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On the Construction of Polar Codes for Channels
with Moderate Input Alphabet Sizes

Ido Tal, Member, IEEE

Abstract—Current deterministic algorithms for the construc-
tion of polar codes can only be argued to be practical for channels
with small input alphabet sizes. In this paper, we show that
any construction algorithm for channels with moderate input
alphabet size which follows the paradigm of “degrading after
each polarization step” will inherently be impractical with respect
to a certain “hard” underlying channel. This result also sheds
light on why the construction of low-density parity-check (LDPC)
codes using density evolution is impractical for channels with
moderate sized input alphabets.

Index Terms—Polar codes, LPDC, construction, density evolu-
tion, degrading cost.

I. INTRODUCTION

Polar codes [1] are a novel family of error correcting codes
that achieve capacity and have efficient encoding and decoding
algorithms. Originally defined for channels with binary input,
they were soon generalized to channels with arbitrary input
alphabets [2]. Although polar codes are applicable to many
information-theoretic settings, the channel coding setting is the
one we consider in this paper. More specifically, we consider
the symmetric capacity setting discussed in [1] and [2].

The “plus” and “minus” polar transforms were defined in
the seminal paper [1]. We now briefly state these, and mention
that other transforms are possible: [3], [4] [5], see also [6]. Let
W : X → Y be a channel with input alphabet X and output
alphabet Y . Denote by W (y|x) the probability that y ∈ Y was
received given that x ∈ X was transmitted. Then, the minus
transform W− : X → Y2 and plus transform W+ : X →
Y2 ×X are defined respectively as

W−(y1, y2|x1) =
∑
x2∈X

1

|X |
W (y1|x1 + x2)W (y2|x2) ,

W+(y1, y2, x1|x2) =
1

|X |
W (y1|x1 + x2)W (y2|x2) .

The operation x1 + x2 is defined in [1] for the binary case
X = {0, 1} as addition modulo 2. This is generalized in [2] by
considering addition modulo |X |, where |X | is a prime. In this
setting, a polar code of length n = 2m is conceptually gotten
as follows. We consider all the synthesized channels one can
get by starting with the underlying channel, and applying m
consecutive polar transforms to it, each transform being either
a minus transform or a plus transform. It is easily seen that
there are n = 2m such channels. The polar code is gotten by
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specifying a suitably chosen constant β > 0, and choosing the
synthesized channels with probability of error at most 2−n

β

.
This set of channels defines an error correcting code. As m
tends to infinity, the rate of the code approaches the symmetric
capacity of the underlying channel, while the probability of
misdecoding is bounded by n · 2−nβ . That is, it approaches 0.

An important point to note about the above is that if the
input alphabet of the channel W is Y , then the output alphabet
of W− and W+ are Y2 and Y2×X , respectively. Namely, each
polar transform at least squares the output alphabet size. Thus,
the n = 2m synthesized channels have an output alphabet size
which grows exponentially in the code length n. We conclude
that calculating their probability of misdecoding is intractable,
if approached directly. To the author’s knowledge, the only
tunable and deterministic methods of circumventing this diffi-
culty involve approximating some of the intermediate channels
by channels which have a manageable output alphabet size.
Simply put: before the first polarization step and after each
polarization step, approximate the relevant channel by another
channel having a prescribed output alphabet size. Doing so
ensures that the channel output alphabet sizes do not grow
intractably.

The above “approximate after each polarization step” idea
has its origins in density evolution [7, Page 217], a method to
evaluate the performance of LDPC code ensembles. Indeed,
when analyzing LDPC codes via density evolution, we are
essentially applying generalized plus and minus transforms:
we start with the underlying channel and apply a generalized
minus transform followed by a generalized plus transform. The
resulting channel is again subjected to these two consecutive
transforms, and the process is repeated a specified number
of times. Density evolution was suggested as a method of
constructing polar codes in [8]. In order to bound the misde-
coding probability of a synthesized channel one can force the
approximating channel to be either (stochastically) degraded
or upgraded with respect to it.

An efficient algorithm for such a degrading/upgrading ap-
proximation was introduced for the binary-input case in [9]
and analyzed in [10]. The degrading algorithm in [9] is easy to
explain: as long as the output alphabet size is above a required
threshold, we select two output letters and merge them, in the
sense of making them indistinguishable. This is applied also
to their symmetric conjugates. The merged letters are selected
so that the drop in mutual information between channel input
and channel output is minimized, assuming a uniform input
distribution. This procedure results in the output alphabet size
decreasing by two, and is repeated until the required threshold
is met. The upgrading algorithm in [9] is similar, in the sense
that a “greedy” criterion is applied to selecting the three best
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output letters to be reduced to two letters. We mention also
[11], in which an optimal degrading algorithm is introduced.

Algorithms for degrading and upgrading non-binary chan-
nels were given in [12] and [13], respectively. The general idea
in these algorithms is to merge output letters that fall into the
same “bin”. Essentially, two output letters are in the same bin
if the posterior probabilities associated with the various inputs
are “close”. Merging all the letters in the bin as described
above leads to a degraded channel. An upgrading “merge” is
more involved, but possible. We also mention [14], in which
a generalization of the pairs-merging idea introduced in the
preceding paragraph is applied to a non-binary setting. On
a related note, the construction of polar codes was recently
proven to be polynomial in the blocklength [15], for an
arbitrary but fixed input alphabet size. The result in [16] is
relevant as well.

