
Bounds on the Rate of 2-D Bit-Stuffing Encoders∗

Ido Tal Ron M. Roth
Computer Science Department
Technion, Haifa 32000, Israel.

Email: idotal@ieee.org, ronny@cs.technion.ac.il

Abstract—A method for bounding the rate of bit-stuffing
encoders for 2-D constraints is presented. Instead of considering
the original encoder, we consider a related one which is quasi-
stationary. We use the quasi-stationary property in order to
formulate linear requirements that must hold on the probabilities
of the constrained arrays that are generated by the encoder.
These requirements are used as part of a linear program. The
minimum and maximum of the linear program bound the rate
of the encoder from below and from above, respectively.

A lower bound on the rate of an encoder is also a lower
bound on the capacity of the corresponding constraint. For some
constraints, our results lead to tighter lower bounds than what
was previously known.

Index Terms—Bit-stuffing encoders, Linear programming,
Runlength-limited constraints, Two-dimensional constraints,
Quasi-stationary distribution.

I. INTRODUCTION

Two-dimensional (2-D) constraints are formally defined in
[1]. Consider a 2-D constraint S defined over some finite
alphabet Σ. Informally, a bit-stuffing encoder for S operates
as follows. We encode information to an M ×N rectangular
array; namely, we produce an array a ∈ S ∩ ΣM×N . We
first initialize the “boundaries” of the array (formally defined
later) according to some fixed probability distribution. Then,
we write to the “interior” of the array in raster fashion: row-
by-row. The symbol currently written is the result of a coin
toss. The probability distribution of the coin is a function
of neighboring symbols, which have already been written.
However, the “coins” used are in fact (invertible) probability
transformers, the input of which is the information we wish
to encode. Thus, information can be encoded, and decoded.

A bit-stuffing encoder is “variable-rate”. The bit-stuffing
technique was initially devised for encoding one-dimensional
(1-D) constraints [2]. In [3] and [4], bit-stuffing encoders for
specific 2-D constraints were presented and analyzed. In [5],
a slightly different definition of bit-stuffing was used to give
lower bounds on the capacity of specific 2-D constraints.

In this work, we derive upper and lower bounds on the rate
of a general bit-stuffing encoder. A lower bound on the rate

∗ This work was supported by grant No. 2002197 from the United-States–
Israel Binational Science Foundation (BSF), Jerusalem, Israel. The results of
this work were presented at the IEEE International Symposium on Information
Theory, Toronto, Ontario, Canada, July 2008.
I. Tal is with the Center for Magnetic Recording Research (CMRR), University
of California at San Diego, La Jolla, CA 92093-0401, USA. This work was
done while he was with the Computer Science Department, Technion, Haifa
32000, Israel (email: idotal@ieee.org).
R. M. Roth is with the Computer Science Department, Technion, Haifa 32000,
Israel (email: ronny@cs.technion.ac.il).

1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

Fig. 1. Binary array satisfying the non-attacking-kings constraint. If we flip
any one (or more) of the highlighted “0” bits to “1”, then the resulting array
will not satisfy the non-attacking-kings constraint.

of an encoder is also a lower bound on the capacity of the
corresponding constraint:

cap(S) = lim
M,N→∞

1
M ·N

· log2

∣∣S ∩ ΣM×N
∣∣ .

For some constraints, our results lead to tighter lower bounds
on capacity than what was previously known.

Fix some 2-D constraint S over an alphabet Σ. As a
running example, consider the non-attacking-kings constraint,
also called the square constraint, Ssq, defined over the binary
alphabet Σsq = {0, 1} (see Figure 1). A binary array satisfies
the non-attacking-kings constraint if each entry set to “1” has
all of its eight-neighbors set to “0”. Namely, two entries equal
to “1” may not appear consecutively along a row, column, or
diagonal.

