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Abstract—A constant-rate encoder–decoder pair is presented
for a fairly large family of two-dimensional (2-D) constraints.
Encoding and decoding is done in a row-by-row manner, and is
sliding-block decodable.

Essentially, the 2-D constraint is turned into a set of indepen-
dent and relatively simple one-dimensional (1-D) constraints; this
is done by dividing the array into fixed-width vertical strips. Each
row in the strip is seen as a symbol, and a graph presentation
of the respective 1-D constraint is constructed. The maxentropic
stationary Markov chain on this graph is next considered: a
perturbed version of the corresponding probability distribution
on the edges of the graph is used in order to build an encoder
which operates in parallel on the strips. This perturbation is
found by means of a network flow, with upper and lower bounds
on the flow through the edges.

A key part of the encoder is an enumerative coder for constant-
weight binary words. A fast realization of this coder is shown,
using floating-point arithmetic.

Index Terms—Enumerative coding, Flow networks, Kronecker
product, Parallel encoding, Row-by-row coding, Runlength-
limited constraints, Two-dimensional constraints.

I. INTRODUCTION

Let G = (V,E, L) be an edge-labeled directed graph
(referred to hereafter simply as a graph), where V is the
vertex set, E is the edge set, and L : E → Σ is the edge
labeling taking values on a finite alphabet Σ [1, §2.1]. We
require that the labeling L is deterministic: edges that start at
the same vertex have distinct labels. We further assume that
G has finite memory [1, §2.2.3]. The one-dimensional (1-D)
constraint S = S(G) that is presented by G is defined as the
set of all words that are generated by paths in G (i.e., the words
are obtained by reading-off the edge labels of such paths).
Examples of 1-D constraints include runlength-limited (RLL)
constraints [1, §1.1.1], symmetric runlength-limited (SRLL)
constraints [2], and the charge constraints [1, §1.1.2]. The
capacity of S is given by

cap(S) = lim
`→∞

(1/`) · log2

∣∣S ∩ Σ`
∣∣ .
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An M -track parallel encoder for S = S(G) at rate R is
defined as follows (see Figure 1).
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Fig. 1. Array corresponding to an M -track parallel encoder.

1) At stage t = 0, 1, 2, · · · , the encoder (which may be
state-dependent) receives as input M ·R (unconstrained)
information bits.

2) The output of the encoder at stage t is a word g(t) =
(g(t)
k )Mk=1 of length M over Σ.

3) For 1 ≤ k ≤ M , the kth track γk = (g(t)
k )`−1

t=0 of any
given length `, belongs to S.

4) There are integers m, a ≥ 0 such that the encoder is
(m, a)-sliding-block decodable (in short, (m, a)-SBD):
for t ≥ m, the M ·R information bits which were input
at stage t are uniquely determined by (and can be effi-
ciently calculated from) g(t−m), g(t−m+1), . . . , g(t+a).

The decoding window size of the encoder is m+a+1, and it is
desirable to have a small window to avoid error propagation.
In this work, we will be mainly focusing on the case where
a = 0, in which case the decoding requires no look-ahead.

In [3], it was shown that by introducing parallelism, one can
reduce the window size, compared to conventional serial en-
coding. Furthermore, it was shown that as M tends to infinity,
there are (0, 0)-SBD parallel encoders whose rates approach
cap(S(G)). A key step in [3] is using some perturbation of
the conditional probability distribution on the edges of G,
corresponding to the maxentropic stationary Markov chain on
G. However, it is not clear how this perturbation should be
done: a naive method will only work for unrealistically large



M . Also, the proof in [3] of the (0, 0)-SBD property is only
probabilistic and does not suggest encoders and decoders that
have an acceptable running time.

In this work, we aim at making the results of [3] more
tractable. At the expense of possibly increasing the memory
of the encoder (up to the memory of G) we are able to
define a suitable perturbed distribution explicitly, and provide
an efficient algorithm for computing it. Furthermore, the
encoding and decoding can be carried out in time complexity
O(M log2M log logM), where the multiplying constants in
the O(·) term are polynomially large in the parameters of G.

Denote by diam(G) the diameter of G (i.e., the longest
shortest path between any two vertices in G) and let AG =
(ai,j) be the adjacency matrix of G, i.e., ai,j is the number
of edges in G that start at vertex i and terminate in vertex j.
Our main result, specifying the rate of our encoder, is given
in the next theorem.

Theorem 1: Let G be a deterministic graph with memory
m. For M sufficiently large, one can efficiently construct an
M -track (m, 0)-SBD parallel encoder for S = S(G) at a rate
R such that

R ≥ cap(S(G))
(

1− |V |diam(G)
2M

)
−O

(
|V |2 log (M · amax/amin)
M − |V |diam(G)/2

)
, (1)

where amin (respectively, amax) is the smallest (respectively,
largest) nonzero entry in AG.

The structure of this paper is as follows. In Section II
we show how parallel encoding can be used to construct an
encoder for a 2-D constraint. As we will show, a parallel
encoder is essentially defined through what we term a multi-
plicity matrix. Section III defines how our parallel encoder
works, assuming its multiplicity matrix is given. Then, in
Section IV, we show how to efficiently calculate a good
multiplicity matrix. Although 2-D constraints are our main
motivation, Section V shows how our method can be applied
to 1-D constraints. Section VI defines two methods by which
the rate of our encoder can be slightly improved. Finally, in
Section VII we show a method of efficiently realizing a key
part of our encoding procedure.

II. TWO-DIMENSIONAL CONSTRAINTS

Our primary motivation for studying parallel encoding is to
show an encoding algorithm for a family of two-dimensional
(2-D) constraints.

The concept of a 1-D constraint can formally be generalized
to two dimensions (see [3, §1]). Examples of 2-D constraints
are 2-D RLL constraints [4], 2-D SRLL constraints [2], and
the kings constraint (termed the square constraint in [5]). Let S
be a given 2-D constraint over a finite alphabet Σ. We denote
by S[`, h] the set of all `×h arrays in S. The capacity of S [6]
is given by

cap(S) = lim
`,h→∞

1
` · h

· log2 |S[`, h]| .

Suppose we wish to encode information to an ` × h array
which must satisfy the constraint S; namely, the array must
be an element of S[`, h]. As a concrete example, consider the
kings constraint [5]: its elements are all the binary arrays in
which no two ‘1’ symbols are adjacent on a row, column, or
diagonal.

