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Polar Coding for Processes with Memory
Eren Şaşoğlu, Ido Tal, Senior Member, IEEE

Abstract—We study polar coding for stochastic processes with
memory. For example, a process may be defined by the joint
distribution of the input and output of a channel. The memory
may be present in the channel, the input, or both. We show
that ψ-mixing processes polarize under the standard Arıkan
transform, under a mild condition. We further show that the rate
of polarization of the low-entropy synthetic channels is roughly
O(2−

√
N ), where N is the blocklength. That is, essentially the

same rate as in the memoryless case.

Index Terms—Channels with memory, polar codes, mixing,
periodic processes, fast polarization, rate of polarization.

I. INTRODUCTION

POLAR codes were invented by Arıkan [1] as a low-
complexity method to achieve the capacity of symmetric

binary-input memoryless channels. The technique that under-
lies these codes, called polarization, is quite versatile, and has
since been applied to numerous classical memoryless problems
in information theory.

Many practical sources and channels are not well-described
by memoryless models. In wireless communication, for exam-
ple, memory in the form of intersymbol interference is quite
prominent due to multipath propagation, as are slow variations
in channel conditions due to mobility. In practice, this type
of memory is commonly handled by eliminating it, e.g., by
augmenting the transmitter/receiver appropriately to create an
overall memoryless channel. Memoryless coding techniques
are then used for communication. Channel equalization, inter-
leaving, and OFDM techniques are perhaps the most notable
examples of this approach.

In contrast, we are interested here in whether polar coding
can be used directly on channels and sources with memory.
In addition to being of theoretical interest, such results may
help simplify the design of communication or compression
systems.

Little is known about the theory of polarization for settings
with memory. In particular, it was shown in [2] that the
successive cancellation decoding complexity of polar codes
scales with the number of states of the underlying process,
and thus is practical if the amount of memory in the system is
modest. It was shown in [3, Chapter 5] that Arıkan’s standard
transform indeed polarizes a class of mixing processes with
finite memory. Whether polarization takes place sufficiently
fast to yield a coding theorem has been left open, however,
and that is the problem we address here.
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We first give a proof of polarization that is both simpler
than the one given in [3], and holds for the more general
class of ψ-mixing processes with finite ψ0 (both concepts are
defined in Section II). We further show that the asymptotic rate
of polarization of the low-entropy synthetic channels is as in
the memoryless case. Conversely, we show a simple counter-
example of a process that is not ψ-mixing and which does not
polarize because it is periodic. We remark that in [4], under
additional assumptions, fast polarization is shown for the high-
entropy synthetic channels.

II. SETTING

Let (Xi,Yi), i ∈ Z, be a stationary process, where the Yi take
values in a finite alphabet Y . We assume Xi ∈ {0, 1} to keep
the notation simple, but the results here can be generalized
to arbitrary finite alphabets using standard techniques. See,
for example, [3, Chapter 3]. We think of Xi as a sequence
to be estimated, and Yi as a sequence of observations related
to Xi . In particular, Xi may be the input sequence to a com-
munication channel, with the corresponding channel output Yi .
Alternatively, Xi may be the output of a data source to be
compressed, and Yi may be the side information available to
the decompressor.

A key property of the processes we consider is ψ-mixing.
We follow1 [5, Page 169] and say that a process Ti is ψ-mixing
if there exists a nonincreasing sequence ψk → 1 as k → ∞
such that

P (A ∩ B) ≤ ψkP (A)P (B) (1)

for all A ∈ σ(T0−∞) and B ∈ σ(T∞
k+1), where σ(·) denotes the

sigma-field generated by its argument. Since ψk → 1, in a ψ-
mixing process, any two events A ∈ σ(T0−∞) and B ∈ σ(T∞

k+1)
that are sufficiently separated in ‘time’ are almost independent.
Namely, by [6, Definition 3.3, page 67], [6, Proposition 3.11,
part a, page 76], and [6, Proposition 5.2, part III.a, page 153]

|P (A ∩ B) − P (A)P (B) | ≤ ψk − 1
2

.

In this paper, we require for polarization that a process be
ψ-mixing with finite ψ0. Since this requirement appears several
times, we make the following definition.

Definition 1 (Promptly ψ-mixing). Let (Xi,Yi), i ∈ Z, be a
stationary process, where Xi ∈ {0, 1} and the Yi take values in
a finite alphabet Y . Such a process is called promptly ψ-mixing
if it is ψ-mixing and ψ0 < ∞.

Many source and channel models of practical importance
satisfy our requirements of being promptly ψ-mixing. Specifi-
cally, this holds for a class of models with memory that have an

1To the best of our understanding, the first displayed equation on page 169
of [5] should be “

∑
v µ(uvw) ≤ · · · ”.
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underlying ergodic Markov structure, as shown in [4, Lemma
5]. There, these processes are termed Finite-state, Aperiodic,
Irreducible (hidden) Markov processes, or FAIM for short.
The parameter ψ0 plays an important role in this paper, and
can be computed easily if the underlying process is FAIM [4,
Equation 19].

We are interested in the effects of Arıkan’s standard polar
transform on stationary processes with memory. For this
purpose, we let UN

1 = XN
1 BNGN , where the matrix multipli-

cations are over the binary field, N = 2n for positive integers
n, GN is the nth Kronecker power of

( 1 0
1 1

)
, and BN is the

N × N bit-reversal matrix. The conditional entropy rate of Xi

is defined as

HX |Y = lim
N→∞

1
N

H(XN
1 |Y N

1 )

= lim
N→∞

1
N

H(XN
1 ,Y

N
1 ) − lim

N→∞
1
N

H(Y N
1 ).

The limits on the right-hand-side exist due to stationarity [7,
Theorem 4.2.1]. Also useful for the analysis is the parameter

Z(A|B) = 2
∑
b∈B

√
pA,B(0, b)pA,B(1, b)

for random variables A ∈ {0, 1} and B ∈ B. Sometimes called
the Bhattacharyya parameter, Z(A|B) upper-bounds the error
probability of optimally guessing A by observing B. See, for
example, [3, Proposition 2.2].

III. MAIN RESULTS

The following two theorems relate to the polarization of
promptly ψ-mixing process.

Theorem 1 (Polarization). Let (Xi,Yi), i ∈ Z, be a promptly
ψ-mixing process, then for all ε > 0

lim
N→∞

1
N

��{i : H(Ui |Ui−1
1 ,Y N

1 ) > 1 − ε}�� = HX |Y ,

lim
N→∞

1
N

��{i : H(Ui |Ui−1
1 ,Y N

1 ) < ε
}�� = 1 −HX |Y .

Theorem 2 (Fast polarization of the low-entropy set). Let
(Xi,Yi), i ∈ Z, be a promptly ψ-mixing process, then for all
β < 1/2

lim
N→∞

1
N

��{i : Z(Ui |Ui−1
1 ,Y N

1 ) < 2−N
β }�� = 1 −HX |Y .

We conjecture that an analog of Theorem 2 holds for the
high-entropy set.