The rest of this paper is organized as follows. In Sections
II and III, we define our notation and our model of a bit-
stuffing encoder, respectively. In Section IV, we define the
concept of quasi-stationarity. We also prove that, w.l.o.g., we
may assume that our encoder is quasi-stationary. In Section
V we take this a step further: we consider a relatively small
array with a corresponding probability distribution which is
(truly) stationary. The stationarity trait is modeled as part
of a linear program. The minimum (maximum) of the linear
program bounds the rate of our encoder from below (above).
Finally, section VI states a generic lower bound on capacity,
and contains examples where this bound improves on previous
results.

We note at this point that although this work deals with 2-D
constraints, our method can be easily generalized to higher
dimensions as well.

II. NOTATION

We first set up some notation.

Parallelogram and rectangle: For M,N > 0 and t ≥ 0,
denote

B
(t)
M,N = {(i, j) : 0 ≤ i < M , 0 ≤ t · i+ j < N} .

Also, for t = 0, denote

BM,N = B
(0)
M,N .

Configuration: Let a = (ai,j)(i,j)∈U be a 2-D configuration
over Σ. Namely, the index set satisfies U ⊆ Z2, and for all
(i, j) ∈ U we have that ai,j ∈ Σ.

Shifts: For integers α, β we denote the shifted index set as

σα,β(U) = {(i+ α, j + β) : (i, j) ∈ U} .

Also, by abuse of notation, let σα,β(a) be the shifted config-
uration (with index set σ(U)):

σα,β(a)i+α,j+β = ai,j .

Restriction of configuration: For an index set Ψ ⊆ U, denote
the restriction of a to Ψ by a[Ψ] = (a[Ψ]i,j)(i,j)∈Ψ. Namely,

a[Ψ]i,j = ai,j , where (i, j) ∈ Ψ .

Shift and restrict: Let τα,β(a,Ψ) be shorthand for

τα,β(a,Ψ) = (σ−α,−β(a))[Ψ] .

Namely, shift the configuration a such that index (α, β) is now
index (0, 0), and then restrict to Ψ.

Boundary: Denote by ∂(U,Ψ) the set of all the indexes
(α, β) ∈ U for which the “shift and restrict” operation is
invalid.

∂(U,Ψ) = {(α, β) ∈ U : σα,β(Ψ) 6⊆ U} .

The index set ∂(U,Ψ) is termed the “boundary”, and the
“interior” is

∂̄(U,Ψ) = U \ ∂(U,Ψ) .

When U = BM,N and Ψ is understood from the context, we
abbreviate

∂M,N = ∂(BM,N ,Ψ) , ∂̄M,N = ∂̄(BM,N ,Ψ) .

Figure 2 shows an example of such sets, where

Ψ = {(0,−2), (0,−1), (−1,−1), (−1, 0), (−1, 1)} . (1)

Restriction of constraint: Denote the restriction of S to U by

S[U] = {a : there exists a′ ∈ S such that a′[U] = a} .

If U = BM,N , then we abbreviate

SM,N = S[BM,N] .

Lexicographic ordering: We define a lexicographic ordering
≺ on Z2 as

(i′, j′) ≺ (i, j) ⇐⇒ (i′ < i) or (i′ = i and j′ < j) .

Also, we define the index set

Ti,j = {(i′, j′) : (i′, j′) ≺ (i, j)} . (2)

•

N

M

Ψ

BM,N

∂M,N

∂̄M,N

−1

0

1

2

3

4

−2 −1 0 1 2 3 4 5 6 7

Fig. 2. The index (0, 0) is represented by •. We take Ψ as in (1), and it is
represented by the diagonally striped cells. We set M = 5 and N = 8. The
index set BM,N is represented by the shaded part (both light and dark). The
boundary ∂M,N is represented by the lighter shaded part, while the interior
∂̄M,N is represented by the darker shaded part.

ϕ(0) =
0 0 0

0 0 • ϕ(1) =
0 0 0

1 0 •

Fig. 3. The two non-trivial configurations for µ in our running example,
where • designates coordinate (0, 0).

III. BIT STUFFER DEFINITIONS

In this section, we present the formal definition of bit-
stuffing encoders. A bit-stuffing encoder for S is defined
through a triple

E = (Ψ, µ, δ = (δM,N)M,N>0) .

