned by the previous kill operation. The
current path π1 is a continuation of the previous π1 (only
one branch was followed, in Line 30 of Algorithm 13).
The same is true with respect to the current and previous
π3, with Line 32 in place of 30.
Note that each path is currently encoded in the C2 and
C1 arrays. For example, consider π0. Since the C2 array
assigned to it has first entry equal to 1, we deduce that
the corresponding u2 bit equals 1. Since the C1 array has
entries α = 1, β = 1, we deduce that u0 = α + β = 0
and u1 = β = 1.

(f) End of main loop, with ϕ = 3 (Subfigure 4(vi)). Four
active paths, π0 = 0110, π1 = 0111, π2 = 0100,
π3 = 1111. As before, one path was killed (previous π1),
one path was cloned and split into two paths (previous
π0 split into current π0 and current π1), and two paths
had one surviving branch each (π2 and π3). Note that the
function recursivelyUpdateC is called in Line 16
of Algorithm 12. Since ϕ = 3 this results in two
recursive calls. Thus, each path has a private copy of
C2, C1, and C0. The codewords corresponding to each
path are now stored in the C0 arrays.

Consider the following outline for a naive implementation
of an SCL decoder. Each time a decoding path is split into
two forks, the data structures used by the “parent” path are
duplicated, with one copy given to the first fork and the other
to the second. Since the number of splits is Ω(L ·n), and since
the size of the data structures used by each path is Ω(n), the
copying operation alone would take time Ω(L·n2). In fact, the
running time is easily seen to be Θ(L·n2). This running time is
clearly impractical for all but the shortest of codes. However,
all known (to us) implementations of successive cancellation
list decoding have complexity at least Ω(L · n2). Our main
contribution in this section is the following: we show how to
implement SCL decoding with time complexity O(L ·n log n)
instead of Ω(L · n2).

The key observation is as follows. Consider the P arrays of
the last section, and recall that the size of Pλ is proportional
to 2m−λ. Thus, the cost of copying Pλ grows exponentially
small with λ. Next, consider the main loop of Algorithm 2.
Unwinding the recursion, we see that Pλ is accessed only
every 2m−λ increments of ϕ. Obviously, this is still the case
after the size-reduction replacment given in (11) is carried
out. Put another way, the bigger Pλ is, the less frequently it
is accessed. The same observation applies to the C arrays.
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This observation suggest the use of a so-called “lazy-copy”
implementation. Briefly, at each given stage, the same array
may be flagged as belonging to more than one decoding
path. However, when a given decoding path needs access to
an array it is sharing with another path, a copy is made.
The copy is initially private, belonging only to the path
that must access it. However, as the algorithm progresses (ϕ
increases), the array may be shared by several paths that are
descendants (continuations) of the path which needed initial
private access. The following sub-sections are concerned with
exactly specifying how this lazy-copy is implemented, as well
as with proving the implementation is valid and analyzing its
performance.

A. Low-level functions
We now discuss the low-level functions and data structures

by which the “lazy-copy” methodology is realized. We note
in advance that since our aim was to keep the exposition as
simple as possible, we have avoided some obvious optimiza-
tions. The following data structures are defined and initialized
in Algorithm 5.

Algorithm 5: initializeDataStructures()

1 inactivePathIndices ← new stack with capacity L
2 activePath ← new boolean array of size L
3 arrayPointer P ← new 2-D array of size (m+ 1)× L, the

elements of which are array pointers
4 arrayPointer C ← new 2-D array of size (m+ 1)× L, the

elements of which are array pointers
5 pathIndexToArrayIndex ← new 2-D array of size (m+ 1)×L
6 inactiveArrayIndices ← new array of size m+ 1, the elements

of which are stacks with capacity L
7 arrayReferenceCount ← new 2-D array of size (m+ 1)× L
// Initialization of data structures

8 for λ = 0, 1, . . . ,m do
9 for s = 0, 1, . . . , L− 1 do

10 arrayPointer P[λ][s] ← new array of float pairs of
size 2m−λ

11 arrayPointer C[λ][s] ← new array of bit pairs of size
2m−λ

12 arrayReferenceCount[λ][s] ← 0
13 push(inactiveArrayIndices[λ], s)