Conjecture 3 (Fast polarization of the high-entropy set). Let
(Xi,Yi), i ∈ Z, be a promptly ψ-mixing process, then for all
β < 1/2

lim
N→∞

1
N

��{i : Z(Ui |Ui−1
1 ,Y N

1 ) > 1 − 2−N
β }�� = HX |Y .

Resolving the above conjecture would be an important step
for polar codes. We refer the reader to [4, Theorem 13], which
shows that the conjecture indeed holds if the process is FAIM.
To recap, assuming that the process (Xi,Yi) is governed by an
underlying state sequence having a certain structure allows
one to prove Conjecture 3. However, we will not assume an
underlying state sequence when proving Theorems 1 and 2.

S = 0
X ∼ Ber(1/2)

S = 1
X ∼ Ber(1/2)

S = 2
X = 0

S = 3
X = 0

Fig. 1. A periodic data source that does not polarize. The source output is
Bernoulli 1/2 for two consecutive states and zero for next two consecutive
states. There is no side information, i.e., Yi is constant.

As a concrete example of the distinction between promptly
ψ-mixing and FAIM processes, consider the family of pro-
cesses given in [8, Example 3]. Each such process (X ′i ), i ∈ Z,
is ψ-mixing, with ψ0 < ∞. Also, the support of each X ′i is
[0, 1). Next, fix such a process, and let B be some Borel set
on [0, 1). For example, B = [0, 1/2]. Define the process (Xi),
i ∈ Z, such that Xi = 1 if X ′i ∈ B, and Xi = 0 otherwise.
Since the process (Xi) is a marginalization of (X ′i ), we deduce
from (1) that (Xi) is also ψ-mixing, with finite ψ0. That is, we
deduce that (Xi) is promptly ψ-mixing, and hence Theorems 1
and 2 are applicable. However, since the underlying process
(X ′i ) is not finite state, it is not FAIM, and thus it is not clear
if Conjecture 3 holds for (Xi).

The following theorem shows an example of a process that
has memory and that does not polarize because it is periodic.

Theorem 4 (Periodic processes may not polarize). The sta-
tionary periodic Markov process described in Figure 1 does
not polarize. Indeed, for all 5N

8 < i ≤ 6N
8 ,����H(Ui |Ui−1

1 ) −
1
2

���� ≤ εN , lim
N→∞

εN = 0 . (2)

IV. NOTATION

We will prove the above theorems in the following sections.
Throughout, we will use the shorthand

Hb = H(Ui |Ui−1
1 ,Y N

1 ) ,
Zb = Z(Ui |Ui−1

1 ,Y N
1 ) ,

where b ∈ {0, 1}n is the n-bit binary expansion of i − 1 ∈
{0, . . . , N − 1}. We will omit the ranges of indices when they
are clear from context. The following are immediate from the
definition of BNGN :

Hb0 = H(U2i−1 |U2i−2
1 ,Y2N

1 )
Hb1 = H(U2i |U2i−1

1 ,Y2N
1 )

for all b ∈ {0, 1}n. These identities also hold when the H’s are
replaced by Z’s. Further, if we let B1, B2, . . . be a sequence
of i.i.d. Ber(1/2) random variables, then it is easy to see
that the random variables Hn = HB1...Bn and Zn = ZB1...Bn

are uniformly distributed over the sets of Hb’s and Zb’s,
respectively. Theorems 1 and 2 are then equivalent to
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Theorem 5. Let (Xi,Yi), i ∈ Z, be a promptly ψ-mixing
process, then for all ε > 0

lim
n→∞P (Hn > 1 − ε) = HX |Y ,

lim
n→∞P (Hn < ε) = 1 −HX |Y .

Theorem 6. Let (Xi,Yi), i ∈ Z, be a promptly ψ-mixing
process, then for all β < 1/2

lim
n→∞P

(
Zn < 2−N

β
)
= 1 −HX |Y .

As is usual in proofs of polarization, we will analyze how
the entropies and Bhattacharyya parameters evolve in a single
recursion of the polarization transform. That is, when two
smaller polarization blocks are combined to form a larger
block. Due to the dependence between the combined blocks,
we will need to keep track of more random variables than is
required in the analysis of the memoryless case. The following
shorthand will then be useful:

UN
1 = XN

1 BNGN , (3a)

VN
1 = X2N

N+1BNGN , (3b)

Qi = (Ui−1
1 ,Y N

1 ) , (3c)

Ri = (V i−1
1 ,Y2N

N+1) . (3d)

V. PROOF OF THEOREM 1

Throughout this section, we assume that (Xi,Yi), i ∈ Z, is
a promptly ψ-mixing process. We will prove Theorem 1 by
showing that Hn converges almost surely (a.s.) and in L1 to
a {0, 1}-valued random variable H∞. As in [1], we first show
that H∞ ∈ [0, 1].
Lemma 7. The sequence Hn converges a.s. and in L1 to a
random variable H∞ ∈ [0, 1].

Proof: Recall that for i = 1 + (B1 . . . Bn)2 we have that

Hn = H(Ui |Ui−1
1 ,Y N

1 ) = H(Ui |Qi) .
Also, for i as above,

Hn+1 =

{
H(Ui + Vi |Qi, Ri) , if Bn+1 = 0 ,
H(Vi |Qi, Ri,Ui + Vi) , if Bn+1 = 1 .

(4)

Next, note that

H(Ui + Vi |Qi, Ri) + H(Vi |Qi, Ri,Ui + Vi)
= H(Ui,Vi |Qi, Ri)
≤ H(Ui |Qi) + H(Vi |Ri)
= 2H(Ui |Qi) ,

where the inequality follows since conditioning reduces en-
tropy, and the last step follows from stationarity. Thus, since
Bn+1 is uniform, E [Hn+1 |H1, . . . ,Hn] ≤ Hn. The entropy is
bounded, Hn ∈ [0, 1], and thus it follows that H1,H2, . . . is a
bounded supermartingale. We conclude by [9, Theorem 9.4.5]
that it converges almost surely and in L1 to a [0, 1]-valued
random variable H∞.

Our approach to proving that H∞ ∈ {0, 1} shares similarities
with the proof in [10, Section 2.2] for the memoryless case.
In essence, the proof there hinges on [10, Lemma 2.2], which

shows that if H(Ui |Vi) is bounded away from both 0 and 1,
then H(Ui + Vi |Qi, Ri) − H(Ui |Qi) is bounded away from 0.
Informally, if Hn has not polarized, then it has not converged.
Thus, our main focus now is on H(Ui + Vi |Qi, Ri).

Recalling the definitions of Qi and Ri in (3), we see that
YN ∈ Qi and YN+1 ∈ Ri . Since YN and YN+1 are generally
dependent, we deduce that Qi and Ri are generally dependent
as well. However, suppose that Ui and Vi were independent
given Qi and Ri . This is not generally true, but if it were,
we would be closer to the memoryless setting and our task
of analyzing H(Ui + Vi |Qi, Ri) would be simpler. Informally,
inequality (5) in the next lemma shows that this is “almost
true”.