For a fixed input distribution, a degrading approximation
results in a channel with reduced mutual information between
input and output. This drop in mutual information should
ideally be kept small. The reason for this will be elaborated
on in Section III. In brief, the reason is that such a drop
necessarily translates into a drop in code rate, both in the polar
coding setting as well as in the LDPC setting. Thus, a non-
negligible drop in mutual information due to approximation
necessarily means a coding scheme which has rate non-
negligibly far from channel capacity.

In this paper, we define a specific “hard” channel. With
respect to this channel, we derive lower bounds on the drop in
mutual information as a function of the channel input alphabet
size, q, and the number of output letters of the approximating
channel, L. Simply put, the main result of this paper is that
for moderate values of q, a modest drop in mutual information
translates into the requirement that L be unreasonably large,
in the general case. The result seems interesting by itself:
there exists a channel which is hard to approximate by any
reasonably sized quantization of the output. The implication
for polar codes is: if we were to construct a polar code for
transmission over this “hard” channel, and were to go about it
by the above discussed method of approximating intermediate
channels by degraded channels, we would inevitably construct
a code with rate significantly lower than the capacity of
the channel, if q is moderate and L is not allowed to be
prohibitively large.

It seems to be common knowledge that constructing capac-
ity achieving LDPC or polar codes for channels with moderate
input alphabet sizes is generally hard. To quote, for example,
[17]:

Unlike binary LDPC codes, the problem of finding
an efficient algorithm for computing density evolu-
tion for nonbinary LDPC codes remains open. This
is a result of the fact that the messages transferred in
nonbinary belief-propagation are multidimensional
vectors rather than scalar values. Just storing the
density of a non-scalar random variable requires an
amount of memory that is exponential in the alpha-
bet size. Nevertheless, we show that approximation
using surrogates is very much possible.

To recap, this paper is an attempt to vindicate and quantify
this hardness. We will do so by analyzing a specific problem
instance — a specific underlying channel.

The structure of this paper is as follows. Section II intro-
duces the main result of the paper, after stating the needed
notation. Section III explains the implications of the result
to the hardness of constructing polar codes and LPDC codes.
Section IV contains a specialization of Hölder’s defect formula
to our setting. Section V defines and analyzes the previously
discussed channel. Section VI concludes the paper, and shortly
discusses a probabilistic method of constructing polar codes.

II. NOTATION AND PROBLEM STATEMENT

We denote a channel by W : X → Y . The probability of
receiving y ∈ Y given that x ∈ X was transmitted over W
is denoted W (y|x). All our channels will be defined over a
finite input alphabet X , with size q = |X |. Unless specifically
stated otherwise, all channels will have a finite output alphabet,
denoted out(W ) = Y . Thus, the channel output alphabet size
is denoted |out(W )|.

We will eventually deal with a specific channel, which
turns out to be symmetric (as defined in [18, page 94]). In
addition, the input distribution we will ultimately assign to
this channel turns out to be uniform. However, we would
like to be as general as possible wherever appropriate. Thus,
unless specifically stated otherwise, we will not assume that a
generic channel W is symmetric. Each channel will typically
have a corresponding input distribution, denoted PX = P

(W )
X .

Note that PX need not necessarily be uniform and need not
necessarily be the input distribution achieving the capacity of
W . We denote the random variables corresponding to the input
and output of W by X = X(W ) and Y = Y (W ), respectively.
The distribution of Y is denoted PY = P

(W )
Y . That is, for

y ∈ Y ,
PY (y) =

∑
x∈X

PX(x)W (y|x) .

The mutual information between X and Y is denoted as

I(W ) = I(X;Y ) ,

and is henceforth measured in nats. That is, all logarithms
henceforth are natural. We stress that, in general, I(W ) does
not equal the capacity of W .

We say that a channel Q : X → Z is (stochastically)
degraded with respect to W : X → Y if there exists a channel
Φ: Y → Z such that the concatenation of Φ to W yields Q.
Namely, for all x ∈ X and z ∈ Z ,

Q(z|x) =
∑
y∈Y

W (y|x)Φ(z|y) . (1)

We denote Q being degraded with respect to W as Q ≺W .
For input alphabet size q = |X | and specified output

alphabet size L, define the degrading cost as

DC(q, L) , sup
W,PX

min
Q : Q≺W,
|out(Q)|≤L

(I(W )− I(Q)) . (2)

Namely, both W and Q range over channels with input
alphabet X such that |X | = q; both channels share the same
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input distribution PX , which we optimize over; the channel Q
is degraded with respect to W ; both channels have finite output
alphabets and the size of the output alphabet of Q is at most
L; we calculate the drop in mutual information incurred by
degrading W to Q, for the “hardest” channel W , the “hardest”
corresponding input distribution PX , and the corresponding
best approximation Q.

Note that the above explanation of (2) is a bit off, since the
outer qualifier is “sup”, not “max”. Namely, we might need
to consider a sequence of channels W and input distributions
PX . Note however that the inner qualifier is a “min”, and not
an “inf”. This is justified by the following claim, which is
taken from [11, Lemma 1].

Claim 1: Let W : X → Y and PX be given. Let L ≥ 1 be
a specified integer for which |Y| ≥ L. Then,

inf
Q : Q≺W,
|out(Q)|≤L

(I(W )− I(Q))

is attained by a channel Q : X → Z for which it holds that
|out(Q)| = L and

Q(z|x) =
∑
y∈Y

W (y|x)Φ(z|y) , Φ(z|y) ∈ {0, 1} ,∑
z∈Z

Φ(z|y) = 1 .