14 for ` = 0, 1, . . . , L− 1 do
15 activePath[`] ← false
16 push(inactivePathIndices, `)

Each path will have an index `, where 0 ≤ ` < L. At
first, only one path will be active. As the algorithm runs
its course, paths will change states between “active” and
“inactive”. The inactivePathIndices stack [4, Section 10.1]
will hold the indices of the inactive paths. We assume the
“array” implementation of a stack, in which both “push” and
“pop” operations take O(1) time and a stack of capacity L
takes O(L) space. The activePath array is a boolean array
such that activePath[`] is true iff path ` is active. Note that,
essentially, both inactivePathIndices and activePath store
the same information. The utility of this redundancy will be
made clear shortly.

For every layer λ, we will have a “bank” of L probability-
pair arrays for use by the active paths. At any given moment,

some of these arrays might be used by several paths, while
others might not be used by any path. Each such array is
pointed to by an element of arrayPointer P. Likewise, we
will have a bank of bit-pair arrays, pointed to by elements of
arrayPointer C.

The pathIndexToArrayIndex array is used as follows. For
a given layer λ and path index `, the probability-pair array and
bit-pair array corresponding to layer λ of path ` are pointed
to by

arrayPointer P[λ][pathIndexToArrayIndex[λ][`]]

and

arrayPointer C[λ][pathIndexToArrayIndex[λ][`]] ,

respectively.
Recall that at any given moment, some probability-pair

and bit-pair arrays from our bank might be used by multiple
paths, while others may not be used by any. The value
of arrayReferenceCount[λ][s] denotes the number of paths
currently using the array pointed to by arrayPointer P[λ][s].
Note that this is also the number of paths making use of
arrayPointer C[λ][s]. The index s is contained in the stack
inactiveArrayIndices[λ] iff arrayReferenceCount[λ][s] is
zero.

Now that we have discussed how the data structures are
initialized, we continue and discuss the low-level functions
by which paths are made active and inactive. We start by
mentioning Algorithm 6, by which the initial path of the
algorithm is assigned and allocated. In words, we choose
a path index ` that is not currently in use (none of them
are), and mark it as used. Then, for each layer λ, we mark
(through pathIndexToArrayIndex) an index s such that both
arrayPointer P[λ][s] and arrayPointer C[λ][s] are allocated
to the current path.

Algorithm 6: assignInitialPath()

Output: index ` of initial path

1 ` ← pop(inactivePathIndices)
2 activePath[`] ← true
// Associate arrays with path index

3 for λ = 0, 1, . . . ,m do
4 s ← pop(inactiveArrayIndices[λ])
5 pathIndexToArrayIndex[λ][`] ← s
6 arrayReferenceCount[λ][s] ← 1

7 return `

Algorithm 7 is used to clone a path — the final step before
splitting that path in two. The logic is very similar to that of
Algorithm 6, but now we make the two paths share bit-arrays
and probability arrays.

Algorithm 8 is used to terminate a path, which is achieved
by marking it as inactive. After this is done, the arrays
marked as associated with the path must be dealt with
as follows. Since the path is inactive, we think of it as
not having any associated arrays, and thus all the ar-
rays that were previously associated with the path must
have their reference count decreased by one. The goal of
all previously discussed low-level functions was essentially
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Algorithm 7: clonePath(`)

Input: index ` of path to clone
Output: index `′ of copy

1 `′ ← pop(inactivePathIndices)
2 activePath[`′] ← true
// Make `′ reference same arrays as `

3 for λ = 0, 1, . . . ,m do
4 s ← pathIndexToArrayIndex[λ][`]
5 pathIndexToArrayIndex[λ][`′] ← s
6 arrayReferenceCount[λ][s]++

7 return `′

Algorithm 8: killPath(`)

Input: index ` of path to kill
// Mark the path index ` as inactive

1 activePath[`] ← false
2 push(inactivePathIndices, `)
// Disassociate arrays with path index