We first partition our array into two alternating types of
vertical strips: data strips having width w, and merging strips
having width b. In our example, let w = 4 and b = 1 (see
Figure 2).

0 0 1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 1

Fig. 2. Binary array satisfying the kings constraint, partitioned into data
strips of width w = 4 and merging strips of width b = 1.

Secondly, we select a graph G = (V,E, L) with a labeling
L : E → S[1, w] such that S(G) ⊆ S, i.e., each path of length
` in G generates a (column) word which is in S[`, w]. We
then fill up the data strips of our `×h array with `×w arrays
corresponding to paths of length ` in G. Thirdly, we assume
that the choice of b allows us to fill up the merging strips in
a row-by-row (causal) manner, such that our ` × h array is
in S. Any 2-D constraint S for which such w, b, and G can
be found, is in the family of constraints we can code for (for
example, the 2-D SRLL constraints belong to this family [2]).

Consider again the kings constraint: a graph which produces
all `×w arrays that satisfy this constraint is given in Figure 3.
Also, for b = 1, we can take the merging strips to be all-zero.
(There are cases, such as the 2-D SRLL constraints, where
determining the merging strips may be less trivial [2].)

0000 0100
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Fig. 3. Graph G whose paths generate all `× 4 arrays satisfying the kings
constraint. The label of an edge is given by the label of the vertex it enters.

Suppose we have an (m, 0)-SBD parallel encoder for S =
S(G) at rate R with M = (h+b)/(w+b) tracks. We may use
this parallel encoder to encode information in a row-by-row
fashion to our `×h array: at stage t we feed M ·R information
bits to our parallel encoder. Let g(t) = (g(t)

k )Mk=1 be the output
of the parallel encoder at stage t. We write g(t)

k to row t of
the kth data strip, and then appropriately fill up row t of the
merging strips. Decoding of a row in our array can be carried
out based only on the contents of that row and the previous
m rows.

Since M ·R information bits are mapped to M ·w+(M−1)·b
symbols in Σ, the rate at which we encode information to the



array is

R

w + b(1− 1/M)
≤ cap(S(G))
w + b(1− 1/M)

. (2)

Note that if we remove the 1/M term (which is typically
negligible) from the right-hand side of (2), we get a lower
bound on cap(S), which converges to cap(S) as w → ∞
(and b is kept constant). Thus, we have by Theorem 1 that
the left-hand side of (2) approaches cap(S) as M and w
tend to infinity. However, there is a tradeoff: the number of
vertices and edges in G will usually grow exponentially with
w. Therefore, w is taken to be reasonably small. Also, recall
that once the values of w and b are decided upon, the value
of M is set according to the width h of the 2-D array.

Note that in our scheme, a single error generally results in
the loss of information stored in the respective vertical sliding-
block window. Namely, a single corrupted entry in the array
may cause the loss of m + 1 rows. Thus, our method is only
practical if we assume an error model in which whole rows
are corrupted by errors. This is indeed the case if each row
is protected by an error-correcting code (for example, by the
use of unconstrained positions [7]).

III. DESCRIPTION OF THE ENCODER

Let N be a positive integer which will shortly be specified.
The N words γk = (g(t)

k )`−1
t=0 , 1 ≤ k ≤ N , that we will

be writing to the first N tracks are all generated by paths of
length ` in G. In what follows, we find it convenient to regard
the `×N arrays (γk)Nk=1 = (g(t)

k )`−1
t=0

N
k=1 as (column) words

of length ` of some new 1-D constraint, which we define next.
The N th Kronecker power of G = (V,E, L), denoted by

G⊗N = (V N , EN , LN ), is defined as follows. The vertex set
V N is simply the N th Cartesian power of V ; that is,

V N = {〈v1, v2, . . . , vN 〉 : vk ∈ V } .

An edge e = 〈e1, e2, . . . , eN 〉 ∈ EN goes from vertex v =
〈v1, v2, . . . , vN 〉 ∈ V N to vertex v′ = 〈v′1, v′2, . . . , v′N 〉 ∈ V N
and is labeled LN (e) = 〈L(e1), L(e2), . . . , L(eN )〉 whenever
for all 1 ≤ k ≤ N , ek is an edge from vk to v′k.

Note that a path of length ` in G⊗N is just a handy way
to denote N paths of length ` in G. Accordingly, the ` × N
arrays (γk)Nk=1 are the words of length ` in S(G⊗N ).

Let G be as in Section I and let AG = (ai,j) be the
adjacency matrix of G. Denote by 1 the 1× |V | all-one row
vector. The description of our M -track parallel encoder for
S = S(G) makes use of the following definition. A |V | × |V |
nonnegative integer matrix D = (di,j)i,j∈V is called a (valid)
multiplicity matrix with respect to G and M if

1 ·D · 1T ≤M , (3)

1 ·D = 1 ·DT , and (4)
di,j > 0 only if ai,j > 0 . (5)

(While any multiplicity matrix will produce a parallel encoder,
some will have higher rates than others. In Section IV, we

show how to compute multiplicity matrices D that yield rates
close to cap(S(G)).)

Recall that we have at our disposal M tracks. However, we
will effectively be using only the first N = 1 ·D · 1T tracks
in order to encode information. The last M − N tracks will
all be equal to the first track, say.

Write r = (ri)i∈V = 1 ·DT . A vertex v = 〈vk〉Nk=1 ∈ V N
is a typical vertex (with respect to D) if for all i, the vertex
i ∈ V appears as an entry in v exactly ri times. Also, an edge
e = 〈ek〉Nk=1 ∈ EN is a typical edge with respect to D if for
all i, j ∈ V , there are exactly di,j entries ek which—as edges
in G—start at vertex i and terminate in vertex j.

A simple computation shows that the number of outgoing
typical edges from a typical vertex equals

∆ =
∏
i∈V ri!∏

i,j∈V di,j ! · a
−di,j
i,j

(6)

(where 00 , 1). For example, in the simpler case where G
does not contain parallel edges (ai,j ∈ {0, 1}), we are in effect
counting in (6) permutations with repetitions, each time for a
different vertex i ∈ V .

The encoding process will be carried out as follows. We
start at some fixed typical vertex v(0) ∈ V N . Out of the set of
outgoing edges from v(0), we consider only typical edges. The
edge we choose to traverse is determined by the information
bits. After traversing the chosen edge, we arrive at vertex v(1).
By (4), v(1) is also a typical vertex, and the process starts
over. This process defines an M -track parallel encoder for
S = S(G) at rate

R = R(D) =
blog2 ∆c
M

.