Namely, Q is gotten from W by defining a partition (Ai)
L
i=1

of Y and mapping with probability 1 all symbols in Ai to a
single symbol zi ∈ Z , where Z = {zi}Li=1.

In [12], an upper bound on DC(q, L) is derived. Specifically,

DC(q, L) ≤ 2q ·
(

1

L

)1/q

.

The above has been recently sharpened [13, Lemma 8] to

DC(q, L) ≤ 2 · q1+ 2
q−1 ·

(
1

L

)1/(q−1)

.

These bounds are constructive and stem from a specific
quantizing algorithm. Specifically, the algorithm is given as
input the channel W , the corresponding input distribution PX ,
and an upper bound on the output alphabet size, L. Note that
for a fixed input alphabet size q and a target difference ε
such that DC(q, L) ≤ ε, the above implies that we take L
proportional to (1/ε)q−1. That is, for moderate values of q,
the required output alphabet size grows very rapidly in 1/ε.
Because of this, [12] explicitly states that the algorithm can
be considered practical only for small values of q.

We now quote our main result: a lower bound on DC(q, L).
Let σq−1 be the constant for which the volume of a ball in
Rq−1 of radius r is σq−1r

q−1. Namely,

σq−1 =
π
q−1
2

Γ( q−1
2 + 1)

,

where Γ is the Gamma function. That is, for an integer n ≥ 1,

Γ(n) = (n− 1)! , Γ

(
n+

1

2

)
=

(2n)!

4nn!

√
π .

Theorem 2: Let q and L be specified. Then,

DC(q, L) ≥

q − 1

2(q + 1)
·
(

1

σq−1 · (q − 1)!

) 2
q−1

·
(

1

L

) 2
q−1

. (3)

The above bound is attained in the limit for a sequence
of symmetric channels, each having a corresponding input
distribution which is uniform.

The consequences of this theorem in the context of code
construction will be elaborated on in the next section. How-
ever, one immediate consequence is a vindication of sorts
for the algorithm presented in [12]. That is, for q fixed, we
deduce from the theorem that the optimal degrading algorithm
must take the output alphabet size L at least proportional
to (1/ε)(q−1)/2, where ε is the designed drop in mutual
information. That is, the adverse effect of L growing rapidly
with 1/ε is an inherent property of the problem, and is not
the consequence of a poor implementation. For a numerical
example, take q = 16 and ε = 10−5. The theorem states
that the optimal degrading algorithm must allow for a target
output alphabet size L ≈ 1023. This number is, for all intents
and purposes, intractable.

We note that the term multiplying (1/L)2/(q−1) in (3) can
be simplified by Stirling’s approximation. The result is that

DC(q, L) ≥ (1−O(1/q)) ·
(

e

4π(q + 1)

)
·
(

1

L

) 2
q−1

.

Note that the RHS of the above is eventually decreasing in
q, for L fixed. However, it must be the case that DC(q, L)
is increasing in q (to see this, note that the input distribution
can give a probability of 0 to some input symbols). Thus, we
conclude that our bound is not tight.

III. IMPLICATIONS FOR CODE CONSTRUCTION

We now explain the relevance of our result to the construc-
tion of both polar codes and LDPC codes. In both cases, a
“hard” underlying channel is used, with a corresponding input
distribution that is uniform. Let us explain: for q and L fixed,
and for a uniform input distribution, we say that a channel is
hard if the drop in mutual information incurred by degrading it
to a channel with at most L output letters is, say, at least half of
the RHS of (3). Theorem 2 assures us that such hard channels
exist. Put another way, the crucial point we will make use of
is that for a hard channel, the drop in mutual information is
at least proportional to (1/L)2/(q−1).

A. Polar codes

As explained in the introduction, the current methods of
constructing polar codes for symmetric channels involve ap-
proximating the intermediate channels by channels with a
manageable output alphabet size. Specifically, the underlying
channel — the channel over which the codeword is transmitted
— is approximated by degradation before any polarization
operation is applied. Now, for q fixed and L a parameter,
consider an underlying hard channel, as defined above. Denote
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the underlying channel as W , and let the result of the initial
degrading approximation be denoted by Q.

The key point to note is that the construction algorithm
cannot distinguish between W and Q. That is, consider two
runs of the construction algorithm, one in which the underlying
channel is W and another in which the underlying channel
is Q. In the first case, the initial degradation produces Q
from W . In the second case, the initial degradation simply
returns Q, since the output alphabet size is at most L, and
thus no reduction of output alphabet is needed. Thus, the rate
of the code constructed cannot be greater than the symmetric
capacity of Q, which is at most I(W )− ε. We can of course
make ε arbitrarily small. However, this would necessitate an L
at least proportional to (1/ε)(q−1)/2. For rather modest values
of q and ε, this is intractable.

B. LDPC codes

The standard way of designing an LDPC code for a spec-
ified underlying channel is by applying the density evolution
algorithm [7, Section 4.4]. To simplify to our needs, density
evolution performs a series of channel transformations on
the underlying channel, which are a function of the degree
distribution of the code ensemble considered. Exactly as in
the polar coding setting, these transformations increase the
output alphabet size to intractable sizes. Thus, in practice,
the channels are approximated. If we assume that the ap-
proximation is degrading — and it typically is — the rest of
the argument is now essentially a repetition of the argument
above. In brief, consider an LDPC code designed for a hard
channel W . After the first degrading operation, a channel Q
is gotten. The result produced by the algorithm when W is
the underlying channel must equal the result produced when
Q is the underlying channel. Thus, an ensemble with rate
above that of the symmetric capacity of Q will necessarily
be reported as “bad” with respect to both W and Q. Reducing
the mutual information between W and Q is intractably costly
for moderate parameter choices.