3 for λ = 0, 1, . . . ,m do
4 s ← pathIndexToArrayIndex[λ][`]
5 arrayReferenceCount[λ][s]−−
6 if arrayReferenceCount[λ][s] = 0 then
7 push(inactiveArrayIndices[λ], s)

to enable the abstraction implemented by the functions
getArrayPointer_P and getArrayPointer_C. The
function getArrayPointer_P is called each time a higher-
level function needs to access (either for reading or writing)
the probability-pair array associated with a certain path ` and
layer λ. The implementation of getArrayPointer_P is
give in Algorithm 9. There are two cases to consider: either
the array is associated with more than one path or it is not.
If it is not, then nothing needs to be done, and we return a
pointer to the array. On the other hand, if the array is shared,
we make a private copy for path `, and return a pointer to that
copy. By doing so, we ensure that two paths will never write
to the same array. The function getArrayPointer_C is
used in the same manner for bit-pair arrays, and has exactly
the same implementation, up to the obvious changes.

At this point, we remind the reader that we are deliberately
sacrificing speed for simplicity. Namely, each such function
is called either before reading or writing to an array, but the
copy operation is really needed only before writing.

We have now finished defining almost all of our low-level
functions. At this point, we should specify the constraints one
should follow when using them and what one can expect if
these constraints are met. We start with the former.

Definition 3 (Valid calling sequence): Consider a sequence
(ft)

T
t=0 of T + 1 calls to the low-level functions implemented

in Algorithms 5–9. We say that the sequence is valid if the
following traits hold.

Initialized: The one and only index t for which ft is equal
to initializeDataStructures is t = 0. The one and
only index t for which ft is equal to assignInitialPath
is t = 1.

Balanced: For 1 ≤ t ≤ T , denote the number of times the
function clonePath was called up to and including stage t
as

#
(t)
clonePath = | {1 ≤ i ≤ t : fi is clonePath} | .

Algorithm 9: getArrayPointer_P(λ, `)

Input: layer λ and path index `
Output: pointer to corresponding probability pair array

// getArrayPointer_C(λ, `) is defined
identically, up to the obvious changes
in lines 6 and 10

1 s ← pathIndexToArrayIndex[λ][`]
2 if arrayReferenceCount[λ][s] = 1 then
3 s′ ← s
4 else
5 s′ ← pop(inactiveArrayIndices[λ])
6 copy the contents of the array pointed to by

arrayPointer P[λ][s] into that pointed to by
arrayPointer P[λ][s′]

7 arrayReferenceCount[λ][s]−−
8 arrayReferenceCount[λ][s′] ← 1
9 pathIndexToArrayIndex[λ][`] ← s′

10 return arrayPointer P[λ][s′]

Define #
(t)
killPath similarly. Then, for every 1 ≤ t ≤ L, we

require that

1 ≤
(

1 + #
(t)
clonePath −#

(t)
killPath

)
≤ L . (13)

Active: We say that path ` is active at the end of stage
1 ≤ t ≤ T if the following two conditions hold. First, there
exists an index 1 ≤ i ≤ t for which fi is either clonePath
with corresponding output ` or assignInitialPath with
output `. Second, there is no intermediate index i < j ≤ t for
which fj is killPath with input `. For each 1 ≤ t < T we
require that if ft+1 has input `, then ` is active at the end of
stage t.

We start by stating that the most basic thing one would
expect to hold does indeed hold.

Lemma 4: Let (ft)
T
t=0 be a valid sequence of calls to the

low-level functions implemented in Algorithms 5–9. Then, the
run is well defined: i) A “pop” operation is never carried out
on a empty stack, ii) a “push” operation never results in a
stack with more than L elements, and iii) a “read” operation
from any array defined in lines 2–7 of Algorithm 5 is always
preceded by a “write” operation to the same location in the
array.

Proof: The proof boils-down to proving the following
four statements concurrently for the end of each step 1 ≤ t ≤
T , by induction on t.

I A path index ` is active by Definition 3 iff
activePath[`] is true iff inactivePathIndices does
not contain the index `.

II The bracketed expression in (13) is the number of
active paths at the end of stage t.

III The value of arrayReferenceCount[λ][s] is positive
iff the stack inactiveArrayIndices[λ] does not con-
tain the index s, and is zero otherwise.