This encoder is (m, 0)-SBD, where m is the memory of G.
Consider now how we map M ·R information bits into an

edge choice e ∈ EN at any given stage t. Assuming again
the simpler case of a graph with no parallel edges, a natural
choice would be to use an instance of enumerative coding [8].
Specifically, suppose that for 0 ≤ δ ≤ n, a procedure for
encoding information by an n-bit binary vector with Hamming
weight δ were given. Suppose also that V = {1, 2, . . . , |V |}.
We could use this procedure as follows. First, for n = r1 and
δ = d1,1, the binary word given as output by the procedure
will define which d1,1 of the possible r1 entries in e will be
equal to the edge in E from the vertex 1 ∈ V to itself (if no
such edge exists, then d1,1 = 0). Having chosen these entries,
we run the procedure with n = r1 − d1,1 and δ = d1,2 to
choose from the remaining r1 − d1,1 entries those that will
contain the edge in E from 1 ∈ V to 2 ∈ V . We continue this
process, until all r1 entries in e containing an edge outgoing
from 1 ∈ V have been picked. Next, we run the procedure with
n = r2 and δ = d2,1, and so forth. The more general case of
a graph containing parallel edges will include a preliminary
step: encoding information in the choice of the di,j edges used
to traverse from i to j (ai,j options for each such edge).

A fast implementation of enumerative coding is presented in
Section VII. The above-mentioned preliminary step makes use



of the Schönhage–Strassen integer-multiplication algorithm [9,
§7.5], and the resulting encoding time complexity is propor-
tional1 to M log2M log logM . It turns out that this is also
the decoding time complexity. Further details are given in
Section VII.

The next section shows how to find a good multiplicity
matrix, i.e., a matrix D such that R(D) is close to cap(S(G)).

IV. COMPUTING A GOOD MULTIPLICITY MATRIX

In order to enhance the exposition of this section, we
accompany it by a running example (see Figure 4).

α β

θ

a
b

c

de
AG =

 1 1 0
1 0 1
1 0 0



Fig. 4. Running Example: Graph G and the corresponding adjacency matrix
AG.

Throughout this section, we assume a probability distribu-
tion on the edges of G, which is the maxentropic stationary
Markov chain P on G [1]. Without loss of generality, we
can assume that G is irreducible (i.e., strongly-connected), in
which case P is indeed unique. Let the matrix Q = (qi,j) be
the transition matrix induced by P , i.e., qi,j is the probability
of traversing an edge from i ∈ V to j ∈ V , conditioned on
currently being at vertex i ∈ V .

Let π = (πi) be the 1×|V | row vector corresponding to the
stationary distribution on V induced by Q; namely, πQ = π
and

∑
i∈V πi = 1. Let

M ′ = M − b|V |diam(G)/2c , (7)

and define

ρ = (ρi) , ρi = M ′πi , and P = (pi,j) , pi,j = ρiqi,j

Example 1: Taking the number of tracks in our running
example (Figure 4) to be M = 12 gives M ′ = 9. Also, our
running example has

π =
(

0.619 0.282 0.099
)
,

and

Q =

 0.544 0.456 0
0.647 0 0.353

1 0 0

 .

1Actually, the time complexity for the preliminary step can be made linear
in M , with a negligible penalty in terms of rate: Fix i and j, and let η be an
integer design parameter. Assume for simplicity that η|di,j . The number of
vectors of length η over an alphabet of size ai,j is obviously aηi,j . So, we can
encode bη log2 ai,jc bits through the choice of such a vector. Repeating this
process, we can encode (di,j/η) · bη log2 ai,jc bits through the choice of
di,j/η such vectors. The concatenation of these vectors is taken to represent
our choice of edges. Note that the encoding process is linear in M for constant
η. Also, our losses (due to the floor function) become negligible for modestly
large η.

Thus,
ρ =

(
5.57 2.54 0.89

)
and

P =

 3.03 2.54 0
1.65 0 0.89
0.89 0 0

 .

�
Note that

ρ = 1 · PT and M ′ = 1 · P · 1T .

Also, observe that (3)–(5) hold when we substitute P for
D. Thus, if all entries of P were integers, then we could
take D equal to P . In a way, that would be the best choice
we could have made: by using Stirling’s approximation2, we
could deduce that R(D) approaches cap(S(G)) as M →∞.
However, the entries of P , as well as ρ, may be non-integers.

We say that an integer matrix P̃ = (p̃i,j) is a good
quantization of P = (pi,j) if

M ′ =
∑
i,j∈V pi,j =

∑
i,j∈V p̃i,j , (8)⌊∑

j∈V pi,j

⌋
≤
∑
j∈V p̃i,j ≤

⌈∑
j∈V pi,j

⌉
, (9)

bpi,jc ≤ p̃i,j ≤ dpi,je , and— (10)⌊∑
i∈V pi,j

⌋
≤
∑
i∈V p̃i,j ≤

⌈∑
i∈V pi,j

⌉
. (11)

Namely, a given entry in P̃ is either the floor or the ceiling of
the corresponding entry in P , and this also holds for the sum
of entries of a given row or column in P̃ ; moreover, the sum
of entries in both P̃ and P are exactly equal (to M ′).

Lemma 2: There exists a matrix P̃ which is a good quan-
tization of P . Furthermore, such a matrix can be found by an
efficient algorithm.

uσ

uω

u′1 u′2 u′i u′|V |

u′′1 u′′2 u′′j u′′|V |

uτ

(M ′, M ′)

(b
∑
j∈V pi,jc, d

∑
j∈V pi,je)

(bpi,jc, dpi,je)

(b
∑
i∈V pi,jc, d

∑
i∈V pi,je)

· · ·

· · ·

· · ·

· · ·

Fig. 5. Flow network for the proof of Lemma 2. An edge labeled (a, b) has
lower and upper bounds a and b, respectively.

Proof: We recast (8)–(11) as an integer flow problem (see
Figures 5 and 6). Consider the following flow network, with

2As will be done in the proof of Theorem 1, to prove a more general claim.



upper and lower bounds on the flow through the edges [10,
§6.7]. The network has the vertex set

{uσ} ∪ {uω} ∪ {uτ} ∪ {u′i}i∈V ∪
{
u′′j
}
j∈V ,

with source uσ and target uτ . Henceforth, when we refer to the
upper (lower) bound of an edge, we mean the upper (lower)
bound on the flow through it. There are four kinds of edges:

1) An edge uσ → uω with upper and lower bounds both
equaling to M ′.