IV. PRELIMINARY LEMMAS

As a consequence of the data processing inequality, if Q is
degraded with respect to W , then I(W ) − I(Q) ≥ 0. In this
section, we derive a tighter lower bound on the difference. To
that end, let us first define η(p) as

η(p) = −p · ln p , 0 ≤ p ≤ 1 ,

where η(0) = 0. Next, for a probability vector p = (px)x∈X ,
define

h(p) =
∑
x∈X
−px · ln px =

∑
x∈X

η(px) .

For A = {y1, y2, . . . , yt} ⊆ Y , define the quantity ∆(A) as
the decrease in mutual information resulting from merging all
symbols in A into a single symbol in Q. Namely, define

∆(A) , π

h
 t∑
j=1

θjp
(j)

−
 t∑
j=1

θjh
[
p(j)

] , (4)

where
π =

∑
y∈A

PY (y) , θj = PY (yj)/π , (5)

and
p(j) = (P (X = x|Y = yj))x∈X . (6)

The following claim is easily derived.
Claim 3: Let W , Q, PX , L, and (Ai)

L
i=1 be as in Claim 1.

Then,

I(W )− I(Q) =

L∑
i=1

∆(Ai) . (7)

Although the drop in mutual information is easily described,
we were not able to analyze and manipulate it directly. We
now aim for a bound which is more amenable to analysis.
As mentioned, by the concavity of h and Jensen’s inequality,
we deduce that ∆(Ai) ≥ 0. Namely, data processing reduces
mutual information. We will shortly make use of the fact that
h is strongly concave in order to derive a sharper lower bound.
To that end, we now state Hölder’s defect formula [19] (see
[20, Page 94] for an accessible reference).

As is customary, we will phrase Hölder’s defect formula
for ∪-convex functions, although we will later apply it to
h which is ∩-concave. We remind the reader that for twice
differentiable ∪-convex functions, f : D → R, D ⊆ Rn, the
Hessian of f , denoted

∇2f(α) =

(
∂2f(α)

∂αi∂αj

)
i,j

,

is positive semidefinite on the interior of D [21, page 71]. We
denote the smallest eigenvalue of ∇2f(α) by λmin(∇2f(α)).

Lemma 4: Let f(α) : D → R be a twice differentiable
convex function defined over a convex domain D ⊆ Rn. Let
m ≥ 0 be such that for all α in the interior of D,

m ≤ λmin(∇2f(α))

Fix (αj)
t
j=1 ∈ D and let (θj)

t
j=1 be non-negative coefficients

summing to 1. Denote

α =

t∑
j=1

θjαj

and

δ2 =

t∑
j=1

θj ‖αj − α‖22 =
1

2

t∑
j=1

t∑
k=1

θjθk ‖αj − αk‖22

Then,
t∑

j=1

θjf [αj ]− f [
∑
j

θjαj ] ≥
1

2
mδ2 .

Proof: Let Λ be a diagonal matrix having all entries equal
to m. By definition of m, we have that the function g(α) =
f(α) − 1

2α
TΛα has a positive semidefinite Hessian for all

α ∈ D. Thus, by Jensen’s inequality,∑
i

θig[αi]− g[
∑
i

θiαi] ≥ 0 .

Replacing g(α) in the above expression by f(α)− m
2 α

Tα and
rearranging yields the required result.
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We now apply Hölder’s defect formula in order to bound
∆(A). For A = {y1, y2, . . . , yt} ⊆ Y , define

∆̃(A) ,
π

2

t∑
j=1

θj

∥∥∥p(j) − p̄
∥∥∥2

2

=
π

4

t∑
j=1

t∑
k=1

θjθk

∥∥∥p(j) − p(k)
∥∥∥2

2
, (8)

where π and θj are as in (5), p(j) is as defined in (6), and

p̄ =

t∑
j=1

θjp
(j) .

The following is a simple corollary of Lemma 4
Corollary 5: Let W , Q, PX , L, and (Ai)

L
i=1 be as in

Claim 1. Then, for all 1 ≤ i ≤ L,

∆(Ai) ≥ ∆̃(Ai) . (9)

Thus,

I(W )− I(Q) ≥
L∑
i=1

∆̃(Ai) . (10)

Proof: The second inequality follows from the first
inequality and (7). We now prove the first inequality. Let
D = [0, 1]n, the set of vectors of length n having each entry
between 0 and 1. Note that h is indeed twice differentiable
on D. Since the second derivative of η is η′′(p) = −1/p, we
conclude λmin(−h(p)) ≥ 1 for all p in the interior (0, 1)n.
That is, we take m = 1 in Lemma 4. Since h is continuous
on D, our result follows by Lemma 4 and standard limiting
arguments.

V. BOUNDING THE DEGRADING COST

We now turn to bounding the degrading cost. To do this, we
define a channel W for which we will prove a lower bound
on the cost of degrading.

A. The channel W

For a specified integer M ≥ 1, we now define the channel
W = WM , where W : X → Y . The input alphabet is X =
{1, 2, . . . , q}, of size |X | = q. The output alphabet consists of
vectors of length q with integer entries, defined as follows:

Y =
{
〈j1, j2, . . . , jq〉 :

j1, j2, . . . , jq ≥ 0 ,

q∑
x=1

jx = M
}
. (11)

The channel transition probabilities are given by

W(〈j1, j2, . . . , jq〉|x) =
q · jx

M
(
M+q−1
q−1

) .
Lemma 6: The above defined W is a valid channel with

output alphabet size

|out(W)| =
(
M + q − 1

q − 1

)
. (12)

Proof: The binomial expression for the output alphabet
size follows by noting that we are essentially dealing with
an instance of “combinations with repetitions” [22, Page 15].
Obviously, the probabilities are non-negative. It remains to
show that for all x ∈ X ,∑

〈j1,j2,...,jq〉∈Y

q · jx
M
(
M+q−1
q−1

) = 1 .