The set
Ψ ⊆ T0,0 (3)

is termed the neighbor set. The conditional probability func-
tion µ,

µ(·|·) , µ : Σ× S[Ψ]→ [0, 1] ,

is a conditional probability distribution on Σ, given an element
of S[Ψ]. For M,N > 0, the boundary probability function

δM,N : S[∂M,N]→ [0, 1]

is a probability distribution on S[∂M,N]. From here onward,
we fix E .

For our running example, let the neighbor set Ψsq = Ψ be
as in (1), and define ϕ(0), ϕ(1) ∈ Ssq[Ψ] as

ϕ
(0)
0,−2=0 ϕ

(0)
0,−1=0 ϕ

(0)
−1,−1=0 ϕ

(0)
−1,0=0 ϕ

(0)
−1,1=0

ϕ
(1)
0,−2=1 ϕ

(1)
0,−1=0 ϕ

(1)
−1,−1=0 ϕ

(1)
−1,0=0 ϕ

(1)
−1,1=0

(see Figure 3). Also, take the conditional probability function
as

µsq(1|ϕ) = 1− µsq(0|ϕ) =

0.258132 ϕ = ϕ(0)

0.312231 ϕ = ϕ(1)

0 otherwise .
(4)

Thus, µsq(·|·) can be implemented using two coins (one for the
context ϕ(0) and one for ϕ(1)). For our running example, we
take δM,N as the function equal to 1 for the all zero boundary
(0)(i,j)∈∂M,N

, and 0 for all other members of Ssq[∂M,N].

Given integers M,N > 0, the bit-stuffing encoder E defines
a probability measure on the elements a = (ai,j)(i,j)∈BM,N

of
BM,N , in the following manner. As a first step, we set the
boundary a[∂M,N], according to the probability distribution
δM,N . Next, we write the contents of the interior of a in
raster fashion: row-by-row, from left to right. The probability
of writing w ∈ Σ in entry (i, j) ∈ ∂̄M,N is given by

Prob(ai,j = w) = µ(w|(τi,j(a,Ψ)) .

Specifically, note that when writing entry (i, j), we have by
(3) that τi,j(a) is a function of entries of a which have already
been written. A fundamental requirement for Ψ and µ is that
for every M , N , and δM,N , the support of the probability
measure thus defined is contained in SM,N .

Let
A(E ,M,N) = A = (Ai,j)(i,j)∈BM,N

be a random variable taking values on SM,N according to the
measure we have just defined. Namely,

Prob(A = a) = δM,N (a[∂M,N])·∏
(i,j)∈∂̄M,N

µ(ai,j |τi,j(a,Ψ)) . (5)

We now explain how E is used to actually encode infor-
mation. The “coin tosses” corresponding to the invocations
of µ are, in effect, a function of the information we wish to
encode. Specifically, the values of the tosses are the output
of distribution transformers on the input stream (the mapping
from the input stream to the sequence of coin tosses is one-to-
one) [4]. Thus, we may encode information, and also decode
it. So, we define the rate of our encoder as

R(E) , lim inf
M,N→∞

H(A[∂̄M,N]|A[∂M,N])
M ·N

,

where
A = A(E ,M,N) .

Note that since

lim inf
M,N→∞

∣∣∂̄M,N

∣∣
M ·N

= 1 ,

we also have that

R(E) = lim inf
M,N→∞

H(A(E ,M,N))
M ·N

.

IV. QUASI-STATIONARITY

This section is devoted to defining the concept of quasi-
stationarity [3, §6]. Note that the probability distribution
corresponding to the output induced by E need not, in general,
be stationary. However, as we show next, we can assume
w.l.o.g. that it is — in a sense — locally close to stationary.

Fix k > 0. Define the random variable

A(k)(E ,M,N) = A(k) = (A(k)
i,j)(i,j)∈BM,N

taking values on SM,N as follows. For w ∈ SM,N , we have

Prob(A(k)=w) =
1
k2

∑
0≤i,j<k

Prob(σ−i,−j(A′[BM,N])=w) ,

where
A′ = A(E ,M + k − 1, N + k − 1) .