2) uω → u′i for every i ∈ V , with the upper and lower
bounds b

∑
j∈V pi,jc and d

∑
j∈V pi,je, respectively.

3) u′i → u′′j for every i, j ∈ V , with the upper and lower
bounds bpi,jc and dpi,je, respectively.

4) u′′j → uτ for every j ∈ V , with the upper and lower
bounds b

∑
i∈V pi,jc and d

∑
i∈V pi,je, respectively.

We claim that (8)–(11) can be satisfied if a legal integer
flow exists: simply take p̃i,j as the flow on the edge from u′i
to u′′j .

It is well known that if a legal real flow exists for a flow
network with integer upper and lower bounds on the edges,
then a legal integer flow exists as well [10, Theorem 6.5].
Moreover, such a flow can be efficiently found [10, §6.7]. To
finish the proof, we now exhibit such a legal real flow:

1) The flow on the edge uσ → uω is
∑
i,j∈V pi,j = M ′.

2) The flow on an edge uω → u′i is
∑
j∈V pi,j .

3) The flow on an edge u′i → u′′j is pi,j .
4) The flow on an edge u′′j → uτ is

∑
i∈V pi,j .

For the remaining part of this section, we assume that P̃ is
a good quantization of P (say, P̃ is computed by solving the
integer flow problem in the last proof). The next lemma states
that P̃ “almost” satisfies (4).

Lemma 3: Let ρ̃ = (ρ̃i) = 1 · P̃T and r̃ = (r̃i) = 1 · P̃ .
Then, for all i ∈ V ,

ρ̃i − r̃i ∈ {−1, 0, 1} .

Proof: From (9), we get that for all i ∈ V ,

b
∑
j∈V pi,jc ≤ ρ̃i ≤ d

∑
j∈V pi,je . (12)

Recall that (4) is satisfied if we replace D by P . Thus, by
(11), we have that (12) also holds if we replace ρ̃i by r̃i. We
conclude that |ρ̃i − r̃i| ≤ 1. The proof follows from the fact
that entries of P̃ are integers, and thus so are those of ρ̃ and
r̃.

The following lemma will be the basis for augmenting P̃
so that (4) is satisfied.

Lemma 4: Fix two distinct vertices s, t ∈ V . We can
efficiently find a |V | × |V | matrix F (s,t) = F = (fi,j)i,j∈V
with non-negative integer entries, such that the following three
conditions hold.

(i)
1 · F · 1T ≤ diam(G) .

(ii) For all i, j ∈ V ,

fi,j > 0 only if ai,j > 0 .

uσ

uω

u′
α u′

β u′
θ

u′′
α u′′

β u′′
θ

uτ

9;9

3.03;4

2.54;2 1.65;2

0.89;1

0.89;0

5.57;6
2.54;3

0.89;0

5.57;6
2.54;2

0.89;1

P =

 3.03 2.54 0
1.65 0 0.89
0.89 0 0

 , P̃ =

 4 2 0
2 0 1
0 0 0

 .

Fig. 6. Running Example (continued): The flow network derived from P in
Example 1. An edge labeled a;b has lower and upper bounds bac and dae,
respectively. A legal real flow is given by a. A legal integer flow is given by
b. The matrix P̃ resulting from the legal integer flow is given, as well as the
matrix P (again).

(iii) Denote ξ = 1 · FT and x = 1 · F . Then, for all i ∈ V ,

xi − ξi =


−1 if i = s,
1 if i = t,
0 otherwise.

Proof: Let v1 = s, v2, v3 . . . , v`+1 = t be the vertices
along a shortest path from s to t in G. For all i, j ∈ V , define

fi,j = |{1 ≤ h ≤ ` : vh = i and vh+1 = j}| . (13)

Namely, fi,j is the number of edges from i to j along the
path.

Conditions (i) and (ii) easily follow from (13). Condition
(iii) follows from the fact that ξi (xi) is equal to the number
of edges along the path for which i is the start (end) vertex
of the edge.

The matrix P̃ will be the basis for computing a good
multiplicity matrix D, as we demonstrate in the proof of the
next theorem.

Theorem 5: Let P̃ = (p̃i,j) be a good quantization of P .
There exists a multiplicity matrix D = (di,j) with respect to
G and M , such that

1) di,j ≥ p̃i,j for all i, j ∈ V , and—
2) M ′ ≤ 1 ·D · 1T ≤M

(where M ′ is as defined in (7)). Moreover, the matrix D can
be found by an efficient algorithm.



Proof: Consider a vertex i ∈ V . If r̃i > ρ̃i, then we say
that vertex i has a surplus of r̃i−ρ̃i. In this case, by Lemma 3,
we have that the surplus is equal to 1. On the other hand, if
r̃i < ρ̃i then vertex i has a deficiency of ρ̃i − r̃i, which again
is equal to 1.

Of course, since
∑
i∈V ρ̃i =

∑
i∈V r̃i = M ′, the total

surplus is equal to the total deficiency, and both are denoted
by Surp:

Surp =
∑
i∈V

max {0, r̃i−ρ̃i} = −
∑
i∈V

min {0, r̃i−ρ̃i} . (14)

Denote the vertices with surplus as (sk)Surp
k=1 and the vertices

with deficiency as (tk)Surp
k=1 . Recalling the matrix F from

Lemma 4, we define

D = P̃ +
Surp∑
k=1

F (sk,tk) .

We first show that D is a valid multiplicity matrix. Note that
Surp ≤ |V | /2. Thus, (3) follows from (7), (8), and (i). The
definitions of surplus and deficiency vertices along with (iii)
give (4). Lastly, recall that (5) is satisfied if we replace di,j by
pi,j . Thus, by (10), the same can be said for p̃i,j . Combining
this with (ii) yields (5).

Since the entries of F (sk,tk) are non-negative for every k,
we must have that di,j ≥ p̃i,j for all i, j ∈ V . This, together
with (3) and (8), implies in turn that M ′ ≤ 1 ·D · 1T ≤M .

Example 2: For the matrix P̃ of our running example in
Figure 6, we have

r̃ =
(

6 2 1
)
, ρ̃ =

(
6 3 0

)
.

Thus, Surp = 1. Namely, the vertex θ has a surplus while the
vertex β has a deficiency. Taking s = θ and t = β we get

F (s,t) =

 0 1 0
0 0 0
1 0 0

 , and D =

 4 3 0
2 0 1
1 0 0

 .