Since the above is independent of x, we can equivalently show
that ∑

〈j1,j2,...,jq〉∈Y

q · (j1 + j2 + · · ·+ jq)

M
(
M+q−1
q−1

) = q .

By the definition of Y in (11), the numerator above equals
q ·M . Since we have already proved (12), the result follows.

Recall the definition of symmetry in [18, page 94]: Let W :
X → Y be a channel. Define the probability matrix associated
with W as a matrix with rows indexed by X and columns by
Y such that entry (x, y) ∈ X ×Y equals W (y|x). The channel
W is symmetric if the output alphabet can be partitioned into
sets, and the following holds: for each set, the corresponding
submatrix is such that every row is a permutation of the first
row and every column is a permutation of the first column.

Lemma 7: The above defined W is a symmetric channel.
Proof: Define the partition so that two output letters,

〈j1, j2, . . . , jq〉 and 〈j′1, j′2, . . . , j′q〉, are in the same set if there
exists a permutation π : X → X such that jx = j′π(x), for all
x ∈ X .

Since W is symmetric, it follows from [18, Theorem 4.5.2]
that the capacity achieving distribution is the uniform distri-
bution. Thus, we take the corresponding input distribution as
uniform. Namely, for all x ∈ X ,

P (X = x) =
1

q
.

As a result, all output letters are equally likely (the proof is
similar to that of Lemma 6).

Denote the vector of a posteriori probabilities corresponding
to 〈j1, j2, . . . , jq〉 as

p(j1, j2, . . . , jq) = ( P (X = x|Y = 〈j1, j2, . . . , jq〉) )qx=1 .

A short calculation gives

p(j1, j2, . . . , jq) =

(
j1
M
,
j2
M
, . . . ,

jq
M

)
. (13)

In light of the above, let us define the shorthand

〈j1, j2, . . . , jq〉 , (j1/M, j2/M, . . . , jq/M) .

With this shorthand in place, the label of each output letter
〈j1, j2, . . . , jq〉 ∈ Y is the corresponding a posteriori probabil-
ity vector p(j1, j2, . . . , jq). Thus, we gain a simple expression
for ∆̃(A). Namely, for A ⊆ Y ,

∆̃(A) =
1

2
(
M+q−1
q−1

) ∑
p∈A
‖p− p̄‖22 , p̄ =

∑
p∈A

1

|A|
p .

We remark in passing that as M → ∞, W “converges”
to the channel Wq : X → [0, 1]q which we now define.
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Independently of the input, the channel first picks a vector
ϕ = (ϕ1, ϕ2, . . . , ϕq) according to the Dirichlet distribution
D(1, 1, . . . , 1). That is, (ϕ1, ϕ2, . . . , ϕq) is chosen uniformly
from all possible probability vectors of length q. Then, still
independently of the input, an index 1 ≤ i ≤ q is picked
according to this probability vector. That is, i is picked with
probability ϕi. For channel input x, we now simply swap entry
i and entry x in the vector (ϕ1, ϕ2, . . . , ϕq), or do nothing if
i equals x. The resulting vector, which we denote ϕ̂, is the
output of the channel. We now show that all output vectors
are equally likely, and the posterior probability of x give ϕ̂ is
simply ϕ̂x.

Recall that the probability density function of the pre-swap
vector is constant, and denote it by g. Nevertheless, to aid
in the explanation, let us abuse notation and also denote the
probability density function of ϕ by the (constant) function
g(ϕ) = g. Next, denote by f(ϕ̂|x) the conditional probability
density function of the output ϕ̂, given that the input was x.
By definition,

f(ϕ̂|x) =

q∑
i=1

g(σi,x[ϕ̂]) · ϕ̂x = q · g · ϕ̂x ,

where σi,x[ϕ] is the vector gotten by swapping entries i and
x of ϕ̂. We now show that for a uniform input distribution, all
output letters are equally likely. Indeed, the probability density
function of an output vector ϕ̂ equals

n∑
x=1

p(x)f(ϕ̂|x) =

n∑
x=1

1

q
· q · g · ϕ̂x = g

n∑
x=1

ϕ̂x = g ,

a constant. The last equality follows since the entries of the
pre-swapped vector ϕ sum to 1, and thus this is also the case
for ϕ̂. Next, we derive the posterior probability of x given ϕ̂.
By Bayes’ theorem,

p(x|ϕ̂) =
p(x)f(ϕ̂|x)∑n
i=1 p(i)f(ϕ̂|i)

=

1
q · q · g · ϕ̂x∑n
i=1

1
q · q · g · ϕ̂i

=
ϕ̂x∑n
i=1 ϕ̂i

= ϕ̂x ,

where we have again used the fact that the entries of ϕ′ sum
to 1.

Note that instead of swapping entries i and x to get from
ϕ to ϕ̂, we could have instead cyclically rotated ϕ such that
entry i is now entry x. Apart from defining σi,x as the inverse
rotation, the above derivations are valid for this version as
well.