Lemma 8. For any ε > 0, the fraction of indices i for which

I(Ui; Vi |Qi, Ri) < ε , (5)
I(Ui; Ri |Qi) < ε , (6)
I(Vi; Qi |Ri) < ε , (7)

approaches 1 as N →∞.

Proof: We only prove the first and the third inequalities,
since the second inequality follows by symmetry. We have

log(ψ0)

≥ E

[
log

pX2N
1 ,Y2N

1
(X2N

1 ,Y2N
1 )

pXN
1 ,YN

1
(XN

1 ,Y
N

1 ) · pX2N
N+1,Y

2N
N+1
(X2N

N+1,Y
2N
N+1)

]
= I(XN

1 ,Y
N

1 ; X2N
N+1,Y

2N
N+1)

= I(UN
1 ,Y

N
1 ; VN

1 ,Y2N
N+1)

= I(Y N
1 ; VN

1 ,Y2N
N+1) + I(UN

1 ; VN
1 ,Y2N

N+1 |Y N
1 )

≥ I(UN
1 ; VN

1 ,Y2N
N+1 |Y N

1 )

=

N∑
i=1

I(Ui; VN
1 ,Y2N

N+1 |Y N
1 ,Ui−1

1 )

=

N∑
i=1

I(Ui; Ri,Vi,VN
i+1 |Qi) .

The first inequality above follows from the definition of ψ0.
Since all terms inside the last sum are non-negative, it follows
that at most

√
log(ψ0)N (a vanishing fraction) of them are at

least
√

log(ψ0)/N (a vanishing quantity). Thus, to conclude the
proof, it suffices to show that the ith term is greater than both
I(Ui; Ri |Qi) and I(Ui; Vi |Qi, Ri). Indeed,

I(Ui; Ri,Vi,VN
i+1 |Qi)

= I(Ui; Ri |Qi) + I(Ui; Vi |Qi, Ri) + I(Ui; VN
i+1 |Qi,Vi, Ri),

and all the terms are non-negative.
In fact (5) is the only inequality we will need from

Lemma 8. We have stated (6) and (7) to serve as motivation
for the following. Namely, for index 1 ≤ i ≤ N , we now
introduce the random variables Ũi and Ṽi . The joint distribution
of (X2N

1 ,Y2N
1 ,UN

1 ,V
N

1 ,QN
1 , RN

1 , Ũ
N
1 , Ṽ

N
1 ) is defined as follows.

First X2N
1 and Y2N

1 are picked according to the process distri-
bution. This uniquely determines the values of UN

1 ,V
N

1 ,QN
1 ,

and RN
1 , according to (3). Finally, for each i = 1, 2, . . . , n

we pick Ũi and Ṽi independently according to the marginal
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distributions pUi |Qi
(·|qi) and pVi |Ri

(·|ri), where qi and ri are
the realizations of Qi and Ri . The key property to note is that
the joint distribution of (Ũi, Ṽi) with (Qi, Ri) is of the form

pŨi,Ṽi,Qi,Ri
(ũi, ṽi, qi, ri)

= pUi |Qi
(ũi |qi) · pVi |Ri

(ṽi |ri) · pQi,Ri (qi, ri) . (8)

Thus, by definition, Ũi and Ṽi are independent given Qi and
Ri . In fact, more is true: if we replace Ui and Vi by Ũi and
Ṽi , respectively, in (5)–(7), then all the mutual informations
become zero. See (37)–(39) in the appendix for a proof of
this fact.

As explained, it will be easier to analyze H(Ũi+Ṽi |Qi, Ri) in
place of H(Ui+Vi |Qi, Ri). The following corollary to Lemma 8
serves as justification for this shift, since it shows that the two
quantities are “close”. It is proved in the appendix and will be
used later on.

Corollary 9. For any ε > 0, the fraction of indices i for which

|H(Ũi + Ṽi |Qi, Ri) − H(Ui + Vi |Qi, Ri)| < ε (9)

approaches 1 as N →∞.

Note that by (8),

H(Ũi |Qi, Ri) = H(Ũi |Qi) = H(Ui |Qi) . (10)

Thus, in light of this and Corollary 9, we will consider the
difference H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi) as a proxy for our
ultimate quantity of interest, H(Ui + Vi |Qi, Ri) − H(Ui |Qi).
Note that in order to save space, we will usually prefer
writing H(Ũi |Qi) in place of the longer but more informative
H(Ũi |Qi, Ri). The same remark applies to H(Ṽi |Qi) versus
H(Ṽi |Qi, Ri), which are also equal due to (8).

Recall that we aim to mimic the memoryless proof in [10,
Section 2.2] as much as possible. Hence our informal strategy
will soon be the following: show that if H(Ũi |Qi) is bounded
away from both 0 and 1, then H(Ũi + Ṽi |Qi, Ri) −H(Ũi |Qi) is
bounded away from 0.

We now motivate the following lemma. Namely, we will
now introduce an apparent difficulty, which the following
lemma will resolve. Recall that we prefer analyzing Ũi and
Ṽi over Ui and Vi , since the former are independent given
(Qi, Ri). In contrast, as we have already mentioned, Qi and Ri

are generally dependent. This presents an apparent problem
with the strategy outlined in the previous paragraph: suppose
H(Ũi |Qi) is bounded away from both 0 and 1. Suppose
further that for every value qi that Qi can take, we have
that H(Ũi |Qi = qi) is either 0 or 1. That is, imagine what
is effectively an erasure channel, mapping Ũi to Qi . By
stationarity, the same property must hold for H(Ṽi |Ri = ri).
Now, since Qi and Ri are not independent, it is conceivable
that they collude, i.e., that it is always the case that the values
qi and ri that the random variables Qi and Ri respectively
take are such that either H(Ũi |Qi = qi) = H(Ṽi |Ri = ri) = 0
or H(Ũi |Qi = qi) = H(Ṽi |Ri = ri) = 1. In other words, in
two consecutive uses of the above channel, we always have
either two non-erasures or two erasures. In such a case, it is
easy to see that H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi) is identically
0. That is, if the above assumptions are valid, our plan is

doomed to fail: we have an apparent counter-example in
which H(Ũi |Qi) is bounded away from both 0 and 1, yet the
difference H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi) is not bounded away
from 0. Informally, an important corollary of the following
lemma is that such synchronized erasures cannot happen. That
is, as intuition for the following lemma, think of A = 1 (B = 1)
as indicating that Qi (Ri) corresponds to an erasure of Ũi (Ṽi).

Lemma 10. For all ξ > 0, there exists N0 and δ(ξ) > 0 such
that for all N > N0 and all {0, 1}-valued random variables
A = f (XN

1 ,Y
N

1 ) and B = f (X2N
N+1,Y

2N
N+1),

pA(1) ∈ (ξ, 1 − ξ) implies pA,B(1, 0) > δ(ξ) .
Proof: Let us start by explaining informally why the

claim is true. Define C = f (X3N
2N+1,Y

3N
2N+1), and suppose to the

contrary that B equals A with very high probability. Hence,
by stationarity, C equals B with very high probability. We
conclude that A equals C with probability very close to 1, a
contradiction to the mixing property.