IV The value of arrayReferenceCount[λ][s] is equal
to the number of active paths ` for which
pathIndexToArrayIndex[λ][`] = s.

We are now close to formalizing the utility of our low-
level functions. But first, we must formalize the concept of a
descendant path. Let (ft)

T
t=0 be a valid sequence of calls. Next,
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let ` be an active path index at the end of stage 1 ≤ t < T .
Henceforth, let us abbreviate the phrase “path index ` at the
end of stage t” by “[`, t]”. We say that [`′, t+ 1] is a child of
[`, t] if i) `′ is active at the end of stage t + 1, and ii) either
`′ = ` or ft+1 was the clonePath operation with input `
and output `′. Likewise, we say that [`′, t′] is a descendant of
[`, t] if 1 ≤ t ≤ t′ and there is a (possibly empty) hereditary
chain.

We now broaden our definition of a valid function calling
sequence by allowing reads and writes to arrays.

Fresh pointer: consider the case where t > 1 and ft is ei-
ther the getArrayPointer_P or getArrayPointer_C
function with input (λ, `) and output p. Then, for valid indices
i, we allow read and write operations to p[i] after stage t
but only before any stage t′ > t for which ft′ is either
clonePath or killPath.

Informally, the following lemma states that each path effec-
tively sees a private set of arrays.

Lemma 5: Let (ft)
T
t=0 be a valid sequence of calls to the

low-level functions implemented in Algorithms 5–9. Assume
the read/write operations between stages satisfy the “fresh
pointer” condition.

Let the function ft be getArrayPointer_P with input
(λ, `) and output p. Similarly, for stage t′ ≥ t, let ft′ be
getArrayPointer_P with input (λ, `′) and output p′.
Assume that [`′, t′] is a descendant of [`, t].

Consider a “fresh pointer” write operation to p[i]. Similarly,
consider a “fresh pointer” read operation from p′[i] carried out
after the “write” operation. Then, assuming no intermediate
“write” operations of the above nature, the value written is
the value read.

A similar claim holds for getArrayPointer_C.
Proof: With the observations made in the proof of

Lemma 4 at hand, a simple induction on t is all that is needed.

B. Mid-level functions
In this section we introduce Algorithms 10 and 11, our

revised implementation of Algorithms 3 and 4, respectively,
for the list decoding setting.

One first notes that our new implementations loop
over all path indices `. Thus, our new implementations
make use of the functions getArrayPointer_P and
getArrayPointer_C in order to assure that the con-
sistency of calculations is preserved, despite multiple paths
sharing information. In addition, Algorithm 10 contains code
to normalize probabilities. The normalization is needed for a
technical reason (to avoid floating-point underflow), and will
be expanded on shortly.

We start out by noting that the “fresh pointer” condition
we have imposed on ourselves indeed holds. To see this,
consider first Algorithm 10. The key point to note is that
neither the killPath nor the clonePath function is called
from inside the algorithm. The same observation holds for
Algorithm 11. Thus, the “fresh pointer” condition is met, and
Lemma 5 holds.

We now consider the normalization step carried out in
lines 20–25 of Algorithm 10. Recall that a floating-point

Algorithm 10: recursivelyCalcP(λ, ϕ) list version
Input: layer λ and phase ϕ

1 if λ = 0 then return // Stopping condition
2 set ψ ← bϕ/2c
// Recurse first, if needed

3 if ϕ mod 2 = 0 then recursivelyCalcP(λ− 1, ψ)
// Perform the calculation

4 σ ← 0
5 for ` = 0, 1, . . . , L− 1 do
6 if activePath[`] = false then continue
7 Pλ ← getArrayPointer_P(λ, `)
8 Pλ−1 ← getArrayPointer_P(λ− 1, `)
9 Cλ ← getArrayPointer_C(λ, `)

10 for β = 0, 1, . . . , 2m−λ − 1 do
11 if ϕ mod 2 = 0 then

// apply Equation (4)
12 for u′ ∈ {0, 1} do
13 Pλ[β][u′]←∑

u′′
1
2
Pλ−1[2β][u′ ⊕ u′′] · Pλ−1[2β + 1][u′′]

14 σ ← max (σ, Pλ[β][u′])