B. Optimizing A′

Our aim is to find a lower bound on ∆̃(A), where A ⊆ Y
is constrained to have a size |A| = t. Recalling (13), note that
all output letters p = (px)qx=1 ∈ Y must satisfy the following
three properties.

1) All entries px are of the form jx/M , where jx is an
integer.

2) All entries px sum to 1.
3) All entries px are non-negative.

Since all entries must sum to 1 by property 2, entry pq is
redundant. Thus, for a given p ∈ Y , denote by p′ the first
q−1 coordinates of p. Let A′ be the set one gets by applying
this puncturing operation to each element of A. Denote

∆̃(A′) ,
1

2
(
M+q−1
q−1

) ∑
p′∈A′

‖p′ − p̄′‖22 , (14)

One easily shows that

∆̃(A′) ≤ ∆̃(A) , (15)

thus a lower bound on ∆̃(A′) is also a lower bound on ∆̃(A).
In order to find a lower bound on ∆̃(A′) we relax constraint

3 above. Namely, a set A′ with elements p′ will henceforth
mean a set for which each element p′ = (px)q−1

x=1 has entries
of the form px = j/M , and each such entry is not required to
be non-negative. Our revised aim is to find a lower bound
on ∆̃(A′) where A′ holds elements as just defined and is
constrained to have size t. The simplification enables us to
give a characterization of the optimal A′. Informally, it is a
ball, up to irregularities on the boundary.

Lemma 8: Let t > 0 be a given integer. Let A′ be the set
of size |A′| = t for which ∆̃(A′) is minimized. Denote by p̄′

the mean of all elements of A′. Then, A′ has a critical radius
r. Namely, all p′ for which ‖p′ − p̄′‖22 < r2 are in A′; all p′

for which ‖p′ − p̄′‖22 > r2 are not in A′; there exists p′ ∈ A′
for which ‖p′ − p̄′‖22 = r2.

Proof: We start by considering a general A′. Suppose
p′(1) ∈ A′ is such that r2 = ‖p′(1)− p̄′‖22. Next, suppose
that there is a p′(2) 6∈ A′ such that ‖p′(2)− p̄′‖22 < r2. Then,
for

B′ = A′ ∪ {p′(2)} \ {p′(1)} , ∆̃(B′) < ∆̃(A′) .

To see this, first note that∑
p′∈B′

‖p′ − p̄′‖22 <
∑

p′∈A′
‖p′ − p̄′‖22 . (16)

Next, note that the RHS of (16) is ∆̃(A′), but the LHS is not
∆̃(B′). Namely, p̄′ is the mean of the vectors in A′ but is not
the mean of the vectors in B′. However,

∑
p′∈B′ ‖p′ − u′‖22

is minimized for u′ equal to the mean of the vectors in B′ (to
see this, differentiate the sum with respect to every coordinate
of u′). Thus, the LHS of (16) is at least ∆̃(B′) while the RHS
equals ∆̃(A′).

The operation of transforming A′ into B′ as above can be
applied repeatedly, and must terminate after a finite number
of steps. To see this, note that the sum

∑
p′∈A′ ‖p′ − p̄′‖22 is

constantly decreasing, and so is upper bounded by the initial
sum. Therefore, one can bound the maximum distance between
any two points in A′. Since the sum is invariant to translations,
we can always translate A′ such that its members are contained
in a suitably large hypercube (the translation will preserve the
1/M grid property). The number of ways to distribute |A′|
grid points inside the hypercube is finite. Since the sum is
strictly decreasing and non-negative, the number of steps is
finite. The ultimate termination implies a critical r as well as
the existence of an optimal A′.
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Recall that a ball of radius r in Rq−1 has volume σq−1r
q−1,

where σq−1 is a well known constant [23, Page 411]. Given
a set A′, we define the volume of A′ as

Vol(A′) ,
|A′|
Mq−1

.

For optimal A′ as above, the following lemma approximates
Vol(A′) by the volume of a corresponding ball.

Lemma 9: Let A′ be a set of size t for which ∆̃(A′) is
minimized. Let the critical radius be r and assume that r ≤ 3.
Then,

Vol(A′) = σq−1r
q−1 + εq−1(t) .

The error term εq−1(t) is bounded from both above and below
by functions of M alone (not of t) that are o(1) (decay to 0
as M →∞).

Proof: Let δ : Rq−1 → {0, 1} be the indicator function
of a ball with radius r centered at p̄′. That is,

δ(p′) =

{
1 ‖p′ − p̄′‖22 ≤ r2

0 otherwise .

Note that 1) δ is a bounded function and 2) the measure of
points for which δ is not continuous is zero (the boundary
of a ball has no volume). Thus, δ is Riemann integrable [24,
Theorem 14.5].

Consider the set Ψ′ which is [−r, r]q−1 shifted by p̄′. Since
Ψ′ contains the above ball, the integral of δ over Ψ′ must
equal σq−1r

q−1. We now show a specific Riemann sum [24,
Definition 14.2] which must converge to this integral. Consider
a partition of Ψ′ into cubes of side length 1/M , where each
cube center is of the form (j1/M, j2/M, . . . , jq−1/M) and
the jx are integers (the fact that cubes at the edge of Ψ′ are
of volume less than 1/Mq−1 is immaterial). Define [p′ ∈ A′]
as 1 if the condition p′ ∈ A′ holds and 0 otherwise. We claim
that the following is a Riemann sum of δ over Ψ′ with respect
to the above partition.∑

p′=(j1/M,j2/M,...,jq−1/M)∈Ψ′

1

Mq−1
[p′ ∈ A′]

To see this, recall that A′ has critical radius r.
The absolute value of the difference between the above

sum and σq−1r
q−1 can be upper bounded by the number of

cubes that straddle the ball times their volume 1/Mq−1 (any
finer partition will only affect these cubes). Since r ≤ 3, this
quantity must go to zero as M grows, no matter how we let
r depend on M .