Namely, given A′, we randomly and uniformly pick an M×N
sub-configuration of it, and shift accordingly. The usefulness
of A(k) is that it is “quasi-stationary”.

Lemma 1 ([3, Proposition 6.1]): Let E , M , N , and k be
given. Let U ⊆ BM,N be an index set, and let w ∈ S[U]
be given. Suppose that for given integers α, β we have that
σα,β(U) ⊆ BM,N . Denote A(k) = A(k)(E ,M,N). Then,∣∣∣Prob(A(k)[U] = w)− Prob(A(k)[σα,β(U)] = σα,β(w))

∣∣∣
≤ |α|+ |β|

k
.

Next, we show that A(k) is a random variable correspond-
ing to an encoder very similar to E . First, define δ(k) =
(δ(k)
M,N)M,N>0, where

δ
(k)
M,N : S[∂M,N]→ [0, 1]

(that is, δ(k)
M,N is a probability distribution on S[∂M,N]), and

for every d ∈ S[∂M,N],

δ
(k)
M,N (d) = Prob(A(k)(E ,M,N)[∂M,N] = d) .

Next, define the encoder E(k) as

E(k) = (Ψ, µ, δ(k)) . (6)

Lemma 2 ([3, Proposition 6.2]): The probability distribu-
tions of A(k)(E ,M,N) and A(E(k),M,N) are equal.

The next lemma essentially states that the normalized en-
tropies of A and A(k) are asymptotically equal (for M,N →
∞ and k fixed). The proof is straightforward.

Lemma 3: Fix an integer k > 0. Then,

R(E) = R(E(k)) .

It follows from Lemma 3 that we can obtain bounds on
R(E) by bounding instead the rate of the quasi-stationary
encoder E(k). And, indeed, quasi-stationarity will turn out to
be useful for this purpose.

V. LINEAR PROGRAM

In this section, we present lower and upper bounds on R(E).
The bounds will be expressed as values of corresponding linear
programs. In a nutshell, we will effectively assume that each
r × s sub-array has a corresponding distribution which is
stationary; this assumption will be translated into equations
in the linear programs. The lower (upper) bound will result
from the worst (best) such distribution.

For r, s > 0 and t ≥ 0, we say that the parallelogram B
(t)
r,s

is valid with respect to the neighbor set Ψ if the set{
(α, β) : (Ψ ∪ (0, 0)) ⊆ σα,β(B(t)

r,s)
}

(7)

is non-empty. Namely, some shift of the parallelogram in-
cludes the neighbor set Ψ and (0, 0). From here onward, we
fix r, s, and t so that B

(t)
r,s is valid. Also, we fix u and v,

where (u, v) is the largest element of (7), with respect to the
ordering ≺.

• •

Ψ

Λ

Γ
t = 1

(u, v) = (−1,−1)
t = 0

(u, v) = (−1,−2)

r = 4, s = 5

Fig. 4. The index sets Ψ, Λ, and Γ. The index sets are shown for r = 4,
s = 5, and for both t = 0 and t = 1. The index (0, 0) is represented by
•. We take Ψ as in (1), and it is represented by the diagonally striped cells.
The index set Λ is represented by the shaded part (both light and dark). The
boundary Γ is represented by the lighter shaded part. Note that Ψ ⊆ Γ ⊆ Λ.

Denote (see Figure 4)

Λ = σu,v(B(t)
r,s) , Γ = ∂(Λ,Ψ) .

For an as yet unspecified probability distribution over S[Γ]

π(z) , z ∈ S[Γ] ,

define the random variable Y taking values on S[Λ] as follows.
For y ∈ S[Λ],

Prob(Y = y) = π(y[Γ])
∏

(i,j)∈Λ\Γ

µ(yi,j |τi,j(y,Ψ)) (8)

(compare to (5)). Note that Prob(Y = y) is a linear function
of the various π(z)’s. Next, define

Λ′ = σu,v(B
(t)
r−1,s) , Λ′′ = σu,v(B

(t)
r,s−1) ,

and
Γ′ = ∂(Λ′,Ψ) , Γ′′ = ∂(Λ′′,Ψ) .