15 else // apply Equation (5)
16 set u′ ← Cλ[β][0]
17 for u′′ ∈ {0, 1} do
18 Pλ[β][u′′]←

1
2
Pλ−1[2β][u′ ⊕ u′′] · Pλ−1[2β + 1][u′′]

19 σ ← max (σ, Pλ[β][u′′])

// normalize probabilities
// In no-normalization variant, set σ to 1

here
20 for ` = 0, 1, . . . , L− 1 do
21 if activePath[`] = false then continue
22 Pλ ← getArrayPointer_P(λ, `)
23 for β = 0, 1, . . . , 2m−λ − 1 do
24 for u ∈ {0, 1} do
25 Pλ[β][u]← Pλ[β][u]/σ

Algorithm 11: recursivelyUpdateC(λ, ϕ) list
version

Input: layer λ and phase ϕ
Require : ϕ is odd

1 set ψ ← bϕ/2c
2 for ` = 0, 1, . . . , L− 1 do
3 if activePath[`] = false then continue
4 set Cλ ← getArrayPointer_C(λ, `)
5 set Cλ−1 ← getArrayPointer_C(λ− 1, `)
6 for β = 0, 1, . . . , 2m−λ − 1 do
7 Cλ−1[2β][ψ mod 2]← Cλ[β][0]⊕ Cλ[β][1]
8 Cλ−1[2β + 1][ψ mod 2]← Cλ[β][1]

9 if ψ mod 2 = 1 then
10 recursivelyUpdateC(λ− 1, ψ)
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variable can not be used to hold arbitrarily small positive reals,
and in a typical implementation, the result of a calculation that
is “too small” will be rounded to 0. This scenario is called an
“underflow”.

We now confess that all our previous implementations of
SC decoders were prone to “underflow”. To see this, consider
line 2 in the outline implementation given in Algorithm 1.
Denote by Y and U the random vectors corresponding to y
and u, respectively. For b ∈ {0, 1} we have that

W (ϕ)
m (yn−1

0 , ûϕ−1
0 |b) =

2 · P(Yn−1
0 = yn−1

0 ,Uϕ−1
0 = ûϕ−1

0 ,Uϕ = b) ≤
2 · P(Uϕ−1

0 = ûϕ−1
0 ,Uϕ = b) = 2−ϕ .

Recall that ϕ iterates from 0 to n− 1. Thus, for codes having
length greater than some small constant, the comparison in
line 2 of Algorithm 1 ultimately becomes meaningless when
implemented using standard floating point arithmetic. The
same holds for all of our previous implementations.

Fortunately, there is a solution to this problem. After the
probabilities are calculated in lines 5–19 of Algorithm 10, we
normalizethe highest probability to be 1 in lines 20–25.

We claim that apart for avoiding underflows, normalization
does not alter our algorithm in that it does not change the
chosen codeword. To see this, consider a variant of Algo-
rithm 10, termed Algorithm 10’, in which normalization is
not carried out. That is, in Algorithm 10’, just before line 20,
we set the variable σ to 1. The following lemma states that
for all 0 ≤ λ ≤ m, both algorithm variants produce array
entries arrayPointer P[λ][s] which differ up to a positive
normalization constants βλ. As can be seen in lines 17–
25 of Algorithm 12 ahead, the returned codeword is the
result of comparing probabilities in arrayPointer P[m]. Thus,
normalization indeed does not alter the returned codeword.

Lemma 6: Let two program executions be defined as fol-
lows. Execution A: Algorithm 10 is called with input parame-
ters λ0, ϕ0, and a given state of the data structures. Execution
B: Algorithm 10’ is called with the same input parameters as
Execution A, and the same state of the data structures, apart
from the following. There exist positive reals α0, α1, . . . , αm
such that for all 0 ≤ λ ≤ m and all 0 ≤ s < `, the value of
arrayPointer P[λ][s] at the start of Execution B is αλ times
the value of arrayPointer P[λ][s] at the start of execution A.

Then, there exist positive reals β0, β1, . . . , βm such that
for all 0 ≤ λ ≤ m and all 0 ≤ s < `, the value of
arrayPointer P[λ][s] at the end of Execution B is βλ times
the value of arrayPointer P[λ][s] at the end of execution A.