Lemma 10: Let A′ be a set of size t for which ∆̃(A′) is
minimized. Let the critical radius be r and assume that r ≤ 3.
Then,

∆̃(A′) =
(q − 1) · (q − 1)!

2(q + 1)
σq−1r

q+1 + εq−1(t) .

The error term εq−1(t) is bounded from both above and below
by functions of M alone (not of t) that are o(1) (decay to 0
as M →∞).

Proof: Let the ball indicator function δ and the bounding
set Ψ′ be as in the proof of Lemma 9. Consider the sum∑

p′=(j1/M,j2/M,...,jq−1/M)∈Ψ′

‖p′ − p̄′‖22 · [p′ ∈ A′]
Mq−1

. (17)

On the one hand, by (14), this sum is simply

2
(
M+q−1
q−1

)
Mq−1

∆̃(A′) . (18)

On the other hand, (17) is the Riemann sum corresponding to
the integral ∫

Ψ′
‖p′ − p̄′‖22 [p′ ∈ A′] dp′ ,

with respect to the same partition as was used in the proof of
Lemma 9. As before, the sum must converge to the integral,
and the convergence rate can be shown to be bounded by
expressions which are not a function of t.

All that remains is to calculate the integral. Denote by
ballq−1(r) ⊆ Rq−1 the ball centered at the origin with radius
r. After translating p̄′ to the origin, the integral becomes∫

ballq−1(r)

(
x2

1 + x2
2 + · · ·+ x2

q−1

)
dx1dx2 · · · dxq−1

=
σq−1 · (q − 1) · rq+1

q + 1
, (19)

where the RHS is derived as follows. After converting the
integral to generalized spherical coordinates

x1=r cos(θ1) ,

x2=r sin(θ1) cos(θ2) ,

...
xq−2=r sin(θ1) sin(θ2) · · · sin(θq−2) cos(θq−1) ,

xq−1=r sin(θ1) sin(θ2) · · · sin(θq−2) sin(θq−1) ,

we get an integrand that is r2 times the integrand we would
have gotten had the original integrand been 1 (this follows by
applying the identity sin2 θ+cos2 θ = 1 repeatedly). We know
that had that been the case, the integral would have equaled
σq−1r

q−1.
Since (19) must equal the limit of (18), and since the

fraction in (18) converges to 2/(q − 1)!, the claim follows.

As a corollary to the above three lemmas, we have the
following result. The important point to note is that the RHS
is convex in Vol(A′).

Corollary 11: Let t > 0 be a given integer. Let A′ be a set
of size t and assume that

max
p′∈A′

‖p′ − p̄′‖2 ≤ 2 . (20)

Then,

∆̃(A′) ≥ (q − 1) · (q − 1)!

2(q + 1) · (σq−1)
2
q−1

·Vol(A′)
q+1
q−1 + o(1) , (21)

where the o(1) is a function of M alone and goes to 0 as
M →∞.

Proof: Let B′ be the set of size t for which ∆̃(B′) is
minimized. Thus, Vol(A′) = Vol(B′) while ∆̃(B′) ≤ ∆̃(A′).
We conclude that (21) will follow from Lemmas 9 and 10, if
we manage to prove that the critical radius of B′ is at most
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3. We do so next, with the help of (20). We will also assume
w.l.o.g. that

M ≥
√
q − 1 . (22)

Denote by α = p̄′ and β the centers of A′ and B′,
respectively. Since Vol and ∆̃ are invariant to the translation
of the set, we assume w.l.o.g. that α and β are equal, up to a
difference of at most 1/M in each coordinate. Thus,

‖α− β‖22 ≤ (q − 1)/M2 . (23)

Assume to the contrary that the critical radius of B′ is greater
than 3. We will show that A′ is strictly contained in B′, a
contradiction, since both contain exactly t elements.

First, let us show that A′ and B′ are distinct, by showing
the existence of a p′ such that p′ ∈ B′ but p′ 6∈ A′. Indeed,
since the critical radius of B′ is greater than 3, there exists a
p′ ∈ B′ such that

‖p′ − β‖2 > 3 . (24)

By the triangle inequality,

‖p′ − β‖2 ≤ ‖p
′ − α‖2 + ‖α− β‖2 . (25)

Thus,

‖p′ − α‖2 ≥ ‖p
′ − β‖2 − ‖α− β‖2 > 3−

√
q − 1

M
≥ 2 ,

where the first inequality is a rearrangement of the triangle
inequality (25); the second inequality is a consequence of (23)
and (24); the third inequality is the result of our assumption
on M in (22). We conclude that ‖p′ − α‖2 > 2, and from
(20) we deduce that p′ 6∈ A′.

Let us now show that A′ is contained in B′. Indeed, let
p′ ∈ A′, and recall that α = p̄′. Thus, by combining the
triangle inequality (25) with (20) and (23) we have that

‖p′ − β‖2 ≤ 2 +

√
q − 1

M
≤ 3 ,

where the second inequality follows from (22). We deduce
that p′ ∈ B′, since the critical radius of B′ is greater than 3.
Thus, A′ ⊆ B′.

C. Bounding DC(q, L)

We are now in a position to prove Theorem 2. Recall that
Ai is the set of output letters in Y which get mapped to the
letter zi ∈ Z . Also, recall that A′i is simply Ai with the last
entry dropped from each vector.