Let us now give a formal proof. First, clearly, we may
assume that ξ ≤ 1/2, or else the claim is vacuous. We have

2pA,B(1, 0) = pA,B(1, 0) + pB,C(1, 0)
≥ pA,B,C(1, 0, 0) + pA,B,C(1, 1, 0)
= pA,C(1, 0)
= pA(1) − pA,C(1, 1)
≥ pA(1)(1 − ψN pC(1))
= pA(1)(1 − ψN pA(1))

where the first and last equalities are due to stationarity. Recall
that ψN converges to 1 from above. We now commit to an
N0 such that ψN < 1√

1−ξ for all N > N0. Recalling that

pA(1) ∈ (ξ, 1 − ξ), we can bound the last term in the above
displayed equation as

pA(1)(1 − ψN pA(1)) > pA(1)
(
1 − 1√

1 − ξ
pA(1)

)
> pA(1)

(
1 − 1√

1 − ξ
(1 − ξ)

)
= pA(1)

(
1 −

√
1 − ξ

)
> ξ

(
1 −

√
1 − ξ

)
,

under the assumption that N > N0. That is, for all N > N0,
we deduce that 2pA,B(1, 0) > ξ

(
1 −

√
1 − ξ

)
. Thus, we take

δ(ξ) = ξ
(
1 −

√
1 − ξ

)
/2.

The next lemma will be instrumental in the following
setting. Let qi and ri be given. Assume that H(Ũi |Qi = qi)
and H(Ṽi |Ri = ri) are not both close to 0, nor are they both
close to 1. To emphasize: we only rule out the case where
both entropies are close to each other and extremal. Then,
we will deduce from the following lemma that the entropy
H(Ũi + Ṽi |Qi = qi, Ri = ri) is non-negligibly greater than the
mean of H(Ũi |Qi = qi) and H(Ṽi |Ri = ri). The proof is given
in the appendix.
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Lemma 11. Let A and B be independent binary random
variables. For every ξ > 0, there exists ∆(ξ) > 0 such that

max{H(A),H(B)} > ξ

and

min{H(A),H(B)} < 1 − ξ
imply

H(A + B) > H(A) + H(B)
2

+ ∆(ξ) .

We are now ready to state and prove the cardinal lemma of
this section. Informally, we now show that if Hn = H(Ũi |Qi)
has not polarized, then it has not converged.

Lemma 12. For all ξ > 0 there exist θ(ξ) > 0 and N0 such
that for all N > N0 and all 1 ≤ i ≤ N ,

H(Ũi |Qi) ∈ (3ξ, 1 − 3ξ) implies

H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi) > 2θ(ξ) . (11)

Proof: For a given ξ > 0, let θ(ξ) = δ(ξ)∆(ξ)/2, where
δ(ξ) and ∆(ξ) are as in Lemmas 10 and 11. Also, let N0 be
as in Lemma 10. The motivation for these choices will soon
become apparent. Set N > N0 and let i be given. We must
show that (11) holds.

Let us first introduce some notation. Let X and Y be generic
random variables in this paragraph. Note that H(X |Y = y) is a
function of y, which we denote in this paragraph as g(y). We
shall denote g(Y ) as H(X |Y ). We emphasize: the underline in
H(X |Y ) signifies that we are dealing with a random variable,
which is a function of the underlined quantity.2 A simple and
concise result of this definition is that

H(X |Y ) = E
[
H(X |Y )] .

Assume that

H(Ũi |Qi) ∈ (3ξ, 1 − 3ξ) , (12)

otherwise the claim is vacuous. Together with our assumption
that ξ is positive, the above trivially implies that

0 < ξ <
1
6
. (13)

Recall that H(Ũi |Qi) = E[H(Ũi |Qi)]. In order to keep the
notation light, we further denote

α = P
(
H(Ũi |Qi) ≤ ξ

)
, (14)

β = P
(
H(Ũi |Qi) ∈ (ξ, 1 − ξ)

)
, (15)

γ = P
(
H(Ũi |Qi) ≥ 1 − ξ

)
. (16)

We will prove (11) for two cases, β < ξ and β ≥ ξ.
Case 1: Consider first the case in which

β < ξ . (17)

2One might benefit from verbalizing H(X |Y) as “the conditional entropy
of X, as a function of Y”. Note that this definition is similar to the definition
of E [X |Y], which is usually taken to be a random variable that is a function
of Y .

In words: the probability that Qi equals a value qi for which
H(Ũi |Qi = qi) ∈ (ξ, 1 − ξ) is denoted β, and is less than
ξ. Informally, for ξ > 0 small, this means that a typical
realization of Qi implies either an “almost certainty” regarding
the value of Ũi or an “almost erasure”.

Informally, we next show that for ξ “small”, and under
the assumptions (12) and (17), the probability of an “almost
erasure”, γ, is not trivial. That is, for a lower bound on γ, we
employ (12)–(17) and deduce that

3ξ < H(Ũi |Qi) ≤ α · ξ + β · (1 − ξ) + γ · 1
< α · ξ + ξ · (1 − ξ) + γ · 1
≤ (1 − γ) · ξ + ξ · (1 − ξ) + γ · 1 ,

where the last inequality follows from α ≤ 1 − γ (since α, β
and γ are probabilities summing to 1). Rearranging the above
gives

γ >
ξ + ξ2

1 − ξ . (18)

For an upper bound on γ, we again use (12)–(17) to show that

1 − 3ξ > H(Ũi |Qi) ≥ α · 0 + β · ξ + γ · (1 − ξ)
≥ γ · (1 − ξ) .

Rearranging gives

γ <
1 − 3ξ
1 − ξ . (19)

By (13), (18), (19), and some simple algebra, we deduce that

γ ∈ (ξ, 1 − ξ) . (20)

Recall that by (3), Qi is a deterministic function of XN
1

and Y N
1 . Thus, there clearly exists a {0, 1}-valued function f

such that f (XN
1 ,Y

N
1 ) equals 1 iff H(Ũi |Qi) ≥ 1 − ξ. That is,

for ξ “small”, f (XN
1 ,Y

N
1 ) equals 1 iff Qi corresponds to an

“almost erasure” of Ũi . By the symmetry of definitions in (3)
and (8), the above f also satisfies that f (X2N

N+1,Y
2N
N+1) = 1 iff

H(Ṽi |Ri) ≥ 1 − ξ. Recalling (16), (20), and our definition of
f , we get from Lemma 10 that

P
(
H(Ũi |Qi) ≥ 1 − ξ , H(Ṽi |Ri) < 1 − ξ

)
> δ(ξ) . (21)

Let us now define the “good” (with respect to Lemma 11) set
G of pairs (qi, ri) as

G =
{
(qi, ri) :

max{H(Ũi |Qi = qi),H(Ṽi |Ri = ri)} > ξ

and
min{H(Ũi |Qi = qi),H(Ṽi |Ri = ri)} < 1 − ξ

}
.