Proof: Recall the following about Algorithm 10 (and
Algorithm 10’). When execution begins, a recursive call is
made on line 3, if needed. Then, Pλ is transformed based
on Pλ−1 and Cλ. Consider first the run of both algorithms
during the innermost recursive call (the corresponding input
parameter λ is the same for both algorithms, by inspection).
By lines 13, 18, and 25, the ratio between Pλ entries in
both runs is simply (αλ−1)2, divided by the value of σ
after the main loop has finished executing. It is easily seen
that σ > 0. Thus, after the innermost recursive call finishes
in both algorithms, the assumption on the proportionality of

arrayPointer P entries continues to hold. We now continue
inductively: the claim is proved in much the same way for the
pre-ultimate recursion, etc.

C. High-level functions

We now turn our attention to the high-level functions
of our algorithm. Consider the topmost function, given in
Algorithm 12. We start by noting that by lines 1 and 2, we have
that condition “initialized” in Definition 3 is satisfied. Also, for
the inductive basis, we have that condition “balanced” holds
for t = 1 at the end of line 2. Next, notice that lines 3–5 are
in-line with our “fresh pointer” condition. Next, consider lines
6–16, the main loop. These are the analog of the main loop in
Algorithm 2, with the size-reduction replacements as per (11)
and (12). After the main loop has finished, we pick (in lines
17–25) the most likely codeword from our list and return it.

Algorithm 12: SCL decoder, main loop
Input: the received vector y and a list size L as a global
Output: a decoded codeword ĉ

// Initialization
1 initializeDataStructures()
2 `← assignInitialPath()
3 P0 ← getArrayPointer_P(0, `)
4 for β = 0, 1, . . . , n− 1 do
5 set P0[β][0]←W (yβ |0), P0[β][1]←W (yβ |1)

// Main loop
6 for ϕ = 0, 1, . . . , n− 1 do
7 recursivelyCalcP(m,ϕ)
8 if uϕ is frozen then
9 for ` = 0, 1, . . . , L− 1 do

10 if activePath[`] = false then continue
11 Cm ← getArrayPointer_C(m, `)
12 set Cm[0][ϕ mod 2] to the frozen value of uϕ
13 else
14 continuePaths_UnfrozenBit(ϕ)

15 if ϕ mod 2 = 1 then
16 recursivelyUpdateC (m,ϕ)

// Return the best codeword in the list
17 `′ ← 0, p′ ← 0
18 for ` = 0, 1, . . . , L− 1 do
19 if activePath[`] = false then continue
20 Cm ← getArrayPointer_C(m, `)
21 Pm ← getArrayPointer_P(m, `)
22 if p′ < Pm[0][Cm[0][1]] then
23 `′ ← `, p′ ← Pm[0][Cm[0][1]]

24 set C0 ← getArrayPointer_C(0, `′)
25 return ĉ = (C0[β][0])n−1

β=0

Algorithm 13, continuePaths_UnfrozenBit, is the
analog of lines 8–11 in Algorithm 2. However, now, instead of
choosing the most likely fork out of 2 possible forks, we must
typically choose the L most likely forks out of 2L possible
forks. The most interesting line is 14, in which the best ρ forks
are marked. Surprisingly2, this can be done in O(L) time [4,
Section 9.3]. After the forks are marked, we first kill the paths

2The O(L) time result is rather theoretical. Since L is typically a small
number, the fastest way to achieve our selection goal would be through simple
sorting.
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Algorithm 13: continuePaths_UnfrozenBit(ϕ)

Input: phase ϕ

1 probForks← new 2-D float array of size L× 2
2 i← 0
// populate probForks

3 for ` = 0, 1, . . . , L− 1 do
4 if activePath[`] = true then
5 Pm ← getArrayPointer_P(m, `)
6 probForks [`][0] ← Pm[0][0]
7 probForks [`][1] ← Pm[0][1]
8 i← i+ 1
9 else