�
Now that Theorem 5 is proved, we are in a position to prove

our main result, Theorem 1. Essentially, the proof involves
using the Stirling approximation and taking into account the
various quantization errors introduced into D. The proof itself
is given in the Appendix.

V. ENUMERATIVE CODING INTO SEQUENCES WITH A
GIVEN MARKOV TYPE

The main motivation for our methods is 2-D constrained
coding. However, in this section, we show that they might be
interesting in certain aspects of 1-D coding as well. Given a
labeled graph G, a classic method for building an encoder for
the 1-D constraint S(G) is the state-splitting algorithm [11].
The rate of an encoder built by [11] approaches the capacity
of S(G). Also, the word the encoder outputs has a corre-
sponding path in G, with the following favorable property:
the probability of traversing a certain edge approaches the

maxentropic probability of that edge (assuming an unbiased
source distribution). However, what if we’d like to build
an encoder with a different probability distribution on the
edges? This scenario may occur, for example, when there is
a requirement that all the output words of a given length N
that are generated by the encoder have a prescribed Hamming
weight3.

More formally, suppose that we are given a labeled graph
G = (V,E,L); to make the exposition simpler, suppose that
G does not contain parallel edges. Let Q and π be a transition
matrix and a stationary probability distribution corresponding
to a stationary (but not necessarily maxentropic) Markov chain
P on G. We assume w.l.o.g. that each edge in G has a positive
conditional probability. We are also given an integer M , which
we will shortly elaborate on.

We first describe our encoder in broad terms, so as that
its merits will be obvious. Let D and N be as previously
defined, and let RT (D) be specified shortly. We start at some
fixed vertex v0 ∈ V . Given M · RT (D) information bits, we
traverse a soon to be defined cyclic path of length N in G. The
concatenation of the edge labels along the path is the word we
output. Of course, since the path is cyclic, the concatenation
of such words is indeed in S(G). Moreover, the path will have
the following key property: the number of times an edge from
i to j is traversed equals di,j . Namely, if we uniformly pick
one of the N edges of the path, the probability of picking a
certain edge e is constant (not a function of the input bits), and
is equal to the probability of traversing e on the Markov chain
P , up to a small quantization error. The rate RT of our encoder
will satisfy (1), where we replace R by RT and cap(S) by
the entropy of P . We would like to be able to exactly specify
the path length N as a design parameter. However, we specify
M and get an N between M and M − b|V |diam(G)/2c.

Our encoding process will make use of an oriented tree,
a term which we will now define. A set of edges T ⊆ E
is an oriented tree of G with root v0 if |T | = |V | − 1 and
for each u ∈ V there exists a path from u to v0 consisting
entirely of edges in T (see Figure 7). Note that if we reverse
the edge directions of an oriented tree, we get a directed tree
as defined in [13, Theorem 2.5]. Since reversing the directions
of all edges in an irreducible graph results in an irreducible
graph, we have by [13, Lemma 3.3] that an oriented tree T
indeed exists in G, and can be efficiently found. So, let us fix
some oriented tree T with root v0. By [13, Theorem 2.5], we
have that every vertex u ∈ V which is not the root v0 has an
out-degree equal to 1. Thus, for each such vertex u we may
define parent(u) as the destination of the single edge in T
going out of u.

We now elaborate on the encoding process. The encoding
consists of two steps. In the first step, we map the information
bits to a collection of lists. In the second step, we use the lists

3We remark in passing that one may use convex programming techniques
(see [12, §V]) in order to efficiently solve the following optimization problem:
find a probability distribution on the edges of G yielding a stationary Markov
chain with largest possible entropy, subject to a set of edges (such as the set
of edges with label ‘1’) having a prescribed cumulative probability.



v0

Fig. 7. Oriented tree with root v0.

in order to define a cyclic path.
First step: Given M ·RT (D) information bits, we build for

each vertex i ∈ V a list λ(i) of length ri,

λ(i) = (λ(i)
1 , λ

(i)
2 , . . . , λ(i)

ri ) .

The entries of each λ(i) are vertices in V . Moreover, the
following properties are satisfied for all i:
• The number of times j is an entry in λ(i) is exactly di,j .
• If i 6= v0, then the last entry of the list equals the parent

of i. Namely,
λ(i)
ri = parent(i) .

Recalling (6), a simple calculation shows that the number
of possible list collections is

∆T = ∆ ·
∏

i∈V \{v0}

di,parent(i)

ri
. (15)

Thus, we define the rate of encoding as

RT =
blog2 ∆T c

M
.

Also, note that as in the 2-D case, we may use enumerative
coding in order to efficiently map information bits to lists.

Second step: We now use the lists λ(i), i ∈ V , in order to
construct a cyclic path starting at vertex v0. We start the path
at v0 and build a length-N path according to the following
rule: when exiting vertex i for the kth time, traverse the edge
going into vertex λ(i)

k .
Of course, our encoding method is valid (and invertible) iff

we may always abide by the above-mentioned rule. Namely,
we don’t get “stuck”, and manage to complete a cyclic path
of length N . This is indeed the case: define an auxiliary graph
G(D) with the same vertex set, V , as G and di,j parallel edges
from i to j (for all i, j ∈ V ). First, recall that for sufficiently
large M , the presence of an edge from i to j in G implies that
di,j > 0. Thus, since G was assumed to be irreducible, G(D)
is irreducible as well. Also, an edge in T from i to j implies
the existence of an edge in G(D) from i to j. Secondly, note
that by (4), the number of times we are supposed to exit a
vertex is equal to the number of times we are supposed to
enter it. The rest of the proof follows from [14, p. 56, Claim
2], applied to the auxiliary graph G(D). Namely, our encoder
follows directly from van Aardenne-Ehrenfest and de Bruijn’s
[15] theorem on counting Eulerian cycles in a graph.

We now return to the rate, RT , of our encoder. From (7),
(10), (11) and Theorem 5, we see that for M sufficiently large,
∆T is greater than some positive constant times ∆. Thus, (1)
still holds if we replace R by RT and cap(S) by the entropy
of P .

VI. AN EXAMPLE, AND TWO IMPROVEMENT TECHNIQUES

Recall from Section II the kings constraint: its elements are
all the binary arrays in which no two ‘1’ symbols are adjacent
on a row, column, or diagonal. By employing the methods
presented in [16], we may calculate an upper bound on the
rate of the constraint. This turns out to be 0.425078. We will
show an encoding/decoding method with rate slightly larger
than 0.396 (about 93% of the upper bound). In order to do this,
we assume that the array has 100,000 columns. Our encoding
method has a fixed rate and has a vertical window of size 2
and vertical anticipation 0.