Proof of Theorem 2: By combining (2), (10), (15), and
(21), we have that as long as condition (20) holds for all A′i,
1 ≤ i ≤ L, the degrading cost DC(q, L) is at least

(q − 1) · (q − 1)!

2(q + 1) · (σq−1)
2
q−1

L∑
i=1

Vol(A′i)
q+1
q−1 + o(1) . (26)

Recalling that the elements of A are probability vectors, we
deduce that condition (20) must indeed hold. Indeed,

‖p′ − p̄′‖2 ≤ ‖p
′ − p̄′‖1 ≤ ‖p

′‖1 + ‖p̄′‖1 ≤ 2 .

The first inequality is a specialization of a standard inequality
between Lp norms [25, Theorem 19, page 28]. The second in-
equality is the triangle inequality. The third inequality follows
from p′ and p̄′ being truncated probability vectors.

Next, recall that Vol(A′i) = Vol(Ai), and thus

L∑
i=1

Vol(A′i) =
|out(W)|
Mq−1

=

(
M+q−1
q−1

)
Mq−1

. (27)

Note that the RHS converges to 1/(q − 1)! as M → ∞. By
convexity, we have that if we are constrained by (27), then the
sum in (26) is lower bounded by setting all Vol(A′i) equal to
the RHS of (27) divided by L. Thus, after taking M → ∞,
we get (3).

VI. CONCLUSIONS

In this paper, we have shown that there is an inherent loss in
capacity incurred when degrading a certain “hard” channel to
a new channel with a smaller output alphabet size. Thus, one
cannot hope for a general method of constructing polar codes
which employs degradation on the one hand, and constructs
a code with rate close to the capacity of the channel on
the other hand. To be more precise, the previous sentence
is true when the input alphabet of the channel is at least
moderately large. All of the above is due to the fact that the
output alphabet size needed to ensure a given gap from the
channel capacity grows exponentially in the input alphabet
size. The phenomenon in which the complexity of a problem
grows exponentially in the number of dimensions is know as
the “curse of dimensionality”, a term apparently coined by
Bellman [26, page ix] and commonly used in other fields.

One way of overcoming this difficulty is by employing
randomization. Namely, for a given synthesized channel, one
can repeatedly feed the channel input, produce a corresponding
output, and test whether an ML decoder would have produced
the correct input, given the output. This allows us to gauge the
probability of misdecoding of the channel. Indeed, this method
was essentially proposed in the seminal paper [1, Section IX].
That is, we have simplified the discussion in [1, Section IX]
by considering the probability of misdecoding and not the
Bhattacharyya parameter. For an early use with respect to
LDPC codes, see [27].

A typical way of carrying out the above probabilistic
construction would be the following. We would like to test
whether a specified synthesized channel has probability of
misdecoding smaller than a prescribed parameter p. Since the
test is probabilistic, there is a probability of the test giving
a wrong answer: either returning “true” (a “good” channel)
when the correct answer is “false” (a “bad” channel), or the
other way around. Since the inclusion of a channel which is too
noisy results in a code with poor error correcting performance,
we are much more wary of the first type of error. Thus, we
would like this error to occur with probability not greater than
α > 0, a suitably small number. To this end, we set a threshold
τ = ρp, where 0 < ρ < 1, carry out N decoding trials, and
produce the answer “true” only if the number of decoding
failures was less than τ ·N . Larger values of ρ result in more
channels being included on the one hand, and a larger number
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of trials, N , on the other hand. If we set ρ = 1/2 and use the
bound [28, page 64, Equation (4.2)], the number of trials is
set to

N =

⌈
3 ln(1/α)

2p

⌉
. (28)

One may alternatively employ the more exact bound [28, page
64, Equation (4.1)], valid for all 0 < ρ < 1.

The biggest merit of the above method is that it is not
drastically affected by the input alphabet size q. That is,
the channel evaluation time only grows linearly in q. The
drawback is that, for α fixed, the number of trials scales
like 1/p. Thus, in contrast with the method in [9], one
cannot tractably construct codes with a guarantee (or even a
probabilistic guarantee) of decoding error roughly 2−

√
n. Such

codes exist by [29].
We remark in passing that the grim conclusion of the

preceding paragraph can be circumvented — at least in theory
— if one employs the following modification. For simplicity
of exposition, let us consider the binary input channel. Tracing
the proof of [29], we see that there are two phases considered.
In the first phase, m′ < m channel transformations are carried
out. The result is a set of 2m

′
channels, polarized in the sense

that most channels have a Bhattacharyya parameter which is
fairly close to 0 or fairly close to 1. For the remaining m−m′
steps, the proof essentially considers the evolution of the
Bhattacharyya parameter. Namely, a plus (minus) transform of
a channel with Bhattacharyya parameter Z results in a channel
with Bhattacharyya parameters equal to Z2 (at most 2Z−Z2).
These bounds suffice in order to show strong polarization.

To recap, if we knew the exact Bhattacharyya parameters
of the channels at stage m′, we could build a polar code with
very low probability of error. Although we do not have an
efficient method of calculating the Bhattacharyya parameter
exactly, we can in fact give a tight enough upper bound, with
high probability, using the method above. Specifically, a slight
modification of the method above allows us to obtain an upper
bound on the probability of error of an intermediate channel.
Since an upper bound on the probability of error implies
an upper bound on the Bhattacharyya parameter [7, Second
inequality in (4.65), page 202], we are essentially done.
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