Consider the linear program in Figure 5. First, note that
it is indeed a linear program. Namely, recall that by (8), the
probability distribution of Y is a linear function of the π(z)’s.
Thus, both sides of (9) and (10) are also linear functions of
the π(z)’s. For example, the LHS of (9) equals∑

y∈S[Λ]:y[Γ′]=z′

π(y[Γ])
∏

(i,j)∈Λ\Γ

µ(yi,j |τi,j(y,Ψ)) .

Denote the value of the linear program when minimizing
by lp∗min = lp∗min(E), and when maximizing by lp∗max =
lp∗max(E). Since (5) and (8) are very similar, we may in-
tuitively say that E outputs Y . The optimization is over
the probability distribution of the boundary Y [Γ]. The linear
requirements (9) and (10) are added to force the distribution of
Y to be stationary. The objective function is the rate at point
(0, 0).

The following theorem is our main result.

Theorem 4: For the linear program in Figure 5, we have
that

lp∗min ≤ R(E) ≤ lp∗max .

In order to prove the theorem, we first state and prove a
lemma, on a slightly modified linear program.

Lemma 5: Fix k > 0, and replace (9) and (10) in Figure 5
by∣∣∣Prob(Y [Γ′] = z′)− Prob(Y [σ0,1(Γ′)] = σ0,1(z′))

∣∣∣ ≤ 1
k

and∣∣∣Prob(Y [Γ′′] = z′′)− Prob(Y [σ1,−t(Γ′′)] = σ1,−t(z′′))
∣∣∣

≤ t+ 1
k

,

respectively.
Denote the minimum and maximum of the resulting linear

program as lp(k)
min and lp(k)

max, respectively. Then,

lp(k)
min ≤ R(E) ≤ lp(k)

max .

Proof: Consider E(k) (as defined by (6)). For given M
and N , define the index sets

E = ∂(BM,N ,Λ) and I = ∂̄(BM,N ,Λ) ,

where the letters stand for (on the) “edge” and “inside”,
respectively. Obviously,

lim
M,N→∞

|I|
M ·N

= 1 . (11)

Denote A(k) = A(k)(E ,M,N). By (11) and Lemma 2,

R(E(k)) = lim inf
M,N→∞

H(A(k)[I]|A(k)[E])
|I|

.

Minimize (Maximize)

−
X

z∈S[Γ]

π(z)
X
w∈Σ

µ(w|z[Ψ]) log2 µ(w|z[Ψ])

over the variables (π(z) : z ∈ S[Γ]), subject to the following:X
z∈S[Γ]

π(z) = 1 .

For all z ∈ S[Γ],
π(z) ≥ 0 .

For all z′ ∈ S[Γ′],

Prob(Y [Γ′] = z′) = Prob(Y [σ0,1(Γ′)] = σ0,1(z′)) . (9)

For all z′′ ∈ S[Γ′′],

Prob(Y [Γ′′] = z′′) = Prob(Y [σ1,−t(Γ
′′)] = σ1,−t(z

′′)) . (10)

Fig. 5. Linear program. The minimum (maximum) value is denoted lp∗min
(lp∗max) and is a lower (upper) bound on R(E).

Notice that Ψ ⊆ Λ. Thus, I ⊆ ∂̄M,N , and we have

H(A(k)[I]|A(k)[E]) =
∑

(i,j)∈I

H(A(k)
i,j |A

(k)[Ti,j ∩ BM,N])

=
∑

(i,j)∈I

H(A(k)
i,j |τi,j(A

(k),Ψ)) ,

where Ti,j is as defined in (2) and the last equality follows
from (5).

We now prove the following claim: for all (i, j) ∈ I, we
have that

lp(k)
min ≤ H(A(k)

i,j |τi,j(A
(k),Ψ)) . (12)

To see this, fix some (i, j) ∈ I, and define for all z ∈ S[Γ],

p(k)(z) = Prob(τi,j(A(k),Γ) = z) .