We should point out now that a straightforward implemen-
tation of the methods we have previously defined gives a rate
which is strictly less than 0.396. Namely, this section also
outlines two improvement techniques which help boost the
rate.

We start out as in the example given in Section II, except
that the width of the data strips is now w = 9 (the width of
the merging strips remains b = 1). The graph G we choose
produces all width-w arrays satisfying the kings constraint,
and we take the merging strips to be all-zero. Our array has
100,000 columns, so we have M = 10,000 tracks (the last,
say, column of the array will essentially be unused; we can
set all of its values to 0).

Define the normalized capacity as

cap(S(G))
w + b

.

The graph G has |V | = 89 vertices and normalized capacity

cap(S(G))
w + b

≈ cap(S(G))
w + b(1− 1/M)

≈ 0.402 .

This number is about 94.5% from the upper bound on the
capacity of our 2-D constraint. Thus, as expected, there is an
inherent loss in choosing to model the 2-D constraint as an
essentially 1-D constraint. Of course, this loss can be made
smaller by increasing w (but the graph G will grow as well).

From Theorem 1, the rate of our encoder will approach
the normalized capacity of 0.402 as the number of tracks M
grows. So, once the graph G is chosen, the parameter we
should be comparing ourselves to is the normalized capacity.
We now apply the methods defined in Section IV and find
a multiplicity matrix D. Recall that the matrix D defines
an encoder. In our case, this encoder has a rate of about
0.381. This is 94% of the normalized capacity, and is quite
disappointing (but the improvements shown in Sections VI-A
and VI-B below are going to improve this rate). On the other
hand, note that if we had limited ourselves to encode to each
track independently of the others, then the best rate we could
have hoped for with 0 vertical anticipation turns out to be 0.3
(see [17, Theorem 5]).



A. Moore-style reduction

We now define a graph G which we call the reduction of
G. Essentially, we will encode by constructing paths in G,
and then translate these to paths in G. In both G and G, the
maxentropic distributions have the same entropy. The main
virtue of G is that it often has less vertices and edges compared
to G. Thus, the penalty in (1) resulting from using a finite
number of tracks will often be smaller.

For s ≥ 0, we now recursively define the concept of s-
equivalence (very much like in the Moore algorithm [1, page
1660]).
• For s = 0, any two vertices v1, v2 ∈ V are 0-equivalent.
• For s > 0, two vertices v1, v2 ∈ V are s-equivalent iff

1) the two vertices v1, v2 are (s − 1)-equivalent, and 2)
for each (s−1)-equivalence class c, the number of edges
from v1 to vertices in c is equal to the number of edges
from v2 to vertices in c.

Denote by Πs the partition induced by s-equivalence. For the
graph G given in Figure 3,

Π0 = {0000,0001,0010,0100,0101,1000,1001,1010} ,
Πs≥1 ={0000},{0010,0100},{1000,0001},{1010,1001,0101} .

Note that, by definition, Πs+1 is a refinement of Πs. Thus, let
s′ be the smallest s for which Πs = Πs+1. The set Πs′ can
be efficiently found (essentially, by the Moore algorithm [1,
page 1660]).

Define a (non-labeled) graph G = (V,E) as follows. The
vertex set of G is

V = Πs′ .

For each c ∈ V, let v(c) be a fixed element of c (if c contains
more than one vertex, then pick one arbitrarily). Also, for each
v ∈ V , let c(v) be the class c ∈ V such that v ∈ c. Let σG(e)
(σG(e)) and τG(e) (τG(e)) denote the start and end vertex of
an edge e in G (G), respectively. The edge set E is defined as

E =
⋃
c∈V

{e ∈ E : σG(e) = v(c)} , (16)

where

σG(e) = c(σG(e)) and τG(e) = c(τG(e)) .

Namely, the number of edges from c1 to c2 in G is equal to the
number of edges in G from some fixed v1 ∈ c1 to elements of
c2, and, by the definition of s′, this number does not depend
on the choice of v1. The graph G is termed the reduction of G.
The reduction of G from Figure 3 is given in Figure 8. Note
that since G was assumed to be irreducible, we must have that
G is irreducible as well.

Lemma 6: The entropies of the maxentropic Markov chains
on G and G are equal.

Proof: Let A = AG be the adjacency matrix of G, and
recall that A = AG is the adjacency matrix of G. Let λ′

and x′ = (x′c)c∈V be the Perron eigenvalue and right Perron
eigenvector of A, respectively [1, §3.1]. Next, define the vector
x = (xv)v∈V as

xv = x′c(v) .

{0000} {0100, 0010}

{1000, 0001}

{1010, 1001, 0101}

Fig. 8. Reduction of the graph G from Figure 3.

It is easily verifiable that x is a right eigenvector of A, with
eigenvalue λ′. Now, since x′ is a Perron eigenvector of an
irreducible matrix, each entry of it is positive. Thus, each entry
of x is positive as well. Since A is irreducible, we must have
that x is a Perron eigenvector of A. So, the Perron eigenvalue
of A is also λ′.

The next lemma essentially states that we can think of paths
in G as if they were paths in G.

Lemma 7: Let ` ≥ 1. Fix some c1, c`+1 ∈ V, and v1 ∈ c1.
There exists a one-to-one correspondence between the follow-
ing sets. First set: paths of length ` in G with start vertex c1

and end vertex c`+1. Second set: paths of length ` in G with
start vertex v1 and end vertex in c`+1.

Moreover, for 1 ≤ t ≤ `, the first t edges in a path belonging
to the second set are a function of only the first t edges in the
respective path in the first set.

Proof: We prove this by induction on `. For ` = 1, we
have

|{e ∈ E : σG(e) = c1 , τG(e) = c2}| =
|{e ∈ E : σG(e) = v1 , τG(e) ∈ c2}| .

To see this, note that we can assume w.l.o.g. that v1 = v(c1),
and then recall (16). For ` > 1, combine the claim for ` − 1
with that for ` = 1.

Notice that diam(G) ≤ diam(G). We now show why G is
useful.

Theorem 8: Let D be the multiplicity matrix found by the
methods previously outlined, where we replace G by G. Let
N = 1 · D · 1T . We may efficiently encode (and decode)
information to G⊗N in a row-by-row manner at rate R(D).