By (13) and (21),

P ((Qi, Ri) ∈ G) > δ(ξ) . (22)
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We are now ready to show (11). We claim that

H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi)

= H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi) + H(Ṽi |Qi)
2

=
∑
(qi,ri )

pQi,Ri (qi, ri)
(
H(Ũi + Ṽi |Qi = qi, Ri = ri)

− H(Ũi |Qi = qi) + H(Ṽi |Ri = ri)
2

)
≥

∑
(qi,ri )∈G

pQi,Ri (qi, ri)
(
H(Ũi + Ṽi |Qi = qi, Ri = ri)

− H(Ũi |Qi = qi) + H(Ṽi |Ri = ri)
2

)
> δ(ξ) · ∆(ξ) . (23)

Indeed, the first equality is by stationarity; the first inequality
is because the term in brackets is always non-negative3; the
last inequality is by Lemma 11 and (22). Thus, recalling that
we have taken θ(ξ) = δ(ξ)∆(ξ)/2, we have proved (11), under
the assumptions (12) and (17).

Case 2: We now aim to prove (11), under the assumptions
(12) and

β ≥ ξ . (24)

This will be shorter, informally because we are now assuming
that the probability of Qi equalling a value for which the
entropy of Ũi is “moderate” is “sufficiently high”. We start
by noticing that under the event H(Ũi |Qi) ∈ (ξ, 1 − ξ) used
to define β in (15), we have that (Qi, Ri) ∈ G. Thus, the
LHS of (22) is lower bounded by β. Next, we will show that
β > δ(ξ), and hence (22) holds. Indeed, recall from the proof
of Lemma 10 that δ(ξ) = ξ

(
1 −

√
1 − ξ

)
/2 < ξ. By this and

(24) we deduce that (22) holds, and the proof continues as
before. Hence, we have proved (11), under the assumptions
(12) and (24).

The following corollary to Lemma 12 shifts us back to Ui

and Vi from Ũi and Ṽi .

Corollary 13. For all ξ > 0 there exists θ(ξ) > 0 such that

H(Ui |Qi) ∈ (3ξ, 1 − 3ξ) implies

H(Ui + Vi |Qi, Ri) − H(Ui |Qi) > θ(ξ) (25)

for a fraction of indices i ∈ {1, . . . , N} approaching 1 as N →
∞.

Proof: Let ξ > 0 be given and take θ(ξ) as in Lemma 12.
Also, take N0 as in Lemma 12. Fix N > N0, and let A be
the set of indices for which (9) holds, for ε = θ(ξ). Note
that by Corollary 9, the fraction of indices in A approaches
1 as N tends to infinity. By assumption, for all indices i, and
specifically for all i ∈ A, we have that (11) holds. Our aim
is to show that (25) holds for all i ∈ A as well. Indeed, let
i ∈ A. If H(Ui |Qi) < (3ξ, 1 − 3ξ), then (25) holds trivially.

3Note that H(Ũi + Ṽi |Qi = qi, Ri = ri ) ≥ H(Ũi + Ṽi |Ṽi,Qi = qi, Ri =
ri ) = H(Ũi |Qi = qi ), and we can similarly lower bound by H(Ṽi |Ri = ri ).

Thus, assume that H(Ui |Qi) ∈ (3ξ, 1 − 3ξ). By (10), this is
equivalent to H(Ũi |Qi) ∈ (3ξ, 1 − 3ξ). Thus, by assumption,
the consequent in (11) holds. We deduce that

H(Ui + Vi |Qi, Ri) − H(Ui |Qi)
= H(Ui + Vi |Qi, Ri) − H(Ũi |Qi)
= H(Ui + Vi |Qi, Ri) − H(Ũi + Ṽi |Qi, Ri)
+H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi)

> −θ(ξ) + H(Ũi + Ṽi |Qi, Ri) − H(Ũi |Qi)
> −θ(ξ) + 2θ(ξ)
= θ(ξ) ,

where the first equality follows from (10); the first inequality
follows from (9), recalling that ε = θ(ξ); and the last inequality
follows from our assumption that the consequent in (11) holds.
Thus, the consequent in (25) holds.

With Corollary 13 at hand, the proof of Theorem 1 is
forthcoming. Indeed, we now essentially repeat the arguments
in [1].

Proof of Theorem 1: Recall that in Lemma 7, we proved
that Hn converges a.s. and in L1 to H∞ ∈ [0, 1]. We next show
that H∞ converges a.s. to either 0 or 1. That is, we show that
for all ε > 0, P(H∞ ∈ (ε, 1 − ε)) = 0. Indeed, assume to the
contrary that there exists ε > 0 for which

P (H∞ ∈ (ε, 1 − ε)) > ρ , (26)

where ρ > 0. Next, note that

P (Hn ∈ (ε/2, 1 − ε/2))
≥ P (Hn ∈ (ε/2, 1 − ε/2) and |Hn − H∞ | < ε/2)
≥ P (H∞ ∈ (ε, 1 − ε) and |Hn − H∞ | < ε/2)
= P (H∞ ∈ (ε, 1 − ε))
−P (H∞ ∈ (ε, 1 − ε) and |Hn − H∞ | ≥ ε/2)

≥ P (H∞ ∈ (ε, 1 − ε)) − P (|Hn − H∞ | ≥ ε/2)
> ρ − P (|Hn − H∞ | ≥ ε/2) ,

where the last inequality follows from (26). Since a.s. conver-
gence implies convergence in probability [9, Theorem 4.1.2],
we deduce from the above that

lim inf
n→∞ P (Hn ∈ (ε/2, 1 − ε/2)) ≥ ρ .

Recall the definition of Hn+1 in (4), and further recall that Bn+1
equals 0 with probability 1/2. Now, take ξ such that 3ξ = ε/2.
We deduce from Corollary 13 that for n large enough,

P (|Hn+1 − Hn | > θ(ξ)) > ρ

4
.

However, this implies that Hn cannot converge in probability
to H∞, a contradiction to what was stated earlier. We have
proven that H∞ ∈ {0, 1} a.s.

We now show that

lim
n→∞E [Hn] = E [H∞] . (27)

Indeed,

E [−|Hn − H∞ |] ≤ E [Hn − H∞] ≤ E [|Hn − H∞ |] ,
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and by the L1 convergence of Hn to H∞ and the sandwich
property, the limit of the middle term is 0. By definition,
limn→∞ E [Hn] = HX |Y . Hence, since H∞ ∈ {0, 1} almost
surely, we must have that P(H∞ = 1) = 1−P(H∞ = 0) = HX |Y .
Recalling that Hn converges in probability to H∞, the claim
in Theorem 5 follows. We end by noting that Theorem 5 is
equivalent to Theorem 1.

VI. PROOF OF THEOREM 2
Like most proofs of the speed of polarization, our proof

of Theorem 2 relies on the following result by Arıkan and
Telatar [11], although we need the more general form of the
result given4 in [3, Lemma 2.3].