10 probForks [`][0] ← −1
11 probForks [`][1] ← −1

12 ρ← min(2i, L)
13 contForks← new 2-D boolean array of size L× 2

// The following is possible in O(L) time
14 populate contForks such that contForks[`][b] is true iff

probForks [`][b] is one of the ρ largest entries in probForks
(and ties are broken arbitrarily)
// First, kill-off non-continuing paths

15 for ` = 0, 1, . . . , L− 1 do
16 if activePath[`] = false then continue
17 if contForks[`][0] = false and contForks[`][1] = false

then
18 killPath(`)

// Then, continue relevant paths, and
duplicate if necessary

19 for ` = 0, 1, . . . , L− 1 do
20 if contForks[`][0] = false and contForks[`][1] = false

then // both forks are bad, or invalid
21 continue
22 Cm ← getArrayPointer_C(m, `)
23 if contForks[`][0] = true and contForks[`][1] = true then

// both forks are good
24 set Cm[0][ϕ mod 2]← 0
25 `′ ← clonePath(`)
26 Cm ← getArrayPointer_C(m, `′)
27 set Cm[0][ϕ mod 2]← 1
28 else// exactly one fork is good
29 if contForks[`][0] = true then
30 set Cm[0][ϕ mod 2]← 0
31 else
32 set Cm[0][ϕ mod 2]← 1

for which both forks are discontinued, and then continue paths
for which one or both of the forks are marked. In case of the
latter, the path is first split. Note that we must first kill paths
and only then split paths in order for the “balanced” constraint
(13) to hold. Namely, this way, we will not have more than L
active paths at a time.

The point of Algorithm 13 is to prune our list and leave only
the L “best” paths. This is indeed achieved, in the following
sense. At stage ϕ we would like to rank each path according
to the probability

W (ϕ)
m (yn−1

0 , ûϕ−1
0 |ûϕ) .

By (9) and (11), this would indeed by the case if our floating
point variables were “perfect”, and the normalization step
in lines 20–25 of Algorithm 10 were not carried out. By
Lemma 6, we see that this is still the case if normalization
is carried out.

With respect to the above, consider the last part of Al-
gorithm 12: rows 17–25, in which we claim to choose the
most likely codeword. The claim is justified, by (9)–(12) and
Lemma 6. Namely, the value of Pm[0][Cm[0][1]] is simply

W (n−1)
m (yn−1

0 , ûn−2
0 |ûn−1) =

1

2n−1
· P (yn−1

0 |ûn−1
0 ) ,

up to a normalization constant.
We now prove our two main result.
Theorem 7: The space complexity of the SCL decoder is

O(L · n).
Proof: All the data-structures of our list decoder are

allocated in Algorithm 5, and it can be checked that the total
space used by them is O(L · n). Apart from these, the space
complexity needed in order to perform the selection operation
in line 14 of Algorithm 13 is O(L). Lastly, the various
local variables needed by the algorithm take O(1) space, and
the stack needed in order to implement the recursion takes
O(log n) space.

Theorem 8: The running time of the SCL decoder is O(L ·
n log n).

Proof: Recall that by our notation m = log n. The
following bottom-to-top table summarizes the running time
of each function. The notation OΣ will be explained shortly.

function running time
initializeDataStructures() O(L ·m)
assignInitialPath() O(m)
clonePath(`) O(m)
killPath(`) O(m)
getArrayPointer_P(λ, `) O(2m−λ)
getArrayPointer_C(λ, `) O(2m−λ)
recursivelyCalcP(m, ·) OΣ(L ·m · n)
recursivelyUpdateC(m, ·) OΣ(L ·m · n)
continuePaths_UnfrozenBit(ϕ) O(L ·m)
SCL decoder O(L ·m · n)

The first 7 functions in the table, the low-level func-
tions, are easily checked to have the stated running time.
Note that the running time of getArrayPointer_P and
getArrayPointer_C is due to the copy operation in line 6
of Algorithm 6 applied to an array of size O(2m−λ). Thus,
as was previously mentioned, reducing the size of our arrays
has helped us reduce the running time of our list decoding
algorithm.