Proof: We conceptually break our encoding scheme into
two steps. In the first step, we “encode” (map) the information
into N paths in G, each path having length `. We do this as
previously outlined (through typical vertices and edges in G).
Note that this step is done at a rate of R(D). In the second
step, we map each such path in G to a corresponding path in
G. By Lemma 7, we can indeed do this (take c0 as the first
vertex in the path, c`+1 as the last vertex, and v0 = v(c0)).

By Lemma 7 we see that this two-step encoding scheme
can easily be modified into one that is row-by-row.

Applying the reduction to our running example (kings
constraint with w = 9 and b = 1), reduces the number of
vertices from 89 in G to 34 in G. The computed D increases
the rate to about 0.392, which is 97.5% of the normalized
capacity.



B. Break-merge
Let G⊗N be the Nth Kronecker power of the Moore-style

reduction G. Recall that the rate of our encoder is

R(D) =
blog2 ∆c
M

,

where ∆ is the number of typical edges in G⊗N going out of
a typical vertex. The second improvement involves expanding
the definition of a typical edge, thus increasing ∆. This is best
explained through an example. Suppose that G has Figure 9 as
a subgraph; namely, we show all edges going out of vertices
α and β. Also, let the numbers next to the edges be equal to
the corresponding entries in D. The main thing to notice at
this point is that if the edges to ε and ζ are deleted (“break”),
then α and β have exactly the same number of edges from
them to vertex j, for all j ∈ V (after the deletion of edges,
vertices α and β can be “merged”).

ε ζ

α β

θ δ

5 2

4 7

3 9

Fig. 9. Break-merge example graph.

Let v be a typical vertex. A short calculation shows that the
number of entries in v that are equal to α (β) is 5+4+3 = 12
(9 + 7 + 2 = 18). Recall that the standard encoding process
consists of choosing a typical edge e going out of the typical
vertex v and into another typical vertex v′. We now briefly
review this process. Consider the 12 entries in v that are equal
to α. The encoding process with respect to them will be as
follows (see Figure 10):
• Out of these 12 entries, choose 5 for which the corre-

sponding entry in v′ will be ε. Since there is exactly one
edge from α the ε in G, the corresponding entries in e
must be equal to that edge.

• Next, from the remaining 7 entries, choose 4 for which
the corresponding entries in v′ will be θ. There are two
parallel edges from α to θ, so choose which one to use
in the corresponding entries in e.

• We are left with 3 entries, the corresponding entries
in v′ will be δ. Also, we have one option as to the
corresponding entries in e.

A similar process is applied to the entries in v that are equal
to β. Thus, the total number of options with respect to these
entries is

12! · 24

5! · 4! · 3!
· 18! · 29

2! · 9! · 7!
≈ 3.97 · 1014 .

Next, consider a different encoding process (see Figure 11).
• Out of the 12 entries in v that are equal to α, choose 5 for

which the corresponding entry in v′ will be ε. As before,
the corresponding entries in e have only one option.

v = α

12

β

18

. . .

v′ = ε

5

θ

4

δ

3

θ

9

δ

7

ζ

2

. . .

Fig. 10. Illustration of the entries in two typical vertices v, v′, where we
got from v to v′ by the standard encoding process.

• Out of the 18 entries in v that are equal to β, choose 2
for the corresponding entry in v′ will be ζ. Again, one
option for entries in e.

• Now, of the remaining 23 entries in v that are equal to
α or β, choose 4 + 9 = 13 for which the corresponding
entry in v′ will be θ. We have two options for the entries
in e.

• We are left with 3 + 7 = 10 entries in v that are equal
to α or β. These will have δ as the corresponding entry
in v′, and one option in e.

v = α

12

β

18

. . .

v′ = ε

5

θ

13

δ

10

ζ

2

. . .

Fig. 11. Illustration of the entries in two typical vertices v, v′, where we got
from v to v′ by the improved encoding process. The shaded part corresponds
to vertices that were merged.

Thus, the total number of options is now(
12
5

)
·
(

18
2

)
· 23! · 213

13! · 10!
≈ 1.14 · 1015 .

The important thing to notice is that in both cases, we arrive
at a typical vertex v′.

To recap, we first “broke” the entries in v that are equal
to α into two groups: Those which will have ε as the
corresponding entry in v′ and those which will have θ or δ
as the corresponding entry. Similarly, we broke entries in v
that are equal to β into two groups. Next, we noticed that of
these four groups, two could be “merged”, since they were
essentially the same. Namely, removing some edges from the
corresponding vertices in G resulted in vertices which were
mergeable.

Of course, these operations can be repeated. The hidden
assumption is that the sequence of breaking and merging is
fixed, and known to both the encoder and decoder. The optimal
sequence of breaking and merging is not known to us. We used
a heuristic. Namely, choose two vertices such that the sets of



edges emanating from both have a large overlap. Then, break
and merge accordingly. This was done until no breaking or
merging was possible. We got a rate of about 0.396, which is
98.5% of the normalized capacity.

VII. FAST ENUMERATIVE CODING

Recall from Section III that in the course of our encoding
algorithm, we make use of a procedure which encodes in-
formation into fixed-length binary words of constant weight.
A way to do this would be to use enumerative coding [8].
Immink [18] showed a method to significantly improve the
running time of an instance of enumerative coding, with a
typically negligible penalty in terms of rate. We now briefly
show how to tailor Immink’s method to our needs.

Denote by n and δ the length and Hamming weight,
respectively, of the binary word we encode into. Some of our
variables will be floating-point numbers with a mantissa of µ
bits and an exponent of ε bits: each floating-point number is
of the form x = s · 2t where s and t are integers such that

2µ ≤ s < 2µ+1 and − 2ε−1 ≤ t < 2ε−1 .

Note that µ+ ε bits are needed to store such a number. Also,
note that every positive real x such that

2µ · 2−2ε−1
≤ x ≤ (2µ+1 − 1) · 22ε−1−1

has a floating point approximation x with relative precision(
1− 1

2µ

)
≤ x

x
≤
(

1 +
1
2µ

)
. (17)

We assume the presence of two look-up tables. The first
will contain the floating-point approximations of 1!, 2!, . . . , n!.
The second will contain the floating-point approximations of
f(0), f(1), . . . , f(δ), where

f(χ) = fµ(χ) = 1− 32χ+ 16
2µ

.

In order to exclude uninteresting cases, assume that µ ≥ 10
and is such that f(δ) ≥ 1/2. Also, take ε large enough so
that n! is less than the maximum number we can represent by
floating point. Thus, we can assume that µ = O(log δ) and
ε = O(log n).