Substituting π(z) = p(k)(z), the objective function in Figure 5
is equal to H(A(k)

i,j |τi,j(A(k),Ψ)). Also, notice that the proba-
bility distribution of Y is equal to that of τi,j(A(k),Λ). By the
fact that A(k) is quasi-stationary (and thus, so is every sub-
configuration of it), all the linear requirements in the modified
linear program are satisfied (i.e., the p(k)(z)’s form a feasible
solution). So, our claim (12) is proved.

We conclude that lp(k)
min ≤ R(E(k)). Thus, by Lemma 3,

lp(k)
min ≤ R(E) .

A similar proof yields R(E) ≤ lp(k)
max.

Proof of Theorem 4: First, note that the modified linear
program defined in Lemma 5 has at least one feasible solution,
p(k)(z), whenever M and N are large enough so that I is non-
empty.

For a given k, denote the minimizing variable values of the
modified linear program by π(k)(z), z ∈ S[Γ]. Think of these
variable values as a vector

π(k) = (π(k)(z))z∈S[Γ] .

By compactness, the series π(k), k = 1, 2, . . ., has a cluster
point, which we denote by π∗. Obviously, π∗ implies a
feasible solution for the linear program in Figure 5. More so,
we must also have that the value of the objective function for
this feasible solution is a lower bound on R(E). So,

lp∗min ≤ R(E) .

Similarly, we deduce that

R(E) ≤ lp∗max .

Remark: While the definition of the encoder E includes
(besides Ψ and µ) also the boundary distributions δ =
(δM,N)M,N>0, the bounds lp∗min and lp∗max do not depend
on δ.

Applying Theorem 4 to our running example, with r = 4,
s = 5, t = 1, gives

0.42430953 ≤ R(E) ≤ 0.42442765 .

TABLE I
BOUNDS ON THE RATES OF ENCODERS USING A SMALL NUMBER OF

COINS.

Constraint Coins lp∗min lp∗max [3]
(2,∞)-RLL 1 0.440722 0.444679 0.4267
(3,∞)-RLL 1 0.349086 0.386584 0.3402

n.i.b. 2 0.917730 0.919395 0.9127
(1,∞)-RLL 3 0.587776 0.587785 —

To the best of our knowledge, our running example is the high-
est rate bit-stuffing encoder known, given that we are allowed
to use at most two coins (i.e., two probability transformers).
For comparison, we have calculated by the method presented
in [6] that

cap(Ssq) ≤ 0.425078 .

Namely, with two coins we achieve a rate that is only 0.2%
less than capacity.

Table I contains our results for a number of constraints (the
full descriptions of the corresponding encoders are given in the
Appendix). We abbreviate the “no isolated bits” constraints as
“n.i.b.”. In the first three rows, we compare ourselves to the
results in [3] (Table 1 and Equation (12)). For the comparison
to be fair, we restrict ourselves to the neighbor sets Ψ used in
[3], and use the same number of coins.

VI. A LOWER BOUND ON CAPACITY

The following is a straightforward corollary of Theorem 4.
Corollary 6: For every bit-stuffing encoder E ,

lp∗min(E) ≤ cap(S) .

Thus, we can use the minimizing linear program of Figure 5
to bound cap(S) from below.

To obtain better lower bounds on cap(S), we can search for
good Ψ and µ. For instance, for the set Ψ = Ψsq in (1), the
function µsq in (4) was obtained by maximizing lp∗min over all
µ that form with Ψsq (and every δ) a bit-stuffing encoder for
Ssq. Better lower bounds can be obtained by looking at larger
sets Ψ (at the price of higher computational complexity).