Lemma 14 ([11],[3]). If Zn converges almost surely to a
{0, 1}-valued random variable Z∞ and if there exists K < ∞
such that

Zn ≤ K Zn−1 , if Bn = 0 (28)

Zn ≤ K Z2
n−1 , if Bn = 1 (29)

then
lim
n→∞P

(
Zn < 2−2nβ

)
= P (Z∞ = 0)

for all β < 1/2.

Recall from the proof of Theorem 1 that Hn converges
almost surely to a {0, 1}-valued random variable. It then
follows from the relations [13, Proposition 2]

Z(A|B)2 ≤ H(A|B)
H(A|B) ≤ log(1 + Z(A|B))

that Zn also converges almost surely to a {0, 1}-valued random
variable Z∞. Indeed, Hn → 0 implies Zn → 0 whereas Hn →
1 implies Zn → 1. It then suffices to show that Zn satisfies
inequalities (28) and (29).

We claim that this is indeed the case with K = 2ψ0. To see
this, let X̂2N

1 , Ŷ2N
1 be distributed as PXN

1 YN
1
· PX2N

N+1Y
2N
N+1

, and

define the corresponding variables Ûi, V̂i, Q̂i, R̂i as in (3). We
know from [1, Proposition 5] that

Z(Ûi + V̂i |Q̂i, R̂i) ≤ 2Z(Ûi |Q̂i) , (30)

Z(V̂i |Q̂i, R̂i, Ûi + V̂i) ≤ Z(Ûi |Q̂i)2 . (31)

Now let (A, B) and (Â, B̂) be random variables that can be
written as

(A, B) = f (X2N
1 ,Y2N

1 )
(Â, B̂) = f (X̂2N

1 , Ŷ2N
1 )

for some function f . Observe that the assumption (1) implies
pA,B ≤ ψ0 · pÂ,B̂. Therefore, for binary A we have

Z(A|B) = 2
∑
b

√
pA,B(0, b)pA,B(1, b)

≤ 2ψ0
∑
b

√
pÂ,B̂(0, b)pÂ,B̂(1, b)

= ψ0 · Z(Â|B̂) . (32)

4See also [12] for a simpler proof.

Defining A = Ui + Vi and B = (Qi, Ri) and combining
(32) with (30) implies (28) with K = 2ψ0. Similarly, defining
A = Vi and B = (Qi, Ri,Ui +Vi) and combining (32) with (31)
implies (29) with K = ψ0. This proves Theorem 2 since
ψ0 < ∞ by assumption.

VII. PROOF OF THEOREM 4

Recall that the process we are considering is described in
Figure 1. Let us start by defining the process exactly. The state
of the process at time t = 1, 2, . . . is denoted St . Each such state
has 4 possible values, {0, 1, 2, 3}. The initial state S1 is picked
uniformly at random. The value of S1 determines the value of
all St , specifically, St = S1 + t −1 (mod 4). If St ∈ {0, 1}, then
Xt , the output of the process at time t, is picked uniformly at
random from {0, 1}. If St ∈ {2, 3}, then Xt equals 0. Recall
that for a given N , we have UN

1 = XN
1 BNGN .

The proof of Theorem 4 is divided into two parts. In the first
part, we consider H(Ui |Ui−1

1 , S1 = s1). Namely, we consider
a setting related to, yet distinct from, that of Theorem 4: we
assume that the initial state S1 is known to equal the fixed
value s1. As we will see, the case N = 8 is of particular
importance. We refer the reader to Table II, which highlights
key features of the distribution of U6

1 when N = 8, for the 4
possible values of s1. The entry “U6 ⊥ U5

1 ” denotes that U6 is
independent of U5

1 . The correctness of the Table II is easy to
validate by using Table I.

Lemma 15. Consider the stationary Markov process de-
scribed in Figure 1. Then, for N ≥ 8, the following holds.

For all
5N
8

< i ≤ 6N
8

we have that

H(Ui |Ui−1
1 , S1 = s1) =

{
0 , if s1 ∈ {1, 3} ,
1 , if s1 ∈ {0, 2} .

Proof: The correctness of the lemma is straightforward to
validate for N = 8. Indeed, for N = 8 we must only consider
i = 6, and the result follows from the last column of Table II.
Namely, for s1 ∈ {1, 3} we have that U6 is a function of U5

1 ;
for s1 ∈ {0, 2} we have that U6 is independent of U5

1 and is
distributed Ber(1/2).

The general result is proved by induction on N . We have
proved the basis N = 8 above. In order to prove the step, let
us first tailor the notation (3) to our needs:

UN
1 = XN

1 BNGN , (33a)

VN
1 = X2N

N+1BNGN , (33b)

Qi = Ui−1
1 , (33c)

Ri = V i−1
1 . (33d)

Proving the step is equivalent to proving that for all indices
5N
8 < i ≤ 6N

8 ,

H(Ui + Vi |Qi, Ri, S1 = s1)
= H(Vi |Ui + Vi,Qi, Ri, S1 = s1)
= H(Ui |Qi, S1 = s1) . (34)

Recall that N is a power of 2 and N ≥ 8. Thus, N is a
multiple of 4. Since the period of the process is 4, we have that
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TABLE I
PROPERTIES OF U6

1 AND X8
1 FOR N = 8. UPPER HALF: U6

1 AS A FUNCTION

OF X8
1 . LOWER HALF: DISTRIBUTION OF X8

1 AS A FUNCTION OF THE
INITIAL STATE S1 . IN THE LOWER HALF, “B” IS SHORT FOR Ber(1/2) AND

“0” DESIGNATES A VALUE OF ZERO WITH PROBABILITY ONE.

U1 = X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8
U2 = X5 + X6 + X7 + X8
U3 = X3 + X4 X7 + X8
U4 = X7 + X8
U5 = X2 + X4 + X6 + X8
U6 = X6 + X8

X1 X2 X3 X4 X5 X6 X7 X8
S1 = 0 B B 0 0 B B 0 0
S1 = 1 B 0 0 B B 0 0 B
S1 = 2 0 0 B B 0 0 B B
S1 = 3 0 B B 0 0 B B 0

S1 = s1 iff SN+1 = s1. Moreover, it is easily seen that given
that S1 = s1, (Ui,Qi) and (Vi, Ri) are identically distributed.
Hence,

H(Ui |Qi, S1 = s1)
= H(Vi |Ri, SN+1 = s1) = H(Vi |Ri, S1 = s1) . (35)

Moreover, it is easily seen that given that S1 = s1, (Ui,Qi) and
(Vi, Ri) are independent.

We now prove (34) for the two cases of interest. Indeed, if
H(Ui |Qi, S1 = s1) = 0 then Ui and Vi are deterministic function
of Qi and Ri , respectively, given that S1 = s1. Hence, the two
equalities in (34) follow easily. If H(Ui |Qi, S1 = s1) = 1, then
by (35) and the independence of (Ui,Qi) and (Vi, Ri) given
S1 = s1 we deduce that

2 = H(Ui |Qi, Ri, S1 = s1) + H(Vi |Ui,Qi, Ri, S1 = s1)
= H(Ui,Vi |Qi, Ri, S1 = s1)
= H(Ui + Vi,Vi |Qi, Ri, S1 = s1)
= H(Ui + Vi |Qi, Ri, S1 = s1)
+H(Vi |Ui + Vi,Qi, Ri, S1 = s1) .