Notice that in our case, we can bound both n and δ from
above by the number of tracks M . Thus, we will actually build
beforehand two look-up tables of size 2M(µ+ ε) bits.

Let x denote the floating-point approximation of x, and
let ∗ and ÷ denote floating-point multiplication and division,
respectively. For 0 ≤ χ ≤ κ ≤ n we define⌈

κ

χ

⌉
=
⌈
(κ! ∗ f(χ))÷ (χ! ∗ (κ− χ)!)

⌉
.

Note that since we have stored the relevant numbers in our
look-up table, the time needed to calculate the above function
is only O(µ2 + ε). The encoding procedure is given in
Figure 12. We note the following points:
• The variables n, ψ, δ and ι are integers (as opposed to

floating-point numbers).

• In the subtraction of
⌈
n−ι
δ−1

⌉
from ψ in line 5, the floating-

point number
⌈
n−ι
δ−1

⌉
is “promoted” to an integer (the result

is an integer).

Name: EnumEncode(n, δ, ψ)

Input: Integers n, δ, ψ such that 0 ≤ δ ≤ n and 0 ≤ ψ <
˚
n
δ

ˇ
.

Output: A binary word of length n and weight δ.

if (δ == 0) // stopping condition: /* 1 */
return 00 . . . 0| {z }

n

; /* 2 */

for (ι← 1; ι ≤ n− δ + 1; ι++) { /* 3 */
if (ψ ≥

˚
n−ι
δ−1

ˇ
) /* 4 */

ψ ← ψ −
˚
n−ι
δ−1

ˇ
; /* 5 */

else /* 6 */
return 00..0| {z }

ι−1

1‖EnumEncode(n− ι, δ − 1, ψ); /* 7 */

} /* 8 */

Fig. 12. Enumerative encoding procedure for constant-weight binary words.

We must now show that the procedure is valid, namely,
that given a valid input, we produce a valid output. For our
procedure, this reduce to showing two things: 1) If the stopping
condition is not met, a recursive call will be made. 2) The
recursive call is given valid parameters as well. Namely, in
the recursive call, ψ is non-negative. Also, for the encoding
to be invertible, we must further require that 3)

⌈
n
0

⌉
= 1 for

n ≥ 0.
Condition 2 is clearly met, because of the check in line 4.

Denote 〈
κ

χ

〉
= (κ! ∗ f(χ))÷ (χ! ∗ (κ− χ)!)

(and so,
⌈
κ
χ

⌉
= d

〈
κ
χ

〉
e). Condition 3 follows from the next

lemma.
Lemma 9: Fix 0 ≤ δ ≤ n. Then,(
n

δ

)
·
(

1− 32(δ + 1)
2µ

)
≤
〈
n

δ

〉
≤
(
n

δ

)
·
(

1− 32δ
2µ

)
.

Proof: The proof is essentially repeated invocations of
(17) on the various stages of computation. We leave the details
to the reader.

Finally, Condition 1 follows easily from the next lemma.
Lemma 10: Fix 0 ≤ δ ≤ n. Then,⌈

n

δ

⌉
≤
n−δ+1∑
ι=1

⌈
n− ι
δ − 1

⌉
.

Proof: The claim will follow if we show that〈
n

δ

〉
≤
n−δ+1∑
ι=1

〈
n− ι
δ − 1

〉
.

This is immediate from Lemma 9 and the binomial identity(
n

δ

)
=
n−δ+1∑
ι=1

(
n− ι
δ − 1

)
.



Note that the penalty in terms of rate one suffers because
of using our procedure (instead of plain enumerative coding)
is negligible. Namely, log2

⌈
n
δ

⌉
can be made arbitrarily close

to log2

(
n
δ

)
. Since we take ε = O(log n) and µ = O(log δ),

we can show by amortized analysis that the running time of
the procedure is O(n log2 n). Specifically, see [19, Section
17.3], and take the potential of the binary vector corresponding
to ψ as the number of entries in it that are equal to ‘0’.
The decoding procedure is a straightforward “reversal” of the
encoding procedure, and its running time is also O(n log2 n).

VIII. APPENDIX

Proof of Theorem 1: Let ∆̃ be as in (6), where we replace
di,j by p̃i,j and ri by ρ̃i. By the combinatorial interpretation
of (6), and the fact that di,j ≥ p̃i,j for all i, j ∈ V , it easily
follows that ∆ ≥ ∆̃. Thus,

R(D) ≥ blog2 ∆̃c
M

=
M ′

M
· blog2 ∆̃c

M ′
.

Denote by e the base of natural logarithms. By Stirling’s
formula we have

log2(t!) = t log2(t/e) +O(log t) ,

and from (6) we get that

log2 ∆̃ =
∑
i∈V

ρ̃i log2(ρ̃i/e)−
∑
i,j∈V

p̃i,j log2(p̃i,j/e)

+
∑
i,j∈V

p̃i,j log2(ai,j)−O(|V |2 logM) .

By (8) and (10),∑
i,j∈V

p̃i,j log2(ai,j) =∑
i,j∈V

pi,j log2(ai,j)−O
(
|V |2 log(amax/amin)

)
.

Since
∑
j p̃i,j = ρ̃i, we have∑

i∈V
ρ̃i log2(ρ̃i/e)−

∑
i,j∈V

p̃i,j log2(p̃i,j/e)

=
∑
i∈V

ρ̃i log2(ρ̃i)−
∑
i,j∈V

p̃i,j log2(p̃i,j) .

Moreover, by (9) and (10), the RHS of the last equation equals∑
i∈V

ρi log2(ρi)−
∑
i,j∈V

pi,j log2(pi,j)−O(|V |2 logM) .

We conclude that

log2 ∆̃ =
∑
i∈V

ρi log2(ρi)−
∑
i,j∈V

pi,j log2(pi,j)

+
∑
i,j∈V

pi,j log2(ai,j)−O
(
|V |2(logM · amax/amin)

)
.

Lastly, recall that ρi = M ′πi and pi,j = ρiqi,j . Thus,

log2 ∆̃ = M ′H(P)−O
(
|V |2(logM · amax/amin)

)
,

where H(P) is the entropy of the stationary Markov chain
P with transition matrix Q. Recall that P was selected to be
maxentropic: H(P) = cap(S(G)). This fact, along with (7)
and a short calculation, finishes the proof.
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