Table II summarizes our results for certain constraints
(the Appendix contains the full descriptions of the encoder
corresponding to the first row). The last two columns contain
previously published lower bounds on the capacity of the
corresponding constraint. We have highlighted values of lp∗min

which are an improvement of these previously known results.
The bounds in the penultimate column are taken from [7] (to
appear as [8]), which was published recently. We note that
the method used in [8] is quite different than ours. As can be
seen, both [8] and our method are comparable. The bounds
in the last column are taken from [9], [5], [10], and [11],
respectively: they were the the best known when our method
was first published in [12] (at the same time as [7]). We note
that during the review process of this paper, the authors of
[9] extended their method [13], thereby improving their lower
bound for the (2,∞)-RLL constraint to 0.4453.

TABLE II
BOUNDS ON THE RATES OF CERTAIN BIT-STUFFING ENCODERS.

Constraint Coins lp∗min lp∗max [7] Others
(2,∞)-RLL 5 0.44420 0.4450 0.44417 0.4423
(3,∞)-RLL 2 0.35973 0.3690 0.36562 0.3641
(0, 2)-RLL 66 0.81549 0.8169 0.81600 0.7736

18 0.81501 0.8162
9 0.81073 0.8197

n.i.b. 56 0.92264 0.9238 0.92086 0.9156

ACKNOWLEDGMENT

The first author wishes to thank Roee Engelberg for very
stimulating discussions.

APPENDIX

Tables III–VI specify the encoders listed in Table I along
with the parameters r, s, and t used when computing the
bounds therein. Table VII provides the respective details for
the encoder in the first row of Table II. The top row in
Tables III–VII contains the number of coins in the encoder
and the values of r, s, and t. All subsequent rows in each
table are organized as follows: the left column contains the
specification of non-trivial ϕ(i), as was done in Figure 3,
and the right column is the value of µ(0|ϕ(i)) (of course,
µ(1|ϕ(i)) = 1 − µ(0|ϕ(i))). Note that we do not specify δ,
since the bounds do not depend on it. (The encoder in Table V
is the same as in [3], except for slight modifications of the
values of µ(0|ϕ(i)).)

TABLE III
ENCODER FOR THE (2,∞)-RLL CONSTRAINT.

Coins = 1 r = 6 s = 5 t = 0

ϕ(0) =
0

0

0 0 •
µ(0|ϕ(0)) = 0.712079

TABLE IV
ENCODER FOR THE (3,∞)-RLL CONSTRAINT.

Coins = 1 r = 5 s = 6 t = 0

ϕ(0) =

0

0

0

0 0 0 •
µ(0|ϕ(0)) = 0.767299

TABLE V
ENCODER FOR THE N.I.B. CONSTRAINT.

Coins = 2 r = 4 s = 4 t = 1
Defined as in [3], except for substituting

2
3
⇒ 0.65 1

2
⇒ 0.53

REFERENCES

[1] S. Halevy and R. M. Roth, “Parallel constrained coding with application
to two-dimensional constraints,” IEEE Trans. Inform. Theory, vol. 48,
pp. 1009–1020, 2002.

TABLE VI
ENCODER FOR THE (1,∞)-RLL CONSTRAINT.

Coins = 3 r = 4 s = 5 t = 2

ϕ(0) =
0 0 0

0 • µ(0|ϕ(0)) = 0.65975

ϕ(1) =
0 1 0

0 • µ(0|ϕ(1)) = 0.566761

ϕ(2) =
0 0 1

0 • µ(0|ϕ(2)) = 0.700057

TABLE VII
ADDITIONAL ENCODER FOR THE (2,∞)-RLL CONSTRAINT.

Coins = 5 r = 5 s = 5 t = 1

ϕ(0) =
0 0 0

0 0

0 0 •
µ(0|ϕ(0)) = 0.736453

ϕ(1) =
0 0 0

0 1

0 0 •
µ(0|ϕ(1)) = 0.681881

ϕ(2) =
0 0 1

0 0

0 0 •
µ(0|ϕ(2)) = 0.697553

ϕ(3) =
0 0 1

0 1

0 0 •
µ(0|ϕ(3)) = 0.611369

ϕ(4) =
0 1 0

0 0

0 0 •
µ(0|ϕ(4)) = 0.664354

[2] P. Bender and J. K. Wolf, “A universal algorithm for generating
optimal and nearly optimal run-length-limited, charge constrained binary
sequences,” in Proc. IEEE Int’l Symp. Inform. Theory (ISIT’1993), San
Antonio, Texas, 1993, p. 6.