Since the two terms on the RHS are at most 1, they must both
equal 1, proving (34) for this case as well.

An immediate corollary of Lemma 15 is that
H(Ui |Ui−1

1 , S1) = 1/2, for 5N
8 < i ≤ 6N

8 . To see this,
note that all 4 states are equally likely as initial states. What
remains is to prove that S1 is essentially known from Ui−1

1 .

Lemma 16. Consider the stationary Markov process depicted
in Figure 1. Then, there exists an εN such that

for all
5N
8

< i ≤ 6N
8

we have that

H(S1 |Ui−1
1 ) ≤ εN , and lim

N→∞
εN = 0 . (36)

Proof: We start by giving an informal explanation as
to why the claim holds. Consider the first two columns of
Table II, and suppose we had many i.i.d. realizations of U5

1 ,
all with the same initial state s1. Hence, the first column
would allow us to distinguish — with very high probability
— between s1 = 0, s1 = 2, and s1 ∈ {1, 3}:
• If s1 = 0 then all the realizations of U4 would equal 0.

TABLE II
DISTRIBUTION PROPERTIES OF U6

1 FOR N = 8 AND THE FOUR POSSIBLE
INITIAL STATES.

(U2,U4) (U1,U3,U5) U6 vs. U5
1

S1 = 0 U4 = 0 U6 ⊥U5
1

S1 = 1 i.i.d. U5 =U3 U6 =U4
S1 = 2 U4 =U2 U6 ⊥U5

1
S1 = 3 i.i.d. U5 =U3 +U1 U6 =U4 +U2

• If s1 = 2, all realizations would satisfy U2 = U4. In
roughly half the realizations we would have U4 = 1, since
U4 ∼ Ber(1/2). Each such realization would rule out the
previous case.

• If s1 ∈ {1, 3} then in roughly a quarter of the realizations
we would have U4 = 1 and U2 = 0, since U2 and U4 are
i.i.d. and Ber(1/2). Such an outcome would distinguishing
this case from the two previous ones.

To distinguish between s1 = 1 and s1 = 3, we utilize the
second column of Table II. Specifically, in both cases, U1 ∼
Ber(1/2). Thus, in roughly half of the realizations, U1 = 1, and
for each such realization we can distinguish between s1 = 1
in which U5 = U3 and s1 = 3 in which U5 , U3.

Lastly, we claim that such independent realization of U5
1 can

indeed be attained. Specifically, for N ≥ 8 and 5N
8 < i ≤ 6N

8 ,
the vector Ui−1

1 can be used to deduce the first 5 entries of
each vector in the set {X1+8j

1+8(j−1)B8G8 : 1 ≤ j ≤ N/8}. Note
that since the period of the process is 4, the state at time
1 + 8( j − 1) is equal to s1, for all values of j. Also, given S1,
all the vectors in the above set are independent.

Let us move on to the formal proof. The statistical properties
of U5

1 detailed above are easy to validate using Table I.
Suppose we have N/8 realizations of U5

1 , which are i.i.d. given
S1. The above description suggests an algorithm for guessing
the value of S1:
• If all the realizations of U4 equal 0, set Ŝ1 = 0.
• Otherwise, if all realizations satisfy U2 = U4, set Ŝ1 = 2.
• Otherwise, if all realizations satisfy U5 = U3, set Ŝ1 = 1.
• Otherwise, set Ŝ1 = 3.
A straightforward calculation shows that the probability of

misdecoding S1 goes down to 0 exponentially in N . By Fano’s
inequality [7, Theorem 2.10.1], we have that

H(S1 |Ui−1
1 ) ≤ h2(pe) + pe log2 4 ,

where pe is the probability of misdecoding. Since pe tends to
0, the RHS of the above tends to 0 as well.

Recall the set {X1+8j
1+8(j−1)B8G8 : 1 ≤ j ≤ N/8}, and denote

by A the vectors obtained by taking the prefix of length 5 of
each vector in the set. Obviously, the vectors in A are i.i.d.
given S1, and have the same distribution as the U5

1 discussed
above. All that remains to prove is that we can deduce A from
Ui−1

1 , when 5N
8 < i ≤ 6N

8 . We prove this by induction on N .
The case N = 8 is immediate. For the step, let the set B be
defined similarly to A, but with j ranging as N/8 + 1 ≤ j ≤
N/8+N/8. The induction step assumes that A can be deduced
from Ui−1

1 . Hence, B can be deduced from V i−1
1 , where we

recall the shorthand (33). Recalling the definition of the polar
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transform, we must prove that both A and B can be deduced
from either (Ui−1

1 + V i−1
1 ,V i−1

1 ) or (Ui−1
1 + V i−1

1 ,V i−1
1 ,Ui + Vi).

Obviously, this is true.
The proof of Theorem 4 is now a simple consequence of

the above.
Proof of Theorem 4: By the chain rule applied in two

ways to H(Ui, S1 |Ui−1
1 ) we deduce that

H(Ui |Ui−1
1 ) + H(S1 |Ui,Ui−1

1 ) = H(S1 |Ui−1
1 ) + H(Ui |Ui−1

1 , S1) .
As discussed, an immediate consequence of Lemma 15 is that
H(Ui |Ui−1

1 , S1) = 1/2. Thus,��H(Ui |Ui−1
1 ) − 1/2

�� = ��H(S1 |Ui−1
1 ) − H(S1 |Ui,Ui−1

1 )
�� .

By Lemma 16, there exists an εN → 0 such that

0 ≤ H(S1 |Ui,Ui−1
1 ) ≤ H(S1 |Ui−1

1 ) ≤ εN .

Hence, ��H(Ui |Ui−1
1 ) − 1/2

�� ≤ εN .

VIII. APPENDIX

Proof of Corollary 9: By marginalizing (8) over ṽi we
deduce that

pŨi |Qi,Ri
(ũi |qi, ri) = pŨi |Qi

(ũi |qi) . (37)

Similarly,

pṼi |Qi,Ri
(ṽi |qi, ri) = pṼi |Ri

(ṽi |ri) . (38)

Thus, by (8) and the above we deduce that Ũi and Ṽi are
independent given Qi and Ri ,

pŨi,Ṽi |Qi,Ri
(ũi, ṽi |qi, ri)

= pŨi |Qi,Ri
(ũi |qi, ri) · pṼi |Qi,Ri

(ṽi |qi, ri) . (39)

Define

h2(α) = −α log2 α − (1 − α) log2(1 − α) . (40)

We start with the following simple claim: for α, β between 0
and 1,

|h2(β) − h2(α)| ≤ h2(|β − α |) . (41)

Indeed, assume w.l.o.g. that β ≥ α. Then,

h2(β) − h2(α) =
∫ β

α
h′2(t) dt

≤
∫ β−α

0
h′2(t) dt = h2(β − α) , (42)

where the inequality follows from the concavity of h2 (the
derivative h′2 is decreasing). Similarly,

h2(β) − h2(α) =
∫ β

α
h′2(t) dt

≥
∫ 1

1−(β−α)
h′2(t) dt

= −h2(1 − (β − α)) = −h2(β − α) . (43)

We deduce (41) from (42) and (43).