Next, let us consider the two mid-level functions, namely,
recursivelyCalcP and recursivelyUpdateC. The
notation

recursivelyCalcP(m, ·) ∈ OΣ(L ·m · n)

means that total running time of the n function calls

recursivelyCalcP(m,ϕ) , 0 ≤ ϕ < 2m

is O(L ·m · n). To see this, denote by f(λ) the total running
time of the above with m replaced by λ. By splitting the
running time of Algorithm 10 into a non-recursive part and a
recursive part, we have that for λ > 0

f(λ) = 2λ ·O(L · 2m−λ) + f(λ− 1) .
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Fig. 6: Word error rate of a length n = 8192 rate 1/2 polar
code optimized for SNR=2 dB under various list sizes. Code
construction was carried out via the method proposed in [15].
For reference, the Genie2 plot is the error rate if standard
successive cancellation is used, and a genie corrects at most
2 wrong bit decisions.

Thus, it easily follows that

f(m) ∈ O(L ·m · 2m) = O(L ·m · n) .

In essentially the same way, we can prove that the total running
time of the recursivelyUpdateC(m,ϕ) over all 2n−1

valid (odd) values of ϕ is O(m · n). Note that the two mid-
level functions are invoked in lines 7 and 16 of Algorithm 12,
on all valid inputs.

The running time of the high-level functions is easily
checked to agree with the table.

V. MODIFIED POLAR CODES

The plots in Figures 1 and 6 were obtained by simulation.
The performance of our decoder for various list sizes is given
by the solid lines in the figures. As expected, we see that
as the list size L increases, the performance of our decoder
improves. We also notice a diminishing-returns phenomenon
in terms of increasing the list size. Namely, the difference in
error correction performance is more dramatic when small list
sizes are increased. The reason for this turns out to be simple,
as we now show.

The dashed line, termed the “ML bound” was obtained as
follows. During our simulations for L = 32, each time a
decoding failure occurred, we checked whether the decoded
codeword was more likely than the transmitted codeword. That
is, whether W (y|ĉ) > W (y|c). If so, then the optimal ML
decoder would surely misdecode y as well. The dashed line
records the frequency of the above event, and is thus a lower-
bound on the error probability of the ML decoder. Thus, for
an SNR value greater than about 1.5 dB, Figure 1 suggests
that we have an essentially optimal decoder when L = 32.

Can we do even better? At first, the answer seems to be an
obvious “no”, at least for the region in which our decoder is
essentially optimal. However, it turns out that if we are willing
to accept a small change in our definition of a polar code, we
can dramatically improve performance.

During simulations we noticed that often, when a decoding
error occurred, the path corresponding to the transmitted
codeword was a member of the final list. However, since there
was a more likely path in the list, the codeword corresponding

to that path was returned, which resulted in a decoding error.
Thus, if only we had a “genie” to tell us at the final stage which
path to pick from our list, we could improve the performance
of our decoder.

Fortunately, such a genie is easy to implement. Recall that
we have k unfrozen bits that we are free to set. Instead of
setting all of them to information bits we wish to transmit,
we employ the following simple concatenation scheme. For
some small constant r, we set the first k − r unfrozen bits to
information bits. The last r unfrozen bits will hold the r-bit
CRC [9, Section 8.8] value3 of the first k − r unfrozen bits.
Note this new encoding is a slight variation of our polar coding
scheme. Also, note that we incur a penalty in rate, since the
rate of our code is now (k−r)/n instead of the previous k/n.

What we have gained is an approximation to a genie: at
the final stage of decoding, instead of searching for the most
likely codeword in lines 17–25 of Algorithm 12, we can do
the following. A path for which the CRC is invalid can not
correspond to the transmitted codeword. Thus, we refine our
selection as follows. If at least one path has a correct CRC,
then we remove from our list all paths having incorrect CRC
and then choose the most likely path. Otherwise, we select the
most likely path in the hope of reducing the number of bits
in error, but with the knowledge that we have at least one bit
in error.

Figure 2 contains a comparison of decoding performance
between the original polar codes and the slightly tweaked
version presented in this section. A further improvement in
bit-error-rate (but not in block-error-rate) is attained when the
decoding is performed systematically [2]. The application of
systematic polar coding to a list decoding setting is attributed
to [13]. We also note Figure 7, in which the performance of the
CRC variant of our decoder is plotted, for various list sizes.
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