[3] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. In-
form. Theory, vol. 50, pp. 824–838, 2004.

[4] R. M. Roth, P. H. Siegel, and J. K. Wolf, “Efficient coding schemes
for the Hard-Square model,” IEEE Trans. Inform. Theory, vol. 47, pp.
1166–1176, 2001.

[5] S. Forchhammer and T. V. Laursen, “Entropy of bit-stuffing-induced
measures for two-dimensional checkerboard constraints,” IEEE Trans.
Inform. Theory, vol. 53, pp. 1537–1546, 2007.

[6] N. Calkin and H. S. Wilf, “The number of independent sets in a grid
graph,” SIAM J. Discrete Math., vol. 11, pp. 54–60, 1997.

[7] A. Sharov and R. M. Roth, “Two-dimensional constrained coding based
on tiling,” in Proc. IEEE Int’l Symp. Inform. Theory (ISIT’2008),
Toronto, Ontario, 2008, pp. 1468–1472.

[8] ——, “Two-dimensional constrained coding based on tiling,” IEEE
Trans. Inform. Theory, to appear.

[9] E. Ordentlich and R. M. Roth, “Capacity lower bounds and approximate
enumerative coding for 2-D constraints,” in Proc. IEEE Int’l Symp.
Inform. Theory (ISIT’2007), Nice, France, 2007, pp. 1681–1685.

[10] J. J. Ashley and B. H. Marcus, “Two-dimensional low-pass filtering
codes,” IEEE Trans. Commmun., vol. 46, pp. 724–727, 1998.

[11] S. Forchhammer and T. V. Laursen, “A model for the two-dimensional
no isolated bits constraint,” in Proc. IEEE Int’l Symp. Inform. Theory
(ISIT’2006), Seattle, Washington, 2006, pp. 1189–1193.

[12] I. Tal and R. M. Roth, “Bounds on the rate of 2-D bit-stuffing encoders,”
in Proc. IEEE Int’l Symp. Inform. Theory (ISIT’2008), Toronto, Ontario,
Canada, 2008.

[13] E. Ordentlich and R. M. Roth, “Approximate enumerative coding for
2-D constraints through ratios of matrix products,” in Proc. IEEE Int’l
Symp. Inform. Theory (ISIT’2009), Seoul, Korea, 2009, pp. 1050–1054.

Biographies:
Ido Tal was born in Haifa, Israel, in 1975. He received

the B.Sc., M.Sc., and Ph.D. degrees in computer science
from Technion—Israel Institute of Technology, Haifa, Israel,
in 1998, 2003 and 2009, respectively.

He is a Postdoctoral Scholar at the Center for Magnetic
Recording Research (CMRR), University of California at San
Diego, La Jolla, CA, USA. His research interests include
constrained coding and error-control coding.

Ron M. Roth was born in Ramat Gan, Israel, in 1958. He
received the B.Sc. degree in computer engineering, the M.Sc.
in electrical engineering and the D.Sc. in computer science
from Technion—Israel Institute of Technology, Haifa, Israel,
in 1980, 1984 and 1988, respectively. Since 1988 he has been
with the Computer Science Department at Technion, where
he now holds the General Yaakov Dori Chair in Engineering.
During the academic years 1989–91 he was a Visiting Scientist
at IBM Research Division, Almaden Research Center, San
Jose, California, and during 1996–97 and 2004–05 he was
on sabbatical leave at Hewlett–Packard Laboratories, Palo
Alto, California. He is the author of the book Introduction
to Coding Theory, published by Cambridge University Press
in 2006. Dr. Roth was an associate editor for coding theory
in IEEE TRANSACTIONS ON INFORMATION THEORY from
1998 till 2001, and he is now serving as an associate editor in
SIAM Journal on Discrete Mathematics. His research interests
include coding theory, information theory, and their application
to the theory of complexity.