For qi and ri fixed, let us adopt the shorthand α =

pUi+Vi |Qi,Ri
(0|qi, ri) and β = pŨi+Ṽi |Qi,Ri

(0|qi, ri). We claim
that

|H(Ũi + Ṽi |Qi, Ri) − H(Ui + Vi |Qi, Ri)|

=

�����∑
qi,ri

pQi,Ri (qi, ri)
(
h2(β) − h2(α)

) �����
≤

∑
qi,ri

pQi,Ri (qi, ri)|h2(β) − h2(α)|

≤
∑
qi,ri

pQi,Ri (qi, ri)h2(|β − α |)

≤ h2

(∑
qi,ri

pQi,Ri (qi, ri)|β − α |
)
. (44)

The second inequality follows form (41) while the third
inequality follows by applying Jensen’s inequality [7, Theorem
2.6.2] with respect to the concave function h2.

Our aim now is to bound the argument of h2 in the RHS
of the above displayed equation. To this end, we use the
shorthand p = pUi,Vi |Qi,Ri

and p̃ = pŨi,Ṽi |Qi,Ri
. By (39),

I(Ui; Vi |Qi, Ri) =
∑
qi,ri

pQi,Ri (qi, ri)D(p| | p̃) ,

where D(p| | p̃) is the relative entropy between p and p̃, for qi
and ri fixed,

D(p| | p̃) =
∑
ui,vi

p(ui, vi |qi, ri) log2
p(ui, vi |qi, ri)
p̃(ui, vi |qi, ri) .

Next, let us denote p+ = pUi+Vi |Qi,Ri
and p̃+ = pŨi+Ṽi |Qi,Ri

.
Obviously, p+ is gotten by quantizing p:

p+(0|qi, ri) = p(0, 0|qi, ri) + p(1, 1|qi, ri) ,
p+(1|qi, ri) = p(1, 0|qi, ri) + p(0, 1|qi, ri) .

The same quantization is used to derive p̃+ from p̃. A simple
consequence of the log-sum inequality [7, Theorem 2.7.1] is
that such a quantization reduces the relative entropy. Namely,
for qi, ri fixed,

D(p| | p̃) ≥ D(p+ | | p̃+) .

Recalling that α = p+(0|qi, ri) and β = p̃+(0|qi, ri), we get
from Pinsker’s inequality [7, Equation 11.147] that

D(p+ | | p̃+) ≥ 1
2 ln 2

· 2(β − α)2 .

Aggregating the above inequalities yields

I(Ui; Vi |Qi, Ri) ≥ 1
ln 2

∑
qi,ri

pQi,Ri (qi, ri) · (β − α)2 .

Now is the time to invoke Lemma 8. Namely, for an ε ′

which we will determine shortly, the fraction of indices i for
which I(Ui; Vi |Qi, Ri) ≤ ε ′ approaches 1 as N → ∞. Thus,
for such an index i we have that

1
ln 2

∑
qi,ri

pQi,Ri (qi, ri) · |β − α |2 ≤ I(Ui; Vi |Qi, Ri) ≤ ε ′ .
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Since squaring is a convex function, we apply Jensen’s in-
equality and deduce that∑

qi,ri

pQi,Ri (qi, ri) · |β − α | ≤
√
ε ′ · ln 2 .

Assuming the RHS of the above is less than 1/2, we deduce
from the above, the monotonicity of h2 in [0, 1/2], and (44)
that

|H(Ũi + Ṽi |Qi, Ri) − H(Ui + Vi |Qi, Ri)| ≤ h2(
√
ε ′ · ln 2) .

Thus, taking ε ′ small enough so that
√
ε ′ · ln 2 ≤ 1/2 and

h2(
√
ε ′ · ln 2) ≤ ε finishes the proof.
Proof of Lemma 11: Denote the distributions of A and

B as
A ∼ Ber(α) , B ∼ Ber(β) .

We will assume w.l.o.g. that 0 ≤ α ≤ β ≤ 1/2 holds. Thus,
according to our assumptions,

h2(α) ≤ h2(β) , h2(α) ≤ 1 − ξ , h2(β) ≥ ξ ,
where h2 is defined in (40). Since h2 is strictly increasing
when restricted to the domain [0, 1/2], it is invertible and we
conclude that

0 ≤ α ≤ h−1
2 (1 − ξ) , h−1

2 (ξ) ≤ β ≤
1
2
.

We simplify the above to

0 ≤ α ≤ 1
2
− σ , σ ≤ β ≤ 1

2
. (45)

where

σ = σ(ξ) = min
{

h−1
2 (ξ),

1
2
− h−1

2 (1 − ξ)
}
.

Define the random variable D = (C,T) as follows,

D = (C,T) , T ∼ Ber(1/2) , C =

{
A if T = 0 ,
B if T = 1 .

One easily gets that

H(A + B |D) = H(A) + H(B)
2

.

Thus, we are interested in bounding the difference

H(A + B) − H(A + B |D) = I(A + B; D) .
We write I(A + B; D) in terms of relative entropy [7, Equa-
tion (2.29)], and lower bound that with Pinsker’s inequality
[7, Equation 11.147]. Doing so results in a straightforward
calculation which yields

H(A + B) − H(A) + H(B)
2

≥ 2
ln 2

(
β(1 − β)|1 − 2α | + α(1 − α)|1 − 2β |)2

≥ 2
ln 2

(
β(1 − β)|1 − 2α |)2

≥ 2
ln 2

(
σ(1 − σ)|2σ |)2

=
8

ln 2
σ4(1 − σ)2 ,

where the last inequality follows from (45). Now, simply take
∆(ξ) as the RHS of the above.
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Boğaziçi University in 2005, and the Ph.D. degree in communications systems
from EPFL in 2011. He was a postdoctoral scholar at the University of
California at San Diego and later at the University of California at Berkeley,
an academic visitor at Technion, and a research scientist at Intel. He is now at
Apple. He received the Best Doctoral Thesis Award at EPFL, and the STOC
Best Paper Award in 2016.

Ido Tal (S’05–M’08–SM’18) was born in Haifa, Israel, in 1975. He received
the B.Sc., M.Sc., and Ph.D. degrees in computer science from Technion —
Israel Institute of Technology, Haifa, Israel, in 1998, 2003 and 2009, respec-
tively. During 2010–2012 he was a postdoctoral scholar at the University
of California at San Diego. In 2012 he joined the Electrical Engineering
Department at Technion. His research interests include constrained coding
and error-control coding. He received the IEEE Joint Communications Soci-
ety/Information Theory Society Paper Award (jointly with Alexander Vardy)
for the year 2017.


